BIOMATHEMATICS

3 LETTERS IN BIOMATHEMATICS & prercollegate
An International Journal Alliance

RESEARCH ARTICLE @ OPEN ACCESS

Data-Driven Approaches for Predicting Spread of Infectious
Diseases Through DINNSs: Disease Informed Neural
Networks

Sagi Shaier? Maziar Raissi® Padmanabhan Seshaiyer®

aUniversity of Colorado, Boulder, USA; PGeorge Mason University, Fairfax, Virginia, USA

ABSTRACT ARTICLE HISTORY
In this work, we present an approach called Disease Informed Neural Networks Received February 3, 2022
(DINNSs) that can be employed to effectively predict the spread of infectious diseases. Accepted August 3, 2022

We build on the application of physics informed neural network (PINNs) to SIR
compartmental models and expand it to a scaffolded family of mathematical models
describing various infectious diseases. We show how the neural networks are capable
of learning how diseases spread, forecasting their progression, and finding their
unique parameters (e.g., death rate). To demonstrate the robustness and efficacy
of DINNSs, we apply the approach to eleven highly infectious diseases that have been
modeled in increasing levels of complexity. Our computational experiments suggest
that DINNs is a reliable candidate to effectively learn the dynamics of their spread
and forecast their progression into the future from available real-world data. Code
and data can be found here: https://github.com/Shaier/DINN

KEYWORDS
Compartmental Models,
Epidemiology, Neural
Networks, Deep Learning

1 Introduction

Understanding the early transmission dynamics of infection diseases has never been more important in history as of today. The
outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that led to several million confirmed cases across the
globe has challenged us to re-envision how we model, analysis and simulate infectious diseases and evaluate the effectiveness of
non-pharmaceutical control measures as important mechanisms for assessing the potential for sustained transmission to occur
in new areas.

An important contribution to the mathematical theory of epidemics was developed by Kermack-McKendrick epidemic
model of 1927 (Kermack and McKendrick, 1927). This was considered one of the earliest attempts to formulate a simple math-
ematical model to predict the spread of an infectious disease where the population being studies is divided into compartments
namely a susceptible class S, an infective class 7, and a removed class R.

This simple SIR epidemic model can be illustrated in compartments as in Figure 1. Not only was it capable of generating
realistic single-epidemic outbreaks but also provided important theoretical epidemiological insights. In Figure 1, it is assumed

s M 1 2R

Figure 1: Compartmental Model for SIR model.

that each class resides within exactly one compartment and can move from one compartment to another. The dynamics of the
three sub-populations S(z), 7(#) and R(#) may be described by the following SIR model given by first order coupled ordinary
differential equations (ODE) (Hethcote, 2009; Brauer et al., 2012; Martcheva, 2015; Brauer, 2017):

ds dl dR
———[@S], E—‘@S[—ﬂ], E—

al. 1
7 1)
CONTACT Sagi Shaier Sagi.Shaier@Colorado.edu Lett. Biomath., Vol. 9, Iss. 1 (2022), pp. 71-105.

https://github.com/Shaier/DINN

72 .= S. SHAIER, M. RAISSI, P. SESHAIYER

Note that this closed system does not allow any births/deaths. This SIR model in system (1) is fully specified by prescribing the
transmission rate 8 and recovery rate 2 along with a set of initial conditions §(0), 7(0) and R(0). The total population N at time
t = 0isgiven by N = §(0) +7(0) + R(0). Adding all the equations in system (1), we notice that N’ (#) = 0 and therefore N (¢)
is a constant and equal to its initial value. One can further assume R(0) = 0 since no one has yet had a chance to recover or die.
Thus a choice of 7(0) = Iy is enough to define the system at # = 0 since then Sy = N — I.

Following the influenza pandemic, several countries and leading organizations increased funding and attention to finding
cures for infectious diseases in the form of vaccines and medicines. Along with these policy implementations, newer modified
SIR models for mathematical epidemiology continued to evolve, particularly for those diseases that are categorized as re-emerging
infections (Castillo-Chavez et al., 2002), those that are spread through sexual transmission such as HIV (Castillo-Chavez, 2013;
Luo etal., 2016), those that are spread through vectors such as mosquitoes such as Malaria or Dengue (Li, 2011; Chowell et al.,
2007), those that can spread through both sexual and vector transmissions such as Zika (Padmanabhan et al., 2017; Padmanab-
han and Seshaiyer, 2017), and those that can be spread by viruses, including SARS and MERS (Dye and Gay, 2003; Alshakhoury
etal., 2017). Diseases were also categorized according to the rate at which they spread, for example, super-spreader diseases. This
point s especially relevant to COVID-19 (Ohajunwa et al., 2020; Ohajunwa and Seshaiyer, 2021), categorized as a super-spreader
based on the disproportionately fast rate and large (and growing) number of infected persons.

Along with the development of mathematical modeling, there have been a variety of approaches that have been introduced
to estimate the parameters such as the transmission, infection, quarantine and recovery using real data. These include nonpara-
metric estimation (Smirnova et al., 2019), optimal control (Neilan and Lenhart, 2010), Bayesian frameworks (Coelho et al.,
2011; Akman et al., 2016), partical swarm optimization (Akman et al., 2018), inverse methods, least-squares approach, agent-
based modeling, using final size calculations (Bell, 1990; Pollicott et al., 2012; Yong et al., 2015a; Martcheva, 2015). Also, re-
searchers have employed a variety of statistical approaches including maximum-likelihood, Bayesian inference and Poisson re-
gression methods (Huang et al., 2006; Longini Jr et al., 1988; Hadeler, 2011; O’Dea et al., 2014; Capaldi et al., 2012). Some of
this work also showed that the precision of the estimate increased with the number of outbreaks used for estimation (O’Dea
et al., 2014). To determine the relative importance of model parameters to disease transmission and prevalence, there has also
been work around sensitivity analysis of the parameters using techniques such as Latin Hypercube Sampling and Partial Rank
Correlation Coefficients analysis with the associated mathematical models (Blower and Dowlatabadi, 1994; McKay etal., 20005
Chitnis et al., 2008). While there have been significant advances in estimating parameters, there is still a great need to develop
efficient, reliable and fast computational techniques.

The dominant algorithm associated with the advancements in artificial intelligence ranging from computer vision (Good-
fellow et al., 2014; Krizhevsky et al., 2012; Redmon et al., 2016; Tan et al., 2020) to natural language processing (Devlin et al.,
2019; Vaswani et al., 2017) has been the neural networks (NN). A main reason for it is its behavior as a universal function ap-
proximator (Hornik et al., 1989). However, this field is largely relying on huge amounts of data and computational resources.
Recent approaches (Raissi et al., 2019) have been shown to be successful in combining the best of both fields. That is, using
neural networks to model nonlinear systems, but reducing the required data and by constraining the model’s search space with
known knowledge such as a system of differential equations.

Along with this, there have also been several works recently showing how differential equations can be learned from data.
For example, Ling et al. (2016) used a deep neural network to model the Reynolds stress anisotropy tensor, E et al. (2017) solved
for parabolic PDEs and backward stochastic differential equations using reinforcement learning, and Hagge et al. (2017) solved
ODE: using a recurrent neural network. Additionally, Raissi and Karniadakis (2018); Raissi et al. (2019) developed physics
informed models and used neural networks to estimate the solutions of such equations. Using this, recently such physics in-
formed neural network approaches were applied for the first time to estimating parameters accurately for SIR model applied to
a benchmark application (Raissi et al., 2019). The Physics Informed Neural Network approaches have also been recently used
for studying the dynamics of COVID-19 involving human-human and human-pathogen interaction (Nguyen et al., 2022).

Building on this, a unified approach called DINNs: Disease Informed Neural Networks is introduced in this work and
systematically applied to some increasingly complex governing system of differential equations describing various prominent
infectious diseases over the last hundred years. These systems vary in their complexity, ranging from a system of three to nine
coupled equations and from a few parameters to over a dozen. For illustration of the application of DINNSs, we introduce its
application to COVID, Anthrax, HIV, Zika, Smallpox, Tuberculosis, Pneumonia, Ebola, Dengue, Polio, and Measles. Our
contribution in this work is three fold. First, we extend the recent physics informed neural networks (PINNs) approach to a
large family of infectious diseases. Second, we perform an extensive analysis of the capabilities and shortcomings of DINNs on
diseases. Lastly, we show the ease at which one can use DINN:Ss to effectively learn the dynamics of the disease and forecast its
progression a month into the future from real-life data.

The paper is structured as follows. In Section 2 we review the necessary background information. Section 3 introduces
DINNSs and presents our technical approach. Section 4 shows the application of DINNS to some of the benchmark models
through computational experiments. Lastly, we conclude with a summary in Section 5.

LETTERS IN BIOMATHEMATICS .= 73

2 Background Models and Methods

A grand challenge in mathematical biology and epidemiology, with great opportunities for researchers working on infectious
disease modeling, is to develop a coherent framework that enables them to blend differential equations such as the system (1)
with the vast data sets now available.

Noting that Z—f < 0 forallz, the susceptible population S(#) is monotonically decreasing and always declining independently
of the initial condition $(0). Also, we have lim, o S(#) = Se. This quantity is refered to as firnal size of the epidemic (Brauer
et al,, 2012). Also, when § = % the second equation in system (1), % = 0 which indicates that 7(z) has a stationary point
at some maximum time. On the other hand, the number of infected individuals may be monotonically decreasing to zero, or
may have non-monotone behavior by first increasing to some maximum level, and then decreasing to zero. One may note that

the spread starts to increase if % > 0. This yields the following necessary and sufficient condition for an initial increase in the

. . . S (0
number of infectives given by % > 1. Hence if Sy < %, the infection dies out and there is no epidemic. The last equation in

system (1) also indicates that the recovered individuals also have monotone behavior, independent of R(0) = Ry. Since ‘fl—f >0

for all #, the number of recovered is always increasing monotonically. Since we know that this number is constrained by the total
population N, we also have lim; o R(#) = Roo. Since the total population N = Se + Reo = So + Ro, one can derive (Brauer
etal., 2012)

13
Sea = Spe~ z (S0+0=5x) (2)

as well as the the maximum number of infected individuals /,,,, reached in the epidemic which occurs at S = %:

[mﬂx:—%+%ln(%) + 1y +S()—%IHS(). (3)

2.1 Approaches for estimating rates

There are multiple approaches that can be used to estimate parameters 2 and £ in system (1). Assuming the epidemic was initiated
by one infected individual infecting 7 other individuals a day later, a crude approximation could be to use ‘fi—t ~ —n perindividual

per day. Given Sy and /), one can then estimate the initial transmission rate to be

s
i 7

b= CSolo Solo’

If the infected individuals are isolated within d days of becoming sick, one may estimate that gll of the infected population was
removed each day, orz = ﬂll per day. This then yields the ratio of % Using these values one can then plot the dynamics of the
model predictions compared to the data using the system (1). Moreover one can use equations (2) and (3) to determine S and
L.

