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ABSTRACT: While polyelemental alloys are shown to be promising for
healthcare applications, their effectiveness in promoting bacterial growth
remains unexplored. In the present work, we evaluated the interaction of
polyelemental glycerolate particles (PGPs) with Escherichia coli (E. coli)
bacteria. PGPs were synthesized using the solvothermal route, and
nanoscale random distribution of metal cations in the glycerol matrix of
PGPs was confirmed. We observed 7-fold growth of E. coli bacteria upon 4
h of interaction with quinary glycerolate (NiZnMnMgSr-Gly) particles in
comparison to control E. coli bacteria. Nanoscale microscopic studies on
bacteria interactions with PGPs showed the release of metal cations in the
bacterium cytoplasm from PGPs. The electron microscopy imaging and
chemical mapping indicated bacterial biofilm formation on PGPs without causing significant cell membrane damage. The data
showed that the presence of glycerol in PGPs is effective in controlling the release of metal cations, thus preventing bacterial toxicity.
The presence of multiple metal cations is expected to provide synergistic effects of nutrients needed for bacterial growth. The present
work provides key microscopic insights of mechanisms by which PGPs enhance biofilm growth. This study opens the door for future
applications of PGPs in areas where bacterial growth is essential including healthcare, clean energy, and the food industry.
KEYWORDS: polyelemental particles, bacterial growth, nano-/biointeractions, glycerolate materials, in situ graphene liquid cell,
transmission electron microscopy

■ INTRODUCTION
Polyelemental materials1−3 are an emerging class of materials
with vast compositional space that can be tuned to promote
the synergistic properties of alloyed materials for various
applications ranging from clean energy4,5 to healthcare6,7 and
structural materials.1,8 Recent studies show the potential of
polyelemental materials for biological applications such as
antibacterial agents9−11 or medical implants.12,13 Polyelemental
alloys possess excellent mechanical and chemical stability
attributing to their configurational mixing entropy.14 Alamdari
et al.9 reported the substantial 98.5% antibacterial efficacy of
the TiZrTaNbWAg polyelemental film against Escherichia coli
(E. coli) bacteria. Murray et al.10 reported the 6.4 log reduction
of the double-stranded deoxyribonucleic acid (DNA) activity
of E. coli bacteria after interacting with the CoCuAgNiSi
polyelemental film. Chen et al.15 evaluated 97.45% anti-
bacterial efficacy of the CrFeNiCuSi polyelemental alloy
against E. coli bacteria by exhibiting synergistic activity of
multiple metal cations. However, it is yet to be reported the
applications of such materials in promoting bacterial growth.
Expediting bacterial growth is of utmost importance for

emerging microbial fuel cells, ice-binding proteins, and
antifreeze proteins in research applications.16,17 In addition,
probiotic bacteria possess a wide range of applications in the
food industry and medicine avenues.18−22 Among various
bacteria, E. coli bacteria lie at the center of the development of

biological systems considering their well-studied complex
cellular structure and metabolism. In proteomic studies, E.
coli bacteria can express heterologous recombinant proteins
with superior tunability.23 As a result, new and affordable
approaches are needed in improving E. coli energy production
and metabolism for industrial applications. However, the
carbon flux in central bacterial cellular metabolism can get
deprived as a result of forced production of gene-encoding
products, resulting in cell physiochemical energy depletion.24,25

Glycerol is a cost-effective and abundantly available source
of carbon for microorganisms for various metabolic activites.24

E. coli bacteria can metabolize glycerol to produce energy in
the presence of external electron acceptors (respiratory
metabolism) and also in the absence of electron acceptors by
fermentative metabolism.26 In addition to glycerol, various
metal ions in the lower concentrations are capable of
improving bacterial cell metabolic activities.27 Metal ions act
as essential cofactors for cellular protein functioning, structural
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stability, cell signaling, and virulence regulation.28 Bacteria use
metal ions for various cellular activities such as electron
transfer, oxygen metabolism, signaling for biofilm formation,
and functioning of DNA polymerases, adenosine triphospha-
tases (ATPases), and kinases.29

In the present study, the microscopic interactions of E. coli
bacteria with a novel category of polyelemental glycerolate
particles (PGPs) are reported for the first time. The elemental

compositions of synthesized unary nickel glycerolate (Ni-Gly),
binary nickel−zinc glycerolate (NiZn-Gly), and quinary
nickel−zinc−manganese−magnesium−strontium glycerolate
(NiZnMnMgSr-Gly) particles were evaluated using scanning
transmission electron microscopy (STEM) and energy
dispersive X-ray spectroscopy (EDS) techniques. Further
bacterial growth upon interacting with PGPs was confirmed
using an in vitro colony forming unit (CFU) test. The results

Figure 1. Schematic representation of polyelemental glycerolate particles synthesis using the solvothermal method. Equimolar concentrations of the
precursor metal salts of Mn, Mg, Zn, Ni, and Sr were homogeneously mixed in solvent. The prepared solution was heated at 180 °C for 10 h in an
autoclave mold. The final product was rinsed and thoroughly dried prior to use in probiotic applications.

