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ABSTRACT

The emergent multi-principal element alloys (MPEAs) provide a vast compositional space to search for
novel materials for technological advances. How to screen promising compositions from such an ample
design space for targeted properties is a grand challenge. Here, we demonstrate the state-of-the-art deep
learning technology—convolutional neural network (CNN)—in predicting path-dependent vacancy migra-
tion energy barrier spectra, which are critical to diffusion behavior and many high-temperature proper-
ties, in the hyperdimensional composition space of MPEAs. The developed CNN model, fully capturing
local chemical features surrounding each vacancy, accurately and efficiently predicts migration energy
barrier of MPEAs with different degrees of chemical short-range order and at any unseen compositions.
By varying the size of the local region encapsulating vacancy in the CNN model, we reveal that the length
scale influencing vacancy migration is surprisingly extensive, up to its six nearest neighboring shells. The
efforts of the CNN model make it promising for developing a database of diffusion barriers for various
MPEA systems, which would have profound implications for accelerating alloy screening and discovering

new compositions with desirable properties.

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Technological advances in civilization are usually driven by
the emergency of novel materials. Traditional alloying approaches
based on the paradigm of “one-dominant-element” have been uti-
lized to impart desired properties (e.g., high strength and high duc-
tility) to materials for millennia [1]. Recently, a new alloy design
concept [1-3] that combines multiple principal elements in high
concentration has emerged. It was conceived in 2004 that mix-
ing multiple elements with equal concentrations could form a sim-
ple solid solution [4,5]. This brings about a vast unexplored terri-
tory to search for new materials with target properties and thus
triggered the surge in research activity. These multi-principal ele-
ment alloys (MPEAs), commonly known as HEAs (high-entropy al-
loys) or CCAs (complex concentrated alloys), have been shown to
possess exceptional mechanical and functional properties, includ-
ing high strength combined with large ductility [6,7], high fracture
toughness [8,9], thermoelectric properties [10,11], enhanced radia-
tion tolerance [12,13] and extraordinary Elinvar effect [14]. Many of
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these properties and behaviors, particularly at high temperatures,
such as weak temperature dependence [15] and high creep toler-
ance [2], are mainly governed by diffusion kinetics.

Understanding diffusion kinetics [16] is of key importance to
evaluating the phase stability and high-temperature deformation
characteristics of HEAs, which are critical to assessing the perfor-
mance of materials [17]. Therefore, diffusion and vacancy kinetics
in HEAs are currently a subject of intensive research [17-33]. Va-
cancy migration energy barrier (VMEB), one of the key parame-
ters related to diffusion kinetics, can be calculated from atomistic
models using transition state calculations such as climbing im-
age nudged elastic band (NEB) [34]. For a single crystal of pure
metals, its VMEB is a single value. But for HEAs, their VMEBs
form wide spectra (distributions) due to the diverse local chemi-
cal environments surrounding vacancies [28-32]. Even for a given
HEA with a fixed composition, its VMEB spectrum and thus dif-
fusion kinetics can vary [32] through tuning the chemical short-
range order (CSRO) [35,36]. Therefore, it is desirable to build a big
database capturing all VMEB spectra for HEAs at different composi-
tions and/or with various degrees of CSRO. This would be valuable
for material scientists to quickly identify ideal compositions from
the vast compositional space and optimize processing conditions
to achieve diffusion-related properties for various applications.
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However, developing such databases directly using standard meth-
ods such as NEB calculation [34] is a cost-prohibitive task because
of the hyper-compositional space and locally diverse chemical en-
vironments in HEAs.

Recently, convolutional neural networks (CNNs) have brought
about revolutionary breakthroughs in the field of computer vi-
sion and pattern recognition [37-40]. Inspired by that, we aim to
develop a CNN model that can accurately and efficiently predict
VMEB spectra for all alloys at different compositions and with var-
ious degrees of CSRO within a given multiple-element alloy sys-
tem, based solely on local chemical environments. In this deep
learning (DL) framework, local chemical environments around va-
cancies will be described using a new structure representation—
spatial density maps (SDMs) [41], which are equivalent to three-
dimensional (3D) images and thus can be interpreted directly
by CNNs. In addition to the rotationally non-invariance of SDMs,
which can capture the path-dependence of VMEB in HEAs due to
the asymmetry of local chemical environments, the completeness
[42] of SDMs as well as the state-of-the-art learning capability of
CNNs will ensure this DL framework is able to achieve impressive
accuracy when predicting VMEB in HEAs. Our DL framework will
thus make it possible to build spectral vacancy migration databases
for different multiple-element alloy systems with affordable com-
putational cost. These databases will be a general and broadly ap-
plicable toolbox for alloy design and processing optimization rele-
vant to diffusion-governed behaviors.