Another approach to determine the rates that can be employed is by noticing the population that seem to have escaped the
epidemic which could serve as the Seo. Then, using equation (2) with the given dataset one can determine the ratio:

¢ ()

z N-Su

(4)

Then assuming as before that the infected were quarantined for about 4 days as infectious individuals, one can find the recovery
rate to be a = 011 which can then used to estimate 8 using (4).

It must be pointed out that this data set consists of a closed population. It must be also noted that all these models assumed
that the recovery rate « can be computed heuristically. However, there are also methods in the literature that can help to estimate
the parameters including So, and 8 in system (1) by minimizing the deviation between the SIR model out and a given data set.
One such software implementation is Berkeley Madonna (Macey et al., 2000) which has been shown to fit the data using the
fitting parameter as « (Yong et al., 2015b).

Yet another approach for parameter estimation is an optimization algorithm that employs a least-squares minimization ap-
proach to estimate optimal parameters. Specifically, one can employ an unconstrained nonlinear optimization algorithm such
as the Nelder-Mead algorithm which searches for a local minimum using a regression approach. This direct search method at-
tempts to minimize a function of real variables using only function evaluations without any derivatives (Nsoesie et al., 2013).
The minimized objective function is represented by differences in the daily infected counts from observed data and the computer
simulated data.

Clearly, from these estimation approaches outlined so far, there can be variations in the ability of the dynamics of the com-
puted values of infected population to track the true data for the various combination of parameters. As noted, these parameters

74 .= S. SHAIER, M. RAISSI, P. SESHAIYER

Input layer Hidden layer Qutput layer

Qut,

Out,

Out,,

Figure 2: Anillustration of a neural network.

are often calculated through heuristic methods in some of these algorithms and may not be optimal. Also, all the methods that
have been discussed so far assumed the prior knowledge of initial number of each of the human sub-populations including the
Susceptible Sy, Infected I and Recovered Ry.

In this work, we introduce deep learning as an alternative and powerful approach, that employs neural networks which is a
system of decisions modeled after the human brain (LeCun et al., 2015). Consider the illustration shown in Figure 2. The first
layer of perceptrons first weigh and bias the input which can be observed values of infected data. The next layer then will make
more complex decisions based off those inputs, until the final decision layer is reached which generates the outputs which can
correspond to the values of parameters such as 8 and a. In this research, we implement a physics informed neural network based
approach which makes decisions based on appropriate activation functions depending on the computed bzas (b) and weights (w).
The network then seeks to minimize the mean squared error of the regression with respect to the weights and biases by utilizing
gradient descent type methods used in conjunction with software such as tensorflow. While there is currently a lot of enthusiasm
about “big data”, useful data in infectious diseases is usually “small” and expensive to acquire. In this work, we will describe how
one can apply such physics informed neural network based deep learning approaches specifically to infectious diseases using
DINNSs and apply it to a real-world example to estimate optimal parameters, namely the transmission and recovery rates, in the
SIR model.

3 Disease Informed Neural Networks

In this section, we present the DINNs methodology (sample architecture can be seen in figure 3). Subsection 3.1 briefly discusses
background information for neural networks. Subsection 3.2 provides an overview of the DINNs approach and outlines the
algorithm, associated loss functions, and training information.

3.1 Neural networks architechture

Briefly speaking, neural network is an attempt to mimic the way the human brain operates. The general fully connected model
is organized into layers of nodes (i.e. neurons) where each node in a single layer is connected to every node in the following
layer (except for the output layer), and each connection has a particular weight. The idea is that deeper layers capture richer
structures (Eldan and Shamir, 2016). A neuron takes the sum of weighted inputs from each incoming connection (plus a bias
term), applies an activation function (i.e nonlinearity), and passes the output to all the neurons in the next layer. Mathematically,

output = 7 (Z xw; + b)

each neuron’s output looks as follows

i=1
where 7 represents the number of incoming connections, x; the value of each incoming neuron, w; the weight on each connec-
tion, & is a bias term, and ¢ is referred to as the activation function.

A schematic representation of the resulting disease informed neural networks is given in Figure 3. Note that for simplicity
of illustration figure 3 depicts a network that comprises of 2 hidden layers with S neurons in the first hidden layer and 3 in the
second. Networks with this kind of many-layer structure—two or more hidden layers—are called deep neural networks. These
neurons in the network may be thought of as holding numbers that are calculated by a special actzvation function that depends

LETTERS IN BIOMATHEMATICS .= 75

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

Figure 3: A Simple DINNs Architecture (input: time, has a size of 1 and the output can vary in size (S,L,R)).

on suitable wezghts and biases corresponding to each connection between neurons in each layer. With prior knowledge of such
an activation function, the problem boils down to identifying the weights and biases that correspond to computed values of
infected data that is close to the observed values. The three sub-populations are approximated by the deep neural network with
calculus on computation graphs using a backpropogation algorithm (Hecht-Nielsen, 1992; Schmidhuber, 2015; Goodfellow
etal., 2016).

Inspired by recent developments in physics-informed deep learning (Raissi and Karniadakis, 2018; Raissi et al., 2019), we
propose to leverage the hidden physics of infectious diseases (1) and infer the latent quantities of interest (i.e., S, 7, and R) by
approximating them using deep neural networks. This choice is motivated by modern techniques for solving forward and inverse
problems associated with differential equations, where the unknown solution is approximated either by a neural network or a
Gaussian process. Following these approaches, we approximate the latent function

t— (S,I,R)

by a deep neural network and obtain the following DINNs corresponding to equation (1) and the total population N = S+/+R,
ie.,

E =% 4851,
Ey=4%-pSI+al,)

Ey=4R g,

We acquire the required derivatives to compute the residual networks £, > and Ej (disease informed) by applying the chain
rule for differentiating compositions of functions using automatic differentiation (Baydin et al., 2018). In our computations,
we employed a densely connected neural network, which takes the input variable ¢ and outputs S, 7, and R.

It is worth highlighting that parameters « and § of the differential equations turn into parameters of the resulting disease
informed neural networks £}, £5 and Ej3. The total loss function is composed of the regression loss corresponding to S, / and R
and the loss imposed by the differential equations system (5). Moreover, the gradients of the loss function are back-propogated
through the entire network to train the parameters using a gradient-based optimization algorithm. As will be explained next,
we will assume that the only observables are noisy data that we will use in conjunction with the neural networks for S, I, R
to estimate parameters 2, 4 and y by minimizing the sum of squared errors loss function. The idea employed builds on Physics
Informed Neural Networks that can embed the knowledge of any physical law that govern a given data-set in the learning process
(Raissi and Karniadakis, 2018; Raissi et al., 2019).

3.2 DINNSs for parameter estimation

The predictive capability of any algorithm is measured partially by its robustness to unknown data. A dataset for known pa-
rameters can be simulated by solving a system of equations in a forward fashion and potentially adding some noise. If that is
provided to any parameter estimation algorithm, the efficacy of the algorithm can be determined by how well it is able to predict
the true values for a wide range of starting guesses.

76 .= S. SHAIER, M. RAISSI, P. SESHAIYER

For simplicity, we generated data by solving the systems of disease ODEs using LSODA algorithm (Hindmarsh and Petzold,
2005), the initial conditions, and the true parameters corresponding to each disease (e.g. death rate) from the literature. This
limited dataset (50 — 100 points) corresponds to the SIR compartments. To make our neural networks disease informed, once
the data was obtained we introduced it to our neural network without any prior knowledge of the transmission and recovery
parameters. Itis worth noting thatin this formulation there are no training, validation, and test datasets, such as in most common
neural networks training. Instead, the model is trained from data of how the disease is spread over time. The model then learned
the system, and predicted the parameters that generated them. Since in many of these systems there exist a large set of parameters
that can generate them, we restricted our parameters to be in a certain range around the true value. That is, to show that our
model can in fact identify the systems and one set of parameters that match the literature they came from. However, our method
is incredibly flexible in the sense that adding, modifying, or removing such restrictions can be done with one simple line of code.
Additionally, we used nearly a years worth of real data aggregated over every US state and accurately predicted a month into the
future of COVID transmission. Next we employ Literate programming style that is intended to facilitate presenting parts of
written code in the form of a narrative (Knuth, 1984). DINNS takes the form

def net_sir(time_array):
SIR = neural_network(time_array)
return SIR

def net_f(time_array):
dSdt = torch.grad (S, time_array)
dIde torch.grad(I, time_array)
dRdt torch.grad (R, time_array)

f1 = dSdt - (-beta SI)

f2 = dIdt — (beta SI - alpha I)
f3 = dRdt — (alpha I)

return f1, f2, f3, S, I, R

The input of the neural network net_sir is a batch of time steps (e.g. [0,1,2,...,100]), and the output is a tensor (e.g.
[S,IR]) that represents what the network believes the disease’s compartments look like at each time step. Here, net _f bounds
the NN by forcing it to match the environment’s conditions (e.g. f1,/2,/3). These f; corresponds to the E; that was described
earlier.

The parameters of the neural network net_sir and the network net_f can be learned by minimizing the mean squared
error loss given by

MSE = MSE et sir + MSEpet ¢

where
1 Nnetisir
MSEqet sir = ——— \net_sir(time_array") - SIR"|2

B Nnet_sir =1

1 Naet_s
12
MSE = — net f’
nett Nnet_f |: ; | - | l

That is, minimizing the loss

loss = mean ((Sactual - Spredict) 2) + mean ((Iactual - Ipredict) :)
+ mean ((Ractual - Rpredict) :)

+ mean((fl)z) + mean((fz)z) + mean((f3)2)

Here, “actual” and “predict” refer to the actual data that the model was provided with and the prediction the model com-
puted, respectively. DINNS also leverages the automatic differentiation that neural networks are trained on to compute the
partial derivatives of each S,[,R with respect to time. The neural networks themselves will consist of multiple fully connected
layers with a multiple neurons each depending on the complexity of the system and rectified linear activation function (ReLU)
activation in between.

LETTERS IN BIOMATHEMATICS .= 77

4 Computational Experiments with DINNs

Most mathematical models describing the spread of a disease employ classical compartments, such as the Susceptible-Infected-
Recovered (SIR) or Susceptible-Exposed-Infected-Recovered (SEIR) structure described as an ordinary differential equation
system (Brauer and Castillo-Chévez, 2001). Over the past several months there have been a variety of compartmental models that
have been introduced as modified SEIR models to study various aspects of COVID-19 including containment strategies (Maier
and Brockmann, 2020), social distancing (Matrajt and Leung, 2020) and the impact of non-pharmaceutical interventions and
the social behavior of the population (Ohajunwa et al., 2020; Ohajunwa and Seshaiyer, 2021). Along with these there have been a
lot of work on modified SIR models as well including the SIRD model (Ferndndez-Villaverde and Jones, 2020; Anastassopoulou
etal,, 2019; Sen and Sen, 2021; Chatterjee et al., 2021). Next, to investigate the performance of DINNSs, we apply DINNs on a
simple SIRD model describing COVID-19 dynamics (Anastassopoulou et al., 2019).

