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Abstract: In this work, the dynamics of the spread of COVID-19 is considered in the presence of both human-
to-human transmission as well as environment-to-human transmission. Speci�cally, we expand and mod-
ify traditional epidemiological model for COVID-19 by incorporating a compartment to study the dynamics
of pathogen concentration in the environmental reservoir, for instance concentration of droplets in closed
spaces. We perform amathematical analysis for the model proposed including an endemic equilibrium anal-
ysis as well as a next-generation approach both of which help to derive the basic reproduction number. We
also study the e�cacy of wearing a facemask through this model. Another important contribution of this
work is the introduction to physics informed deep learning methods (PINNs) to study the dynamics. We pro-
pose this as an alternative to traditional numerical methods for solving system of di�erential equations used
to describe dynamics of infectious diseases. Our results show that the proposed PINNs approach is a reli-
able candidate for both solving such systems and for helping identify important parameters that control the
disease dynamics.
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� Introduction
COVID-19 caused by a novel coronavirus has continued to pose as a serious public health risk. Despite global
e�orts to employ several health care strategies for minimizing the impact of the coronavirus on the commu-
nity, there is still a great need to understand the dynamics of the virus as it transmits from human to human.
Mathematical models with computational simulations have been very e�ective tools that help such global ef-
forts to understand the dynamics of the disease, to estimate key transmission parameters and tomake further
improvements for controlling this disease.

Most of these models build on modifying the well-known susceptible-exposed-infectious-recovered
(SEIR) compartmental mathematical model for prediction of disease epidemic dynamics [4]. An SEIR model
was introduced to describe the transmission dynamics, and helped to forecast the national and global spread
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of COVID-19, based on reported data from December 31, 2019 to January 28, 2020 [30]. A deterministic com-
partmentalmodel incorporating the clinical progressionof thedisease, the individual epidemiological status,
and interventionmeasureswas later proposed [29]. Some of the latter developments have included studies fo-
cusing on e�ect of interventions [7, 20] social heterogeneity [9, 21], controlled simulation strategies [16], and
spatial propagationswith di�usion and reaction terms [17].Whilemost of these studies focused onhuman-to-
human transmission pathways, many of these do not account for the in�uence of environment in the trans-
mission of COVID-19 [19, 31]. Since environmental samples were believed to have been taken from seafood
markets that have come positive for the novel coronavirus [12], it seems to suggest that the pathogenmay also
be transmitted through the environmental reservoir. There are studies that also suggest the possibility of the
virus surviving in such environments for days which brings to the focus of this paper.

In this paper, we consider the dynamics of COVID-19 in enclosed spaces such as an aircraft cabin or
a closed room. When infected individuals cough or sneeze, they may spread the virus to the environment
through their respiratory dropletswhichmay then go on to infect other peoplewho are in close contact. Along
with the human-to-human transmission, one can also consider an environment-to-human transmission by
introducing an environmental compartment that represents the pathogen concentration in the environmen-
tal reservoir. In this work, we introduce such amodi�ed SEIRmodel that includes the dynamics of a pathogen
denoted by P and hence the SEIRP model. We perform a mathematical analysis of the model deriving an en-
demic equilibrium that leads to the basic reproduction number which is validated using a next-generation
matrix approach as well [8, 10, 22].

Finally, most of the models that have been introduced rely on numerical methods such as the fourth
order Runge-Kutta or other powerful methods to solve the coupled system of di�erential equations that are
formulated via a compartmental system describing the disease dynamics. However, these models often as-
sume some known data for the transmission and recovery parameters. One of the grand challenges in math-
ematical biology and epidemiology is therefore to develop a coherent deep learning framework that enables
researchers to blend di�erential equations with the vast data sets now available to estimate these parame-
ters e�ciently. One of these approaches is to use neural networks which is a system of decisions modeled
after the human brain. In this work, we also present a new paradigm of learning di�erential equations from
limited data for infectious diseases. In particular, we will introduce hidden physics models for the SEIRP
model, which are essentially data-e�cient learning machines capable of leveraging on the underlying laws
of physics, expressed by time-dependent di�erential equations, to extract patterns from high-dimensional
data generated from experiments and learn the parameters.