Figure 2. Structural and morphological evaluation of metal glycerolate particles. (a) XRD spectrum of unary Ni-Gly particles confirming their
characteristic layered crystal structure. The inset shows the chemical coordination of Ni cations with the glycerol matrix. (b) FTIR spectrum of
unary Ni-Gly particles revealing their molecular structure. (c) SEM micrographs of respective unary Ni-Gly, binary NiZn-Gly, and quinary
NiZnMnMgSr-Gly particles highlighting their spherical morphology.
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indicate a more than 7-fold increase in E. coli bacterial growth
upon interacting with quinary-glycerolate particles as com-
pared with control E. coli bacteria, while the enhanced growth
of bacteria upon interacting with Ni-Gly and NiZn-Gly
particles was 2.75- and 3.5-fold, respectively. To study the
microscopic origins of the enhanced growth of E. coli bacteria,
a solution mixture of bacteria and PGPs was investigated using
graphene liquid cells (GLCs) in STEM.

■ RESULTS AND DISCUSSION
Figure 1 shows the synthesis process of PGPs, where the key
process details are highlighted (see the Methods section for
details). Briefly, the solvothermal method, as described by Mir
et al.,30 was utilized to produce PGPs. Specifically, Ni-,31 Zn-,32

Mn-,33 Mg-,34 and Sr-35,36 based precursor salts were chosen as

metal coordination elements for PGPs due to the positive roles
of such metals in enhancing bacterial growth. Table S1
summarizes the maximum tolerance limit of metal cations
beneficial for bacteria metabolism. Briefly, the PGPs were
synthesized by achieving coordination between multiple metal
cations in the glycerol matrix using the solvothermal route.
Metal glycerolate particles possess an interestingly layered
structure of stacked metal-oxygen sheets bonded with glycerol
anions. The coordination chemistry between multiple tran-
sition metal cations and glycerol molecules is further evaluated
in the following sections.
Structural and morphological analyses of the as-synthesized

PGPs were performed using X-ray diffraction (XRD), Fourier
transform infrared (FTIR) spectroscopy, and scanning electron
microscopy (SEM) characterization techniques. Figure 2

Figure 3. STEM-EDS elemental analysis of metal glycerolate particles. (a) Mixed elemental mapping of unary Ni-Gly particles confirming the
presence of Ni, O, and C elements. (b) Corresponding elemental mapping of individual Ni, O, and C elements indicating the homogeneous
distribution of Ni cations in the glycerol matrix. (c) Mixed elemental mapping of binary NiZn-Gly particles confirming the presence of Ni, Zn, O,
and C elements. (d) Corresponding elemental mapping of individual Ni, Zn, O, and C elements indicating the homogeneous distribution of Ni and
Zn elements in the glycerol matrix. (e) Mixed elemental mapping of quinary NiZnMNMgSr-Gly particles confirming the presence of Ni, Zn, Mn,
Mg, Sr, O, and C elements. (f) Corresponding elemental mapping of individual Ni, Zn, Mn, Mg, Sr, O, and C elements confirming the uniform
presence of metal cations in the glycerol matrix.
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shows the XRD spectrum, FTIR spectrum, and SEM
micrographs of as-synthesized unary Ni-Gly particles. As
shown in the XRD spectrum in Figure 2a, an intense
characteristic peak at 2θ = 10.55° was observed, which
confirms the layered crystal structure of the as-synthesized Ni-
Gly particles.37,38 The characteristic broad peaks of the Ni-Gly
particles at 2θ = 35.85° and 2θ = 61.55° confirmed the
amorphous nature of the as-synthesized particles.37,39 Figure
S1 shows similar XRD results for quinary NiZnMnMgSr-Gly
particles. In these quinary glycerolate particles, a small fraction
of the secondary phase of strontium carbonate (SrCO3) is
detected, but upon multiple STEM-EDS analyses, no
significant phase segregation in NiZnMnMgSr-Gly particles
was found, indicating that their presence is minimal. The
formation of SrCO3 is possibly due to the high activity of Sr
ions with a small amount of CO2 in air dissolved in the
solution and precipitation of SrCO3.