2. Methodologies
2.1. Simulation models

Here, a body-centered cubic (BCC) refractory ternary alloy sys-
tem, Ta-Nb-Mo, modeled with a machine learning potential [43] is
chosen to demonstrate the feasibility of our DL framework. We
prepared random solid solution models by randomly assigning
atom type (Ta, Nb, Mo) in the system. The portions of atoms be-
ing assigned each time depend on targeting concentrations. In this
way, we obtained an ensemble of random solid solutions with dif-
ferent concentrations. To prepare a system with CSRO, we use a
Monte Carlo (MC) swap of atoms coupled with molecular dynam-
ics (MD) simulations to lower potential energy and increase CSRO.
The MC/MD simulation is performed at 300 K with Nose-Hoover
thermostat and calls 30 MC trials every 100 MD timesteps to per-
form trials of exchanging each pair of elements. The atom swaps
are accepted or rejected based on the Metropolis algorithm. Suf-
ficient MC/MD steps have been conducted to ensure the conver-
gence of the system potential energy. The non-proportional num-
ber is used to quantify the degree of CSRO. The order parameter
between any pair of species o and B (o represents the species of
the central atom and B the species of neighboring atoms in the
kth shell) is defined as 8§ﬁ = Ngﬂ — Nk o Where Ngﬂ denotes the
actual number of pairs in the kth shell, and Ng op the number of
pairs for the pure random mixture. The values of all pairs in our
random system are nearly zero (see Fig. S1 in Supplementary ma-
terials), verifying the random nature of our initial model. The vi-
sualization of atomic configurations was realized using the OVITO
package [44].

2.2. Vacancy migration energy barrier calculation

To calculate the vacancy migration energy barrier, we per-
formed transition state calculations with the nudged elastic band
(NEB) method [34] implemented in the LAMMPS package [45] to
search the first-order saddle point on potential energy surface for
vacancy migration to its first nearest neighbor site. Each calcula-
tion requires two atomic configurations, i.e., the initial and final
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configurations. For the initial configuration, we pick an atom i as
the center atom and delete it to create a vacancy. We separately
move each of the eight first-nearest neighboring atom j to the va-
cant site, thus creating eight final configurations corresponding to
eight migration pathways. For each pathway, we performed energy
minimization and box relaxation (to zero pressure) to both initial
and final configurations. After that, NEB calculations are performed
to obtain the minimum energy path connecting the initial and final
states, from which the saddle point and migration energy barrier
can be extracted. The NEB spring constant is 5 eV/A and the stop-
ping tolerance for the energy and force are 0 eV and 0.001 eV/A,
respectively. By looping atom index i and its first-nearest neighbor
j, the migration barriers at all sites along each of the eight path-
ways can be obtained.

2.3. Atomic structure representation

Fig. 1a shows a global configuration of an equal-atomic ran-
dom TaNbMo atomistic model which is projected on the xy plane.
Different from almost all previous machine learning tasks of pre-
dicting local properties of materials, such as predicting grain
boundary segregation energy in polycrystals [46] or flexibility
volume in metallic glasses [47], where the target values of in-
terest are rotation-invariant, our target values, i.e, VMEBs, are
path-dependent, as there are eight first-nearest neighboring atoms
around a vacancy in a BCC alloy and the barriers of their migra-
tions to the vacancy should be different due to the asymmetry of
local chemical environment in HEAs. So, it is improper to apply
the structure representations widely used in previous works, e.g.,
symmetry functions [48] and smooth overlap of atomic positions
(SOAP) [49], to predict path-dependent migration energy barriers
in our current work, because these structure representations are
rotation-invariant.