The outline of the paper is as follows. In section 2, we introduce the mathematical model along with the
system of governing di�erential equations. In section 3, we conduct a mathematical analysis of the model
through an endemic equilibrium approach and a next-generation approach that both yield the basic re-
production number. Section 4 introduces the PINNs deep learning approach for solving infectious diseases
through themodel presented in this work. In Section 5, we conduct a variety of computational experiments to
validate the PINNsmethod as a forward solver, inverse solver and a solver in the presence of limited datasets.
Finally, we discuss and conclude in Section 6.

� Mathematical Model and Governing Equations
In thiswork, we introduce amodi�ed SEIRmodel that describes the disease dynamics through both a human-
human interaction as well as a human-pathogen P interaction. The model is organized around the following
�ow diagram (see Figure 1). Note that the dashed lines refer to human-to-human transmission and dotted
lines refer to human-to-pathogen transmission.

The COVID-19 disease transmission dynamics within this model is then given by the following SEIRP
governing di�erential equations:
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Figure 1: The flow diagram describing the interaction of human-pathogen populations

dS
dt = Γ − β�(I)f̄ SI − β�(P)f̄ SP − µS (1)

dE
dt = β�(I)f̄ SI + β�(P)f̄ SP − αE − dE − µE (2)

dI
dt = αE − rI − dI − µI (3)

dR
dt = rI − µR (4)

dP
dt = �I − σP (5)

In a population of N = S + E + I + R humans and P pathogens, the susceptible humans S are assumed to
interact with infected individuals aswell as the pathogen in the environment andmove to the exposed class E
after acquiring the disease. The transmission is beingmodeled via the addition of terms directly proportional
to the respective infected human class I involved in the interaction and an infection rate proportional to the
pathogen population. The transmission function β�(I) = β�

� + c�I
represents the direct, human-to-human

transmission between the infected and susceptible individuals with β� as the rate of transmission from S
to E due to contact with I and c� as the proportion of interaction with an infectious individual. Similarly,
the transmission function β�(P) =

β�
� + c�P

represents the indirect, environment-to-human transmission rate
with β� as the transmission rate from S to E due to contact with P and c� as the proportion of interaction with
the pathogens in the environment. Both β�(I) and β�(P) are assumed to be non-increasing functions given
that higher values of I and P would motivate stronger control measures that could reduce the transmission
rates.

Note that the exposed category models the incubation period before a human becomes infectious. Mem-
bers of the exposed class E move to become infectious at a human incubation rate of α which is intrinsic
human latent period. Members from the infectious classes recover with rate r. Note that we also assume a
COVID-19 disease related death rate d for the exposed and infected classes. We assume a population in�ux
represented by Γ and µ to be natural death rate of the various human population states. The pathogen P de-
scribing the concentration of the coronavirus in the environment is expected to grow by being exposed to the
infected individuals at a rate of � and also be removed from the system due to a loss of infectivity σ. Finally,
f̄ = � − f where f denotes e�cacy of the face mask worn by the susceptible population.
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� Analysis of the Mathematical Model
First, note that the disease free equilibrium (DFE) for the system (1)-(5) is given by:

(S�, E�, I�, R�, P�) =
✓
Γ
µ , �, �, �, �

◆
. (6)

Next, one can note that all the solutions of the proposed SEIRP model with its initial conditions
{S�, E�, I�, R�, P�} ≥ � are a subset in the interval [�,∞) for all � ≤ t < ∞. For,

Γ − β�(I)f̄ SI − β�(P)f̄ SP ≥ �

in (1), one can obtain the inequality Ṡ ≥ −µS which yields S(t) ≥ S(�)e−µt ≥ �. Hence, S(t) is a non-negative
function for all values t 2 [�,∞). In a similar fashion, one can show that E(t), I(t), R(t), P(t) are all also
non-negative functions for all values t 2 [�,∞).

Next, we will derive the basic reproduction number R� for the system system (1) - (5) which denotes the
number of secondary infections generated by an infected pathogen or human when the population being
considered is composed of primarily susceptible humans and pathogens.

