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1. Introduction and outline of main results

The pentagram map, introduced by R. Schwartz in [28], is a discrete integrable system
on the space of projective equivalence classes of planar polygons. The definition of this
map is illustrated in Fig. 1: the image of the polygon P under the pentagram map is the
polygon P’ whose vertices are the intersection points of consecutive shortest diagonals
of P (i.e., diagonals connecting second-nearest vertices). The pentagram map has been
an especially popular subject in the last decade, mainly due to a combination of an
elegant geometric definition and connections to such topics as cluster algebras, dimer
models etc.

Integrability of the pentagram map was established, in different contexts, in [24,25,30].
Furthermore, it was shown that the pentagram map can be viewed as a particular case of
several general constructions of integrable systems. In particular, it has an interpretation
in terms of cluster algebras [11], networks of surfaces [9], T-systems [15], and Poisson-Lie
groups [8]. In the present paper we suggest an alternative to [8] Poisson-Lie approach to
the pentagram map. Namely, we show that the pentagram map can be seen as a refac-
torization in the Poisson-Lie group of pseudo-difference operators. The main advantage
of our approach is that it is based on the geometric definition of the map and the explicit
formulas are obtained as its corollaries. We thereby obtain all the ingredients needed to
establish integrability, namely an invariant Poisson structure, Lax representation, and
first integrals, directly from geometry. This can be compared with other frameworks, in
particular, the ones based on cluster algebras [9] and Poisson-Lie groups [8], which lead
to integrable maps shown to coincide with the pentagram map at the level of formulas.

By virtue of the geometric nature of our approach, it almost immediately general-
izes to pentagram-type maps in higher dimensions and enables us to treat all these
maps on an equal footing. It turns out that our scheme covers all previously known
higher-dimensional integrable cases, and also gives rise to a large number of new ones.
Furthermore, for many of the previously known integrable maps our approach provides
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Fig. 1. The pentagram map.

certain missing ingredients, in particular invariant Poisson structures for short-diagonal
and dented maps of [16,17]. Construction of such structures has been an open prob-
lem since the introduction of these maps. Furthermore, for these maps we get new Lax
representations which are, in a sense, dual to the ones given in [16,17].

Recall that a refactorization is a mapping of the form AB — BA, where A and B
are elements of a non-Abelian group, e.g. matrices. The relation between such mappings
and integrability was pointed out in [34,22] and put in the context of Poisson-Lie groups
in [4]. Nowadays, refactorization in Poisson-Lie groups is viewed as one of the most
universal mechanisms of integrability for discrete dynamical systems. In this paper we
suggest such an interpretation for the pentagram map and its generalizations. Below we
briefly describe the construction for the case of the classical pentagram map.

Let {v; € RP?} be a planar n-gon, and let {V; € R3} be its arbitrary lift to R? (here
and in what follows we assume that the ground field is real numbers, although all the
same constructions work over C). The sequence V; can be encoded by writing down the
relations between quadruples of consecutive vectors:

a;V; +b;Vig1 +¢iVigo + diVigs = 0,

where ¢ € Z, and a, b, ¢, d are n-periodic sequences of real numbers. This can be equiva-
lently written as DV = 0, where V is a bi-infinite sequence whose entries are the vectors
Vi, and D is an n-periodic difference operator

D:=a+bT + ¢T? + dT>.

Here T is the left shift operator on bi-infinite sequences, (T'V); := V;y1, while the se-
quences a, b, ¢, d of real numbers act on sequences of vectors by term-wise multiplication:
(aV); := a;V;. Thus, one can encode planar polygons by third order difference operators.
There is, however, more than one operator corresponding to a given polygon in RP2.
Namely, one can multiply D by scalar sequences from the left or right without changing
the corresponding polygon. This means that, for any mapping of the space of polygons
to itself, its lift to difference operators is not a map, but a correspondence (a multivalued
map). To explicitly describe this correspondence for the case of the pentagram map, we
split the difference operator D = a + bT + ¢T? + dT? into two parts:
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Dy :=a+cT? D_:=bT+dl>.

Theorem 1.1. The pentagram map, written in terms of difference operators, is a multi-
valued map

D=D,+D. +—» D=D,+D_

determined by the relation

D,D_=D_D,. (1)
Proof sketch. Equation (1) can be viewed as a homogeneous linear system on 4n un-
known coefficients of the n-periodic operator D. Both sides of (1) are linear combinations
of T, T3, and T® with n-periodic coefficients, so the number of equations is 3n, which is
less than the number of unknowns. Therefore, there always exists a non-trivial solution D
depending on D, and (1) indeed defines a multivalued map D — D. To identify the latter
with the pentagram map, we need to rewrite it in terms of bi-infinite sequences V, 1%
annihilated by the operators D and D respectively. Applying both sides of (1) to V, we
get

D, D_V =D_D,V,
which, using that DV = 0 and thus D_V = —D,V, can be rewritten as
DD,V =0.

But the latter means that V = DV, which is exactly the definition of the pentagram

map. Indeed, by definition of Dy, the vector (D1 V); belongs to the span (V;, V;19) of
Vi, Vigo. At the same time, we have D4V = —-D_V, so

(D4V)i = —=(D-V)i € (Viq1, Vigs).
Therefore, we have
(D4V);i € (Vi, Vig2) N (Vig1, Vigs),

which means that the corresponding point in RP? is the intersection of consecutive
shortest diagonals (v;, v;12) and (vit+1,vit3), as desired. O

Corollary 1.2. The pentagram map, written in terms of difference operators, is a refac-
torization relation.
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Proof. Relation (1) can be rewritten as
D-'D, =D, D!, (2)

where the inverses of difference operators are understood as pseudo-difference operators.
To see that this formula defines a refactorization mapping, consider the operator £ :=
D:1D+. Then (2) means that the dynamics of £ under the pentagram map is given
by £ ~ L, where £ := D,D_"'. Therefore, the pentagram map in terms of £ is a
refactorization map

D-'D, » DD O

A crucial part of the proof of Theorem 1.1 is solvability of (1) with respect to D, which
in turn is related to a very special choice of exponents of the shift operator T' entering
D_ and D,. We refer to the set of integers that are the exponents of T" entering a given
difference operator D as the support of D. It is easy to see that (1) is solvable if and only
if the supports J1 C Z of the operators Dy satisfy

T+ T_| < 1T | 4 1,

where J; + J_ is the Minkowski sum. Furthermore, for sets Jy with |Ji| > 1 the lat-
ter inequality holds if and only if the Ji are finite arithmetic progressions with the
same common difference. Different choices of such pairs of progressions lead to different
pentagram-type maps admitting a refactorization description. As we already saw, the
choice {0, 2}, {1, 3} corresponds to the usual pentagram map. More generally, the choice
{0,2,4,...}, {1,3,5,...} corresponds to short-diagonal maps of [16]. Similarly, {0,1},
{2,3} leads to the inverse pentagram map, while {0,1,...,p}, {p+1,p+2,...,q} cor-
responds to the inverse dented map of [17]. Finally, the choice {0,d}, {1,d + 1} leads to
the pentagram map on corrugated polygons in RP? studied in [9].

One can also consider relation (1) for difference operators Dy with non-disjoint sup-
ports. Such maps still admit a refactorization description, but they do not have a
pentagram-like interpretation. Indeed, in this case the pair D4 is not equivalent to a
single operator D4 + D_, and because of that the phase space cannot be interpreted as
the space of polygons. The simplest case {0,1},{1,2} corresponds to the leapfrog map
defined in [9], while for other cases of non-disjoint supports the geometric interpretation
is not known.