40 Similarly, Figure S2
shows the XRD spectrum for NiZn-Gly particles, where a small
fraction of zinc carbonate hydroxide ((Zn)5(CO3)2(OH)6)
secondary phase was detected.41 Figure 2b shows the FTIR
spectrum of Ni-Gly particles, confirming the coordination
between Ni cations in the glycerol matrix.42 In the FTIR
spectrum, absorption bands at the 3440 cm−1 wavenumber as
well as wavenumbers at 2925 and 2855 cm−1 are attributed to
the characteristic hydrogen-bonded O−H group and C−H
group stretching vibrations, respectively. The presence of
absorbed water in the particles can be confirmed with respect
to the bending vibrations of H−O−H bonds located at 1635
cm−1. The bands near 1434 cm−1 are attributed to O−H
bending vibrations. Bands at the 1115 and 1056 cm−1

wavenumbers are affiliated to C−H stretching vibrations.
The lower end near the 605 cm−1 bands correspond to metal−
oxygen stretching vibrations. In Figure 2c, the SEM micro-
graphs of unary Ni-Gly, binary NiZn-Gly, and quinary
NiZnMnMgSr-Gly particles are shown, which confirm the
predominant presence of the spherical morphology of the as-
synthesized metal glycerolate particles.
Figure 3 shows the STEM-EDS elemental analysis of the

PGPs. Figure 3a shows the STEM-EDS mixed elemental
mapping of unary Ni-Gly particles, where the presence of Ni,
O, and C elements was confirmed. Corresponding individual
STEM-EDS elemental mapping of Ni, O, and C elements is

shown in Figure 3b, where the uniform distribution of Ni
cations in the glycerol matrix can be confirmed. STEM-EDS
elemental mapping of C and O elements is associated with the
glycerol matrix in PGPs. Figure 3c shows the STEM-EDS
mixed elemental mapping of binary NiZn-Gly particles, where
the presence of Ni, Zn, O, and C elements was confirmed.
Corresponding individual STEM-EDS elemental mapping
images of Ni, Zn, O, and C elements are shown in Figure
3b, where the uniform distribution of Ni and Zn cations in the
glycerol matrix was confirmed. The analyzed metal cation
elemental composition in the glycerol matrix for NiZn-Gly
particles was 57.60 ± 2.6 at % for Ni and 42.40 ± 2.6 at % for
Zn. Figure 3e shows the STEM-EDS mixed elemental mapping
of quinary NiZnMnMgSr-Gly particles, where the presence of
Ni, Zn, Mn, Mg, Sr, O, and C elements was confirmed. The
corresponding individual STEM-EDS elemental mapping
images of Ni, Zn, Mn, Mg, Sr, O, and C elements are shown
in Figure 3f, where the uniform distribution of Ni, Zn, Mn, Mg,
and Sr cations in the glycerol matrix was determined. The
analyzed metal cation elemental composition in the glycerol
matrix for NiZnMnMgSr-Gly particles was 24.6 ± 7.5 at % for
Ni, 21.07 ± 2.3 at % for Zn, 25.77 ± 0.8 at % for Mn, 22.77 ±
6.5 at % for Mg, and 5.8 ± 1.3 at % for Sr. Respective STEM-
high angle annular dark field (HAADF) micrographs of unary
Ni-Gly, binary NiZn-Gly, and quinary NiZnMnMgSr-Gly
PGPs corresponding to STEM-EDS are shown in Figure S3.
The interaction between E. coli bacteria and PGPs was

quantitatively evaluated using an in vitro colony counting
method.43,44 Figure 4 shows in vitro colony forming units
(CFU) test results upon interacting cultured E. coli bacteria
with unary Ni-Gly, binary NiZn-Gly, and quinary
NiZnMnMgSr-Gly particles for 4 h at 100 μg/mL concen-
tration. Figure 4a confirms the 2.75-fold, 3.5-fold, and 7.28-fold
exponential growth of E. coli bacteria upon 4 h of interaction
with unary Ni-Gly, binary NiZn-Gly, and quinary
NiZnMnMgSr-Gly particles, respectively, in comparison with
control E. coli bacteria that did not interact with PGPs.
Respective bacterial concentrations of 101, 275, 349, and 728
CFU/20 μL of control E. coli, Ni-Gly, NiZn-Gly, and
NiZnMnMgSr-Gly particles at 10−5 dilutions are shown in
Figure 4b. In vitro CFU test results indicate that upon

Figure 4. In vitro CFU test results of cultured E. coli bacterial interactions with polyelemental glycerolate particles. (a) CFU test results indicating
the exponential growth of E. coli bacteria after 4 h of interaction with unary Ni-Gly, binary NiZn-Gly, and quinary NiZnMnMgSr-Gly particles at
100 μg/mL concentration. (b) Respective CFU test results highlighting the exponential growth of E. coli bacteria.

