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Abstract—As emerging memory technologies (e.g., non-volatile
memory (NVM)) coming out and machine learning algorithms
successfully applying to different fields, the potentials of cache
replacement policy for NVM-based systems with the integration
of machine learning algorithms are worthy of being exploited to
improve the performance of computer systems. In this work, we
proposed a machine learning based cache replacement algorithm,
named ExpCache, to improve the system performance with
NVM as the main memory. By considering the non-volatility
characteristic of the NVM devices, we split the whole NVM
into two caches, including a read cache and a write cache, for
retaining different types of requests. The pages in each cache
are managed by both LRU and LFU policies for balancing the
recency and frequency of workloads. The online Expert machine
learning algorithm is responsible for selecting a proper policy to
evict a page from one of the caches based on the access patterns
of workloads. In experimental results, the proposed ExpCache
outperforms previous studies in terms of hit ratio and the number
of dirty pages written back to storage.

Index Terms—Online learning, Cache policy, Non-volatile
memory

I. INTRODUCTION

With the rapidly increased volume of newly generated data,

the demand for high-performance memory media becomes

more critical than before. People pursue a high access band-

width and expect a large density and non-volatility prop-

erty on memory devices. As one of the emerging memory

technologies, non-volatile memory (NVM) provides both the

competitive performance as DRAM meanwhile and the prop-

erty of non-volatility as storage devices [1]. Because all data

reside in NVM is persistent, there is no need to write updated

pages (i.e., dirty pages) back to storage for preventing data

loss while power failure, which significantly increases the

system performance. According to those advantages, NVM is

expected to replace DRAM to serve as the main memory in the

near future. The cache replacement policy determines which

data should be evicted from NVM to storage devices so that

the whole system can benefit the data reuse in NVM.

In order to fully take the performance advantages of NVM,

designing a proper cache algorithm to manage the data ele-

ments within NVM becomes important. The cache algorithms

have been intensively investigated over time. However, those

algorithms were developed to make a replacement decision

based on certain pre-defined rules (e.g., LRU algorithm always

evicts the least recently used page when a replacement is re-

quired) instead of the real access patterns of a workload. Since

these pre-defined rules are not adapted to the dynamically

changed workload access patterns, these cache algorithms

suffer significant performance degradation. This explains why

conventional cache algorithms [2], [3], [4] only work well on

a specific set of workloads.

In this paper, we propose a new online learning-based

cache replacement algorithm, called ExpCache, for NVM-

based systems to overcome the shortcomings of prior studies.

The goals of ExpCache are improving both read and write

hit ratios of NVM meanwhile eliminate the number of dirty

pages written back to the storage. In the system, the real cache

(i.e., NVM main memory) is divided into a read cache and

a write cache for retaining different types of requests. Two

experts, including an LRU policy and an LFU policy, are

employed to manage the data elements within each of the

real caches to balance both recency and frequency factors. In

addition, two ghost caches are built to store the evicted pages

from the real caches and emulate the LRU and LFU policies

independently. The time-dependent online Expert algorithm

continuously monitors the hit ratio inside those ghost caches

and uses them as an indicator of workload access patterns.

Finally, using the selected eviction policy, ExpCache sets

evicting a page from the read cache having a higher priority

while a certain condition is met to reduce the number of dirty

pages written back to the storage.

II. EXPCACHE ALGORITHM

In this section, we provide a detailed description of the Ex-

pCache algorithm. We introduce the design principle and the

internal architecture of ExpCache, and its working processes

at first. Two key components of ExpCache, including the time-

dependent online Expert and read-write discriminated eviction

policy, are discussed then.

Two fundamental factors (i.e., recency and frequency) are

widely used in cache policies. This is because the patterns of

most workloads follow either recency or frequency manner in

one period of time. Thus, ExpCache is proposed by assuming

that at every time step, there has the best strategy among two

fundamental experts, recency expert (i.e., LRU policy) and

frequency expert (i.e., LFU policy). The goal of the ExpCache
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Fig. 1: ExpCache Architecture.

is to learn the caching environment, such as dynamically

changed workloads and hit ratios, and then select a proper

eviction scheme from the experts for the system. In order

to map the online expert algorithm into the proposed policy

properly, meanwhile consider the non-volatile property of

NVM, the architecture of the ExpCache is carefully designed.

As shown in Figure 1, in the system, we split the real cache

into two small caches, including a read cache denoted as R
and a write cache denoted as W, for retaining different types

of requests. Pages within the read cache are clean (i.e., have

never been modified). Once a page is modified (i.e., the page

becomes dirty), it will be moved into the write cache. In order

to perform a replacement efficiently using any one of the two

experts, the pages within each small cache are managed by

both LRU and LFU-based structures.

Two ghost caches denoted as GLRU and GLFU , are built

to simulate the behaviors of LRU policy and LFU policy

independently. Each ghost cache records the metadata (i.e.,

page identifier) of the most recent evictions from the real

cache. When a victim is evicted from the real cache, it is

inserted into both GLRU and GLFU . The elements inside the

GLRU are strictly organized in an LRU order based on their

timestamps inherited from the real cache. This can be done

by using a heap data structure. Here, the timestamp of a page

is the access number of the last access to that page. The time

complexity of adding or deleting an element into or from the

GLRU is log2N. Where, N is the number elements within

GLRU . Since N is a constant and is usually much smaller

than the number of requests within a workload, the overhead

on operating GLRU is negligible. Similarly, the elements inside

GLFU are strictly organized in an LFU order based on their

corresponding access frequency and timestamp inherited from

the real cache.

III. SYSTEM EVALUATION

In this section, we evaluate the effectiveness of our purposed

design. Four baseline caching polices, including LRU, LFU,

LeCaR [5], and H-ARC [6], are used for the comparison.

Two types of workloads, including MSR [7] and FIU [8], are

used for testing those cache polices with 20% cache size. As

shown in Figure 2, the proposed ExpCache achiever higher hit

Fig. 2: Hit Ratio comparison between ExpCache and other

baselines.

ratio compared to prior work. This is because that ExpCache

follows the workload patterns to cleverly evict proper pages

to obtain higher hit ratios.

IV. CONCLUSION

In this work, we propose an ExpCache algorithm for com-

puter systems that use NVM as the main memory. By con-

sidering recency and frequency factors and the non-volatility

characteristics of the NVM device, we split the whole cache

into two small caches (i.e., a write cache and a read cache)

for preserving different types of requests. Each cache is

managed by both LRU and LFU policies for balancing recency

and frequency factors. The experimental results show that

ExpCache delivers significant performance improvement on

cache hit ratio compared with other baselines.
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