The structure of the paper is as follows. In Section 2 we define a general class of
pentagram-type maps associated with pairs of disjoint arithmetic progressions with the
same common difference. This class, in particular, includes all previously known inte-
grable pentagram-type maps. In Section 3 we discuss difference and pseudo-difference
operators, along with Poisson structures on such operators. Section 4 contains main
results of the paper, namely we show that pentagram maps of Section 2 fit into an
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even bigger class of dynamical systems which are parametrized by pairs of not neces-
sarily disjoint progressions and admit a refactorization description. As a corollary, all
such maps admit an invariant Poisson structure and a Lax representation with Poisson-
commuting spectral invariants. It is therefore very likely that all these maps are both
Liouville and algebraically integrable. This integrability problem will be addressed in
a separate publication. In addition to these results, in Section 4 we also discuss some
applications, as well as relations to known constructions. In particular, in Section 4.2 we
show how our approach yields the scaling invariance of pentagram-type maps, which was
the central tool in the proof of integrability for the classical, as well as for short-diagonal
and dented maps. Further, in Section 4.3 we explicitly compute Poisson brackets for
the short-diagonal pentagram map in RP3. In contrast to previously known cases, those
brackets turn out to be not quadratic but polynomial of degree four. After that, in Sec-
tion 4.4 we outline the connection between the approach of the present paper and the
Y-meshes description of higher pentagram maps given in [12]. It turns out that Y-meshes
are related to factorizations of difference operators. In addition to that, in Section 4.5 we
show how our refactorization approach can be used to represent pentagram-type maps
using moves in Postnikov networks, as in [9]. This also gives a cluster description of the
pentagram map, and one may hope to use our approach to extend the cluster algebra
formalism to multidimensional maps, which is still an open problem. Finally, Section 5
is devoted to open questions.
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2. Pentagram-type maps associated with pairs of arithmetic progressions

In this section we explain how to associate a pentagram-type map to any pair of
finite disjoint arithmetic progressions Ji C Z with the same common difference. As
particular cases of this construction, one obtains all known integrable pentagram-type
maps. Later on, in Section 4.1, we will show that these maps fit into a more general
class of dynamical systems which are parametrized by pairs of not necessarily disjoint
progressions and admit a refactorization description.

All pentagram-type maps operate on polygons, i.e. ordered sequences of points in
the projective space. We will only consider polygons satisfying the following natural

condition:
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Definition 2.1. A polygon in RP? is a bi-infinite sequence of points {v; € RP?} such that
any d + 1 consecutive points v, ..., v;14+1 are in general position (i.e. do not belong to
a subspace of dimension d — 1).

In contrast to the classical pentagram map, which is well-defined for all generic poly-
gons, some of the maps that we will study operate on a more restricted class of polygons
whose vertices satisfy certain additional coplanarity conditions, described in the following
definition:

Definition 2.2. Let J C Z, |J| > 2 be a finite set of integers containing at least two
elements, and let d := max(J) — min(J) — 1. Then a polygon {v;} in RP? is called
J-corrugated if for any i € Z the points {v;1; | j € J} belong to a |J| — 2 dimensional
plane (instead of a |J| — 1 dimensional plane, which is the generic case).

Example 2.3. Assume that J consists of consecutive integers, J = {j,j+1,...,j+d+1}.
Then a J-corrugated polygon is any polygon in RP?.

Example 2.4. Assume that J = {0,1,d, d+1}. Then J-corrugated polygons are corrugated
polygons in RP? in the sense of [9, Section 5.1.1].

Example 2.5. Assume that J = {0,1,..., 0} U{m,m +1,...,d + 1}, where | < m, is
a union of two disjoint sets of consecutive integers. Then .J-corrugated polygons are
partially corrugated polygons in RP in the sense of [17, Definition 6.3].

We now define an analogue of the pentagram map on the space of J-corrugated
polygons. Such a map can be defined if J C Z can be partitioned as J = Jy U J_, where
J+ C Z are finite arithmetic progressions with the same common difference.

Definition 2.6. Let J+ C Z be non-empty disjoint finite integral arithmetic progressions
with the same common difference. Let also J := J, U J_. Then the pentagram map
associated with the pair Ji is the map from the space of J-corrugated n-gons to itself
defined by

by == (itj | J € J4) N (vigy | 5 € J-).

Here v;’s are the vertices of the initial polygon, o;’s are vertices of its image under the
map, and the notation (v;) stands for the projective subspace spanned by the points

{vi}.

Remark 2.7. This definition makes sense for arbitrary disjoint finite sets J+ C Z, but
for general J1 the image of a J-corrugated polygon (where J := J U J_) under the so
defined map is not J-corrugated. This property, however, does hold if J. are arithmetic
progressions with the same common difference, as shown by the following proposition.



8 A. Izosimov / Advances in Mathematics 404 (2022) 108476

Table 1

Examples of pentagram maps associated with pairs of arithmetic progressions.
J4 J_ The corresponding map
{0,2} {1,3} Classical pentagram map
{0,1} {2,3} Inverse pentagram map
{0,d} {1,d + 1} Pentagram map on corrugated polygons in RP? [9]
{0,1} {d,d+ 1} Inverse pentagram map on corrugated polygons in RP¢
{0,...,k} {k+1,...,d+ 1} Inverse dented pentagram maps in RP? [17]
{0,2,4,...,2k} {1,3,5,...,2k + 1} Short-diagonal pentagram map in RP2* [16]
{0,2,4,...,2k} {1,3,5,...,2k — 1} Short-diagonal pentagram map in RP2*~1 [16]

Proposition 2.8. For any non-empty disjoint finite arithmetic progressions J1 C Z with
the same common difference, the corresponding pentagram map is a generically well-
defined mapping from the space of J-corrugated n-gons to itself.

Proof. For a generic .J-corrugated polygon {v; € RP?}, where d = max(.J) —min(J) —1,
the subspaces (v;i4; | j € J+) have complementary dimensions |J+| — 1 in the space
(Vi4; | j € J) of dimension |J| — 2. Therefore, their intersection indeed defines a point
¥; € RP?. Furthermore, it is not hard to see that for generic v;’s any d + 1 consecutive
points ¢; will be in general position, so {7;} is a polygon in the sense of Definition 2.1.
Thus, it remains to show that the new polygon {%;} is J-corrugated. To that end, for any
i € Z, consider the subspace L; := (v;+; | j € J4 +J_), where J1 + J_ is the Minkowski
sum of J; and J_. Notice that for any ¢ € Z and any j € J, we have 9;;; € L;. Indeed,
by construction of the polygon {7;}, we have

Vigj = (Vitjrgr | 7 € J4) N (Vijujr | 57 € J-).

Assume that j € J;. Then (viy ;15 | j € J_) is a subspace of L;, because j+j' € J+J_.
Therefore, 0;4; € L;. Analogously, if j € J_, then (viy;1; | 7/ € J4) is a subspace of
L;, and we still have ¥;4; € L;. So, all the points {?;1; | j € J} belong to L;. But the
dimension of L; does not exceed

o+ Jo| = 1= [T+ || =2 = |J] -2,

where we use that for finite arithmetic progressions Ji+ C Z with the same common
difference one has |J.+J_| = |J;|+|J-|—1. So, for every i € Z, the points {¥;+,; | j € J}
belong to at most |J|—2 dimensional subspace L;, which means the polygon {@;} is indeed
J-corrugated, as desired. O

Example 2.9. Examples of pentagram maps associated with pairs of arithmetic progres-
sions are given in Table 1. Note that these examples cover all known integrable cases, so
all such cases fit into the above construction.

Remark 2.10. The classical pentagram is usually defined by ©; = (v;—1, vi+1) N (vs, Vit2)
(right labeling scheme), or by 9; = (v;—2,v;) N (v;—1,v;1+1) (left labeling scheme). This
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corresponds to progressions {—1,1},{0,2} for the right scheme, and {-2,0},{-1,1}
for the left scheme. Our choice {0,2},{1,3} corresponds to the same map, but with a
different labeling of vertices of the resulting polygon. More generally, shifting both J
and J_ by the same number results in the same map up to a shift of indices.

Remark 2.11. Note that except for the short-diagonal and inverse dented cases, our
construction gives no maps which are defined on all generic polygons (with no additional
coplanarity conditions). Indeed, such maps would correspond to sets J consisting of
consecutive integers (cf. Example 2.3), and without loss of generality we can assume that
J ={0,1,...} (because we can always shift J, as in Remark 2.10). But the only ways
to represent this set J as a disjoint union of two arithmetic progressions with the same
common difference are {0,1,..., k}U{k+1,k+2,...} and {0,2,4,...} U{1,3,5,... },
which corresponds to the inverse dented and short-diagonal maps respectively.

The space of J-corrugated polygons is infinite-dimensional for any J with |J| > 2. One
can still study pentagram-type maps on such spaces, but to obtain integrable dynamics
one should impose some kind of boundary conditions on the polygon {v;}. From the
geometric perspective, the most natural condition is closedness, v;4, = v;. However, it
turns out that the pentagram map, as well as similar maps studied in the present paper,
have much better properties on a bigger space of polygons that are closed only up to a
projective transformation. Such polygons as known as twisted:

Definition 2.12. A twisted n-gon is a polygon {v; € RP4} such that v;1,, = ¢(v;) for every
i and a fixed (not depending on i) projective transformation ¢: RP? — RP?, called the
monodromy.

It is clear that all pentagram maps defined above (as well as any other map on polygons
which is defined using only projectively natural operations) take twisted polygons to
twisted polygons and, moreover, preserve the monodromy. Throughout the paper, all
pentagram-type maps are assumed to operate on twisted polygons.

