2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES) | 978-1-6654-7296-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/CASES55004.2022.00010

2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)

Work-in-Progress: ExpCache: Online-Learning
based Cache Replacement Policy for Non-Volatile
Memory

Jinfeng Yang*, Bingzhe Lif, Jianjun Yuan®, Zhaoyan Shen¥, David Du*, and David Lilja*
*University of Minnesota, Twin Cities; TOklahoma State University; YExpedia Group; YShandong University
yang3116, yuanx270, du, lilja@umn.edu; bingzhe.li @okstate.edu; shenzhaoyan@sdu.edu.cn

Abstract—As emerging memory technologies (e.g., non-volatile
memory (NVM)) coming out and machine learning algorithms
successfully applying to different fields, the potentials of cache
replacement policy for NVM-based systems with the integration
of machine learning algorithms are worthy of being exploited to
improve the performance of computer systems. In this work, we
proposed a machine learning based cache replacement algorithm,
named ExpCache, to improve the system performance with
NVM as the main memory. By considering the non-volatility
characteristic of the NVM devices, we split the whole NVM
into two caches, including a read cache and a write cache, for
retaining different types of requests. The pages in each cache
are managed by both LRU and LFU policies for balancing the
recency and frequency of workloads. The online Expert machine
learning algorithm is responsible for selecting a proper policy to
evict a page from one of the caches based on the access patterns
of workloads. In experimental results, the proposed ExpCache
outperforms previous studies in terms of hit ratio and the number
of dirty pages written back to storage.

Index Terms—Online learning, Cache policy, Non-volatile
memory

I. INTRODUCTION

With the rapidly increased volume of newly generated data,
the demand for high-performance memory media becomes
more critical than before. People pursue a high access band-
width and expect a large density and non-volatility prop-
erty on memory devices. As one of the emerging memory
technologies, non-volatile memory (NVM) provides both the
competitive performance as DRAM meanwhile and the prop-
erty of non-volatility as storage devices [1]. Because all data
reside in NVM is persistent, there is no need to write updated
pages (i.e., dirty pages) back to storage for preventing data
loss while power failure, which significantly increases the
system performance. According to those advantages, NVM is
expected to replace DRAM to serve as the main memory in the
near future. The cache replacement policy determines which
data should be evicted from NVM to storage devices so that
the whole system can benefit the data reuse in NVM.

In order to fully take the performance advantages of NVM,
designing a proper cache algorithm to manage the data ele-
ments within NVM becomes important. The cache algorithms
have been intensively investigated over time. However, those
algorithms were developed to make a replacement decision
based on certain pre-defined rules (e.g., LRU algorithm always

evicts the least recently used page when a replacement is re-
quired) instead of the real access patterns of a workload. Since
these pre-defined rules are not adapted to the dynamically
changed workload access patterns, these cache algorithms
suffer significant performance degradation. This explains why
conventional cache algorithms [2], [3], [4] only work well on
a specific set of workloads.

In this paper, we propose a new online learning-based
cache replacement algorithm, called ExpCache, for NVM-
based systems to overcome the shortcomings of prior studies.
The goals of ExpCache are improving both read and write
hit ratios of NVM meanwhile eliminate the number of dirty
pages written back to the storage. In the system, the real cache
(i.e., NVM main memory) is divided into a read cache and
a write cache for retaining different types of requests. Two
experts, including an LRU policy and an LFU policy, are
employed to manage the data elements within each of the
real caches to balance both recency and frequency factors. In
addition, two ghost caches are built to store the evicted pages
from the real caches and emulate the LRU and LFU policies
independently. The time-dependent online Expert algorithm
continuously monitors the hit ratio inside those ghost caches
and uses them as an indicator of workload access patterns.
Finally, using the selected eviction policy, ExpCache sets
evicting a page from the read cache having a higher priority
while a certain condition is met to reduce the number of dirty
pages written back to the storage.

II. EXPCACHE ALGORITHM

In this section, we provide a detailed description of the Ex-
pCache algorithm. We introduce the design principle and the
internal architecture of ExpCache, and its working processes
at first. Two key components of ExpCache, including the time-
dependent online Expert and read-write discriminated eviction
policy, are discussed then.

Two fundamental factors (i.e., recency and frequency) are
widely used in cache policies. This is because the patterns of
most workloads follow either recency or frequency manner in
one period of time. Thus, ExpCache is proposed by assuming
that at every time step, there has the best strategy among two
fundamental experts, recency expert (i.e., LRU policy) and
frequency expert (i.e., LFU policy). The goal of the ExpCache

2643-1726/22/$31.00 ©2022 IEEE 7
DOI 10.1109/CASES55004.2022.00010

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 15,2023 at 03:29:36 UTC from IEEE Xplore. Restrictions apply.