ACS Applied Bio Materials www.acsabm.org Article

https://doi.org/10.1021/acsabm.2c01052
ACS Appl. Bio Mater. 2023, 6, 1515−1524

1518

https://pubs.acs.org/doi/suppl/10.1021/acsabm.2c01052/suppl_file/mt2c01052_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsabm.2c01052/suppl_file/mt2c01052_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsabm.2c01052/suppl_file/mt2c01052_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsabm.2c01052/suppl_file/mt2c01052_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01052?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01052?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01052?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.2c01052?fig=fig4&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.2c01052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


incorporating the variety of principal metal cations in the
glycerol matrix, bacterial growth was exponentially increased.
To better understand if the glycerol matrix is effective in

enhancing bacterial growth, some of the NiZnMnMgSr-Gly
particles were annealed to remove glycerol content. Figure S4
shows the bactericidal efficiency of (NiZnMnMgSr)3O4
polyelemental metal oxide particles, which were synthesized
by annealing quinary NiZnMnMgSr-Gly particles in an air
atmosphere at 800 °C for 3 h. Figure S4a shows the STEM-
EDS elemental mapping of (NiZnMnMgSr)3O4 particles,
indicating the possibility of phase segregation occurring during
the annealing process. Figure S4b shows the CFU test
performance of (NiZnMnMgSr)3O4 particles (100 μg/mL),
indicating that upon the decomposition of the glycerol matrix,
the particles can kill about 40% of E. coli bacteria within 4 h.
The corresponding agar plates (CFU 10−4 dilution) are shown
in Figure S4c. It can be concluded that the presence of glycerol
is essential to yield effective bacterial growth from PGPs. In the
following section, STEM-EDS analysis provides better under-
standing on why glycerol is important to promote bacterial
growth.
To investigate the underlying microscale reasons for

bacterial growth in the glycerol containing particles, the
graphene liquid cell (GLC) approach45−47 was used to
encapsulate E. coli bacteria and PGPs and the specimens
were imaged in STEM. Figure 5 shows the STEM-EDS
elemental analysis of the interaction of unary Ni-Gly and
binary NiZn-Gly particles with E. coli bacteria in an aqueous
environment. Figure 5a shows the STEM-HAADF micrograph
of unary Ni-Gly particles in contact with E. coli bacteria and
corresponding STEM-EDS mixed elemental mapping confirm-
ing the presence of Ni, O, C, N, P, and S elements. Figure 5b
shows the STEM-EDS elemental mapping of individual Ni, O,
C, N, P, and S elements. Herein, Ni, C, and O correspond to
unary Ni-Gly particles, while N, P, and S elements, along with
C and O, correspond to diagnostic ions in E. coli bacteria. The
detection of these diagnostic ions in E. coli bacteria can provide
insights on the cellular structural integrity.44 Sulfur is an
integral building block of the bacterial cell membrane and
cytoplasmic proteins, mainly in cysteine and methionine amino
acids.48 Phosphorus is present in deoxyribonucleic acid
(DNA), phospholipids, and phosphorylated proteins in the
bacterial cell.48,49 Nitrogen as a major constituent in all amino
acids can be predominantly traced in the bacterial cell.50

Carbon and oxygen are present in all organic cellular
components in the cytoplasm and bacterial cell membrane.50,51

STEM-EDS elemental mapping of Ni confirmed the presence
of nickel element in bacteria upon interacting with unary Ni-
Gly particles. Interestingly, the Ni-Gly particles were coated
with N, P, and S elements that are representative of bacterial
diagnostic elements, suggesting the possible formation of
biofilm on the glycerolate particles.
Similar release of metal ions was observed for binary and

quinary glycerol-containing particles. Figure 5c shows the
STEM-HAADF micrograph of binary NiZn-Gly particles in
contact with E. coli bacteria and the corresponding STEM-EDS
mixed elemental maps confirming the presence of Ni, Zn O, C,
N, and S elements. Figure 5d shows the STEM-EDS elemental
mapping of individual Ni, Zn, O, and C elements
corresponding to glycerolate particles and N and S elements,
along with C and O, corresponding to diagnostic elements in
E. coli bacteria. Similar to the unary Ni-Gly particles, STEM-
EDS results confirmed that the binary NiZn-Gly particles also