4.1 Applying DINNS to an SIRD model applied to COVID-19

Consider following differential equation system describing the SIRD system where « is the transmission rate, 8 is the recovery
rate, y is the death rate from the infected individuals (Anastassopoulou et al., 2019), and N represents the total population:

das a dl « dR dD
R e) Y = =p = oy
dr NS’ dr NS Fr=7L, dr AL a7 ©)

The neural networks we considered, are fairly simple, consisting of 8 fully connected layers with either 20 or 64 neurons
each depending on the complexity of the system and rectified linear activation function (ReLU) activation in between. Since the
data is relatively small, our batch size contained the entire time array. The networks were trained on Intel(R) Xeon(R) CPU @
2.30GHz, and depending on the complexity of the system the training time ranged from 30 minutes to 58 hours, which could
be accelerated on GPUs and TPUs. That is, to learn both a system and its unknown parameters. However if the parameters
are known, the training time to solely learn the system can be as short as 3 minutes. We used Adam optimizer (Kingma and Ba,
2014), and PyTorch’s CyclicLR as our learning rate scheduler, with mode = “exp_range”, min_1r ranging from 1 X 10~¢ to
1x107? depending on the complexity of the system, max_1r =1x 1073, gamma=0.85, and step_size_up=1000. In the next
sections we will refer to “min_1r” simply as “learning rate”. It is important to note that some diseases’ systems were much more
difficult for DINNS to learn (e.g. Anthrax considered later) and further training exploration such as larger/smaller learning rate,
longer training, etc. may be needed to achieve better performance.

4.1.1 Influence of ranges in parameter estimation

Given that most models may include a large set of parameters, it is important to consider ranges for each of them. Hence, we
restricted our parameters to be in a certain range to show that our model can learn the set that was used in the literature. First, we
experimented with various parameter ranges to identify the influence they had on the model. In the following we used a 4 layer
neural network with 20 neurons each, 1x107¢ learning rate, 100 data points, and the models were trained for 700,000 iterations
(taking roughly 30 minutes). In our experiments we report two kinds of relative MSE loss errors. The first, “Error NN7, is the
error on the neural network’s predicted system. The second, “Error learnable parameters”, is the error on the system that was
generated from the learnable parameters. That is, using LSODA algorithm to generate the system given the neural networks’
parameters (e.g. 2).

As an example, if the actual parameter’s value was 0.1, 2 0% search range would simply be (0.1, 0.1), a 100% range would be
(0.1+1x%0.1,-0.1-1x0.1) = (0.2, —0.2). Further ranges are multiplications of those: 1000% = (2, -2),10000% = (20, —20),
and so on. That is, each unknown parameter is initialized with a random initial value in between its corresponding search
range. Table 1 (left) shows the parameters, their actual value, the range DINNSs was searching in, and the parameters values that
were found by DINNs. The right part of the table shows the error of the neural network and the LSODA generation of the
system from the parameters. That is, it shows the effect that the search range had on how well the neural networks’ learned the
parameters. As seen from table 1 and figures 4-8, at least in the case of the COVID-19 system (6), DINNs managed to find
extremely close set of parameters in any range we tested. Specifically, in figures 4-8, the panel on the left shows the effect that
the parameter search range had on the neural networks’ outputs and the right panel results show the effect that the search ranges
had on how well the neural networks’ learned the parameters. Additionally, the systems were almost learned perfectly, though,
there was some variation in the relative error between experiments. It is worth noting that DINN might be able to learn the
system quite well while also having some discrepancies in the learned parameters. Several reasons can explain this such as having
a disease system that is relatively simple to learn and a too complex deep learning network, or that DINN found another set of
parameters that can explain the data.

78 &P S. SHAIER, M. RAISSI, P. SESHAIVER

Table 1: Parameter predictions and relative MSE loss errors for various ranges.

Param. Actual Range Param. % Relative Error (S8,1,0,R)
Value Found
0% Search Range (exact parameters were given)
a 0.191 (-0.382, 0.382) 0.191 0
B 0.05 (-0.1,0.1) 0.05 0 Error NN (0.004, 0.025, 0.003, 0.003)
¥ 0.0294 (-0.0588, 0.0588) 0.0294 0 Error Learnable (0,0,0,0)
Parameters
100% Search Range
a (-0.382, 0.382) 0.1942 1.62
B (-0.1,0.1) 0.0510 2 Error NN (0.002, 0.013, 0.001, 0.001)
Y (-0.0588, 0.0588) 0.0294 0 Error Learnable (0.027,0.113,0.020,0.024)
Parameters
1000% Search Range
a (-3.82, 3.82) 0.1932 1.15
B -1,1) 0.0501 0.2 Error NN (0.002, 0.012, 0.001, 0.001)
Y (-0.588, 0.588) 0.0297 1.02 Error Learnable (0.023,0.091,0.020,0.016)
Parameters
10000% Search Range
a (-38.2,38.2) 0.1951 214
B -1, 1) 0.0506 12 Error NN (0.002, 0.012, 0.002, 0.002)
¥ (-5.88, 5.88) 0.0296 0.68 Error Learnable (0.041,0.164,0.029,0.031)
Parameters
100000% Search Range
a (-382, 382) 0.1936 1.36
B (-10,10) 0.0509 1.8 Error NN (0.002, 0.012, 0.001, 0.001)
Y (-58.8, 58.8) 0.0296 0.681 Error Learnable (0.023,0.091,0.020,0.016)
Parameters

Number
w

Figure 4:

Number
w

Susceptible Prediction 6
---- Infected Prediction
---- Dead Prediction
---- Recovered Prediction 5
Susceptible Data
Infected Data
Dead Data
Recovered Data 4
@
€3
=3
z
2
1
v rese el o
0 100 200 300 400 500
Time /days

LETTERS IN BIOMATHEMATICS

Susceptible Prediction
---- Infected Prediction
- Dead Prediction
---- Recovered Prediction
Susceptible Data
Infected Data
Dead Data
Recovered Data

500

200
Time /days

300 400

0% search range for NN Output (Left panel) vs LSODA generation from Learnable Parameters (Right Panel).

consensssasesanniene, Susceptible Prediction 6
---- Infected Prediction
---- Dead Prediction
---- Recovered Prediction 5
Susceptible Data
Infected Data
« Dead Data
Recovered Data 4
@
€3
3
=
2
1
veeasaen 0
0 100 200 300 400 500
Time /days

Susceptible Prediction
---- Infected Prediction
---- Dead Prediction
---- Recovered Prediction
Susceptible Data
Infected Data
« Dead Data
Recovered Data

500

200
Time /days

300 400

Figure 5: 100% search range for NN Output (Left panel) vs LSODA generation from Learnable Parameters (Right Panel).

80 .= S. SHAIER, M. RAISSI, P. SESHAIYER

6 Susceptible Prediction 6 . Susceptible Prediction
-=-- Infected Prediction ’ -=-- Infected Prediction
p ---- Dead Prediction . ---- Dead Prediction
5 4 ---- Recovered Prediction 5 \ ---- Recovered Prediction
Susceptible Data « Susceptible Data
Infected Data . Infected Data
Dead Data « Dead Data
4 Recovered Data 4 Recovered Data
% 3
€3 €3
5 5
z z
2 2
1 1
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Time /days Time /days

Figure 6: 1000% search range for NN Output (Left) vs LSODA generation from Learnable Parameters (Right).

Susceptible Prediction 6 . Susceptible Prediction
--== Infected Prediction --== Infected Prediction
P ---- Dead Prediction N ---- Dead Prediction
5 ! ---- Recovered Prediction 5 L ---- Recovered Prediction
Susceptible Data - Susceptible Data
Infected Data w Infected Data
Dead Data - Dead Data
4 Recovered Data 4 Recovered Data
o} Jo3
€3 €3
5]
z z
2 2
1 1
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Time /days Time /days

Figure 7: 10000% search range for NN Output (Left) vs LSODA generation from Learnable Parameters (Right).

6 Susceptible Prediction 6 - . Susceptible Prediction
---- Infected Prediction ---- Infected Prediction
P ---- Dead Prediction . ---- Dead Prediction
5 4 ---- Recovered Prediction 5 \ ---- Recovered Prediction
Susceptible Data = Susceptible Data
Infected Data - Infected Data
Dead Data - Dead Data
4 Recovered Data 4 Recovered Data
2
€3
E
z

2
1
0
0 100 200 300 400 500 [100 200 300 400 500
Time /days Time /days

Figure 8: 100000% scarch range for NN Output (Left) vs LSODA generation from Learnable Parameters (Right).

LETTERS IN BIOMATHEMATICS .= 81

Table 2: Parameter Values for various Uncorrelated Gaussian Noises.

Param. Actual Param. % Relative Error (S,,D,R)
Value Found

1% Uncorrelated Gaussian Noise

a 0.191 0.1938 1.46
B 0.05 0.05 0 Error NN (0.003, 0.014, 0.002, 0.004)
y 0.0294 0.0294 0 Error Learnable (0.034, 0.133, 0.025, 0.025)

Parameters

5% Uncorrelated Gaussian Noise

a 0.1927 0.89
B 0.0513 26 Error NN (0.029, 0.026, 0.015, 0.019)
Y 0.0275 6.46 Error Learnable (0.03, 0.11, 0.05, 0.049)

Parameters

10% Uncorrelated Gaussian Noise

a 0.1927 0.89
B 0.0489 22 Error NN (0.061, 0.051, 0.039, 0.026)
Y 0.0335 13.94 Error Learnable (0.021, 0.059, 0.084, 0.069)

Parameters

20% Uncorrelated Gaussian Noise

a 0.189 1.04
B 0.0564 12.8 Error NN (0.072, 0.143, 0.059, 0.035)
Y 0.0274 6.8 Error Learnable (0.089, 0.288, 0.16, 0.056)

Parameters

4.1.2 Influence of noise

Next, to show the robustness of DINNSs, we generated various amounts of uncorrelated Gaussian noise. The models were
trained for 1.4 million iterations (roughly 1 hour), using parameter ranges of 1000% variation and similar learning parameters
(e.g., learning rate) as the previous section. We used a 4 layer neural network with 20 neurons each, and 100 data points. The
experiments showed that even with a very high amount of noise such as 20%, DINNS achieves accurate results with maximum
relative error of 0.143 on learning the system. That being said, the exact parameters were harder to learn in that amount of noise.
It appears that the models may need further training to stabilize the parameters, as there were some variations in the amount of
noise versus the accuracy. Figure 9 shows DINN’s predictions on 1%, 5%, 10% and 20% uncorrelated gaussian noise respectively.
Table 2 summarizes the estimated optimal parameters for these varying noises.

4.1.3 Influence of data variability

Next, we trained our models with various amounts of data: 10, 20, 100, and 1000 points (See Figure 10). The models were
trained for 700,000 iterations, consisting of 4 layers with 20 neurons each, and 1 X 107¢ learning rate. Our analysis shows that
there was a big increase in the parameters accuracy from 10 points to 20 points. The model that was trained on 1000 data points
performed the best compared to the others. Note that even with 20 data points the model learns the system incredibly well (See

82 =

6 . . Actual Susceptible
ettt ptate --- Susceptible Prediction
. N Actual Infected

~=- Infected Prediction
—— Actual Dead

5 --- Dead Prediction
—— Actual Recovered
--- Recovered Prediction
« Susceptible Noise Data
4 « Infected Noise Data
Dead Noise Data
+ Recovered Noise Data
.
o
Ee)
€3
S
=z
2 g
1
0
0 100 200 300 400 500
Time /days

(a) 1% — Neural Network’s System.