In this work, we use a rotationally non-invariant local structure
representation—spatial density map (SDM) [41]—to describe the lo-
cal chemical environments enclosing vacancies in alloys. The SDM
centered on each vacancy site is defined as

2 2 2
Biz y. x, By=7) exp <— o =)+ (o —3)" + (12 =2) )

2A2
(1)

where the summation is performed over all atoms satisfying these
conditions: species(j) € 8 and |r;j| < rc. ry; is the vector connect-
ing vacancy i with surrounding atom j of species 8 within a cut-
off r, and ryj, 1;;, and rjj, are the components along x, y and
z dimensions of ryj, respectively. Here 8 {0, 1, 2}, where 0, 1
and 2 represent Ta, Nb and Mo atoms, respectively, and x,y, z ¢
[-l-+0.5A, I —0.5A] with a constant length increment of A. I
decides the size of SDMs or images and should be equal to or
slightly larger than r., which is the radius of spherical local con-
figurations. In the previous work [41], local configurations in cu-
bic boxes were input into a machine and r. and [, are actu-
ally the same parameter r.. In the current work, we will augment
training data through rotating local configurations around a given
axis, which will be discussed later. Thus, here we are considering
spherical local configurations and the conditions defining atoms in-
volved in the summation of Eq. (1) are different from those in the
previous work. To minimize the variation of output values of DL
models due to rotation of local configurations, it is better to set
the half edge length of cubic SDMs slightly larger than the radius
of local configurations, i.e., [ is slightly larger than r.

Using an SDM to represent a local atomic configuration can
be viewed as mapping the local configuration to a 3D grid for
different species. This results in a multi-dimensional numerical
array which is equivalent to a 3D image containing (2I;/A)3
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Fig. 1. Atomic structure representation and CNN model architecture. (a) The two-dimensional projection view of a random solid solution of equal-atomic TaNbMo alloy
containing 2,000 atoms. Blue, green and orange spheres represent Ta, Nb and Mo species, respectively. (b) A local configuration around the vacancy in (a) (red dot). For
clarity, only eight first-nearest neighbors are shown. There are eight migration energy barriers associated with the vacancy “V”, AEyy, where “M” indicates the first-nearest
neighbor which would migrate to the vacancy. (c¢) To predict path-dependent barriers, the local configuration is rotated such that the migration vector of interest is aligned
with a given direction, here we choose x axis. For data augmentation, the local configurations in training datasets is rotated around x axis by a random angel in the range
of [0, 277) before converted into spatial density maps (SDMs). (d) shows the three channels corresponding to Ta, Nb and Mo species, respectively, of the SDM for the local
configuration shown in (c). Only voxels with intensity greater than 0.2 are shown for clarity. (e) An illustration of the architecture of the convolutional neural network
(CNN) used in this work, explicitly delineating the output features after the first and last convolutional (conv.) layers and three max-pooling layers in the middle. The first
convolutional layer connects locally with SDMs through 60 filters, one of which is shown on the corners of the three channels in (d). And the last convolutional layer is
followed directly by the output layer which is a single neuron and thus the output is a single value, i.e., the migration barrier.

voxels. And each voxel has channels equal to the number of com-
ponents in samples. Thus, the SDM is applicable to HEA systems
containing any number of constituent elements through adjusting
the number of channels. The larger the r. is, the more surrounding
particles would be included into an SDM. And when A is small
enough, any tiny variation of particle positions in the local config-
uration would lead to a corresponding variation in its SDM. There-
fore, SDMs can represent the full gene of both chemical and struc-
tural information of local configurations when r. is large enough

and A is small enough. Although a larger r. as well as a smaller
A can ensure the completeness of SDMs for the representation on
local atomic environments, which is a critical factor for the suc-
cess of machine learning models [42], a too large r. or a too small
A also means much larger size of each image. This would re-
quire more computational resource and memory to generate, store
and utilize these images. In section 3.1, we will discuss how to
choose appropriate values for r. and A. Note that each SDM or
image represents the local chemical environment centered on the
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site of interest rather than a global sample. And the SDM is natu-
rally permutation-invariant because of the summation operation in
Eq. (1).

Fig. 1b shows a local configuration around the vacancy (the red
dot in Fig. 1a). For clear illustration, only eight first-nearest neigh-
bors are shown in this plot. In our actual local environment repre-
sentation, we used a larger r. to include sufficient neighbors for
each local configuration. The target value of our DL task is the va-
cancy migration energy barrier AE;;, the true value of which was
calculated using the NEB method [34]. AE;; measures the migra-
tion energy barrier of the first-nearest neighbor j (e.g., the atom
marked with “M”) to the central vacant site i. Because all the eight
first-nearest neighbors are possible to migrate to this vacancy, each
vacancy has eight migration energy barriers (eight migration path-
ways). As illustrated in Fig. 1c, before converting the local configu-
ration associated with each AE;; into an SDM, the local configura-
tion was rotated such that the vector connecting the vacancy “V”
with the moving atom “M” is parallel to x axis. Therefore, when
considering the barrier of moving each of the eight nearest atoms
to the same vacant site, we just need to conduct appropriate ro-
tation based on the convention described above before converting
the local configuration into an SDM and then a DL model will nat-
urally give us all the path-dependent energy barriers for the va-
cancy i.