�.� Endemic equilibrium for the SEIRP model

Setting the derivatives for the system (1) - (5) to be zero yields:

� = Γ − β�(I*)f̄ S*I* − β�(P*)f̄ S*P* − µS* (7)
� = β�(I*)f̄ S*I* + β�(P*)f̄ S*P* − αE* − dE* − µE* (8)
� = αE� − rI* − dI* − µI* (9)
� = rI* − µR* (10)
� = �I* − σP* (11)

From equation (9) we get:
E* = (r + d + µ)

α I* (12)

Using equations (7) and (11), we get,

S* = Γ
µ + f̄

⇣
β�(I*) +

�
σ β�(P

*)
⌘
I*

(13)

Substituting equations (11), (12) and (13) in (8) and de�ning C = σµ
f̄
⇥
σβ�(I) + �β�(P)

⇤ > � we can solve for I*

using the quadratic equation ⇣
I*
⌘�

− C
✓

Γ
µS* − �

◆
I* = �

which yields

I* = C
✓

Γ
µS* − �

◆
(14)

In equation (14) note that I* > � if Γ
µS* > �. Using equation (13), this ratio that can be simpli�ed to yield the

basic reproduction number R� given by:

R� =
Γ
µ

⇢
α f̄ β�(I*)

(α + d + µ)(r + d + µ) +
α f̄�β�(P*)

σ(α + d + µ)(r + d + µ)

�
(15)

Using (13), (14) and (15), note that we can rewrite, (S*, E*, I*, R*, P*)
✓

Γ
µR�

, (r + d + µ)
α C(R� − �), C(R� − �),

r
µ C(R� − �),

�
σ C(R� − �)

◆
(16)

Note that if R� = �, we recover the disease free equilibrium in equation (6). If R� > �, then the system (1)-(5)
has a unique endemic equilibrium (S*, E*, I*, R*, P*) [18].
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�.� Next Generation Matrix Approach

An alternative method to compute the basic reproduction number R� is using the next generation matrix
approach [8, 10, 22] which we apply to our SEIRP system (1)-(5).

Theorem 3.1. The basic reproduction number R� is given by:

R� = Ra
� +Rb

�

where

Ra
� = αβ�(�)f̄ S�

(α + d + µ)(r + d + µ)

Rb
� = α�β�(�)f̄ S�

σ(α + d + µ)(r + d + µ)

Proof. Given the infectious states: E, I, V in system (1) - (5), we can create a vector F that represents the new
infections �owing only into the exposed compartments given by:

F =
�
β�(�)f̄ S�I + β�(�)f̄ S�P, �, �

 

where β�(I) =
β�

� + c�I
and β�(P) =

β�
� + c�P

Along with F, we also consider Vwhich denotes the out�ow from
the infectious compartments in system (1) - (5) which is given by:

V = {(α + d + µ)E, −αE + (r + d + µ)I, −�I + σP}

Next, we compute the Jacobian matrices F and V from F and V respectively given by:

F =

0

B@
� β�(�)f̄ S� β�(�)f̄ S�
� � �
� � �

1

CA

V =

0

B@
α + d + µ � �

−α r + d + µ �
� −� σ

1

CA

One can now calculate the next-generation matrix approach [6, 22] to yield:

FV−� =

0

BBBBBBB@

αβ�(�)f̄ S�σ + αβ�(�)f̄ S��
σ(α + d + µ)(r + d + µ)

β�(�)f̄ S�σ + β�(�)f̄ S��
σ(r + d + µ)

β�(�)f̄ S�
σ

� � �

� � �

1

CCCCCCCA

Solving the characteristic equation corresponding to this det(FV−� − λI) = � yields the largest eigenvalue to
be

λ = αβ�(�)f̄ S�σ + αβ�(�)f̄ S��
σ(α + d + µ)(r + d + µ)

which then gives the expression for the basic reproduction number R� as:

R� = Ra
� +Rb

�

where

Ra
� = αβ�(�)f̄ S�

(α + d + µ)(r + d + µ)

Rb
� = α�β�(�)f̄ S�

σ(α + d + µ)(r + d + µ)
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Remark 3.2. Ra
� measures the contributions from the human-to-human transmission through infected to sus-

ceptible and Rb
� represents the contribution from the environment-to-human transmission. These two trans-

missions modes collectively make the overall infection risk for the COVID-19 outbreak.