Actual Susceptible
7 -=- Susceptible Prediction
Actual Infected
-=- Infected Prediction
—— Actual Dead

6 -=-= Dead Prediction
—— Actual Recovered
--- Recovered Prediction
» Susceptible Noise Data
5 « Infected Noise Data
Dead Noise Data
+ Recovered Noise Data
o4
o
£
S
2
3
, R R
1 .
0
0 100 200 300 400 500

Time /days

(c) 10% - Neural Network’s System.

5 s SHAIER, M. RAISSI, P. SESHAIYER

Number

Number

Actual Susceptible
.. -== Susceptible Prediction
Actual Infected

6 ~=- Infected Prediction
~—— Actual Dead
--- Dead Prediction
5 —— Actual Recovered
--- Recovered Prediction
« Susceptible Noise Data
« Infected Noise Data
Dead Noise Data
4 + Recovered Noise Data
3
2
1
0
0 100 200 300 400 500
Time /days
>
(b) 5% - Neural Network’s System.
1e7
. Actual Susceptible
- -=-= Susceptible Prediction
8 . Actual Infected
-=- Infected Prediction
~—— Actual Dead
« -=-= Dead Prediction
~—— Actual Recovered
--- Recovered Prediction
» Susceptible Noise Data
6 + Infected Noise Data
Dead Noise Data
+ Recovered Noise Data
4
. “
0 .
0 100 200 300 400 500

Time /days

(d) 20% - Neural Network’s System.

Figure 9: DINNs performance with varying Uncorrelated Gaussian Noise.

LETTERS IN BIOMATHEMATICS .= 83

Table 3: Performance of DINNSs for 20 data points.

Param. Actual Value Param. % Relative Error (S,I,.D,R)
Found
a 0.1907 0.15
B 0.0491 1.8 Error NN (7e™, 0.009, 6e-4, 6e™)
Y 0.0338 14.96 Error Learnable (0.055, 0.182, 0.077, 0.088)

Parameters

Table 4: Influence of Architecture Variation with (S, I, D, R) error from neural network output.

Neurons Per Layer

Layers 10 20 64

(0.024, 0.15,0.022, 0.022) (0.005, 0.038, 0.004, 0.004)

(0.001,0.007, 0.001, 8¢™%) (8¢™%,0.004, 7¢™*, 7¢7%)
(4¢7%,0.002, Se™*, 4¢7*) (3¢7%,0.001, 2¢74, 1e7%)
(Se™,0.002, 8¢7%, 6¢7%) (2¢7%,0.001, 2¢7%, 2¢7%)

2 (0.030, 0.109, 0.027, 0.027
4 (0.002, 0.027, 0.004, 0.004
8 (0.001, 0.008, 0.002, 0.002
12 (0.001, 0.008, 0.002, 0.002

~ ~

~ ~—

Table 3). The left-hand side of the table shows the parameters and values found after training. The right-hand side as before
shows the two errors: “Error NN is the relative MSE loss error from the system that the neural network output (what DINNs
believes the systems’ dynamics look like), and “Error Learnable Parameters” is the relative MSE loss error from the LSODA
generated system using the parameters found values. DINNs was also compared against a traditional least-squares approach
using Gauss-Newton and the Nelder-mead method with variable data points. Both of these techniques require an initial guess
for the parameters which was chosen to be (0.1, 0.1,0.1). Additionally, a search range which the algorithms could search for
parameters within was also included to be (0, 2). The results of the two traditional approaches are illustrated in Figure 11 and
Figure 12 respectively, which show that these traditional approaches only start to perform comparable to DINNs when there
are more data points. While Nelder-Mead was a little better than Gauss-Newton method, both could not perform as well as
DINNS for a minimal dataset. More experiments were also conducted by increasing the search range for the parameters, but
both the Gauss-Newton and Nelder-Mead performed worse.

4.1.4 Influence of neural network architectures

In the next computational experiment, we examined the effect that wider or deeper neural network architecture has on DINNGs.
The models were trained on 100 data points, using parameter ranges of 1000%, a learning rate of 1x 107¢, and 700,000 iterations.
Tables 4 and 5 show a clear decrease in error as one increases the amount of neurons per layer. Specifically, Table 4 itemizes the
(S,LLD,R) error from the neural network’s output. For the Neural network architecture variations (depth and width), relative
MSE errors were reported on the predicted NN system. Table S itemizes similar findings for LSODA generation of the learning
parameters. There also seem to be a clear decrease in error as the number of layers increase. However, the error seem to stabilize
around 8 layers, with very minor performance increase in 12 layers.

Table 5: Influence of Architecture Variation with (S, I, D, R) error from LSODA.

Neurons Per Layer

Layers 10 20 64
2 (0.132,0.519,0.088, 0.111) (0.106, 0.423, 0.083,0.077) (0.001, 0.009, 0.019, 0.011)
4 (0.038, 0.148, 0.026, 0.029) (0.064, 0.256, 0.045, 0.050) (0.009, 0.044, 0.010, 0.008)
8 (0.036, 0.138, 0.033, 0.024) (0.027,0.107, 0.018,0.022) (0.057, 0.234, 0.045, 0.043)
12 (0.036, 0.138,0.033,0.024) (0.022,0.091, 0.015,0.019) (0.017, 0.076, 0.017, 0.017)

84 .= S. SHAIER, M. RAISSI, P. SESHAIYER

107
6 - PO < ---- Susceptible Prediction 6 e-o-o--6-4q ---- Susceptible Prediction
\ ---- Infected Prediction " ---= Infected Prediction
\
! ---- Dead Prediction ' ---- Dead Prediction
5 \ ---- Recovered Prediction 5 ‘.‘ ---- Recovered Prediction
\‘ o Susceptible Data \ e Susceptible Data
|
\‘ Infected Data ! Infected Data
\ « Dead Data | « Dead Data
\
4 } e Recovered Data 4 ‘n‘ e Recovered Data
\ \
- \ i
\ .
8 \ o 8 [
€3 i / €3 v
=1 ' H =) \ ’
=z 1 ! 2 1 ’
Vo 4
\ / \/
N / 5 \/
NS A
PN A
VAN AV AN
| AN 1 A
i/ N —— Iy ~-
P \ AN
/e . il N
Vs \ Ay Y
0 €=mmc—emmmmnd T e 0 e-e--e--o--e-" S et
0 100 200 300 400 500 0 100 200 300 400 500
Time /days Time /days
(a) 10 points — Neural Network’s System. (b) 20 points — Neural Network’s System.
17 17
[---- Susceptible Prediction 6 ---- Susceptible Prediction
\ ---- Infected Prediction ---- Infected Prediction
---- Dead Prediction
5 ---- Recovered Prediction 5
e Susceptible Data
Infected Data
4

---- Dead Prediction
---- Recovered Prediction
e Susceptible Data
Infected Data
Dead Data
Recovered Data

e Recovered Data

Number
w

\

o

\

\

L]

\

\

i

.

'

‘.l + Dead Data
)

f

|

|

|

!

)

\

\

\

\

4

|

\

|

3
d

Number
w

2
1
0
0 100 200 300 400 500 0 100 200 300 400 500
Time /days Time /days
(c) 100 points — Neural Network’s System.

(d) 1000 points — Neural Network’s System.
Figure 10: DINNSs performance for increasing Data Points: 10 (top left), 20 (top right), 100 (bottom left), 1000 (bottom
right).

17 10 points - Least Square

b ¥
5.
4
® Susceptibles Data)
L — Susceptibles (Estimated) v
H S, ® Infected Data) 2
5 — Infected (Estimated) 5
2 Recovered (Data) 2
Recovered (Estimated) G
L]
1
. [[} (] .
0- 2 v * * .
100 00 30 €0 500
Time/days
167 100 points - Least Square
6 o Susceptibles (Data)
— Susceptibles (Estimated)
o Infected (Data)
5- ~— Infected (Estimated)
Recovered (Datz)
Recovered (Estimated)
4
i
£3
3
z

100 30 500
Time/days

Least—squares performance for increasing Points:

Figure 11
right).

167 10 points - Nelder Mead

o Susceptbles (Data)
— Susceptibies Estimated)

2 5. 0 Infected Data)
E —— Infected (Estimated)
H Recovered (Data)
Recovered (Estimated) .
.
1
.
0 L v v *
10 Pl m 0 500
Time/days
16 100 points - Least Square
6 # Susceptibles (Data)
— Susceptibles (Estimated)
* Infected (Data)
5 — Infected (Estimated)
Recovered (Data)
Recovered (Estimated)
4
3
£y
3
z
2
: \“\
0
0 a0) 40 500

Time/days

LETTERS IN BIOMATHEMATICS 85

20 points - Least Square

® Susceptibles (Data)
— Suscepties (Estimated)
© Infected (Data)

— Infected (Estimated)
Recovered (Data)
Recovered (Estimated)

500

N
Time/days

100

7 1000 points - Least Square
® Susceptibles (Datz)
~— Susceptibles (Estimated)
® Infected (Data)
— Infected (Estimated)
Recovered (Datz)
Recovered (Estimated)

Number

300 500

100
Time/days

10 (top left), 20 (top right), 100 (bottom left), 1000 (bottom

20 points - Nelder Mead

® Susceptibles (Data)

— Susceptibles (Estimated)

® Infected (Data)

— Infected (Estimated)
Recovered (Data)
Recovered (Estimated)

3
£
H
z
2
1
0 +
100 10 10 40 500
Timejdays
7 1000 points - Nelder Mead
6 ® Susceptibles (Data)
— Susceptibles (Estimated)
* Infected (Data)
5 — Infected (Estimated)
Recovered (Data)
Recovered (Estimated)
4
3
£
H
-4
2
! j\
0
20 10 0 0

Timej/days

Figure 12: Nelder-Mead performance for increasing Points: 10 (top left), 20 (top right), 100 (bottom left), 1000 (bottom

right).

86 .= S. SHAIER, M. RAISSI, P. SESHAIYER

Table 6: Learning Rate & Step Size vs Training Time.

Step Size Up

Learning Rate 100 1000 10000

1x107° 2min3ls 2min57s 3min 16s
1x107¢ 21min1ls 20minS9s 18min 43s
1x1078 >8hrs >8hrs >8hrs

4.1.5 Influence of learning rates

We found that quickly increasing the learning rates and then quickly decreasing it to a steady value allows the network to learn
well. One such learning rate schedule is PyTorch’s CyclicLR learning rate scheduler. To show the importance of learning rate in
the amount of needed training time, we trained DINNs with several values: 1 X 1075,1x107°,1 x 108 as well as different step
size for each one: 100, 1000, 10000. We used 4 layers with 20 neurons each, and 100 data points. The time was measured from
the moment the network started training and until the loss was smaller than 4 X 10~%, which usually corresponds to learning
the system almost perfectly. As can be seen from the results (Table 6) both the minimum learning rate and the step size play an
important role in learning the system. Reducing the learning rate to a small value too quickly may resultin hours of training time
instead of minutes. As an afterthought, this might be the reason why most of the systems were taking so long to train (>10 hrs),
while the COVID system took <25 minutes.