Obviously, arbitrarily rotating a local configuration around x
axis will not change its associated AE;;. We augmented our train-
ing datasets based on this physical intuition. Specifically, all local
configurations in the training dataset were rotated around x axis
by a random angle over the range of [0, 27r) before finally con-
verted into SDMs. Fig. 1d shows the three channels corresponding
to Ta, Nb and Mo species, respectively, of the SDM for the local
configuration displayed in Fig. 1c.

2.4. CNN model architecture

We then feed each SDM into a CNN model [40] to predict AE;j,
since SDMs are image-like objects and can be used directly as in-
put into CNN models. A CNN model mainly consists of convolu-
tional and pooling layers. CNNs are very powerful as their learn-
ing capability can be effectively elevated by deepening the net-
works, i.e., stacking more convolutional layers (including residual
connections [39] may be necessary when a network is very deep).
As shown in Fig. 1e, each of our CNN models in the present work
contains 4xn 3D convolutional layers (various values of n will be
explored) and three 3D max-pooling layers. In each convolutional
layer, 60 filters with a small receptive field of 3x3x3 were used.
Batch normalization [50] was adopted right after each convolu-
tion and before activation with the rectification (ReLU) nonlinear-
ity [37]. A 3D max-pooling layer is periodically inserted in between
the 4xn successive convolutional layers. Max-pooling is performed
over a 2x2x2 voxel window, with a stride of 2. And the last con-
volutional layer is directly followed by the output layer, which is a
single neuron without any activation as we are performing regres-
sion tasks.

2.5. Training procedure of CNN models

In the regression tasks, we use the mean absolute error (MAE),
i.e,, the averaged absolute value of the difference between the true
and predicted target values (AE;;) over a given dataset, to mea-
sure the predictive performance of CNN models. During the train-
ing stage, the training dataset will be fed iteratively into the CNN
model to optimize its trainable parameters until the lowest MAE
on the validation dataset is observed. The learning rate started
from 0.001 and was then divided by +/10 once the validation MAE
plateaued. We chose RMSprop optimizer and mini-batch size of
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160, 100, 80 and 60 for CNN models containing 4, 8, 12 and 16
convolutional layers, respectively. The training was implemented in
the TensorFlow package [51]. Once an optimized CNN model is ob-
tained after sufficient training, it can quickly and accurately predict
the migration energy barriers for alloys at arbitrary compositions
within the alloy system upon which the CNN model is trained,
with negligible computational resource. The sole input to the CNN
model is local configurations, which can be easily extracted from
atomistic models. The computation-expensive NEB calculation will
not be required any more.

3. Results

3.1. The length scale of local configurations relevant to migration
energy barrier

Before training a CNN model for the entire compositional space
of the ternary Ta-Nb-Mo alloy system, we first reveal how many
neighboring atoms around a vacancy can impact its migration en-
ergy barrier and should be fed into a machine learning model. For
this purpose, a small training/validation dataset was constructed
at a single composition of the equal-atomic TaNbMo alloy. Specif-
ically, a random solid solution and an alloy with CSRO were pre-
pared. Each of the two samples contains 4,800 atoms and for each
sample, 800 atoms were selected randomly and removed individu-
ally to create a vacancy and then the migration barrier of each of
the eight first-nearest neighbors to the vacancy was calculated us-
ing the NEB method (the removed atom will move back to the va-
cancy once the calculation of barriers associated with the vacancy
is done). Thus, there are totally 12,800 instances (2 samples x 8
paths x800 vacancies). These data were split into the training and
validation datasets as a ratio of 4:1. When converting local con-
figurations into SDMs, six different values of cutoff r. were tried to
check its influence on the predictive performance. For BCC crystals,
the neighboring shells are well separated, see Fig. 2b, and thus, 1.
can be any value at which the radial density function g(r) = 0 as
long as it is between the nth and (n+1)th peak locations of g(r),
when considering the first n nearest-neighboring shells. For exam-
ple, when we included six nearest-neighboring shells, rc = 7.6 A (I,
= 8.0 A) was used. To avoid too large image size, A = 0.5 A was
used when I, = 8.0 A. With such values of I, and A, each SDM
contains 323 voxels. As will be demonstrated in Fig. 2a, A = 0.5 A
is sufficiently small to achieve low MAE. And for smaller I, A =
0.5 or 0.4 A was used.