released Ni and Zn metal elements in the vicinity of the
bacteria. Bacterial biofilm diagnostic components, N and S
elements, were also detected on binary NiZn-Gly particles.
These STEM-EDS results confirmed that the bacterial
membrane was not damaged upon interacting with PGPs
and cellular integrity was maintained. Figure S5 shows the
STEM-EDS elemental analysis of E. coli bacteria in the
presence of quinary NiZnMnMgSr-Gly particles acquired in a
GLC aqueous environment. Results show that Mn and Zn
metal elements released from quinary NiZnMnMgSr-Gly
particles are detectable in the bacterium cytoplasm.
The effectiveness of glycerol-containing particles for

bacterial growth enhancement can also be seen from the
formation of biofilms around PGPs. Figure 6a−c provides the
evidence of biofilm formation on the surface of quinary metal
glycerolate particles upon 2 h of interaction with E. coli
bacteria. Figure 6a shows the SEM micrograph of quinary
NiZnMnMgSr-Gly particles in the absence of bacteria. In
Figure 6b,c, a bacterial biofilm thread-like structure52,53

covering the surface of quinary NiZnMnMgSr-Gly particles
upon 2 h of interaction with E. coli bacteria can be observed.
The SEM results are in agreement with STEM-EDS results

Figure 5. STEM-EDS elemental analysis of E. coli bacteria in the
presence of unary Ni-Gly and NiZn-Gly particles acquired in a
graphene liquid cell aqueous environment. (a) STEM-HAADF
micrograph of unary Ni-Gly particles in contact with E. coli bacteria
and the corresponding STEM-EDS mixed elemental mapping
confirming the presence of Ni, O, C, N, P, and S elements. Green
dotted lines highlight the bacteria. (b) STEM-EDS elemental
mapping of diagnostic Ni, C, O, N, P, and S elements indicating
biofilm formation on metal glycerolate particles. (c) STEM-HAADF
micrograph of binary NiZn-Gly particles in contact with E. coli
bacterium and the corresponding STEM-EDS mixed elemental maps
confirming the presence of Ni, Zn, O, C, N, and S elements. (d)
STEM-EDS elemental maps of diagnostic Ni, Zn C, O, N, and S
elements indicating biofilm formation on binary metal glycerolate
particles and traces of released metal elements in bacteria.
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(see Figure 5) where the biofilm diagnostic elements N and S
were observed on the metal glycerolate particles upon contact
with E. coli bacteria.
These results shown in Figures 4, 5, and 6a−c underscore

the positive role of glycerol in enhancing the bacterial growth
of PGPs. Upon utilizing most of the cellular energy to produce
proteins, imbalance and drainage of carbon flux in the central
metabolism take place due to the production of gene-encoding
products.25 Glycerol can replenish depleted carbon levels in
bacteria via the gluconeogenesis pathway of dihydroxyacetone
phosphate (DHAP) and the glycolysis pathway of DHAP.24

We believe that the enhancement can be due to two important
factors: (1) glycerol can provide a carbon resource for the
bacteria metabolism and (2) steady decomposition of glycerol
by bacteria triggers a controlled release of metal ions that are
below the threshold to kill the bacteria. In order to check if
metal ion release is triggered by bacteria’s consumption of
glycerol, control specimens of PGPs were immersed in water
and observed in STEM. Interestingly, no release of ions from
PGPs was observed in the absence of bacteria (Figure S6).
The observed exponential growth of bacteria upon

interacting with quinary NiZnMnMgSr-Gly particles in
comparison with unary Ni-Gly particles could be possibly
due to the synergistic effect of multiple metal ions improving
the bacterial metabolism. Metal ions are essential for metabolic
activities in bacteria. Metal ion homeostasis plays a crucial role
for importing and mobilizing metal ions in bacteria while
optimizing the intracellular metal ion concentration by
operating efflux pumps.27 Metalloregulatory proteins in
bacteria are metal-sensing transcription factors that can bind

directly with cognate metal cations.54 Mn2+ and Fe3+ ions with
their respective protein cofactors contribute to fundamental
cellular processes including respiration, intracellular oxidative
stress management, and energy production.55 Mn2+ ions also
play vital role in the bacterial cell sporulation process by
interacting with cell division proteins.56 Zn2+ metalloproteins
are crucial for structural and enzymatic cofactors in bacteria.57

Mg2+ ions possess the capability to trigger the production of
exopolysaccharides and stabilize the bacterial biofilm.58