4.1.6 Application of DINNs to real data

Finally, to verify that DINNs is in fact as reliable as it appears, we used 310 days (04-12-2020 to 02-16-2021) of real US data from
Dong et al. (2020). We trained a neural network that learned the cumulative cases of susceptible, infected, dead, and recovered,
and predicted the cases for a future month. Specifically, out of those 310 days we gave the network 280 days worth of data and
asked it to predict each compartment’s progression a month (30 days) into the future. The network received 31 data points (1
per 10 days), was trained for 100k epochs (roughly 5 minutes), had 8 layers with 20 neurons each, a1000% parameters variation,
and1x107° learning rate.

Our results suggest that the learnable parameters found were quite different from the parameters in the literature (# =
0.0176 instead of 0.191, 2 = 0.0046 instead of 0.05, and ¥ = 0.0001 instead of 0.0294). This may imply that either the data
was different from the initial data distribution used in the literature (Anastassopoulou et al., 2019), or that as other authors
mentioned these are time-varying parameters rather than constant ones. As seen from figure 13, the cumulative cases had less
data variation and were fairly easy to learn. Additionally, it appears as DINNs managed to accurately predict the future month
on each compartment.

4.1.7 Influence of missing data

So far we assumed that we have all the data for each compartment. However, this is often not the case. For example, there is a lot
of data that went unreported during COVID-19. To test the reliability of DINNs, we tested the method on the SIRD model
again which was trained on 100 data points, were given the known parameters from the literature, and were only given the initial
conditions for the missing data. The model was trained with 1 X 107° learning rate for 1 million iterations (roughly 1 hour).
Our results show that DINNS can in fact learn systems even when given partial data. However, it is important to note that the
missing data compartments should be in at least one other compartment in order to get good results. For example, when we
tried to remove the COVID recovered compartment (i.e., R), DINNs learned S, I, and D nearly perfectly. However, it did not
do very well on R. That is because R is not in any of the other equations. The neural networks’ systems outputs and their losses
for COVID model was (0.003, 0.078, 0.003, 0.003). The prediction using these values is shown in Figure 14.

4.2 Application of DINNs to other infectious diseases

In this sections, we apply DINNSs to multiple infectious diseases. Note that we chose smaller ranges for the following diseases
for demonstrating that DINN can in fact identify the systems and one set of parameters that match the literature they came
from, as in many of these systems there exist a large set of parameters that can generate them. However, one can easily expand
the ranges as done in a previous section. Similarly to the previous sections we report relative errors, except when the true value
of the parameter is zero, which then we use the absolute error.

LETTERS IN BIOMATHEMATICS

le8
°"'-o... ---- Dead Prediction ,
.. /
o 400000 © Dead Data 4
3.2 ."-.. Future Data ""
5 % 5300000 S
231 w 2 o
£ ‘. € ..'
=] o
> » = 200000 .,."
\\- ..
3.0 .. Susceptible Prediction 40"
o Susceptible Data ; 100000 o’
2.9 Future Data \\ ‘/
0 100 200 300 0 100 200 300
le7 Time /days le7 Time /days
25 T Infected Prediction I/ ---- Recovered Prediction /
’ Infected Data) 1.0 o Recovered Data ,/'
2.0 Future Data ,'/ 08 Future Data .‘
2,5 / Zos 4
£ £ /
= K =
Z1.0 Z0.4 v
O 5 ,,,z” O 2
“—_z ...‘v
0.0 = 0.0 *=**
0 100 200 300 0 100 200 300
Time /days Time /days

Figure 13: DINN’s output on COVID real-life cumulative cases over 310 days.

Susceptible Prediction

-- Infected Prediction
-- Dead Prediction
-- Recovered Prediction

Susceptible Data
Infected Data
Dead Data
Recovered Data

0 100 200

300 400 500
Time /days

Figure 14: Performance of DINNs on Missing data for COVID.

88 ‘= S. SHAIER, M. RAISSI, P. SESHAIYER

---------------- J—
e . ”_',,.»»
2500 e \ e
v \
e 400000 ! /"
e \ A
Ve | o ---- S Prediction
»
2000 7 | -~ E Prediction
H ---- S Prediction ! & | Prediction
/ -~ L Prediction 300000 '\‘ - _/ ---- H Prediction
. ! | Prediction . i i\ 4 F Prediction
é 1500 I -- T Prediction é 4 s ---- R Prediction
v ’
S v S Data 5] | I S Data
= / ' L Data = 200000 oo/ E Data
1000 ¢ U . IData i v . IData
|
- TData H Data
« FData
500 100000 + RData
y e teaaeeeiaseeeiaaeeaiaeeaneaeenas i
[0
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100
Time /days Time /days

Figure 15: Performance of DINNs on Missing data for COVID Tuberculosis (left) and Ebola (right).

First, we employ DINNS to two systems modeling diseases with missing data as in the last section. These include the follow-

ing:

* A Tuberculosis SLIT model (Castillo-Chavez and Feng, 1997) with missing data on Latent compartment L and infected

individuals / given by
das BcST dL fBcSI BT
— =0 ——uS —_—=—— L
dr N p7 AR iy Vo
dar daT 'cT
Ez/el,—([u+d)]—r21, E:r1L+r2]—lg —uT.

* An Ebola SEIHFR model (Legrand et al., 2007) with missing data on hospitalized cases / given by

das 1 dE 1

o —N(/ZISI +BySH + BfSF), i N(/%SI +BpSH + B¢ SF) — aL,

dr dH

i aE = (yp0 +yi(1=0) (1 = 1) + yu(1 = 1)), o7 bl — (yahds +y:h(1 - 2))H,

dF dR

E = }/d(l - 51)511 + ydbé\zH - }/fF, E = }’z(l - (91)(1 - (;1)[+ j/lh(l - 32)1‘1 + }/fF

The models were also trained on 100 data points, were given the known parameters from the literature, and were only given
the initial conditions for the missing data. The tuberculosis model was trained with 1 x 107° learning rate for 100k iterations.
The Ebola model was trained with 1 x 107¢ learning rate for 800,000 iterations. The neural networks’ systems outputs and
their losses for the Tuberculosis model was (0.041, 0.086, 0.051, 0.004) and the Ebola model was (0.013, 0.011, 0.014, 0.103,
0.007,0.001). Figure 14 illustrate the outputs for the respective models.

4.2.1 A summary of DINNSs applied to eleven diseases

Expanding on the relatively simple SIRD model for COVID that was used for simplicity to demonstrate the capability of
DINN:S, here we apply the method to ten other highly infectious diseases, namely Anthrax, HIV, Zika, Smallpox, Tubercu-
losis, Pneumonia, Ebola, Dengue, Polio, and Measles. These diseases vary in their complexity, ranging from a system of three
to nine ordinary differential equations, and from a few parameters to over a dozen. Table 7 provides a summary of our analysis.
Specifically, it itemizes for each disease its best, worst, and median parameter estimate error. In the subsequent subsections, for
each of the diseases described by a system of differential equations, we identify the relative error for the disease from LSODA
generation of the learnable parameters, a table representing parameter values (actual and computed values) with their range and
percentage relative error, and a graph of the prediction from the data.

LETTERS IN BIOMATHEMATICS .= 89

Table 7: Summary of the analysis for eleven diseases.

Disease Best Worse Median
COVID 0.2 1.151 1.02
Anthrax 0.5754 6.0459 2.4492
HIV 0.007515 3.811689 0.829756
Zika 0.0588 5.8748 0.7261
Smallpox 0.0882 10.8598 4.9239
Tuberculosis ~ 0.5424 11.0583 3.8952
Pneumonia 0.0005 11.6847 1.6372
Ebola 0.2565 9.6403 1.1244
Dengue 0.2696 9.7723 0.8796
Polio 0 0.4168 0.3587
Measles 2.9999 12.704 3.1453
4.2.2 COVID-19
The DINNs COVID system considered was given by
das o dl « dD dR
E——NS], E—ﬁS[—{g]—)/], E—y], E—ﬂ]

The model used 8 layers with 20 neurons per layer, 1 X 107 min learning rate, and was trained for 400k iterations (about
20 minutes). Figure 16 and table 8 show our results. The relative error corresponding to the SIDR system was (0.022, 0.082,
0.022,0.014).

4.2.3 HIV

The DINN HIV model had 8 layers with 20 neurons per layer, 1 X 1078 min learning rate, and was trained for 25mil iterations
(about 22 hours). Figure 17 and table 9 show our results. The relative error corresponding to the system was (0.008, 0.002,
0.003).

System:

dT T+1 dal
— =s—urT +rT|1- -k VT — =k VT —ul
ar et Tome dr 1 “

dv
Z ZN‘ub]—leT—[uVV

4.2.4 Smallpox

The DINN Smallpox model had 8 layers with 20 neurons per layer, 1e™7 min learning rate, and was trained for 12mil iterations
(about 14 hours). Figure 18 and table 10 show our results. The relative error corresponding to the system was (0.033, 0.053,
0.045, 0.060, 0.014, 0.036, 0.027, 0.021).

System:
i—f —1(1—1)Ci = f(g +p — ¢p)SI % = Bg(1 = p)SI — akn
5 g s+t - 18 G _gi1- pir e
% =a(l-60)En— (6 +y)1 il—? =a(l=2)Ei+b(akn +1) = 1,Q
ail_(tj =yl + 120 i—f = (Ei +1Ci)

4.2.5 Tuberculosis

The DINN Tuberculosis model had 8 layers with 20 neurons per layer, le~7 min learning rate, and was trained for 10mil itera-
tions (about 12 hours). Figure 19 and table 11 show our results. The relative error corresponding to the system was (0.030, 0.034,

90 ‘= S. SHAIER, M. RAISSI, P. SESHAIYER

LT Susceptible Prediction
---- Infected Prediction
---- Dead Prediction
5 ---- Recovered Prediction
Susceptible Data
Infected Data
Dead Data
4 . « Recovered Data
5 o
Q
3
: /
z f/
#
2 f
o
[
ps
1 1’1" ”X‘\.
N
J//
4 .
0 [g o e et e e 02 s 0 0 s e o e 0 0 4 et 00
0 100 200 300 400 500
Time /days

Figure 16: COVID: Neural Network Output.

Table 8: COVID: Parameter Estimation.