For each of the six training/validation datasets, we separately
trained a CNN model. As seen from Fig. 2a, the validation MAE
decreases when more neighboring shells are included and the
MAE almost converged when six nearest-neighboring shells were
considered. This implies that the VMEB is mainly governed by
the chemical environment within the first five to six nearest-
neighboring shells, which include around 112 nearest-neighboring
atoms (Fig. 2b).

To show the advantage of our CNN models in achieving high-
fidelity prediction and revealing reliable physical insight, we de-
signed a simple descriptor to represent local chemical order in
HEAs and then used two conventional machine learning algo-
rithms, i.e,, a linear regression (LR) and a fully-connected neural
network (NN), to interpret the datasets constructed uisng the new
simple descriptor. Specifically, after using various r. to define lo-
cal configurations and rotating them to the orientation shown in
Fig. 1c, we use a three-element hot vector to describe the species
of each lattice site and stack these hot vectors as a given sequence
into a matrix for each local configuration. Obviously, these ma-
trixes can fully represent the chemical order information of local
configurations despite the loss of topological information, which
should be trivial to migration energy barriers in HEAs. They will
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Fig. 2. The length scale of local configuration relevant to migration energy barrier. (a) The validation MAE as a function of number of neighboring shells. Three machine
learning models including CNN, neural network (NN) and linear regression (LR) are trained and validated on an equimolar TaNbMo alloy. (b) The radial density function

(g(r)) of the equimolar TaNbMo alloy. The peaks corresponding to different neighboring

shells are filled with different colors. The inset shows a local configuration around

the central vacancy (red dot) containing six nearest neighbor shells (112 atoms). The atoms in different neighboring shells are coded by different colors.

be reshaped into vectors before fed into a LR or NN model. We in-
tensively optimized the architecture of our NN models and found
that the optimal model contains two hidden layers and each hid-
den layer contains 10 neurons activated with the ReLU nonlinearity
[37]. And the training procedure of NN models are similar as those
for training the CNN models and was also implemented in the Ten-
sorFlow package [51]. The training of LR models was implemented
in the Sci-kit learn package [52].

Fig. 2a also shows the validation MAE of the two machine
learning frameworks. For the NN model, its MAE is much higher
than that achieved by the CNN model on the same dataset. Besides,
although it also suggests the overall trend that including more
neighboring shells can further lower the validation MAE, there is
an abnormality when including the first four neighboring shells (10
independent NN models were trained at this point but resulted in
almost the same MAE). This comparison highlights the advantage
of using state-of-the-art machine learning algorithms to achieve
higher predictive power (or lower MAE for the current case).

Except the much poor predictive performance, the LR model
achieved its lowest MAE when including the first three nearest-
neighboring shells, which should be ascribed to its weak learning
capability. This comparison highlights the importance of using ad-
vanced machine learning frameworks when extracting physical in-
sight from machine learning results. Otherwise, some misleading
conclusions might be reached. For example, one might conclude
that the chemical order beyond the first three nearest shells is ir-
relevant to migration energy barriers in HEAs if only the LR model
was utilized for the current case.

3.2. High-fidelity prediction on the entire compositional space

In order to train a CNN model robust for all alloys at differ-
ent compositions and/or with different degrees of CSRO within the
ternary Ta-Nb-Mo alloy system, we created 46 samples with differ-
ent compositions, which uniformly occupy the ternary Ta-Nb-Mo
compositional space, see Fig. 3, to construct both training and vali-
dation datasets. All these samples are random solid solutions, each
containing 2,000 atoms. The eight barriers for each of the 2,000
possible vacant sites in each sample were calculated using the
NEB method [34]. So there are 16,000 barriers at each composi-
tion. 218 barriers were selected at random from each composition
to construct the validation dataset (totally 10,028 instances) and
the remaining barriers at all compositions were used to construct a
big training dataset, which totally contains 725,972 instances. Note
that although the samples used to construct training/validation
datasets are random solid solutions, the possible CSROs in the con-

100 Training/validation
Test

Ta (at. %)

Fig. 3. The specific compositions of the 46 alloys used to construct train-
ing/validation datasets are marked with the orange solid circles. The green solid
circles denote the nine compositions (i.e., unseen compositional space) used to test
the CNN models.

centrated alloys should be similar as those in the random dilute
alloys and the CNN model trained on this group of datasets is thus
expected to be valid for the concentrated alloys with various de-
grees of CSRO, which will be verified later.