Remark 3.3. Note that the expression obtained for R� matches the expression obtained in equation (15) for
DFE (S�, E�, I�, R�, P�) =

✓
Γ
µ , �, �, �, �

◆
.

� A Deep Learning Approach for solving SEIRP

�.� Physics Informed Neural Network (PINNs)

Physics Informed Neural Network (PINNs) are deep learning based techniques [24, 25, 26] for solving equa-
tions describing multi-physics including ordinary and partial di�erential, integro-di�erential and fractional
order operators. One of the tools that makes these deep learning methods successful is the use of neural net-
works which is a system of decisions modelled after the human brain [15].

Figure 2: Illustration of a Neural Network

Consider the illustration shown in Figure 2. The �rst layer of perceptrons �rst weigh and bias the input
which can be observed values of infected data. The next layer then will make more complex decisions based
o� those inputs, until the �nal decision layer is reached which generates the outputs which can correspond
to the values of parameters in the mathematical model, for instance the transmission and recovery rates. In
this work, we implement a physics informed neural network-based approach (PINNs) whichmakes decisions
based on appropriate activation functions depending on the computed bias (b) andweights (w). The network
then seeks to minimize the mean squared error of the regression with respect to the weights and biases by
utilizing gradient descent type methods used in conjunction with software such as tensor�ow.

Next, we will describe how one can apply such physics informed neural network-based deep learning
approaches to the SEIRP system (1)-(5).

�.� PINNs for SEIRP Model

In the following, inspired by recent developments in PINNs [25], we propose to leverage the hidden physics
of infectious diseases (i.e. system (1)-(5)) and infer the latent quantities of interest (i.e. S, E, I, R and P) by
approximating them using deep neural networks. This choice is motivated by modern techniques for solving
forward and inverse problems associated with di�erential equations, where the unknown solution is approx-
imated either by a neural network or a Gaussian process. Following these approaches, we approximate the
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latent function t 7→ (S, E, I, R, P) by a deep neural network and obtain the following physics informed neural
networks (see Figure 3 corresponding to system(1)-(5), i.e.

E� := dS
dt − Γ + β�(I)f̄ SI + β�(P)f̄ SP + µS (17)

E� := dE
dt − β�(I)f̄ SI − β�(P)f̄ SP + αE + dE + µE (18)

E� := dI
dt − αE + rI + dI + µI (19)

E� := dR
dt − rI + µR (20)

E� := dP
dt − �I + σP (21)

A schematic representation of the resulting PINNs for SEIRP is given in Figure 3.

Figure 3: Illustration of the Physics Informed Neural Network Approach [26, 28]

Note that for simplicity of illustration, Figure 3 depicts a network that comprises of three hidden layers
and several neurons per hidden layer. Networks with this kind of many-layer structure (with two or more
hidden layers) are called deep neural networks. These neurons in the network may be thought of as holding
numbers that are calculated by a special activation function that depends on suitable weights and biases
corresponding to each connection between neurons in each layer.With prior knowledge of such an activation
function, the problems boils down to identifying the weights and biases that correspond to computed values
of infected data that is close to the observed values. The �ve sub-populations are approximated by on the
deep neural network with calculus on computation graphs using a backpropagation algorithm [11, 13, 27].

We acquire the required derivatives to compute the residual networks E�, E�, E�,E� and E� by applying
the chain rule for di�erentiating compositions of functions using automatic di�erentiation [3]. In our formal
computations, we employed a densely connected (physics uninformed) neural network, with 3 hidden layers
and 90 neurons per hidden layer which takes the input variable t and outputs S, E, I, R, and P. The activa-
tion function we employed was σ(x) = tanh(x). We employ automatic di�erentiation to obtain the required
derivatives to compute the residual (physics informed) networks E�, E�, E�, E� and E�. It is worth highlight-
ing that parameters {Γ , µ, α, d, r, �, σ, β�, β�, c�, c�} of the di�erential equations turn into parameters of
the resulting physics informed neural networks E� −E�. The total loss function is composed of the regression
loss corresponding to the states, {S, E, I, R, P} and the loss imposed by the di�erential equations system (17)
- (21). Here, Id denotes the identity operator and the di�erential operator d

dt is computed using automatic
di�erentiation and can be thought of as an “activation operator". Moreover, the gradients of the loss function
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are back-propogated through the entire network to train the parameters using a gradient-based optimization
algorithm.