Parameter ~ Actual Value Range Parameter Found % Relative Error

2 0.191 (L1) 0.1932 1151
B 0.05 (-1,1) 0.0501 0.2
y 0.0294 (-1,1) 0.0297 1.02

Table 9: HIV: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
5 10 (9.9,10.1) 10.000751 0.007515
ur 0.02 (0.018,0.022) 0.020762 3.811689
L1 0.26 (0.255,0.265) 0.261271 0.488758
“b 0.24 (0.235,0.245) 0.241747 0.727760
3% 2.4 (2.5,2.3) 2.419914 0.829756
7 0.03 (0.029,0.031) 0.030605 2.015910
N 250 (247.5,252.5) 249.703094 0.118762
Toax 1500 (1485,1515) 1506.543823 0.436255
ki 24-10¢7> (2.3-10¢7°,2.6 - 10¢7°) 0.000246 2.447948

k] 2105 (1.9-10e7%,2.1-10¢7°) 0.000203 1.599052

LETTERS IN BIOMATHEMATICS

"% ---- T Prediction
¢ “ ---- | Prediction
1400 h V Prediction
" T Data
1200 « | Data
« V Data
1000 :
‘|‘ é .)
\ o
— \I N
L 800 “.
€ \ s,
=] [ce
=2 I‘ RN ..
600 ceen,
\
i
400 A
\
\
\
200 o
\\
\\
,/':"‘b:t:::;'_t:n.“; S s e e s
o & e
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time /days
Figure 17: HIV: Neural Network Output.
7000 '
1 "659,;e===sc===o
6000 | o ---- S Prediction
i P ---- En Prediction
i » . s
i . Ei Prediction
5000 | P - Ci Prediction
A J/ -—-- | Prediction
HEA ~--- QPrediction
. 4000 NS ---- U Prediction
2 I ‘\ r V Prediction
g b S Data
Z »
3000 d \‘ En Data
BN . EiData
:". X . CiData
2000 :“\ 4 \ « | Data
1 N\
| ‘\ K " . QData
.: \\ \\ U Data
1000 4 A\ . . VData
AN ~..
1o R \,.‘*
0 Sessmses samm——IsIZT==Es. e
0 20 40 60 80 100
Time /days

Figure 18: Smallpox: Neural Network Output.

92 .= S. SHAIER, M. RAISSI, P. SESHAIYER

0.034, 0.008).

System:
ds BeST dL BeSI BT
E—S—W—‘L{S E—T—(ﬂ+/€+}’1)L+ N
d dT T
k- e+ dI=nl E:V1L+}’2]—{gc —uT

4.2.6 Pneumonia

The DINN Pneumonia model had 8 layers with 64 neurons per layer, 1 x 1077 min learning rate, and was trained for 25mil it-
erations (about 41 hours). Figure 20 and tables 12 show our results. The relative error corresponding to the system was (0.020,
0.039,0.034, 0.019, 0.023).

System:
%z(l—p)n’+¢V+5R—(/z+l+€)S il—lt/:pw+<95—(/,c+l+¢)V
dC dl
o =pAS+pAV + (1=l — (u+B+7)C 7 =1=-pAS+ A =pAV +yC—(u+a+y)]
dR
n =pBC+gnl — (u+I)R
4.2.7 Ebola

Next, we consider the Ebola model considered before. The DINN Ebola model had 8 layers with 20 neurons per layer, 1¢™7 min
learning rate, and was trained for 20mil iterations (about 33 hours). Figure 21 and table 13 show our results. The relative error
corresponding to the SIDR system was (0.023, 0.050, 0.044, 0.062, 0.049, 0.005)

4.2.83 Dengue

The DINN Dengue model had 8 layers with 20 neurons per layer, 1¢™7 min learning rate, and was trained for 35mil iterations
(about 58 hours). Figure 22 and table 14 show our results.The relative error is (0.003, 0.012, 0.030, 0.054, 0.001, 0.001, 0.002).

System:
dsh dEb dlb
E =7 — /‘th}J —[thb 7 = /‘leb - (G'hlub)Eb Z = G'hEIO - (Tb +upt Sh)]b
dRb dSv dEv
7 = ’Z'h[b - beb Z =Ty — C;USU —[LUSD W = SUSU - (U’U +[/£U)El)
dr
d—: =0, Ev— (up + 90,)Iv

4.2.9 Anthrax

The DINN Anthrax model had 8 layers with 64 neurons per layer, 1¢™8 min learning rate, and was trained for SSmil iterations
(about 91 hours). Figure 23 and tables 15, 16 show our results.

System:
das S+17 ST dA
— =r(S+ D1 - ——| =945 = 3.5C - p;—— —uS + 7l — = —gAd+8C
— r(+)(K) 7 ” gL ST - oA + 3
dl SI ac
= = 1aAS +75C + (%S—” - (y+u +T))1 i (y+w) = 3(S+1)C —«C

LETTERS IN BIOMATHEMATICS .= 93

Table 10: Smallpox: Parameter Estimation.

Parameter Actual Value Range Parameter Found % Relative Error
xn 0.06 (0.054,0.066) 0.0554 7.7222
b 0.04 (0.036,0.044) 0.0380 4.9239
1 0.975 (0.86,1.04) 0.9839 0.9089
2 0.3 (0.27,0.33) 0.2841 5.2848
P 0.975 (0.86,1.04) 0.9759 0.0882
g 0.95 (0.86,1.04) 0.9050 4.7371
a 0.068 (0.061,0.075) 0.0626 8.5490
y 0.11 (0.10,0.12) 01034 10.8598
2500 . g
'/’/(
e
2000 Y,
H ---- S Prediction
;,’ ---- L Prediction
N AT | Prediction
21500 ’,' ‘.l :‘ ---- T Prediction
§ I/ “ ! S Data
= /’ I‘. f L Data
1000 | i | Data
|'| T Data
i
500 N
j: e reeteeeseeeeeseseessseeeaereeeaeeees
0 ce®s
0 5 10 15 20 25 30 35 40
Time /days
Figure 19: Tuberculosis: Neural Network Output.
Table 11: Tuberculosis: Parameter Estimation.
Parameter Actual Value Range Parameter Found % Relative Error
P) 500 (480,520) 509.4698 1.8587
J; 13 (9,15) 12.5441 3.6341
¢ 1 (1,3) 1.0405 3.8952
u 0.143 (0.1,0.3) 0.1474 3.0142
k 0.5 (0,1) 0.5396 7.3433
" 2 (1,3) 1.9892 0.5424
7 1 (-1,3) 1.1243 11.0583
1@' 13 (9,15) 13.7384 5.3746
d 0 (-0.4,0.4) -0.0421 0.0421

94 .= S. SHAIER, M. RAISSI, P. SESHAIYER

---- S Prediction
8000 ---- V Prediction
C Prediction
7000 ---- | Prediction
™ ---- R Prediction
i S Data
6000 \ V Data
I‘. C Data
5000 - IData
5 “. - R Data
2 \
€ 4000 \
=z \\
3000 A\
2000 A TR,
/r\"‘:\ \\‘\ ‘~_‘~~~JJ‘£E‘J"-L; s
I
P \~“"'“‘°--::i:°:: tasd
¢ e e L DRSS
0
0 20 40 60 80 100
Time /days
Figure 20: Pneumonia: Neural Network Output.
Table 12: Pneumonia: Parameter Estimation.
Parameter Actual Value Range Parameter Found % Relative Error
T 0.01 (0.0099,0.011) 0.0098 2.0032
A 0.1 (0.099,0.11) 0.0990 0.9622
k 0.5 (0.49,0.51) 0.5025 0.5083
0.002 (0.001,0.003) 0.0022 11.6847
T 0.89 (0.87,0.91) 0.8912 0.1309
] 0.0025 (0.0023,0.0027) 0.0027 7.4859
X 0.001 (0.0009,0.0011) 0.0011 6.7374
» 0.2 (0.19, 0.21) 0.2033 1.6372
g 0.008 (0.0075,0.0085) 0.0084 4.8891
u 0.01 (0.009,0.011) 0.0092 8.4471
a 0.057 (0.056,0.058) 0.0570 0.0005
P 0.05 (0.049,0.051) 0.0508 1.5242
B 0.0115 (0.0105,0.0125) 0.0122 5.8243
7 0.2 (0.19,0.21) 0.2023 1.1407
q 0.5 (0.49,0.51) 0.4960 0.8003
)

0.1 (0.09,0.11) 0.1038 3.7502

LETTERS IN BIOMATHEMATICS .= 95

AN ,..--«-..w“”"'w
i o~
\ s
00000 \ K
! \ rd
‘.. s ---- S Prediction
\ s ---- E Prediction
\ s I Prediction
300000 b / ---- H Prediction
_ '-| N 7 F Prediction
3 '.|,’l \ 7 ---- R Prediction
g ‘.,” \\ /’ S Data
Z 200000 | E Data
’:“: \\\ ;’ « | Data
i s/ - HData
H) S— « FData
[\ >,
100000 - n,w,{f‘\ N - RpData
0
0 20 40 60 80 100
Time /days
Figure 21: Ebola: Neural Network Output.
Table 13: Ebola: Parameter Estimation.
Parameter Actual Value Range Parameter Found % Relative Error
2 3532 (3.5,3.56) 3.5589 0.7622
1817 0.012 (0.011,0.013) 0.0129 7.8143
ﬁf 0.462 (0.455,0.465) 0.4638 0.3976
a 1/12 (0.072,0.088) 0.0866 3.9320
Vb 1/4.2 (0.22,0.28) 0.2471 3.7853
i 0.65 (0.643,0.657) 0.6523 0.3477
Vi 0.1 (0.099,0.11) 0.0904 9.6403
o 0.47 (0.465,0.475) 0.4712 0.2565
Va 1/8 (0.118,0.122) 0.1205 3.6124
% 0.42 (0.415,0.425) 0.4247 1.1244
vF 0.5 (0.45,0.55) 0.5196 3.9246
Vib 0.082 (0.081,0.083) 0.0811 1.0932

Vb 0.07 (0.069,0.071) 0.0710 0.7563

96 ‘= S. SHAIER, M. RAISSI, P. SESHAIYER

---- Sh Prediction
---- Eh Prediction ~
1200 lh Prediction ,"'
---- Rh Prediction -~
---- Sv Prediction
1000 Ev Prediction R
---- Iv Prediction Pd
Sh Data ra
800 Eh Data 4
lh Data »
Rh Data s
600 - SvData pd
Ev Data J Y o
Iv Data s e
400 O ts aaaddaaaddesasshesasehenass:

Number

......
.....
po

200

00 2:0-0-0-000-0-3-0-500-0-9-0-0 0099000098009

0 25 50 75 100 125 150 175 200
Time /days

Figure 22: Dengue: Neural Network Output.

Table 14: Dengue: parameters, their values, the parameters search range that DINN was trained on, the parameters found
after training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
7 10 (9.9,10.1) 9.9317 0.6832
Ty 30 (29.7,30.3) 29.8542 0.4859
Ap 0.055 (0.054,0.056) 0.0552 0.2696
Ao 0.05 (0.049,0.051) 0.0506 1.2876
o 0.99 (0.9,1.1) 0.9643 2.5967
3 0.057 (0.056,0.058) 0.0567 0.5294
“p 0.0195 (0.0194,0.0196) 0.0194 0.3835
2 0.016 (0.015,0.017) 0.0159 0.8796
) 0.53 (0.52,0.54) 0.5372 1.3567
7y 0.2 (0.19,0.21) 0.1989 0.5483
T 0.1 (0.05,0.15) 0.0902 9.7723

Table 15: Anthrax: relative error from LSODA generation of the learnable parameters.