We then trained several CNN models with different depths on
the same training dataset. Fig. 4 shows the both training and vali-
dation MAE as a function of number of convolutional layers con-
tained in CNN models. When only four convolutional layers are
used, both training and validation MAE are relatively high, sug-
gesting that a deeper CNN model is needed. With inceasing the
number of convolutional layers, both the training and validation
MAE decrease effectively. When the number of convolutional lay-
ers increases to twelve, the lowest validation MAE of 0.0137 eV is
observed and both training and validation MAEs are equal to each
other. It is observed that the training MAE is slightly lower than
the validation MAE when further increasing the number of convo-
lutional layers to sixteen. These results suggest that for the current
training dataset, a CNN model containing twelve convolutional lay-
ers is sufficient and further deepening the CNN model would re-
sult in overfitting. We believe that an even lower validation MAE
can be achieved through constructing larger training datasets and
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Fig. 4. Elevated predictive power through deepening CNNs. The MAE achieved on
the same training/validation dataset constructed using the 46 samples at different
compositions via CNN models containing different numbers of convolutional layers.

using deeper CNN models. The main purpose of this work is to
demonstrate the feasibility of our DL framework.

We termed the optimized CNN model containing twelve con-
volutional layers high-fidelity CNN model and then tested it on
alloys at nine different compositions (denoted by green circles in
Fig. 3), which are never seen at the training and validation stage.
As exhibited in Fig. 5, the test MAE on the nine compositions are
comparable to or even lower than the validation MAE and there is
almost no difference between the true and predicted distributions
of AE;;. This confirms that our CNN model trained using sparse
composition data (46 samples) is indeed able to capture the en-
tire compositional space of the Ta-Nb-Mo system. To showcase our
CNN model is also robust to samples with different size across the
entire ternary compositional space, we especially used small sam-
ples each only containing 686 atoms for the last three composi-
tions in Fig. 5g-i. We also compared the true AE;; distribution of a
small equal-atomic TaNbMo alloy containing 2,000 atoms and the
predicted AE;; distribution of a very large equal-atomic TaNbMo
alloy containing 1,024,000 atoms. The predicted distribution of the
very large sample is consistent to the true distribution of the small
sample, see Fig. 6.

3.3. Application to alloys with CSRO

To demonstrate that our CNN model is also valid for alloys
with different degrees of CSRO, we generated a series of equal-
atomic TaNbMo alloys with different degrees of CSRO through hy-
brid MC/MD simulations, see Fig. S1. As can be seen from Fig. 7,
the test MAE of our high-fidelity CNN model on three samples
with much different degrees of CSRO are also impressively low and
close to the validation MAE. These confirm that our CNN model is
indeed valid for the alloys with different degrees of CSRO. We then
used the CNN model to predict the migration energy barrier spec-
tra of a series of states of the equal-atomic TaNbMo alloy during
the MC/MD simulation. The evolution of average value, standard
deviation and overall VMEB distribution of this concentrated al-
loy with increasing the degree of CSRO are presented in Figs. S2
and S3, which will be useful for optimizing processing condition
to tune CSRO for various application of this alloy system.

3.4. The efficiency of the CNN model in predicting AE;;

It is very efficient to use the CNN model to predict AE;; on
samples of arbitrary size at any compositions within the ternary
compositional space, since the CNN model treats each local config-
uration independently and the prediction can be parallelized eas-
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ily. When serially predicting 4,000 AE;j, it currently takes ~7 min-
utes to convert 4,000 local configurations into SDMs with a sin-
gle CPU core and less than 30 seconds to predict the 4,000 AE;;
from SDMs with a single GPU node. In contrast, it requires about
600 CPU core-hours to calculate the 4,000 AE;; using the NEB
method. Therefore, the CNN model has already lowered the com-
putational cost by a factor of ~500, as compared with the standard
NEB method. And we believe that there should be vast space to
develop a more efficient programming code to convert local con-
figurations into SDMs and thus further improve the efficiency of
predicting AE;; from local configurations using our DL framework,
as we have not spent much effort in optimizing this code.