Exopolysaccharides serve as a scaffold for supporting proteins,
carbohydrates, lipids, and nucleic acids.59 The hydrogenase
process is extremely important for bacterial energy metabolism,
which catalyzes the reversible oxidation of hydrogen gas.60 Ni2+
ions can stimulate the transcription of the hydrogenase
genes.61 Bacterial biofilm consists of DNA, proteins,
extracellular polysaccharides, and channels for water and
nutrients.62 Recently, Shafeeq et al.63 showed that bacterial
biofilm formation can be triggered in the presence of Mn2+
metal ions. The combination of Mn2+ cations and glycerol can
stimulate the biofilm formation.64 The signal-sensing histidine
kinase energy transfer enzymes in bacteria can stimulate
sporulation and biofilm formation upon sensing the Mn-
glycerol matrix.
Figure 6d highlights the schematic representation of the

possible pathway for the promotion of bacterial growth in the
presence of PGPs. The controlled release of low dosages of
metal cations from the glycerol matrix of PGPs is triggered by
the presence of bacteria. The synergistic effect of metal cations
at such a low dosage is likely to be effective in improving
bacterial metabolism. This is evident by the promotion of

Figure 6. SEM micrographs confirmed the biofilm formation on polyelemental glycerolate particles in the presence of E. coli bacteria. (a) SEM
micrograph of the as-synthesized quinary NiZnMnMgSr-Gly particles in the absence of bacteria. (b) SEM micrograph of the quinary
NiZnMnMgSr-Gly particles covered with bacterial biofilm in the presence of E. coli bacteria. (c) SEM micrograph of an additional region where a
thread-like synthesized biofilm can be observed on the surface of glycerolate particles. (d) Schematic representation of the possible pathway of
enhanced growth of bacteria via biofilm formation on polyelemental glycerolate particles.
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biofilm formation over PGPs. We believe that additional
studies investigating the controlled release of metal ions from
the PGPs in the vicinity of bacterial cells can be insightful. It
will be interesting to evaluate the effectiveness of PGPs for the
growth of Gram-positive bacteria growth as well.
The present work highlights the enormous potential of

PGPs to promote bacterial growth. Bacterial growth kinetics
play a crucial role in probiotic bacteria’s industrial applications
in food nutrition and medicine fields.20,22 PGPs can also be
utilized for industrial applications in proteomics to reduce the
process time in expressing heterologous recombinant proteins
by improving the growth kinetics of bacteria.65 E. coli bacteria
require ∼20 min of doubling time in glucose salt media under
the optimal environmental conditions.66 The results indicate
that quinary NiZnMnMgSr-Gly particles could increase E. coli
bacterial growth by 7.3 times in comparison with untreated
control E. coli bacteria, confirming a significant reduction in the
doubling time of E. coli bacteria.

■ CONCLUSIONS
In summary, this study confirms enhanced bacterial growth
upon interacting with PGPs. The structural and spectroscopy
results indicate the layered structure of PGPs and the
coordination between the metal cations and glycerol matrix.
Chemical mapping at the nanoscale of unary Ni-Gly, binary
NiZn-Gly, and quinary NiZnMnMgSr-Gly particles confirmed
the homogeneous distribution of metal cations in the glycerol
matrix. Colony-counting method results showed 2.7-fold, 3.5-
fold, and 7.3-fold exponential growth of E. coli bacteria upon 4
h of interaction with unary Ni-Gly, binary NiZn-Gly, and
quinary NiZnMnMgSr-Gly particles, respectively, with respect
to control E. coli bacteria. GLC-STEM results on aqueous
solutions of bacteria and PGPs confirmed the release of metal
cations in the bacterium cytoplasm from the glycerol matrix.
The membrane of bacteria was intact without causing any
cytoplasmic leakage while in contact with unary Ni-Gly, binary
NiZn-Gly, and quinary NiZnMnMgSr-Gly particles. Results
also indicate that the diagnostic N, P, and S elements of
bacteria biofilm were deposited on PGPs. The SEM analysis of
PGPs upon 2 h of interaction with cultured E. coli bacteria
confirmed bacterial biofilm growth on PGPs. It was
determined that the presence of glycerol is effective as a
template for the controlled release of metal ions from PGPs.
Synergistic release of multiple metal cations from PGPs
promoting the biofilm formation was evaluated to be a primary
reason for the exponential bacterial growth.