(S,L A, C) Error

(0.052, 0.144, 0.171, 0.171)

LETTERS IN BIOMATHEMATICS .= 97

30 - | Prediction 200 A === SPrédiction
« IData it s Data
25 175
15.0
2.0
L 125
2
£15
£ 5
2100
10
75
05 5.0
] b4 A X 25
0.0 e -
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Time /days Time /days
--- C Prediction
C Data --- A Prediction
0.010 + AData
05
0.008
04
803 0.006 i
: i
2 H
02 0.004 {5
01 0.002 ; H
v $oA
00 == 0.000 ~ 4 -]
o 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Time /days Time /days

Figure 23: Anthrax: Neural Network Output.

Table 16: Anthrax: parameters, their values, the parameters search range that DINN was trained on, the parameters found
after training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
r 1/300 (0.003,0.0036) 0.0034 1.2043
U 1/600 (0.0014,0.0018) 0.0017 0.5754
K 0.1 (0.99,0.11) 0.1025 2.5423
Ya 0.5 (0.49,0.51) 0.5035 0.7022
7 0.1 (0.09,0.11) 0.1024 2.4492
i 0.01 (0.09,0.011) 0.0106 6.0459
T 0.1 (0.09,0.11) 0.0976 2.4492
y 1/7 (0.13,0.15) 0.1444 1.0542
P) 1/64 (0.03,0.07) 0.0512 2.3508
K 100 (98,102) 100.6391 0.6391
ﬁ 0.02 (0.0018,0.0022) 0.0021 6.5466
T 0.1 (0.09,0.11) 0.1051 5.1029

98 .= S. SHAIER, M. RAISSI, P. SESHAIYER

4.2.10 Polio

The DINN Polio model had 8 layers with 64 neurons per layer, 1¢~% min learning rate, and was trained for 40mil iterations
(about 66 hours). Figure 24 and tables 17, 18 show our results.

System:
% =uN - (zx+[u+%k+%[a)& ddij = aSc - ({“+%Iﬂ+%16)54
% = (%Ic + %[a)& —(e+a+p)l % = (%If + %Iﬂ)&l — (Yo +@)la+ale
% = ¥ dc — uRc — aRc % =¥ da — yRa + aRc

4.2.11 Measles

The DINN Measles model had 8 layers with 64 neurons per layer, le~7 min learning rate, and was trained for 17mil iterations
(about 28 hours). Figure 25 and tables 19, 20 show our results.

System:

B B dE st

dl
dr N dt N_(/M)E 7 -l

dt

4.2.12 Zika

The DINN Zika model had 8 layers with 64 neurons per layer, 1e~° min learning rate, and was trained for 8mil iterations (about
13 hours). The following image has a selection of the compartments to reduce scatter in visualization. Figure 26 and tables 21,
22 show our results.

System:
% _ —ab%Sh—ﬂbe+§éz+ b o, % _ e(—abé—leo—ﬂ%ﬂ%) — V,Eb
% = VyEb = ynlh % =(-9 (ﬂbl{f_vb% _ﬂ%};%%) ~redb
% = ypdb1 = yiadby % = yialhy + ypdh
% e M;;E};\;o LY % _ M%ﬁg”’l —(Vy +) Ev
% = VyEv — p,lv

5 Discussion and Conclusion

In this work, we have introduced Disease Informed Neural Networks (DINNs) which is a neural network approach capable of
learning a number of diseases, how they spread, forecasting their progression, and finding unique parameters that are used in
models to describe the disease dynamics. Specifically, for a benchmark problem we were able to study the influence in ranges of
parameter estimation, noise, data variability, NN architechture, learning rates and missing data on the performance of DINNSs.
Our results from this work suggest that DINNs is a robust and reliable candidate that can be used as an inverse approach to char-
acterize and learn parameters used in compartmental models for understanding dynamics of infectious diseases. To compare the
performance of the proposed DINNS, we also wrote the parameter estimation in R and MATLAB that employed powerful non-
linear optimization methods such as Nelder-Mead, Gauss Newton and gradient decent methods. In all the types of simulations,
we noticed DINNSs outperformed and was more robust to initial parameter guesses. Especially, all the other methods failed to
achieve the optimal solution if the initial guesses were far from the actual values for these optimization based methods compared
to DINNs which worked extremely well.

LETTERS IN BIOMATHEMATICS .= 99

Table 17: Polio: relative error from LSODA generation of the learnable parameters.

(Sc, Sa, Ic, Ia, Re, Ra) Error

(0.001, 0.001, 0.017, 0.021, 0.004, 0.001)

Table 18: Polio: parameters, their values, the parameters search range that DINN was trained on, the parameters found after

training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
U 0.02 (0.018,0.022) 0.0200 0.0200
a 0.5 (0.495,0.505) 0.5018 0.36
Va 18 (17.9,18.1) 18.0246 0.4168
Ve 36 (35.8,36.2) 36.0701 0.3587
B 40 (39,41) 40.2510 0.6275
Bec 90 (89,91) 90.6050 0.6722
Bac 0 (-0.001,0.001) 0.0002 0.0002
Bea 0 (-0.001,0.001) 0.0004 0.0004
600
500 -
-- Sc Predicti:)n‘ . " et L
400 --- sa Prediction - - =
Ic Prediction ~
-- la Prediction
5 -- Rc Prediction
9 300 --- RaPrediction
g Sc Data
= Sa Data
Ic Data
200 1 R
Ra Data
100

S8 o o5 et 5 5 =5 i e o = 8 o =8 O e 5 =i e o e o 8 e o 8 o = 2

>
.
.

0 oot ssesene

0 5 10 15 20 25 30 35 40
Time /days

Figure 24: Polio: Neural Network Output.

Table 19: Measles: relative error from LSODA generation of the learnable parameters.

(S, E, I) Error

(0.017, 0.058, 0.059)

100 .= S. SHAIER, M. RAISSI, P. SESHAIYER

50000 Y ---- S Prediction
\ ---- E Prediction
:. Ih Prediction
1
i . S Data
40000 VA E Data
A - IhData
[
Vi
[\
A
[\
30000 v
- "
3 P
£ £
1 \
z i \
20000 ! \
i
i \
i \
H N
10000 o "
i
1 1
i N
[.
v e feo L TEeemmmmmnn oo
0 oot e e RERITIITT S
0 2 4 6 8 10
Time /days

Figure 25: Measles: Neural Network Output.

Table 20: Measles: parameters, their values, the parameters search range that DINN was trained on, the parameters found
after training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
u 0.02 (0.01,0.03) 0.0225 12.704
B 0.28 (0.27,0.37) 0.2700 3.5704
y 100 (97,103) 97.0001 2.9999
T 35.84 (33,37) 34.7127 3.1453

Table 21: Zika: relative error from LSODA generation of the learnable parameters.

(Sh, Iby, Ihy, Ab, Rb, Sv, Ev, Iv, I) Error

(2.215¢79¢,0.017, 0.014, 0.003, 0.024, 0.091, 0.005, 0.012, 0.018, 0.018)

LETTERS IN BIOMATHEMATICS .= 101

Table 22: Zika: parameters, their values, the parameters search range that DINN was trained on, the parameters found after
training, and the relative error percentage.

Parameter Actual Value Range Parameter Found % Relative Error
a 0.5 (0.49,0.51) 0.4997 0.0588
b 0.4 (0.39,0.41) 0.4033 0.8297
c 0.5 (0.49,0.51) 0.5015 0.3086
7 0.1 (0.09,0.11) 0.0999 0.0687
ﬂ 0.05 (0.0495,0.0505) 0.0498 0.4098
X 0.6 (0.594,0.606) 0.6033 0.5486
T 0.3 (0.27,0.33) 0.2902 3.2565
6 18 (0.17.8,18.2) 17.9669 0.1838
m 5 (4.5,5.5) 5.2937 5.8748
v 1/5 (0.198,0.202) 0.1996 0.1798
v, 10 (9.9,10.1) 10.0170 0.1700
7 /5 (0.18,0.22) 0.1991 0.4651
V2 1/64 (0.045,0.055) 0.0504 0.7261
Vb 1/7 (0.139,0.141) 0.1406 1.5967
Hy 1/14 (0.063,0.077) 0.0723 1.1806
0.004
0.002 R
A P e A WV - 4
g 0000 FTR N T e T e
g SN TP N T L G % \
£ VN e ke RS
z \ 1 S N,
Y i e -- Eh Prediction
oo SN . i

Ah Prediction
—--- Rh Prediction
—-=-Iv Prediction
Eh Data
) § o IhlData
—0.004 « Ih2 Data
e AhData
Rh Data
Iv Data

0 5 10 15 20 25 30
Time /days

Figure 26: Zika: Neural Network Output.

102 .= S. SHAIER, M. RAISSI, P. SESHAIYER

Building on a simple SIRD model for COVID-19, we used it to model eleven infectious diseases and show the simplicity,
efficacy, and generalization of DINNSs in their respective applications. These diseases were modeled into various differential
equations systems with various number of learnable parameters. We found that DINNSs can quite easily learn systems with a
low number of parameters and dimensions (e.g., COVID), and when the learnable parameters are known the training time can
change from 50 hours to a few minutes. Moreover, it appears as if the number of dimensions does not affect the performance
as much as the number of learnable parameters (e.g., see pneumonia vs ebola). From the anthrax model result we see that it is
far more difficult for DINNSs to learn systems which have numerous quick and sharp oscillations. That being said, looking at
the polio and zika models results we can see that it is not impossible, but rather more time consuming (both in training and
hyperparameter search). Also, based on the measles, tuberculosis, and smallpox models results we can see that a low number of
sharp oscillations are relatively easy to learn.

It maybe noted that while the goal of this work was to introduce a powerful algorithm for predicting infectious diseases, the
algorithms have the potential to be applied to complex models (for example, involving spatial dependencies, using facemasks,
impact of lockdowns, etc.). Also, while DINNs presented here is shown to be robust and reliable, it can be slow to train on
particular problems and there is no known theoretical guarantee of corresponding error bounds. These will be explored in
forthcoming papers.

Acknowledgments

This work has been supported in part by the National Science Foundation DMS 2031027 and DMS 2031029.