Speci�cally, we assume that the observables

uM = {Sn , En , In , Rn , Pn}Mn=�

arenoisydata of sizeM, that corresponds to the real-worlddata. Given suchdata,weare interested in inferring
the latent (hidden) quantities S(t), E(t), I(t), R(t) and P(t). The shared parameters of the neural networks for
S, E, I, R and P in addition to parameters {Γ , µ, α, d, r, �, σ, β�, β�, c�, c�} of the di�erential equation system
(1)-(5) can be learned by minimizing the sum of squared errors loss function given by,

Loss = �
Nu

NuX

j=�

⇣
uj − ujpred

⌘�
+ �
Nf

NfX

k=�

�X

i=�
(Eki )�

Here, the �rst term corresponds to the training data (tj , uj) for j = � . . . Nu while the second term enforces
the structure imposed by the system (1)-(5) at a �nite set of measurement points whose number and locations
are taken to be the same as the training data. It should be pointed out that the number and locations of the
points on which we enforce the set of di�erential equations could be di�erent from the actual training data.
This procedure is described next by a PINNs algorithm.

�.� PINNs Algorithm

For a ODE to have a constrained solution space, its temporal domain needs to be constrained. Let us consider
a complete ODE problem of the following general form

ut + L[u; λ] = �, t 2 [�, T] (22)
u(�) = g (23)

where u(t) = {S(t), E(t), I(t), R(t), P(t)} is the latent solution, L[.; λ] is a nonlinear di�erential operator
parametrized by λ = {Γ , µ, α, d, r, �, σ, β�, β�, c�, c�}.

There are two types of problems including a forward PINNs problem and an inverse PINNs problems.
• Forward PINNs: Given �xed model parameters λ, �nd latent solution u(t) at any time t. Speci�cally λ is

�xed so we minimize Loss to obtain weights and biases of the Neural Network to solve for the hidden
solutions.

• Inverse PINNs: Given a random data set of data for u*, we estimate the parameters λ that correspond to
the dataset. Speci�cally, λ is unknown so we minimize Loss to obtain weights, biases of Neural Network
and λ as well (estimating parameters). See footnote in the algorithm next.
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Algorithm 1: PINNs Forward Algorithm
Result: Give data and the ut = −L[u; λ]model with initial condition I(u) = G
1� Initialize to create Neural NetworksN(t) for t 2 Ω
2 Input the training Data (tj , uj), j = �..Nu
3 Predict the solution ujpred , j = �..Nu using the Neural NetworkN(tj)
4 Input the data for physics informed (xk), k = �..Nf
5 De�ne the residuals Ek = ut(tk) + L(u(tk), λ) for k = �..Nf
6 while n ≤ maxiter do

– De�ne the loss functions Loss as follows:

Loss = �
Nu

NuX

j=�

⇣
uj − ujpred

⌘�
+ �
Nf

�X

i=�

NfX

k=�
(Eki )�

– Train the Loss function using Adam’s method [1]
– Update weights and biases
– if Loss ≤ Tol then

STOP;
end

end

a Note that in the case of Inverse PINNs, one must also initilize λ

� Computational Experiments
In this section, we consider the application of PINNS to a variety of scenarios. First we simuulate the applica-
tion of Forward and Inverse PINNS for system (1)-(5). Following that we present PINNS applied to limited data
for a real-world example that was reported in the British Medical Journal Lancet on 4 March 1978 about an
outbreak of in�uenza virus in a boys boarding school [2]. For this we apply PINNS to the classical SIR model.

To start our simulation, we consider the dynamics of the system (1)-(5) with various compartments using
traditional Runge-Kutta method for a prescribed set of parameters. We choose values of parameters provided
in the literature [19]. Choosing the parameters to be: Γ = �.�����; β� = �.�����; β� = �.����; c� = �.�;
c� = �.�; µ = �.��� * ��−�; d = �.����; α = �.��; r = �.����; � = �.�; σ = �.����; d = �.����; f̄ = �.