3. Difference and pseudo-difference operators
3.1. Generalities on difference operators

In this section we recall some basic notions related to difference operators. Our ter-
minology mainly follows that of [33]. Let R> be the vector space of bi-infinite sequences

of real numbers, and let J C Z be a finite collection of integers. A linear operator
D: R*® — R is called a difference operator supported in J if it can be written as

(DE)i = ajiiv, (3)

jeJ
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or, equivalently, if

D= a;17,

where T': R — R is the left shift operator (T€); = &;+1, and each coefficient a; is a bi-
infinite sequence {a;; | ¢ € Z} of real numbers acting on R> by term-wise multiplication.
Such sequences can per se be regarded as difference operators with J = {0}.

The order of difference operator (3) is the number ord D := M — m, where M :=
max J, m := minJ. Difference operator (3) is called properly bounded if none of the
elements of sequences a,,, aps vanish. Clearly, for a properly bounded difference operator
D one has dim Ker D = ord D. A difference operator D is n-periodic if all its coefficients
a; are n-periodic sequences, which is equivalent to saying that D commutes with the n’th
power of the shift operator: DT™ = T"D. Clearly, if D is an n-periodic operator, then
its kernel is invariant under the action of T™. The finite-dimensional operator T"|ker p
is called the monodromy of D. Eigenvectors of the monodromy operator T"|kerp are
exactly quasi-periodic solutions of the equation DE = 0, i.e. solutions which belong to
the space of quasi-periodic sequences

{§ €R™ | Lin = 263} (4)

for certain z € R*.

We denote the space of n-periodic difference operators supported in J by DO, (J),
while PBDO,,(J) C DO,,(J) stands for the (dense) subset of properly bounded operators.
Let also DO,, be the associative algebra of all n-periodic difference operators (with
arbitrary finite support).

Remark 3.1. The algebra DO,, of n-periodic difference operators is isomorphic to the
algebra Mat,, ® R[z, 271] of Mat,-valued Laurent polynomials in one variable z (here
Mat,, stands for the associative algebra of n x n matrices over the base field R). Indeed,
consider the natural action of n-periodic difference operators on the space (4) of all
n-quasi-periodic bi-infinite sequences of real numbers with monodromy z. This gives a
1-parametric family p, of n-dimensional representations of the algebra DO,,. In each
of the spaces (4), take a basis i,...,&, determined by the condition &; = ¢;; for
i, =1,...,n (where d;; is the Kronecker delta). Written in this basis, the representation
p. takes an n-periodic sequence a = {a;} (viewed as a zero order difference operator)
to a diagonal matrix with entries ai,...,a,, while the shift operator 1" becomes the
matrix Z?:_ll E;i+1+zE, 1, where E; ; is the matrix with a 1 at position (¢, j) and zeros
elsewhere. Therefore, since the algebra of difference operators is generated by sequences,
T, and T~1, it follows that p, can be viewed as a homomorphism of difference operators
into Mat,, ® R[z, z7!]. Furthermore, it is easy to verify that this homomorphism is a
bijection, and hence an isomorphism.
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Proposition 3.2. Let D be a properly bounded difference operator supported in J, and let
D(z) be the associated element of the loop algebra. Then detD(z) is a constant multi-
ple of the polynomial 2™ P(D, z), where m := minJ, and P(D, z) is the characteristic
polynomial of the monodromy of D.

Proof. If we multiply D by T*, where k € Z, then the characteristic polynomial of
its monodromy does not change, while the polynomial detD(z) gets multiplied by
det T*(z) = (det T'(2))*¥ = 2*. So, it suffices to consider the case min J = 0. Furthermore,
it is sufficient to prove the statement for generic properly bounded operators supported
in {0,...,d}, because within that set the coefficients of both polynomials det D(z) and
P(D, z) are polynomial functions in terms of the coefficients of D. So, if one can show
that these polynomials are proportional for generic operators, then it must be true for all
operators. To establish the statement for generic D, observe that by definition of D(z)
the polynomial det D(z) vanishes for some z # 0 if and only if D has a kernel on the space
(4), which is equivalent to saying that z is an eigenvalue of the monodromy of D. So, the
roots of the polynomials det D(z) and P(D, z) are the same (as sets). Furthermore, for
generic D all roots of P(D, z) are distinct. So, to prove that the polynomials det D(z)
and P(D, z) are proportional, it suffices to show that they have the same degree. In other
words, we need to show that the degree of det D(z) is equal to the degree d of D. This
can be checked by explicitly writing down the matrix D(z), or by using the following ar-
gument. First of all, one easily checks that the statement holds for operators of degree 1.
But a generic operator D of degree d can be written as a product of operators of degree 1,
so by multiplicativity for such operator we have degdet D(z) = d, as desired. O

3.2. Difference operators and J-corrugated polygons

There is a close relation between difference operators supported in J and J-
corrugated polygons. Denote by P, (J) the space of twisted J-corrugated n-gons, and
let P,(J)/PGL be the quotient of that space by projective transformations. We will
describe that space as a certain quotient of the space PBDO,,(J) of properly bounded n-
periodic difference operators supported in J. Namely, let H be the group of non-vanishing
n-quasi-periodic scalar sequences, i.e.

H:={aeR*|Vi€eZ,a;#0, and Iz € R* s.t. Vi € Z, @iy, = 2 }.

Further, let H x H be the subgroup of H x H that consists of pairs of non-vanishing
n-quasi-periodic scalar sequences with the same monodromy, i.e.

H%H:={(a, ) €R® x R® | Vi € Z, i £ 0, Bi # 0,
and 3z € R* s.t. Vi € Z, a1y = 20, Biyn = 28i }-

This group acts on the space DO,,(J) of n-periodic difference operators with given sup-
port by means of the left-right action
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D+ aDB ™t (5)

Proposition 3.3. For any finite subset J C Z with |J| > 2, there is a one-to-one corre-
spondence (a homeomorphism) between the following spaces:

1. The space Pn(J)/PGL of twisted J-corrugated n-gons modulo projective transfor-
mations.

2. The space PBDO,,(J)/ H x H of properly bounded n-periodic difference operators
supported in J modulo the left-right action (5) of the group H x H of pairs of non-
vanishing n-quasi-periodic scalar sequences with the same monodromy.

Proof. The proof is analogous to that of [14, Proposition 2.2]. Let us just briefly outline
the construction. Given a projective equivalence class of generic twisted J-corrugated
n-gons, consider an arbitrary representative {v; € RP?} € P, (J) of that class (here
d := max(J) — min(J) — 1). Lift the quasi-periodic sequence of points v; € RP? to a
quasi-periodic sequence of vectors V; € R%*!. Then, from the .J-corrugated condition it
follows that for any i € Z the vectors {Vi4,; | j € J} belong to a subspace of dimension
|J| — 1 and, therefore, are linearly dependent:

> aiVie = 0. (6)

jedJ

This is equivalent to DV = 0, where V is the bi-infinite sequence of V;’s, and the
operator D is given by (3). Furthermore, since the sequence {V;} is quasi-periodic, the
so-obtained operator D is periodic, while from the genericity condition for {v; € RP9}
it follows that D is properly bounded. Hence we obtain a properly bounded n-periodic
difference operator supported in J. To complete the proof, it suffices to notice that from
the possibility to rescale each of the V;’s and also multiply each of the equations (6) by
a scalar it follows that D is defined up to the left-right action (5). Details of the proof
(in the case when J consists of four consecutive integers) can be found in [14]. O

As can be seen from this construction, one has the following relation between the mon-
odromy of a J-corrugated polygon and the monodromy of the corresponding difference
operator:

Corollary 3.4. Let P € P,(J) be a twisted J-corrugated n-gon, and let D € PBDO,,(J)
be one of the corresponding difference operators. Then the monodromy of P is conjugate
to the projectivization of the monodromy of D.

Proof. Assume that the monodromy of the polygon {v;} in the proof of Proposition 3.3 is
given by the projective transformation ¢. Then the sequence of V;’s satisfies V;,, = MV;,
where M is a matrix of ¢ (i.e. ¢ is the projectivization of M). At the same time, the
components of the vectors V; form a basis in the space KerD, and the monodromy
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matrix T"|ker p Written in that basis is the transpose of M (indeed, denoting the basis
vectors by &1,. .., &4, we can rewrite Vi, = MV; as (T"&y, ..., T"Ey)t = M (&1, ..., q)t,
which means that the matrix of the transformation 7™ in the basis &, ..., &y is M*). So,
the monodromy of the polygon {v;} is the projectivization of (T™|kerp)?, and hence is
conjugate to the projectivization of T"|kerp. O

In particular, one has the following relation between the eigenvalues of the monodromy
and the determinant of the corresponding loop algebra element:

Corollary 3.5. Let P € P,(J) be a twisted J-corrugated n-gon, and let D € PBDO,,(J)
be one of the corresponding difference operators. Then the eigenvalues of the monodromy
of P coincide (with multiplicities) with non-zero roots of the polynomial det D(z), where
D(z) is an element of the loop algebra corresponding to the difference operator D, as
described in Remark 3.1.