Expert:w gz, w,
Training: use G gy Hit Ratio p LRY> TLEY Training: use G,ry Hit Ratio

A new request . —'

Real Cache:L

Write Cache: W

Read Cache: g
CEQE- m-mmmEENE-H
Ghost Gypy:L/2

ODoo- a0

AN
evict LRU

Ghost Gpy:L/2

DooQ-00-

evicted LFU

Fig. 1: ExpCache Architecture.

is to learn the caching environment, such as dynamically
changed workloads and hit ratios, and then select a proper
eviction scheme from the experts for the system. In order
to map the online expert algorithm into the proposed policy
properly, meanwhile consider the non-volatile property of
NVM, the architecture of the ExpCache is carefully designed.

As shown in Figure 1, in the system, we split the real cache
into two small caches, including a read cache denoted as R
and a write cache denoted as W, for retaining different types
of requests. Pages within the read cache are clean (i.e., have
never been modified). Once a page is modified (i.e., the page
becomes dirty), it will be moved into the write cache. In order
to perform a replacement efficiently using any one of the two
experts, the pages within each small cache are managed by
both LRU and LFU-based structures.

Two ghost caches denoted as Gpry and Gppy, are built
to simulate the behaviors of LRU policy and LFU policy
independently. Each ghost cache records the metadata (i.e.,
page identifier) of the most recent evictions from the real
cache. When a victim is evicted from the real cache, it is
inserted into both G gy and G ry. The elements inside the
G ry are strictly organized in an LRU order based on their
timestamps inherited from the real cache. This can be done
by using a heap data structure. Here, the timestamp of a page
is the access number of the last access to that page. The time
complexity of adding or deleting an element into or from the
Grgryu is logaN. Where, N is the number elements within
Grryu. Since N is a constant and is usually much smaller
than the number of requests within a workload, the overhead
on operating G, gy is negligible. Similarly, the elements inside
Gy are strictly organized in an LFU order based on their
corresponding access frequency and timestamp inherited from
the real cache.

III. SYSTEM EVALUATION

In this section, we evaluate the effectiveness of our purposed
design. Four baseline caching polices, including LRU, LFU,
LeCaR [5], and H-ARC [6], are used for the comparison.
Two types of workloads, including MSR [7] and FIU [8], are
used for testing those cache polices with 20% cache size. As
shown in Figure 2, the proposed ExpCache achiever higher hit

ELRU ®mLFU mLeCaR m©ExpCache
0.8
o
= 06
<
=
+ 04]
an
0.2 |
0 1

rsrch_ 0 online webmail
Fig. 2: Hit Ratio comparison between ExpCache and other

baselines.

ratio compared to prior work. This is because that ExpCache
follows the workload patterns to cleverly evict proper pages
to obtain higher hit ratios.

IV. CONCLUSION

In this work, we propose an ExpCache algorithm for com-
puter systems that use NVM as the main memory. By con-
sidering recency and frequency factors and the non-volatility
characteristics of the NVM device, we split the whole cache
into two small caches (i.e., a write cache and a read cache)
for preserving different types of requests. Each cache is
managed by both LRU and LFU policies for balancing recency
and frequency factors. The experimental results show that
ExpCache delivers significant performance improvement on
cache hit ratio compared with other baselines.

V. ACKNOWLEDGEMENT

This work was partially supported by NSF I/UCRC Center
Research in Intelligent Storage and the following NSF awards
1439622, 1812537, 2204656, and 2204657. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the NSF.

REFERENCES

[1] J. Yang, B. Li, and D. J. Lilja, “Exploring performance characteristics of
the optane 3d xpoint storage technology,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), vol. 5,
no. 1, pp. 1-28, 2020.

[2] N. Megiddo and D. S. Modha, “Outperforming Iru with an adaptive
replacement cache algorithm,” Computer, vol. 37, no. 4, pp. 58-65, 2004.

[3] S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” ACM
SIGMETRICS Performance Evaluation Review, vol. 30, no. 1, pp. 31—
42, 2002.

[4] J. Yang, B. Li, and D. J. Lilja, “Heuristicdb: a hybrid storage database
system using a non-volatile memory block device,” in Proceedings of the
14th ACM International Conference on Systems and Storage, 2021, pp.
1-12.

[S] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement with
ml-based lecar,” in 10th {USENIX} Workshop on Hot Topics in Storage
and File Systems (HotStorage 18), 2018.

[6] Z. Fan, D. H. Du, and D. Voigt, “H-arc: A non-volatile memory based
cache policy for solid state drives,” in 2014 30th Symposium on Mass
Storage Systems and Technologies (MSST). 1EEE, 2014, pp. 1-11.

[7] “Snia msr trace,” http://iotta.snia.org/traces/388.

[8] “Snia fiu trace,” http://iotta.snia.org/traces/390.

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 15,2023 at 03:29:36 UTC from IEEE Xplore. Restrictions apply.