Let time in days (t 2 [�, ��]) and initial values given by S� = ����, E� = ���, I� = ��, R� = �, P� = ��.
The various sub-populations are illustrated in Figure 4. Note that we will now use this Runge-Kutta output as
input dataset for working with the forward and inverse PINNs algorithm later.

To understand the e�cacy of using facemasks, we perform a simulation to plot the total exposed and in-
fected populations for varying values of e�cacy of facemasks f = �, �.�, . . . , �. The results of the simulation
are shown in Figure 5. Clearly as expected higher the e�cacy (value of f ) which corresponds to more people
wearing facemasks would yield less total number of exposed and infected populations and hence controlling
the spread.

�.� Simulating Forward PINNs

For implementing the PINNs algorithm described earlier, we consider 3 hidden layers with 90 neurons each
i.e. Neural Network layers = [�, ��, ��, ��, �]. With Nu = ��� (200 data points), Nf = ��� (by discretizing
t 2 [�, ��]). We initialized the values of parameters as done earlier for generating Figure 4 and the output
of the solution was treated as the input dataset to PINNs. The tolerance was chosen to be �.�� for the Loss
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Figure 4: Numerical solution of system (1)-(4) using Runge-Kutta with f̄ = �

Figure 5: E�cacy of face mask usage in decreasing the number of infected cases



Modeling, Analysis and Physics Informed Neural Network approaches � 11

function to satisfy. The results are illustrated in Figure 6. The numerical solution from PINNs validates the
numerical data with relative error of �.� × ��−�.

Figure 6: Numerical solution from Forward PINNs validating data

�.� Simulating Inverse PINNs

We employ the same neural network setup as we used for the Forward PINNs. The only di�erence is that
along with the system state variables, namely, S(t), E(t), I(t), R(t), P(t), we also estimate some of the selected
parameters. Here for illustration, we estimate unknown parameters related to the transmission and recovery
rates that include {α, r, �}. In this simulation, we initialize all the unknown parameters to be �. Given more
variables are to be estimated we consider Nu = ��� (200 datapoints) and Nf = ���� (by discretizing t 2
[�, ��]). The tolerance was again chosen to be �.�� for the Loss function to satisfy.

The results of the parameter estimation by inverse PINNs is illustrated in Figure 7. The estimated value
of all the parameters as shown in Figure 7 were computed to be:

α = �.������, r = �.������, � = �.������

These values are very close to the respective actual values α = �.��, r = �.����, � = �.� that were used to
compute the original numerical data in Figure 4.
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Figure 7: Simulation of Inverse PINNs showing convergence of parameters {α, r, �} estimated

�.� PINNs for Limited Data

There are several advantages of using PINNs over standard numerical approaches that are often used by the
infectious diseases community. While fourth order Runge-Kutta methods are preferred for solving governing
di�erential equation systems for infectious disease models, PINNs presents as a good alternative to Runge-
Kutta technique with additional features.

First, Physics-informed machine learning integrates seamlessly data and mathematical physics models,
even in uncertain and high-dimensional contexts. Next, Kernel-based or neural network-based regression
methods o�er e�ective, simple andmeshless implementations. Thirdly, estimating parameters for governing
di�erential equations (whether ODEs or PDEs) usually requires lots of data. While there is currently a lot of
enthusiasm about ‘big data’, useful data in infectious diseases is usually ‘small’ and expensive to acquire.
PINNs is very robust with limited data because of adding more physics informed contribution by increasing
Nf .