■ METHODS
Synthesis of the Polyelemental Glycerolate Particles. PGPs

were synthesized by a facile one-step solvothermal method.42,67 To
synthesize quinary NiZnMnMgSr-Gly particles, equimolar (0.5 mM)
concentrations of nickel acetate Ni(CH3COO)2·4H2O, strontium
acetate Sr(CH3COO)2, manganese acetate Mn(CH3COO)2·4H2O,
magnesium acetate Mg(CH3COO)2·4H2O, and zinc acetate Zn-
(CH3COO)2·2H2O were dissolved in 40 mL of isopropyl alcohol
under continuous stirring for 10 min. Successively, 8 mL of glycerol
was added to the mixture, and the solution was stirred for 2 h. The
reaction solution was then transferred to a Teflon-lined stainless-steel
autoclave container and was kept at 180 °C for 10 h. The final
product was separated by centrifugation, rinsed with ethanol, and
dried at 60 °C for 24 h. For unary Ni-Gly and binary NiZn-Gly
particles, respective metal salt precursors were used following the
same synthesis protocol. The obtained yields of synthesized PGPs
from 2.5 mM of metallic precursors were 311, 334, and 301 mg for

Ni-Gly, NiZn-Gly, and NiZnMnMgSr-Gly particles, respectively. As
an observation, we would like to mention that under the same
synthesis conditions, in the absence of metal salt precursors, only
glycerolate particles with the same morphology could not be
produced.

Characterization of Polyelemental Glycerolate Particles.
The XRD crystal structure analysis of unary Ni-Gly particles was
performed by using a Bruker nano-Discover 8 instrument. The XRD
scan was acquired in the 5 and 90° range of 2θ diffraction angles using
1600 W power at 0.05 2θ resolution with a 1.5 s time step. The FTIR
spectrum of unary Ni-Gly particles was obtained using a Bruker
ALPHA FTIR spectrometer with an attenuated total reflectance
(ATR) accessory. The spectrum was obtained using a 2 cm−1

wavenumber resolution and a working window between 4000 and
400 cm−1. A total of 32 scans were utilized during the acquisition.
SEM morphological characterization of as-synthesized PGPs was
performed using JEOL JSM-IT500HR field emission SEM. The
synthesized PGPs with platinum coating were analyzed at a 10 keV
accelerating voltage and a 8 mm working distance. STEM-EDS
elemental analysis of PGPs was performed using an aberration-
corrected JEOL ARM200CF TEM (200 keV) in the STEM mode.
STEM-EDS mapping was acquired using the Oxford EDS detector
equipped with the drift corrector. The STEM-HAADF images were
acquired at a 22 mrad convergence angle with 512 × 512 resolution.

In Vitro Colony Counting Method. The colony counting
method is utilized to quantitatively evaluate the interaction of PGPs
with gram-negative E. coli bacteria (ATCC29425). LB agar plates
were prepared using the standard manufacturer’s instructions. The
bacteria were cultured by inoculating E. coli stock in sterilized LB
broth medium and by incubating for 16 h at 37 °C under shaking to
achieve 108 CFU/mL concentration. Successively, cultured E. coli
bacteria were treated with a 100 μg/mL concentration of unary Ni-
Gly, binary NiZn-Gly, and quinary NiZnMnMgSr-Gly particles for 6
h. Upon interaction, the culture was diluted to 10−5 using serial
dilutions. Twenty microliters of each dilution were spread onto LB
agar plates. The agar plates were incubated overnight to evaluate the
colony-forming units. The experiments were performed in the
duplicates for each dilution. Bactericidal growth was calculated with
respect to the control bacteria (without treating with PGPs) sample.

In Situ Graphene Liquid Cell−STEM Analysis of Bacteria
and Polyelemental Glycerol Particles. Graphene-coated TEM
grids were prepared by using a protocol described by Hauwiller et
al.68 Briefly, monolayer commercially CVD grown graphene-coated
copper foil was cut into a 1 cm × 1 cm piece using a surgical-grade
scalpel. The quantifoil micromachined holey carbon coated 200 mesh
gold grids (SPI supplies, 4220G-XA) were placed on the graphene-
coated copper foil by ensuring that the carbon layer of the grids
remains in contact with graphene. Successively, 15 μL of isopropyl
alcohol was dropped on the graphene-coated copper foil to obtain
better contact between the grids and the copper foil. After 2 h of
drying, graphene-coated copper foil along with TEM grids were
placed in the sodium persulfate solution copper etchant for 12 h. After
copper foil etching, floating gold TEM grids were rinsed using
deionized water and allowed to air-dry at room temperature.

To perform in situ GLC-STEM studies of PGPs interaction with
bacteria, first, the cultured E. coli bacteria were rinsed with DI water.
The bacteria suspension with a concentration of 100 CFU/mL was
mixed with PGPs at 25 μg/mL and allowed to interact for 30 min.
The reaction solution droplet was encapsulated between two
graphene-coated TEM grids to fabricate the graphene liquid cells.
The STEM-EDS analysis of encapsulated bacteria with PGPs was
performed using a JEOL ARM200CF aberration-corrected 200 keV
microscope. The emission current of the electron beam was reduced
up to 10 μA during EDS acquisition. The maximum electron dose rate
of 0.34 e−/Å2/s was maintained to avoid electron beam damage.