Proof. This follows from Proposition 3.2. O

Remark 3.6. Note that the monodromy of a twisted polygon is a projective transfor-
mation, so its eigenvalues are defined up to simultaneous multiplication by the same
constant. However, the same is true for the roots of det D(z), because taking « and § in
(5) with non-trivial monodromy w leads to simultaneous rescaling of all the roots by a
factor of w.

3.8. The Poisson-Lie group of pseudo-difference operators

We define an n-periodic pseudo-difference operator as a formal Laurent series in terms
of the left shift operator T', whose coefficients are n-periodic sequences. In other words,
every such operator is of the form

~+00 )
ZajTJ7 (7)
ji=k

where k € Z is an integer, T is the left shift operator on R, while each a; is an n-periodic
bi-infinite sequence of real numbers. Such an expression can be regarded either as a formal
sum, or as an actual operator acting on the space {{ € R* |3j € Z : & =0Vi > j} of
eventually vanishing sequences.

We will denote the set of n-periodic pseudo-difference operators by YDO,,. It is an
associative algebra with respect to addition and multiplication (composition) of opera-
tors. Moreover, almost every pseudo-difference operator is invertible. In particular, (7)
is invertible if the coefficient aj of lowest power in T' is a sequence none of whose ele-
ments vanish. We will denote the set of invertible n-periodic pseudo-difference operators
by I¥DO,,. This is a group with respect to multiplication. It can be regarded as an
infinite-dimensional Lie group with Lie algebra YDO,,.
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Remark 3.7. One can also consider (and apply for the purposes of the present paper)
pseudo-difference operators which have infinitely many terms of negative degree in T,
but only finitely many terms of positive degree. This leads to an isomorphic algebra.

Remark 3.8. The isomorphism DO,, ~ Mat,, ® R[z, 271] described in Remark 3.1 nat-
urally extends to an isomorphism between the algebra of n-periodic pseudo-difference
operators, and the algebra Mat,, ® R((z)) of matrices over the field R((z)) of formal
Laurent series with real coefficients and finitely many terms of negative degree. Under
this isomorphism, the group I¥DO,, of invertible pseudo-difference operators is identi-
fied with the group of matrices over Laurent series with non-vanishing determinant (this
group is one of the versions of the loop group of GL,,).

Proposition 3.9. There exists a natural Poisson structure w on the group I¥DO,, of
n-periodic invertible pseudo-difference operators. This structure has the following prop-
erties:

1. It is multiplicative, in the sense that the group multiplication is a Poisson map. In
other words, the group IWDO,,, together with the structure mw, is a Poisson-Lie group.

2. Assume that J C Z is a finite subset that consists of consecutive integers. Then
the subset IDO,,(J) := I¥DO,, N DO, (J) of invertible difference operators (that is,
difference operators whose inverse is well-defined as a pseudo-difference operator)
supported in J is a Poisson submanifold of TWDQO,,.

3. If J is a one-point set, then the restriction of m to IDO,,(J) is zero. In particular, the
Poisson structure m vanishes on sequences (viewed as difference operators supported

4. The Poisson structure 7 is invariant under the left-right action (5) of the group
H % H of pairs of non-vanishing n-quasi-periodic sequences with the same mon-
odromy.

5. Central functions on I¥DO,, Poisson commute.

Remark 3.10. As explained in Remark 3.8, the group I¥DOQ,, is isomorphic to a version
of the loop group of GL,. In the loop group language, the Poisson structure 7 is well-
known: it is the one associated with the trigonometric r-matriz. Here we will provide a
construction of this Poisson structure which does not appeal to the loop group formalism.
In fact, the language of (pseudo)difference operators seems to be more natural when
dealing with the trigonometric r-matrix. We will, however, use the loop group language
in some of the computations, see in particular Section 3.6.

Our Poisson structure on pseudo-difference operators can also be viewed as a natural
discrete analogue of the Poisson-Lie structure on pseudo-differential operators [18].

Remark 3.11. For periodic sequences o and 3, the fourth statement of Proposition 3.9
follows from the third one combined with the first. Indeed, by the third statement the
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Poisson structure m vanishes on sequences, so from multiplicativity we get that both
left and right multiplications by sequences are Poisson maps. However, if the sequences
« and § have non-trivial monodromy, then one cannot extract the fourth statement of
the proposition from multiplicativity, because in that case o and /3 are not elements of
IvDO,,.

Remark 3.12. Take a subset J C Z which consists of d + 2 consecutive integers. Then
the J-corrugated condition is vacuous and, according to Proposition 3.3, the quotient
of PBDO,,(J) by the action (5) can be identified with the space of twisted polygons
in RP%, considered up to projective equivalence. So, restricting the Poisson structure m
to PBDO,,(J) (which is an open subset of IDO,,(J) and hence a Poisson submanifold)
and taking the quotient under the action (5) one gets a Poisson structure on the space
of polygons. It seems, however, that this structure has nothing to do with pentagram
maps. As will be explained below, Poisson structures invariant under pentagram maps
arise from Poisson submanifolds of I¥DO,, given by rational pseudo-difference operators,
i.e. operators that can be written as a quotient of two difference operators.

We prove Proposition 3.9 in Section 3.5, after a brief general discussion of Poisson-Lie
groups in Section 3.4.

3.4. Generalities on Poisson-Lie groups

This section is a brief introduction to the theory of Poisson-Lie groups. Our terminol-
ogy follows that of [27]. Recall that a Lie group G endowed with a Poisson structure 7
is called a Poisson-Lie group if m is multiplicative, i.e. if the multiplication G x G — G
is a Poisson map (it also follows from this that the inversion map i: G — G is anti-
Poisson, i.e. i,m = —m). Assume that G is a Poisson-Lie group, and let & be its Lie
algebra. Then, by considering the left trivialization of the tangent bundle of G, one can
identify the bivector field © with a map G — & A &. Furthermore, one can show that
multiplicativity of 7 is equivalent to that map being a cocycle on G with respect to the
adjoint representation of G on & A &. If that cocycle is a coboundary, then G is called a
coboundary Poisson-Lie group. A Poisson-Lie group G is coboundary if and only if there
exists an element 7 € & A &, called the classical r-matriz, such that the Poisson tensor
T at every point g € G is given by

7= 3 (00— (0)7). ®

where \j and p, are, respectively, the left and right translations by g. Note that although
the bivector (8) is automatically multiplicative (since any coboundary is a cocycle), it
does not need to satisfy the Jacobi identity. The necessary and sufficient condition for
(8) to satisfy the Jacobi identity is a rather complicated equation in terms of # which
is usually replaced by simpler sufficient conditions, such as the modified Yang-Baxter
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equation. We will state this condition under the assumption that the Lie algebra & is
endowed with an invariant (under the adjoint action of G) inner product, in which case
one can identify the bivector 7 € & A & with a skew-symmetric operator r: & — &
(which is also called the r-matrix). In terms of that operator, the modified Yang-Baxter
equation reads

[ra,ry) = rlra,y) = rlz,ry) = ~[x,y] Va,y€®. ©)

It is well-known that this equation implies the Jacobi identity for (8). If the Lie algebra of
a coboundary Poisson-Lie group G is endowed with an invariant inner product, and the
corresponding r-matrix satisfies the modified Yang-Baxter equation (9), then G is called
factorizable. In what follows, we will be interested in one particular type of r-matrices
satisfying the modified Yang-Baxter equation:

Proposition 3.13. Let & be a Lie algebra endowed with an invariant inner product. As-
sume also that &, as a vector space, can be written as a direct sum of three subalgebras
G0, B, and Gg, such that [Bg, Bo] C Bso, [Bg, B o] C Bg, the subalgebras G-,
B g are isotropic, and By is orthogonal to both G~y and .. Then r := psg — p<o,
where psq, P<o are projectors & — G+, & — B_g respectively, satisfies the modified
Yang-Bazter equation, thus turning the group G of the Lie algebra & into a factorizable
Poisson-Lie group.