3.5. Accelerating the training of CNN models

To demonstrate the impressive predictive performance of the
DL framework, we used much computational resource to construct
a big training dataset and then trained a deep CNN model. How-
ever, it is also practical to use a smaller training dataset to train
a relatively shallow CNN model when a very low MAE is not re-
quired. It can save a lot of computational cost but only sacrifice
a little bit of predictive performance. To showcase it, we trained
a CNN model containing eight convolutional layers using a much
smaller dataset. Specifically, we only selected 218 barriers ran-
domly from each of the 46 compositions to construct a small train-
ing dataset of ~10,000 instances. The validation dataset is exactly
the same as the one used to develop the high-fidelity CNN model.
The lowest validation MAE achieved with this shallow CNN model
is 0.0312 eV. And the MAE of this CNN model on the nine test sam-
ples are comparable to or even lower than the validation MAE, see
Fig. S4. These suggest that shallow CNN models trained on small
datasets are also acceptable for some cases.

Here we simply chose local configurations at random from each
sample to construct the small training dataset. One may be able
to use a further smaller training dataset to train a CNN model
with similar predictive performance as that of our current shal-
low CNN model using the strategy suggested in Ref. [46]. That is,
first partitioning all available local configurations into several clus-
ters using some unsupervised machine learning algorithms, such as
k-means clustering adopted in Ref. [46], and then utilizing the re-
sultant cluster centroids to choose local configurations to construct
a further smaller training dataset. This strategy can maximize the
difference among local configurations in the training dataset and
thus make training more efficient.

4. Discussion
4.1. Compositional dependence of migration barrier spectra

We have generated AE;; spectra of alloys at 52 different compo-
sitions each containing 2,000 atoms in the ternary alloy system to
construct the training/validation/test datasets. One would be nat-
urally wondering whether it is possible to extract from the big
database some composition-property relationships. We indeed got
some interesting composition-property relationships in the ternary
alloy system through analyzing this database. As seen from Fig. 8,
for all three species of moving atoms, the concentration of Mo
element plays the dominating role in determining the sample-
averaged AE;; and the standard deviation of AE;; is larger around
the composition of TaysNbjgMoys. These composition-property re-
lationships will provide guidance on tuning the properties influ-
enced by diffusion. This highlights the importance of developing
such databases for different alloy systems. For this single ternary
alloy system modeled by a machine learning potential, it is afford-
able to directly use the NEB calculation to develop this database.
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Fig. 5. Test of the high-fidelity CNN model across the compositional space. The predictive power—MAE—of the CNN model trained on the big dataset for vacancy migration
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However, to build such databases for many different ternary al-
loy systems, or even quaternary/quinary systems simulated with
quantum mechanics-based interatomic force fields which are more
accurate yet more expensive, it would be impractical to directly
use the NEB calculation to construct the entire database and the
DL framework presented in this work will be a valuable tool to
accelerate the development of these desirable databases, as it is
also feasible to train a CNN model using a much smaller train-
ing dataset, which would sacrifice a little bit of predictive perfor-
mance. It is noted that in addition to the NEB method there are
other transition state sampling methods, such as kinetic activation-

relaxation technique (k-ART) [53] that can compute activation
energies in both crystalline and amorphous materials, especially
when the final state is unknown, as demonstrated in the previ-
ous study [54]. For the case of vacancy migration in BCC structure,
there are eight migration pathways associated with each vacancy.
Therefore, multiple trials should be performed for k-ART to sample
all these trajectories.

In light of the vast compositional space of MPEAs, efficient
screening techniques, which can help narrow down the potentially
promising compositions worthing further detailed study, are in-
dispensable and in fact valuable. The vacancy migration energy
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Fig. 8. Compositional dependence of average and standard deviation of vacancy migration energy barriers. (a), (b) and (c) show the average migration barrier of Ta, Nb and
Mo speices, spanning the whole compositional space, respectively. (d), (e) and (f) present the corresponding standard deviation of energy barrier spectra.

barrier, learned and predicted with the deep learning model, is one
of key parameters governing high-temperature phase stability and
mechanical behaviors. Assuming the quantitative relationship be-
tween diffusion barrier and high-temperature creep rate is known,
one could select the suitable compositions for material synthesis
and mechanical testing and validation. The current work, demon-
strating the composition-diffusion barrier relationship constructed
by the CNN model, has profound implications for alloy design and
development and for applying machine learning to explore the
huge compositional space of MPEAs.