SEM Characterization of Bacterial Biofilm Formation. To
evaluate the bacterial biofilm formation, SEM characterization was
utilized. To prepare the bacterial biofilm samples for SEM analysis,
the cultured E. coli bacteria suspended in deionized water were
dropped on quinary NiZnMnMgSr-Gly particles placed on the glass
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slide. The glass slide with bacteria and the quinary NiZnMnMgSr-Gly
particles was incubated at 37 °C for 2 h. For fixation, the specimen
glass slide was immersed in 2.5% glutaraldehyde for 2 h at 4 °C
temperature. Successively, the specimen glass slide was rinsed for 5
min using 30, 50, 70, 80, 95, and 100% ethanol baths. Finally, the glass
slide was dehydrated using 50 and 100% hexamethyldisilazane
(HMDS) solution, and the sample was coated with a 10 nm platinum
layer for SEM analysis. SEM characterization was performed using a
JEOL JSM-IT500HR field emission SEM operating at a 10 keV
accelerating voltage.
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Bacille Calmette-Gueŕin (BCG) formulations differ markedly in
bacterial viability, RNA content and innate immune activation.
Vaccine 2020, 38, 2229−2240.
(44) Phakatkar, A. H.; Firlar, E.; Alzate, L.; Song, B.; Narayanan, S.;
Rojaee, R.; Foroozan, T.; Deivanayagam, R.; Banner, D. J.;
Shahbazian-Yassar, R.; Shokuhfar, T. TEM studies on antibacterial
mechanisms of black phosphorous nanosheets. Int. J. Nanomed. 2020,
15, 3071.
(45) Firlar, E.; Ouy, M.; Bogdanowicz, A.; Covnot, L.; Song, B.;
Nadkarni, Y.; Shahbazian-Yassar, R.; Shokuhfar, T. Investigation of
the magnetosome biomineralization in magnetotactic bacteria using
graphene liquid cell−transmission electron microscopy. Nanoscale
2019, 11, 698−705.
(46) He, K.; Shokuhfar, T.; Shahbazian-Yassar, R. Imaging of soft
materials using in situ liquid-cell transmission electron microscopy. J.
Phys.: Condens. Matter 2019, 31, 103001.
(47) Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.;
Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution
EM of colloidal nanocrystal growth using graphene liquid cells. Science
2012, 336, 61−64.
(48) Liu, J. L.; Luo, Z.; Bashir, S. A progressive approach on
inactivation of bacteria using silver−titania nanoparticles. Biomater.
Sci. 2013, 1, 194−201.
(49) Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F.; Kim, T.; Kim, J. A
mechanistic study of the antibacterial effect of silver ions on
Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res.
2000, 52, 662−668.
(50) Mesibov, R.; Adler, J. Chemotaxis toward amino acids in
Escherichia coli. J. Bacteriol. 1972, 112, 315−326.
(51) Fagerbakke, K. M.; Heldal, M.; Norland, S. Content of carbon,
nitrogen, oxygen, sulfur and phosphorus in native aquatic and
cultured bacteria. Aquat. Microb. Ecol. 1996, 10, 15−27.
(52) Bridier, A.; Sanchez-Vizuete, M. D. P.; Le Coq, D.; Aymerich,
S.; Meylheuc, T.; Maillard, J.-Y.; Thomas, V.; Dubois-Brissonnet, F.;
Briandet, R. Biofilms of a Bacillus subtilis hospital isolate protect
Staphylococcus aureus from biocide action. PLoS One 2012, 7,
No. e44506.
(53) Hoque, E.; Fritscher, J. Ecology, adaptation, and function of
methane-sulfidic spring water biofilm microorganisms, including a
strain of anaerobic fungus Mucor hiemalis. MicrobiologyOpen 2017, 6,
No. e00483.
(54) Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J.
Metalloproteins and metal sensing. Nature 2009, 460, 823−830.
(55) Jakubovics, N. S.; Jenkinson, H. F. Out of the iron age: new
insights into the critical role of manganese homeostasis in bacteria.
Microbiology 2001, 147, 1709−1718.
(56) Mhatre, E.; Troszok, A.; Gallegos-Monterrosa, R.; Lindstädt, S.;
Hölscher, T.; Kuipers, O. P.; Kovács, Á. T. The impact of manganese
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