Proof. Direct verification of (9). O

Remark 3.14. Formula (8) for the coboundary Poisson-Lie bracket can be written in a
more explicit form when the Lie group G can be embedded, as an open subset, into
an associative algebra A (in a typical situation G coincides with the group of invertible
elements in A, e.g. the group of invertible matrices inside the algebra of all nxn matrices).
In this case, the Lie algebra of G and, more generally, the tangent space to G at any point
can be naturally identified with A. Assume also that A is endowed with an invariant inner
product, which in the context of associative algebras means that (xy,z) = (x,yz) for
any z,y,z € A (in particular, this inner product is invariant with respect to the adjoint
action of G C A on A). In that case the r-matrix can be thought of as a skew-symmetric
operator r: A — A, and identifying the cotangent space T;;G with the tangent space
TyG = A by means of the invariant inner product, one can rewrite formula (8) for the
corresponding Poisson tensor on G as

) = 5 ({rlea)vg) ~ rlam).on)) Vo€ Gny e (10)

The corresponding Poisson bracket is given by
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(1. £2)(0) = 5 ((rterad 710) - ). o) )
(1)
— (r(g-grad fi(g)), g - grad f2(9)>) ,

where the gradients are defined using the invariant inner product. Notice that the right-
hand side of this formula is actually defined for every g € A, i.e. invertibility of g is not
necessary. Therefore, this formula may be used to define a Poisson bracket on the whole
of A. This bracket is known as the second Gelfand-Dickey bracket on the associative
algebra A.

In what follows we will need the following standard facts about coboundary Poisson-
Lie groups:

Proposition 3.15. Let G be a Lie group endowed with a coboundary Poisson structure m
defined by r-matriz 7, and let g € G. Then the Poisson structure w vanishes at g if and
only if (Adg)«? = 7.

Proof. We have (Ady).7 = (p;')«(Ag)«7, 50 (Ady).7 = 7 if and only if (Ag).? = (pg)«7,
ie.my=0. O

Proposition 3.16. Let o: G — G be an automorphism of a coboundary Poisson-Lie group.
Assume that the differential of o at the identity preserves the r-matriz ©. Then o is a
Poisson map.

Proof. Since o is an automorphism, we have A, gy = oAgo ™" and p,(y) = opgo~!, so

To(g) = % ((Aa(gﬂﬂ‘ - (ﬂa<g>)*f> = % (0*(&7)*(01)*? — 0*(pg)*(01)*7‘> :

Since o preserves the r-matrix, the latter expression can be rewritten as

1 R .
5 <U*()‘g)*r - U*(Pg)*r) = 0xTg-

So, Ts(g) = 0«Ty, which means that o is a Poisson map. O

Proposition 3.17. Central functions on a coboundary Poisson-Lie group Poisson com-
mute.

Proof. Formula (8) is equivalent to

{10 22)00) =  (FOS0R 0 N a0) — o5 o). (o))

thfg S COO(G),g e d.
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But for central functions f1, fo we have fi o\, = fiop, = N;dfi(g) = pydfi(g) =
{fi,f2}=0. O

3.5. Existence and properties of the Poisson structure

In this section we prove Proposition 3.9 describing the Poisson structure on the group
I¥DO,, of n-periodic invertible pseudo-difference operators. To define that structure,
we will use the construction described in Proposition 3.13. The Lie algebra of the group
I¥DO,, is the space YDO,, of all n-periodic pseudo-difference operators. That is actually
an associative algebra in which I¥DO,, is embedded as the set of invertible elements.
That algebra has an invariant inner product defined by

<D17D2> =TrD:Dy VD, Dy € ¥YDO,, (12)

where the trace of an n-periodic pseudo-difference operator D is given by

o n
Tr E (IJ'T'Z = E ag,;-
j=k i=1

The product (12) is clearly non-degenerate and invariant in the associative algebra sense,
i.e. (D1, DyD3) = (D1D3,D3). Furthermore, one can explicitly verify that TrD; Dy =
Tr D3Dy, so the inner product (12) is symmetric. Alternatively, this can be showed by
using the isomorphism of ¥DO,, and the algebra Mat,, ® R((z)) of matrices over formal
Laurent series (see Remark 3.1). In the matrix language, the trace of an operator can
be written as Tr D = Res.—q (27'Tr D(z)), where D(2) is a matrix with coefficients in
R((z)) associated to the operator D.

Proof of Proposition 3.9. Represent the algebra ¥DO,, of n-periodic pseudo-difference
operators as the sum of three subalgebras &g, &g, G~ as follows. Let YDO,,(J) be
the vector space of pseudo-difference operators supported in J C Z. By definition, an
operator of the form (7) is supported in J if a; = 0 for all j ¢ J. Define

B0 = VDO, (Zo) = DO, (Zo), g :=¥DO,({0}) = DO, ({0}),
G- :=UDO,(Z~p),

where Z~q stands for positive integers and Z . for negative ones. This decomposition
clearly satisfies all the requirements of Proposition 3.13, so we get an r-matrix r :=
p>0 — P<o and hence a factorizable Poisson-Lie structure on IWDQO,,. This proves the
first statement of Proposition 3.9. To prove the second statement (invertible difference
operators supported in a subset J C Z consisting of consecutive integers form a Poisson
submanifold), we use formula (10). From that formula it follows that, when viewed as
map ¥DO,, — ¥DO,, the Poisson tensor np (where D € ITDO,,) reads
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mp(Q) = Dr(QD) — r(DQ)D. (13)

To show that the set IDO,,(J) C I¥DO,, of invertible difference operators supported in
J is a Poisson submanifold, one needs to prove that for D € IDO,,(J) the image of the
Poisson tensor (13) belongs to the tangent space to IDO,(J) at D. The latter is the
space DO,,(J) of all n-periodic difference operators supported in .J, so we need to show
that the operator (13) is supported in J whenever D is supported in J. To that end,
notice that the right-hand side of (13) stays the same if r is replaced by r £ Id. But the
image of r 4+ Id = 2p~¢ + po (where pg is the projector to Bg) is the space By + G~ of
operators which only have terms of non-negative power in T, so, rewriting (13) in terms
of r + Id, we get that

min supp 7p(Q) > minsupp D = min J.

Analogously, rewriting (13) in terms of r — Id, we get maxsupp 7p(Q) < maxJ. All in
all, we have supp 7p(Q) C [min J, max J] = J, as desired.

To prove the third statement (if J is one-point set, then the Poisson structure vanishes
on operators supported in J), notice that if D is supported in a one-point set, then
conjugation by D preserves the subalgebras &1 and &, as well as the inner product on
UDO,,. Therefore, it preserves the r-matrix, and 7 (D) = 0 by Proposition 3.15.

To prove the fourth statement (the left-right action is Poisson), we represent the left-
right action (5) as a superposition of two actions: one is of the same form, but with

periodic  and 3, while the other one is conjugation action D + yDy~!

, with quasi-
periodic . Then the former action is Poisson because the Poisson structure vanishes on
sequences, while the latter is Poisson because conjugation by sequences preserves &+,
B, and B, as well as the inner product, and hence is Poisson by Proposition 3.16. So,
the left-right action (5) is also Poisson.

Finally, the last statement of Proposition 3.9 (central functions Poisson commute)
directly follows from Proposition 3.17. So, Proposition 3.9 is proved. O

Remark 3.18. As central functions on I¥DO,,, one can take expressions of the form
[ij(D) :=Tr T™DJ, where i € Z,j € Z~o. An alternative way to get the same functions
is to consider the matrix-valued Laurent series D(z) corresponding to the operator D
(cf. Remark 3.8), and then take coefficients in z of the spectral invariants of D(z).

3.6. Relation to the GL,, bracket

One can compute Poisson brackets of coordinate functions on IWDO,, using formula
(11). The resulting expressions are quite complicated and involve infinite series. However,
only finitely many terms of those series are non-zero for every concrete pseudo-difference
operator. Moreover, for a difference operator whose support is small compared to the
period these series simplify to just one term. Below we explain how to compute the
brackets in this case by using the standard Poisson-Lie structure on GL,,.
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Recall that the standard Poisson structure on GL,, is defined using the construction
of Proposition 3.13 with .o, &+, B¢ being the lower nilpotent, upper nilpotent, and
the Cartan subalgebra respectively, see e.g. [10]. Explicitly, the brackets of the matrix
elements are given by

1 . .
{zij, o0} = §(Sgn(k —i) +sgn(l — j))ryryy,

where sgn(t) is +1if ¢t > 0, —1 if ¢ > 0, and 0 if ¢ = 0. In other words, for any matrix
entries a, b, ¢, d located at vertices of a rectangle as shown below:

we have
1 1
{a,b} = iab, {a,c} = 246 {a,d} =bc, {b,c} =0.