4.2. Variation of migration barrier spectra with composition

In addition to average and standard deviation of AE;;, the AE;;
distribution can provide more details regarding diffusion behaviors
at various compositions. As an example, we explored the influ-
ence of Mo concentration on the variation of AE;; distribution of
all three species using a series of alloys of Ta(jgo-x)2ND(100-x)2Mox
(x € {34, 35, 36, ..., 99}). For these alloys, when the Mo concen-
tration is very high, the number of Ta or Nb will be very low in a
small sample containing, say, 2,000 atoms and the resultant AE;;
distributions for Ta or Nb species would be incomplete. To avoid
this issue, we created large samples for these compositions to en-

sure that the number of atoms of any species in each sample is
not less than 5,000. Then, we used the high-fidelity CNN model to
predict the AE;; distributions of these samples (the CNN model has
been demonstrated to be reliable to predict AE;; of large samples,
see Fig. 6). The dependence of both average and standard deviation
of AE;; on Mo concentration revealed from these alloys, shown in
Fig. 9b, is in line with that shown in Fig. 8. As seen from Fig. 9a,
the AE;; of all species show a bimodal distribution when Mo con-
centration is higher than 90% (i.e., traditional dilute solid solu-
tion). And for the Mo species of moving atoms, although sample-
averaged AE;;is the highest in pure Mo metal, there are many local
regions in both dilute and concentrated alloys which have higher
AE;; than that in pure Mo metal. The big data of AE;; spectra em-
powered by our CNN model will also be valuable to (i) explore the
quantitative relationship between energy barrier spectra and dif-
fusion barrier heterogeneity; and (ii) reveal the role of chemical
complexity on diffusion in HEAs.

It has been long considered that the MPEAs or HEAs of concen-
trated solid solutions have “sluggish” diffusion. However, a high so-
lute concentration in MPEAs does not necessarily result in a slow
diffusion process. For example, the diffusion barrier variations as
a function of Mo concertation presented in Fig. 9 suggests that the
mean migration barrier actually increases when moving away from
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in the Taggo-x);2ND(100-x)2Mo0y alloys as a function of Mo concentration.

equimolar concentration to dilute solution. It is interesting that the
distribution of vacancy migration barriers near the equimolar con-
centration is the highest, implying heterogeneous diffusion [32,55].
Another feature pertaining to MPEAs is CSRO, and when it appears
in the system, the diffusion rate can be reduced [32]. The CSRO-
induced diffusivity reduction is caused by an increase in migration
barrier and enhanced diffusion correlation that lower the effective-
ness of atomic jumps. Even if MPEAs do not have “sluggish” diffu-
sion, the diffusion heterogeneity (reflected by a wide distribution
of migration barrier and hierarchical energy landscape [56,57]) and
its CSRO dependence may be the notable features making them
distinct from the traditional dilute solid solutions.

5. Conclusion

The CNN model developed in the present work has been
demonstrated to be accurate and efficient in predicting path-
dependent AE;; of alloys with different degrees of CSRO over the
entire ternary alloy system. And we showcased that the big AE;;
database can shed light on the relationships between compositions
and properties over a large compositional space. The DL frame-
work proposed in this work will be a valuable tool to develop a
spectral diffusion database covering many multi-component alloy
systems, which is anticipated to be a general and broadly appli-
cable alloy design and processing optimization toolbox relevant to
all material properties impacted by diffusion and thus can accel-
erate alloy screening for the discovery of desirable properties. The
length scale of local chemical environments relevant to VMEB was
also uncovered during developing the CNN model, which enhances
our understanding of atomic-level structure-property relations and
also provides a new methodology to determine the length scale
of structure relevant to other properties, e.g., dislocation dynam-

ics. The success of predicting VMEB also has implications for other
aspects of materials science. For example, CSRO [35,36] in HEAs is
also an intensive research topic. The CSRO in almost all previous
atomistic simulations [58,59] was tuned via the swap MC algo-
rithm [60], in which the formation of CSRO is purely determined
by thermodynamics and diffusion kinetics is ignored. It is thus
reasonable to speculate that the currently formed CSRO in model
HEAs may remain different from that in real materials. Our cur-
rent demonstration in predicting VMEB implies that it is promising
to develop CNN models to instantly predict the barrier of swap-
ping any pair of atoms within a given distance. Thus, the kinetics
can be taken into account when implementing DL-enabled kinetic
MC algorithm, which will make diffusion-mediated chemical or-
der formation more realistic. In addition to predicting orientation-
dependent properties in both crystalline materials as demonstrated
here and amorphous materials [61], the DL framework is also pow-
erful to predict rotation-invariant properties in both crystals and
glasses through data augmentation [37], which will be reported
elsewhere. The DL framework may also be useful for developing
more accurate and efficient machine learned-interatomic potentials
[62-64], which deserves further exploration.
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