References

Akman, D., O. Akman, and E. Schaefer (2018). Parameter estimation in ordinary differential equations modeling via particle
swarm optimization. Journal of Applied Mathematics 2018. 72

Akman, O., M. R. Corby, and E. Schaefer (2016). Examination of models for cholera. Letters in Biomathematics 3(1), 93-118.
72

Alshakhoury, N. S. et al. (2017). Mathematical modeling and control of MERS-CoV epidemics. Ph. D. thesis. 72

Anastassopoulou, C., L. Russo, A. Tsakris, and C. Siettosid (2019). Data-based analysis, modelling and forecasting of the
COVID-19 outbreak. 77, 86

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2018). Automatic differentiation in machine learning: a
survey. Journal of machine learning research 18. 75

Bell, J. G. (1990). Mathematical biology (jd murray). SLAM Review 32(3), 487-489. 72

Blower, S. M. and H. Dowlatabadi (1994). Sensitivity and uncertainty analysis of complex models of disease transmission: an
hiv model, as an example. International Statistical Review/Revue Internationale de Statistique, 229-243. 72

Brauer, F. (2017). Mathematical epidemiology: Past, present, and future. Infections Disease Modelling 2(2), 113-127. 71

Brauer, F. and C. Castillo-Chdvez (2001). Basic ideas of mathematical epidemiology. In Mathematical Models in Population
Biology and Epidemiology, pp. 275-337. Springer. 77

Brauer, F., C. Castillo-Chavez, and C. Castillo-Chavez (2012). Mathematical models in population biology and epidemiology,
Volume 2. Springer. 71,73

Capaldi, A., S. Behrend, B. Berman, J. Smith, J. Wright, and A. L. Lloyd (2012). Parameter estimation and uncertainty quanti-
cation for an epidemic model. Mathematical biosciences and engineering, 553. 72

Castillo-Chavez, C. (2013). Mathematical and statistical approaches to AIDS epidemiology, Volume 83. Springer Science &
Business Media. 72

Castillo-Chavez, C., S. Blower, P. Van den Driessche, D. Kirschner, and A.-A. Yakubu (2002). Mathematical approaches for
emerging and reemerging infectious diseases: models, methods, and theory, Volume 126. Springer Science & Business Media.
72

LETTERS IN BIOMATHEMATICS .= 103

Castillo-Chavez, C. and Z. Feng (1997). To treat or not to treat: the case of tuberculosis. Journal of mathematical biology 35(6),
629-656. 88

Chatterjee, S., A. Sarkar, S. Chatterjee, M. Karmakar, and R. Paul (2021). Studying the progress of covid-19 outbreak in india
using sird model. Indian Journal of Physics 95(9), 1941-1957. 77

Chitnis, N., J. M. Hyman, and J. M. Cushing (2008). Determining important parameters in the spread of malaria through the
sensitivity analysis of a mathematical model. Bulletin of mathematical biology 70(5),1272. 72

Chowell, G., P. Diaz-Duenas, J. Miller, A. Alcazar-Velazco, J. Hyman, P. Fenimore, and C. Castillo-Chavez (2007). Estimation
of the reproduction number of dengue fever from spatial epidemic data. Mathematical biosciences 208(2), 571-589. 72

Coeclho, F. C., C. T. Codego, and M. G. M. Gomes (2011). A bayesian framework for parameter estimation in dynamical models.
PloS one 6(5), €19616. 72

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019). Bert: Pre-training of deep bidirectional transformers for language
understanding. 72

Dong, E., H. Du, and L. Gardner (2020, May). An interactive web-based dashboard to track COVID-19 in real time. The
Lancet Infections Diseases 20(5), 533-534. 86

Dye, C. and N. Gay (2003). Modeling the sars epidemic. Science 300(5627), 1884-1885. 72

E, W, J. Han, and A. Jentzen (2017, Nov). Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics 5(4),
349-380. 72

Eldan, R. and O. Shamir (2016). The power of depth for feedforward neural networks. 74

Fernindez-Villaverde, J. and C. L. Jones (2020). Estimating and simulating a sird model of covid-19 for many countries, states,
and cities. Technical report, National Bureau of Economic Research. 77

Goodfellow, I, Y. Bengio, and A. Courville (2016). Deep learning. MIT press. 75

Goodfellow, I. J.,]. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio (2014). Generative
adversarial networks. 72

Hadeler, K. (2011). Parameter identification in epidemic models. Mathematical biosciences 229(2),185-189. 72

Hagge, T., P. Stinis, E. Yeung, and A. M. Tartakovsky (2017). Solving differential equations with unknown constitutive relations
as recurrent neural networks. 72

Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural networks for perception, pp. 65-93.
Elsevier. 75

Hethcote, H. W. (2009). The basic epidemiology models: models, expressions for r0, parameter estimation, and applications.
In Mathematical understanding of infectious disease dynamics, pp. 1-61. World Scientific. 71

Hindmarsh, A. C. and L. R. Petzold (Sep 2005). Lsoda, ordinary differential equation solver for stift or non-stiff system. 76

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal approximators. Nexral
Networks 2(5), 359-366. 72

Huang, Y., D. Liu, and H. Wu (2006). Hierarchical bayesian methods for estimation of parameters in alongitudinal hiv dynamic
system. Biometrics 62(2), 413-423. 72

Kermack, W. O. and A. G. McKendrick (1927). A contribution to the mathematical theory of epidemics. Proceedings of the
royal society of london. Series A, Containing papers of a mathematical and physical character 115(772),700-721. 71

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. a»Xiv preprint arXiv:1412.6980. 77

Knuth, D. E. (1984). Literate programming. The computer journal 27(2), 97-111. 76

104 .= S. SHAIER, M. RAISSI, P. SESHAIYER

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems, Vol-
ume 25. Curran Associates, Inc. 72

LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. nature 521(7553), 436-444. 74

Legrand, J., R. F. Grais, P.-Y. Boelle, A.-J. Valleron, and A. Flahault (2007). Understanding the dynamics of ebola epidemics.
Epidemiology € Infection 135(4), 610-621. 88

Li, J. (2011). Malaria model with stage-structured mosquitoes. Mathematical Biosciences € Engineering 8(3), 753. 72

Ling, J., A. Kurzawski, and J. Templeton (2016, 10). Reynolds averaged turbulence modelling using deep neural networks with
embedded invariance. Journal of Fluid Mechanics 807. 72

Longini Jr, I. M., J. S. Koopman, M. Haber, and G. A. Cotsonis (1988). Statistical inference for infectious diseases: risk-specific
household and community transmission parameters. American Journal of Epidemiology 128(4), 845-859. 72

Luo, J., W. Wang, H. Chen, and R. Fu (2016). Bifurcations of a mathematical model for hiv dynamics. Journal of Mathematical
Analysis and Applications 434(1), 837-857. 72

Macey, R., G. Oster, and T. Zahnley (2000). Berkeley madonna user’s guide. University of California, Berkeley, CA. 73

Maier, B. F. and D. Brockmann (2020). Effective containment explains subexponential growth in recent confirmed covid-19
cases in china. Science 368(6492), 742-746. 77

Martcheva, M. (2015). An introduction to mathematical epidemiology, Volume 61. Springer. 71,72

Matrajt, L. and T. Leung (2020). Evaluating the effectiveness of social distancing interventions to delay or flatten the epidemic
curve of coronavirus disease. Emerging infectious diseases 26(8),1740. 77

McKay, M. D,, R. J. Beckman, and W. J. Conover (2000). A comparison of three methods for selecting values of input variables
in the analysis of output from a computer code. Technometrics 42(1), 5S-61. 72

Neilan, R. M. and S. Lenhart (2010). An introduction to optimal control with an application in disease modeling. In Modeling
Paradigms and Analysis of Disease Trasmission Models, pp. 67-81. 72

Nguyen, L., M. Raissi, and P. Seshaiyer (2022). Modeling, analysis and physics informed neural network approaches for studying
the dynamics of covid-19 involving human-human and human-pathogen interaction. Computational and Mathematical
Biophysics 10(1),1-17. 72

Nsoesie, E. O, R. J. Beckman, S. Shashaani, K. S. Nagaraj, and M. V. Marathe (2013). A simulation optimization approach to
epidemic forecasting. PloS one 8(6), e67164. 73

Ohajunwa, C., K. Kumar, and P. Seshaiyer (2020). Mathematical modeling, analysis, and simulation of the covid-19 pandemic
with explicit and implicit behavioral changes. Computational and Mathematical Biophysics 8(1), 216-232. 72,77

Ohajunwa, C. and P. Seshaiyer (2021). Mathematical modeling, analysis, and simulation of the covid-19 pandemic with behav-
ioral patterns and group mixing. Spora: A Journal of Biomathematics 7(1), 46-60. 72,77

O’Dea, E. B., K. M. Pepin, B. A. Lopman, and C. O. Wilke (2014). Fitting outbreak models to data from many small norovirus
outbreaks. Epidemics 6,18-29. 72

Padmanabhan, P. and P. Seshaiyer (2017). Computational and mathematical methods to estimate the basic reproduction num-
ber and final size for single-stage and multistage progression disease models for zika with preventative measures. Computa-
tional and mathematical methods in medicine 2017. 72

Padmanabhan, P., P. Seshaiyer, and C. Castillo-Chavez (2017). Mathematical modeling, analysis and simulation of the spread
of zika with influence of sexual transmission and preventive measures. Lezters in Biomathematics 4(1), 148-166. 72

Pollicott, M., H. Wang, and H. Weiss (2012). Extracting the time-dependent transmission rate from infection data via solution
of an inverse ode problem. Journal of biological dynamics 6(2), 509-523. 72

Raissi, M. and G. E. Karniadakis (2018, Mar). Hidden physics models: Machine learning of nonlinear partial differential equa-
tions. Journal of Computational Physics 357,125-141. 72,75

LETTERS IN BIOMATHEMATICS .= 105

Raissi, M., P. Perdikaris, and G. Karniadakis (2019). Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378, 686
707.72,75

Raissi, M., N. Ramezani, and P. Seshaiyer (2019). On parameter estimation approaches for predicting disease transmission
through optimization, deep learning and statistical inference methods. Letters in Biomathematics 6(2),1-26. 72

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016). You only look once: Unified, real-time object detection. 72
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks 61, 85-117. 75

Sen, D. and D. Sen (2021). Use of a modified sird model to analyze covid-19 data. Industrial &€ Engineering Chemistry Re-
search 60(11), 4251-4260. 77

Smirnova, A., L. deCamp, and G. Chowell (2019). Forecasting epidemics through nonparametric estimation of time-dependent
transmission rates using the seir model. Bulletin of mathematical biology 81(11), 4343-4365. 72

Tan, M., R. Pang, and Q. V. Le (2020). Efficientdet: Scalable and efficient object detection. 72

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin (2017). Attention is all
you need. 72

Yong, K. E., A. Mubayi, and C. M. Kribs (2015a). Agent-based mathematical modeling as a tool for estimating trypanosoma
cruzi vector—host contact rates. Acta tropica 151, 21-31. 72

Yong, K. E., A. Mubayi, and C. M. Kribs (2015b). Agent-based mathematical modeling as a tool for estimating trypanosoma
cruzi vector-host contact rates. Acta tropica 151, 21-31. 73

	Introduction
	Background Models and Methods
	Approaches for estimating rates

	Disease Informed Neural Networks
	Neural networks architechture
	DINNs for parameter estimation

	Computational Experiments with DINNs
	Applying DINNS to an SIRD model applied to COVID-19
	Influence of ranges in parameter estimation
	Influence of noise
	Influence of data variability
	Influence of neural network architectures
	Influence of learning rates
	Application of DINNs to real data
	Influence of missing data

	Application of DINNs to other infectious diseases
	A summary of DINNs applied to eleven diseases
	COVID-19
	HIV
	Smallpox
	Tuberculosis
	Pneumonia
	Ebola
	Dengue
	Anthrax
	Polio
	Measles
	Zika

	Discussion and Conclusion