Since the relative position of b and d is the same as of a and ¢, while the relative position
of ¢ and d is the same as of a and b, we also have that

{b,d} = 1bd, {c,d} = 1cd.
2 2
We now explain the relation between the bracket on difference operators and the GL,
bracket. Consider the algebra ¥DO,,(Z>¢), where Z>¢ = Zso U {0}, of n-periodic
upper-triangular pseudo-difference operators. Any such operator D = Zjﬁg a;T7 can be
represented by a bi-infinite upper-triangular matrix

aog,i—1 G15—-1
ag,q aiq

)

ap,i+1 G141

Let ®;(D) be the n x n submatrix of this matrix which has the element ag; in its upper
left corner.

Proposition 3.19. Each of the mappings ®;: YDO,,(Z>¢) — Mat,, takes the Poisson
structure m on YDO,,(Z>¢) to the standard Poisson structure on Mat,.

Remark 3.20. Technically, we have defined Poisson structures only on invertible pseudo-
difference operators and invertible matrices. However, since both pseudo-difference op-
erators and matrices form associative algebras, the Poisson structures in fact extend to
non-invertible elements (see Remark 3.14).
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Remark 3.21. This proposition is saying that one can compute Poisson brackets of dif-
ference operator coefficients by sliding an n x n window through the operator matrix. If
the support of the operator is not too big compared to the period, then the size of the
window is big enough to fit any pair of the coefficients, so all Poisson brackets can be
computed in this way.

Example 3.22. Consider the space of operators of the form a + b7". This corresponds to
bi-infinite bi-diagonal matrices

a; b

ait1 bt

If n = 1, then we cannot use the n X n window to compute all the brackets. For n > 2,
Proposition 3.19 gives

1 1
{ai bi} = Eaibu {bisaiv1} = §biai+17 (14)
while all other brackets are either obtained from these by shift of indices or vanish.

Example 3.23. Consider the space of operators of the form a + bT + ¢T'?. The matrix of
such an operator is

Qi1 bi+1 Cit+1
Aj42 bi+2 Ci42

For n > 3, Proposition 3.19 gives
1 1 1 1
{aibi} = §aibia {ai,ci} = 5(11'01', {bi, ci} = Ebicia {bi,ait1} = 551'(114-1,
1 1
{bi,biv1} = aizici, {ci,biq1} = §Cibi+1a {ei,aira} = 5Cilit2-
The proof of Proposition 3.19 is based on the following lemma.
Lemma 3.24. Consider the space Mat,, ® R[[z]] of formal matriz power series endowed

with the trigonometric r-bracket, and the space Mat,, endowed with the standard bracket.
Then the mapping
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‘1): Ma’tn ® RHZH — Mat?ﬁ o <Z Azzz> = AO7
=0

taking a matriz power series to its constant term is a Poisson map.

Remark 3.25. The trigonometric r-bracket on the space Mat,, ® R((z)) of formal matrix
Laurent series is defined using the construction of Proposition 3.13, where &~ consists
of matrix power series with nilpotent upper-triangular constant term, &y consists of
matrix polynomials in z~! with nilpotent lower-triangular constant term, while &, is
the space of constant diagonal matrices. The invariant inner product on Mat,, ® R((2))
is defined by

(A(2), B(2)) = Res.—o (%Tr A(z)B(z)) .

Proof of Lemma 3.24. The mapping ® is well-defined on the whole space Mat, @ R((2))
and maps both the r-matrix and the inner product on the latter space to the corre-
sponding objects on Mat,,. Also notice that for any function f € C°°(Mat,,), we have
grad ®* f € Mat,, ® R[[z]]. Indeed, the function ®* f is constant on the subspace

Ker ® = {iAiz’} ,
i=1

so grad®*f € (Ker®): = Mat,, ® R[[z]]. Furthermore, since ® preserves the inner
product, we have ®(grad (®*f)(A)) = grad f(P(A)). Now, take two functions fi, fo €
C*°(Mat,,). Then the Poisson bracket of their ®-pullbacks at a point A = A(z) € Mat,, ®
R[[z]] is given by formula (11):

(<r<grad * f1(A) - A), grad & fo(A) - A)

N =

{@*f1, 2" f2}(A) =
— (r(A-grad ®* f1(A)), A - grad @*fg(A))) .

Using that both A and the gradients of f1, fo belong to Mat,, ®R[[z]], while the restriction
of ® to Mat,, ® R][z]] is a homomorphism of associative algebras preserving the inner
product and the r-matrix, this can be rewritten as

(81,8 23(4) = 5 ((rerad A(@(A)) - B(), grad fa(2(0) - B(4)

— (r(®(A) - grad f1(®(A))), ¢(A) - grad fz(‘I)(A))>> ;

which is exactly the Mat,, bracket of the functions fi, fo at the point ®(A). Thus, the
mapping P is indeed Poisson, as claimed. 0O
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Proof of Proposition 3.19. In the loop algebra language, the space ¥DO,,(Z>¢) of upper-
triangular n-periodic pseudo-difference operators is the space of formal matrix power
series of the form A(z) = Y ;o) A;z", where Ay is upper-triangular. The infinite matrix
corresponding to such power series is

Ao Ay
Ao Ay

with upper-left corners of Ay blocks located at positions (jn + 1,jn + 1), j € Z. Thus,
the mapping ®; takes A(z) to Ay and is, therefore, a restriction of the mapping ® from
Lemma 3.24. So, ®; is a Poisson map. Furthermore, we have ®;,1 = ®; o Ady, where
Ad7(D) := TDT~!. Therefore, since Adr is also a Poisson map (by Proposition 3.9,
item 3), it follows that all ®;’s are Poisson, as desired. 0O

3.7. The subgroup of sparse operators

We say that a pseudo-difference operator is k-sparse if its support is an arithmetic
progression with step k. For example, the operator ' +T + T3 +T° + ... is 2-sparse.
Denote the set of invertible k-sparse pseudo-difference operators by I¥DO,,(kZ + *).
This is a Lie subgroup of I¥DO,,, whose Lie algebra is the space ¥DO,,(kZ) of pseudo-
difference operators supported in kZ. It is not, however, a Poisson submanifold and
hence not a Poisson-Lie subgroup IWDOQO,,. One can, however, define a different Poisson
structure on I¥DO,, (kZ + *), which has all the same properties as the Poisson structure
on IWDO,, described above. More precisely, we have the following:

Proposition 3.26. There exists a natural Poisson structure %) on the group IWDO,, (kZ+
%) of invertible k-sparse pseudo-difference operators. It has all the same properties as the
Poisson structure w described in Proposition 5.9, except for the second property which is
replaced by the following: if J C Z is an arithmetic progression with common difference k,
then IDO,,(J) is a Poisson submanifold of IWDO,,(kZ + ).

Proof. This Poisson structure is given by the following decomposition of the Lie algebra
UDO,,(kZ):

G0 :=UDO,(kZ o), &o:=TDO,({0}), &g :=¥YDO,(kZo).

All necessary properties are established in the same way as in the proof of Proposi-
tion 3.9. O

Remark 3.27. A more constructive way to describe the Poisson structure 7*) is as follows.
When n and k are coprime, there is a group isomorphism I¥DO,,(kZ) ~ I¥DO,, given
by the action of I¥DO,,(kZ) on eventually vanishing sequences whose non-zero entries
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are contained in an arithmetic progression with common difference k. Explicitly, this
isomorphism is given by

S T o 3,7, (15)

where @;; = akjk; (note that this is only an isomorphism when n and k are coprime;
otherwise, this map is neither injective nor surjective). The Poisson structure 7(*) can
be defined as the pull-back of the structure = by this isomorphism. Furthermore, 7(*)
uniquely extends to the whole group I¥DO,,(kZ + x) if we require that the resulting
structure is invariant under multiplication by T'. This gives a structure which coincides
with the one described in the proof of Proposition 3.26. Furthermore, this construction
can also be applied when n and & are not coprime, in which case I¥DO,,(kZ) is iso-
morphic to a product of m := gcd(n, k) copies of I¥DO,, /,,,. The corresponding m maps
IWDO, (kZ) — I¥DO,,,, are given by (15) with a;; = ax; ri1, where [ =0,...,m — 1.
Example 3.28. Consider sparse operators of the form a + bT2. The Poisson bracket 7(?)
on such operators may be obtained from the bracket = on operators of the form a + bT
using the following mnemonic rule (justified by Remark 3.27): take the formulas (14) for
brackets on a + b1 and replace all indices of the form i 4+ j with ¢ + 2j. This gives

1 1
{ai,bi} = §aibia {bi,air2} = §biaz’+2-
4. General refactorization maps associated with pairs of arithmetic progressions
4.1. The main theorem

In this section we describe a class of maps parametrized by pairs of finite arithmetic
progressions Ji C Z with the same common difference. For disjoint J. these maps
coincide with pentagram maps on J-corrugated polygons described in Section 2. All
these maps, regardless of whether J. are disjoint, admit a refactorization description in
terms of the group I¥DO,, of periodic pseudo-difference operators. As a corollary, all
such maps admit an invariant Poisson structure and a Lax representation with Poisson-
commuting spectral invariants. Therefore, one should expect that all these maps are
both Liouville and algebraically integrable. In order to actually prove that, one needs to
accurately verify certain technical conditions, which is beyond the scope of the present
paper.