Next, we illustrate this last point by applying PINNs to a well-known limited data set. In 1978, the British
Medical Journal Lancet reported on 4 March 1978 about an outbreak of in�uenza virus in a boys boarding
school [2].The school had a population of 763 boys, all of whom were at risk during the epidemic. One boy
who had returned from an over sea strip is believed to have initiated an in�uenza epidemic in the school after
his return. There are several papers that have applied a simple epidemic SIR model to study this situation

dS
dt = −βSI, (24)

dI
dt = βSI − αI, (25)

dR
dt = αI (26)
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where S, I and R denoting the susceptible, infected and recovered classes respectively. The susceptible class
of individuals includedmembers of the population that have the potential to contract a disease and their size
is denoted by S. The infected class of individuals are those that are assumed to have contracted the disease
and this class is denoted by I. The �nal class of individuals denoted by R consisted of those that recovered
and cannot contract the disease again. Further, it is also assumed that the number of individuals in each of
these classes (compartments) change with time, that is, S(t), I(t) and R(t) are functions of time t and the total
population N is the sum of the number of individuals in these compartments. Hence, N = S(t) + I(t) + R(t). So
the limited data available include the total population N = ��� with a 14 day data with zero recovered cases
at the beginning (see Figure 8).

Figure 8: Sample influenza data set (Anonymous,1978)

While there have been multiple studies to estimate α and β, most of them assumed some knowledge
about these parameters. We will show that one can use PINNs for estimating α and β with only the limited
data information provided and nothing more.

We employed the PINNs approach described earlier to consider 3 hidden layers with 50 neurons each
i.e. Neural Network layers = [�, ��, ��, ��, �]. With Nu = �� (15 data points), Nf = ��� (by discretizing
t 2 [�, ��]), we initialized the values of α� = �, β� = �. The Loss function is de�ned as with R(�) = �,

Loss = �
Nu

NuX

j=�

⇣
Ijtrain − I

j
pred

⌘�
+
⇣
R�pred

⌘�
+ �
Nf

�X

m=�

NfX

k=�
(Ekm)�
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Where

Ek� = dS
dt + βS

kIk

Ek� = dI
dt − βS

kIk + αIk

Ek� = dR
dt − αIk

Ek� = N − (Sk + Ik + Rk)

Due to the noise in the data, the stopping criteria is de�ned with a prescribed tolerance TOL = �.���.

Stop = |Lossiter+� − Lossiter| ≤ TOL

Figure 9 illustrates the convergence of the PINNs algorithm topredict the parameters very close to the reported
values in the literature α = �.��������, β = �.����������. Figure 10 illustrates howPINNs ismore accurate
at tracking the dataset in comparison to fourth-order Runge-Kutta. Finally, the power of PINNs is illustrated in
Figure 11 which predicts the graph of the latent variables S(t) and R(t) corresponding to the I(t) only knowing
that R(�) = �.

Figure 9: Convergence of the estimated values of parameters α and β

� Discussion and Conclusion
In this paper the dynamics of COVID-19 in the presence of both human-to-human transmission as well as
environment-to-human transmission was considered. The latter wasmodeled by introducing a compartment
that represents the pathogen concentration in the environmental reservoir, for instance concentration of
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Figure 10: Approximation of the data by PINNs vs. Runge Kutta for the estimated α and β

Figure 11: Approximation by PINNs vs. Runge Kutta of S(t) and R(t) corresponding to the I(t) predicted
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droplets in closed spaces. The speci�c compartmental model developed is a SEIRP model that is a modi-
�ed version of the traditional SEIR compartmental model. We perform a mathematical analysis of the model
including an endemic equilibrium analysis as well as a next-generation approach both of which help to de-
rive the basic reproduction number. We also study the impact of wearing a facemask and our results suggest
that more people wearing facemasks would help to bring down the number of infected individuals.

Another main contribution of the paper is to introduce the application of physics based deep learning
methods for infectious diseases. Themethod and the algorithm is introduced and applied to the SEIRPmodel.
Because of lack of data, the method was validated with data created using the Runge-Kutta method. Both a
forward PINNs for obtaining the solution given a parameter set and an inverse PINNs for obtaining a set
of parameters in the model given a solution data set was attempted and successfully solved using PINNs.
Finally, we presented other advantages of using deep learning methods such as PINNs when only limited
data is present. For this, we considered the famous London boarding school data and validated for an SIR
model.

Our results clearly indicate that the models, analysis and computational methods presented are re-
liable candidates for solving problems involving infectious diseases in epidemiology. The current SEIRP
model could be enhanced to include more compartments including dividing the infected individuals to
symptomatic and asymptomatic and also including quarantine and hospitalized compartments. This will be
considered in a forthcoming paper.
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