Recall that the pentagram maps defined in Section 2 act on the space P, (J) / PGL of
twisted J-corrugated n-gons modulo projective transformations, where J := J, U J_ is
the union of two disjoint finite arithmetic progressions Jy with the same common differ-
ence. By Proposition 3.3, that space can be identified with the space PBDO,,(J)/ H x H
of properly bounded n-periodic difference operators supported in J modulo the left-
right action (5) of the group H x H of pairs of non-vanishing n-quasi-periodic se-
quences with the same monodromy. Furthermore, decomposing a difference operator
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D € PBDO,,(J) into a sum D4 + D_, where D1 € DO, (J1) are difference operators
supported in Ji, one can identify a dense subset in the quotient PBDO,,(J)/ H x H
with PBDO,,(J4) x PBDO,(J_)/ H x H, where H X H acts on both factors by the
stmultaneous left-right action (this identification is only possible for a dense subset of
PBDO,,(J) / H x H because the operators Dy may not be properly bounded even if D is).
Thus, our pentagram maps, considered on sufficiently generic polygons, can be thought of
as transformations defined on the left-right quotient PBDO,,(.J;. ) x PBDO,,(J_) / H x H,
with J4 being disjoint. Note, however, that the latter quotient is well-defined regardless
of whether the sets J are disjoint. Below we describe certain dynamics on that quotient
which in the disjoint case coincides with the pentagram dynamics.

An alternative way to think of the space PBDO,(Jy) x PBDO,(J-)/H x H
is to identify it with the quotient PBDO,(J_)"'PBDO,(J;)/Ad H, where
PBDO,,(J_)"'PBDO,,(J4) is the space of rational pseudo-difference operators of the
form D~'D, with D. € PBDO,(J+), and Ad H stands for the conjugation action of
the group H of n-periodic non-vanishing scalar sequences. The identification between
the two spaces is done via the map Di — D-'D,, which we will show to be almost
everywhere bijective.

One last ingredient that we need to state the main result is a Poisson structure on our
phase space PBDO,,(J+) x PBDO,,(J_) / H x H (which, in the disjoint case, is the space
of polygons). That structure is constructed as follows. Let k& be the common difference
of Ji. Define a Poisson structure on PBDO,,(J4) as the restriction of the structure
7*) on k-sparse operators (see Proposition 3.26). If k = 1, that is just the standard
structure on pseudo-difference operators (see Proposition 3.9). Further, on PBDO,,(J_),
take the restriction of the same Poisson structure, but with an opposite sign. This endows
PBDO,,(J4+) x PBDO,,(J_) with a product Poisson structure. Furthermore, the quotient
PBDO,,(J+) x PBDO,,(J_) / H X H inherits the Poisson structure because the left-right
action is Poisson.

The following theorem is the main result of the paper.

Theorem 4.1. Let J. C Z be a pair of non-empty finite arithmetic progressions with
the same common difference. Consider the space PBDO,,(J;) x PBDO,,(J_) of pairs
(D4, D-) of n-periodic properly bounded difference operators supported in J, J_ respec-
tively. Consider also the multivalued map of that space to itself that assigns to D4 new
difference operators D+ defined by the equation

D,D_=D_D,. (1)
Then the following is true.

1. This map D+ — Dy descends to a generically defined single-valued transformation
U ;. of the quotient PBDO,,(J+) x PBDO,,(J_) / H x H, where H X H is the group
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of pairs of non-vanishing n-quasi-periodic sequences with the same monodromy acting
by the simultaneous left-right action (5).

2. If the progressions Jy are disjoint, then the so-obtained map ¥ ;. coincides with the
pentagram map associated with Ji.

3. The mapping

PBDO,,(J;) x PBDO,(J_)/ H X H — PBDO,,(J_) 'PBDO,(J;)/AdH (16)

taking the left-right orbit of a pair D4 to the H-conjugacy class of the pseudo-
difference operator D_"D, is generically a bijection. This bijection identifies the
map ¥ ;. with the following refactorization dynamics on conjugacy classes:

L:=D'D, — L:=D,D"". (17)
In other words, the mapping ¥ j,_ has a Lax representation
L+~ DLLDT. (18)

4. The mapping VU, is Poisson.
5. Suitably normalized central functions on the space of Lax operators L are Poisson
commuting first integrals of Wy, .

Remark 4.2. Here is what we mean by normalization of central functions. Recall that as
central functions on the group I¥DO,, of n-periodic pseudo-difference operators one can
take functions of the form f;;(£) := Tr T L7, where i € Z,j € Z~¢ (see Remark 3.18).
Upon conjugation of £ by a quasi-periodic sequence o« € H with monodromy z, the
function f;; transforms as

fij(ozﬁofl) =TrT"alia ™! = 2 TraT™ Lo = Zifij(ﬁ)-

Thus, the functions f;; do not descend to the quotient of Lax operators by the conjugation
action of H. One can, however, consider Laurent monomials of those functions that are
invariant under the H-action and hence descend to the quotient.

Remark 4.3. As explained in Remark 3.8, periodic pseudo-difference operators can be
identified with matrices over the field R((z)) of formal Laurent series. Thus, (18) can be
viewed as a Lax representation valued in Mat,, ® R((z)), i.e. a Lax representation with
spectral parameter (in fact, since £ is defined as a quotient of two difference operators, the
corresponding matrix £(z) is not just a formal Laurent series but a rational function of z).
Note, however, that since £ is only defined up to conjugation by quasi-periodic sequences
a € H, the corresponding z-dependent matrix £(z) is not uniquely defined. Namely,
conjugation by periodic sequences translates to conjugation by z-independent diagonal
matrices, while conjugation by a quasi-periodic sequence «; defined by oy ; := tLi=1)/n]
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(where | | is the floor function) becomes the action £(z) — L(tz). Since H is the direct
product of periodic operators and the subgroup {a; | ¢ € R*}, it follows that the Lax
matrix £(z) is defined up to transformations of the form L£(z) — AL(tz)A™!, where A
is a constant invertible diagonal matrix.

Example 4.4. For the classical pentagram map, the matrix Lax representation is given
by

a1 0 c1
D+ = )
An—2 0 Cn—2
Cn—1% an—1 0
0 CnZ Qn
0 by 0 dy
D_ = 0 b’ﬂ73 0 dnfg ,
dn,QZ 0 bn,Q 0
0 dn,12 0 bnfl
bnz 0 dpz 0

L:=D_'Dy, L=D,LD;",

where £ is determined by a polygon up to conjugation by constant diagonal matrices
and rescaling z — tz, and DL are determined by £ up to simultaneous left multiplication
by diagonal matrices.

One can also characterize first integrals of the maps ¥ ;, provided by Theorem 4.1 as
follows:

Corollary 4.5. The characteristic polynomial P(Dy+wD_, z) of the monodromy of Dy +
wD_, defined up to transformations of the form z — tz and a constant factor, is invariant
under the map ¥, .

Proof of Corollary 4.5. Let Dy (z),L(z) be the loop group elements corresponding to
the operators D+ and L respectively. Then, by Theorem 4.1, the map ¥, preserves the
central function

det(D4(2) + wD_(z))
det D_(z2)

det(L(z) + wld) = det(D=*(2)D, (2) + wld) =

defined up to transformations of the form z — ¢z, cf. Remark 4.3. Using Proposition 3.2,
we can further rewrite this as
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cP(Dy +wD_, 2)
P(D_,z)

det(L(z) + wld) = z k:=min(J_ U J;) —minJ_.
The fraction in the right-hand side is generically irreducible, so both its numerator and
denominator must be preserved by ¥ _, up to a constant factor. O

Remark 4.6. In Section 4.2 we use Corollary 4.5 to show that in the known cases of inte-
grability our first integrals coincide with the known ones. Furthermore, one can show that
our Poisson structures also coincide with the familiar ones in those cases where a Poisson
structure was previously known, namely for the classical pentagram map, leapfrog map
(see Remark 4.7 below), as well as for pentagram maps on corrugated polygons. For
short-diagonal and dented maps no invariant Poisson structures were previously known.
In Section 4.3 we derive, as an example, explicit formulas for the Poisson structure of
the short-diagonal map in 3D.

Remark 4.7. For J,. NJ_ # (), the geometric meaning of the maps ¥, is not known. The
only case which we were able to identify with a familiar integrable system is J. = {—1, 0},
J_ = {0,1} (and, more generally, J, = {k — 1,k}, J_ = {k,k + 1} which correspond
to the same map up to a shift indices). In that case, the map ¥, is the leapfrog map
of [9], also known as the discrete relativistic Toda lattice [31]. The phase space of the
leapfrog map is, by definition, the space of pairs of twisted n-gons in RP! with the same
monodromy, considered up to simultaneous projective transformations. One can lift such
two polygons to two bi-infinite sequences V,™,V; of vectors in R?, and then construct
two operators D_ and D, supported in J; = {—1,0} and J_ = {0, 1} respectively such
that (D_ + D)V~ =0 and D_V~ = V. This identifies the space of pairs of twisted
n-gons in RP! with the same monodromy, considered up to simultaneous projective
transformations, with the left-right quotient PBDO,,(J+) x PBDO,,(J_-) / H x H, while
the leapfrog map gets identified with the map W, . The only proof of this we were able
to find consists of expressing both maps in coordinates. However, we do believe that it
should be possible to directly identify equation (1’) with the geometric “leapfrogging”
definition, similarly to how we identify it with pentagram-type dynamics in the case of
disjoint J..

To prove Theorem 4.1 we essentially repeat the argument we used to prove Theo-
rem 1.1, filling in technical details. We begin with a few lemmas.

Lemma 4.8. Let D, D' be n-periodic difference operators with the same support, and let D
be properly bounded. Assume that Ker D' D Ker D. Then there is an n-periodic sequence
a such that D' = oD.

Proof. Without loss of generality, assume that D and D’ are supported in {0,...,d}.
Let « be the leading coefficient of D’ divided by the leading coefficient of D. Then the
difference operator R := D’ — oD is supported in {0,...,d — 1} and annihilates the
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kernel of D. Let us show that such an operator must be zero. Assume R # 0. Then
there is £ € R® and ¢ € Z such that (RE); # 0. Further, since D is properly bounded of
degree d, there is £ € Ker D such that éj =¢; forall j € {i,...,i+d—1}. Then, on one
hand, since KerR D Ker D, we have Ré = 0. On the other hand, since éj = ¢&; for all
je{i,...,i+d—1} and R is supported in {0, . ..,d—1}, we have that (RE); = (R€); # 0.
So we indeed must have R = 0 and D’ = oD, as desired. O

Lemma 4.9. Let D1 € PBDO,,(J+) be operators with trivially intersecting kernels. As-
sume also that Dy € PBDO,,(J+) are properly bounded operators satisfying (1°). Then,
for any other operators D', € DO,,(J+) satisfying (1°), there exists an n-periodic sequence
o such that D', = aDx.

Proof. First assume that Dy € DO, (J+) is any solution of (1’). Then, applying both
sides of (1’) to any £ € Ker D, we get Z~)+D,§ = 0, meaning that

KerD, D D_(KerDy). (19)

Now assume that D is properly bounded. Then dim Ker D, = dim Ker D, . At the same
time, since Ker Dy NKerD_ = 0, it follows that dim D_(KerD;) = dim Ker D,.. So,
the dimensions of both sides of (19) are the same. Thus, for any solution of (1’) we have
inclusion (19) while for properly bounded solutions the inclusion becomes an equality.
That means that if D4 is a properly bounded solution, and f);[ is any other solution, then
Ker @ﬁr O Ker D, So, by Lemma 4.8 we have @Qr = /D, for some periodic sequence .
But then, using that both pairs D, @;E solve (17), we get

D' =D,D_D;'=aD;D_D;' =aD_.
So, f)’i = oDy, as desired. O

Lemma 4.10. There exists a Zariski open and dense subset A(Jy) C PBDO,(J;) X
PBDO,,(J_) such that for any (D4,D_) € A(Jx) equation (1) admits a solution
(D4, D_) € PBDO,,(J;) x PBDO,,(J_). Moreover, this solution is unique up to multi-
plying both Do and D_ by the same periodic sequence on the left.

Proof. Let A" C PBDO,(J;) x PBDO,,(J_) be the set of pairs Dy such that (1’) has
a unique solution (Dy,D_) € DO, (J) x DO, (J_) with monic D, (which means that
the leading coefficient of D is equal to 1). This set is Zariski open. Indeed, solving (1°)
for D4 with D, monic is equivalent to a linear system. The number of indeterminates in
that system is the number of unknown coefficients of Dy multiplied by the period, that is
n(|J4| +|J-|] — 1). At the same time, since both sides of (1’) are operators supported in
the Minkowski sum J4 +J_, the number of equations is n|Jy + J_|, which, for two arith-
metic progressions with the same common difference is also equal to n (|J4| + [J—| — 1).
So, we have a linear system where the number of unknowns is the same as the number
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of equations, and uniqueness of the solution is equivalent to non-vanishing of the deter-
minant. That determinant is a polynomial in coefficients of D4, so the set A’ is Zariski
open.

Now, define A C A’ as the set of those pairs Dy that belong to A’ and have
the property that the unique solution (D4,D_) of (1°) with monic D, belongs to
PBDO,,(J+) x PBDO,,(J-). This set is also Zariski open. Indeed, as we just saw, the
unique solution of (1) with monic Dy comes from an m x m linear system with co-
efficients being polynomials in D4. So, the solution is properly bounded when certain
rational functions do not vanish, which means A is Zariski open in A’ and hence in
PBDO,,(J+) x PBDO,(J_).

We now show that the set A is not empty. To that end, assume that Dy € PBDO,,(J4)
are operators with constant coefficients such that Ker Dy N KerD_ = 0 and Dy is
monic. Then, since D1 have constant coefficients, they commute with each other, which
is equivalent to saying that Dy := Dy solve (17). That solution has monic Z~?+ and,
moreover, there are no other monic solutions. Indeed, by Lemma 4.9 any other solution
must be of the form Dy = oDy, so if 75+ is monic then o = 1 and Dy = D. Therefore,
for D4 as described, equation (1) admits a unique solution with D, is monic, and that
solution is properly bounded. But that means (Dy,D_) € A, as desired.

So, the set A is Zariski open and non-empty, hence open and dense. Now, to complete
the proof, it suffices to show that for any (D4, D_) € A(Jx) the solution (D, ,D_) €
PBDO,,(J;) x PBDO,,(.J_) of equation (1) is unique up to multiplying both D by the
same periodic sequence on the left. Indeed, if there were two solutions not related in
this way, then dividing them by the leading term of 15+ we would obtain two different
solutions with monic 15+. But that is not possible by construction of A. Thus, the set
A(Jy) := A satisfies our requirements. 0O

Lemma 4.11. There exists a Zariski open and dense subset B(Jy) C PBDO,(J;) X
PBDO,,(J_) such that for any (D4, D_) € B(J+) the pseudo-difference operator D-'D,
has a unique representation as a left quotient of operators supported in Ji, up to multi-
plying both Dy and D_ by a periodic sequence on the left.

Proof. Recall that duality D — D* is an anti-automorphism of the algebra of difference
operators that is uniquely determined by requiring that a scalar sequence is self-dual,
and T* = T~!. In other words, the dual of an operator D = >_ a;T" is

* —1 ~ —1 ~
D* = E T a; = E aiT y Qi 5 = Qj 5—i-

This corresponds to transposition of the operator matrix and can be thought of as
operator duality with respect to the formal L? inner product on R*>. Also note that the
dual of a properly bounded operator supported in J C Z is a properly bounded operator
supported in —J :={—j|j € J}.

Let x: PBDO,(J;) x PBDO,(J-) — PBDO,(—J;+) x PBDO,,(—J_) be the map
that takes (D4, D_) to (D%, D*). Let also ¢, : A(J+) — PBDO,(J;) x PBDO,,(J-)
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be the map which takes a pair (D4, D_) to the unique monic properly bounded solution
(D4, D_) of equation (1°). As we saw in the proof of Lemma 4.10, that is a rational map.
Consider now the map

Uy, = k0t g, ok A(—Ji)* — PBDO,(J4) x PBDO,(J-),

where A(—J1)* = *(A(=Jx)), and let B := (¢5, )" (As.). Then B is Zariski open
as the preimage of a Zariski open set under a rational map. Furthermore, B is non-
empty. Indeed, let D1 € PBDO,,(—J+) be operators with constant coefficients such that
KerDy NKerD_ = 0 and Dy is monic. Then (Dy,D_) € A(-J4), so (Di,D*) €
A(—Jx)*. Furthermore, we have

¢y, (DL, D2) = (D4, D),

so (D},D*) € B. Thus, the set B(J+) := B is Zariski open and non-empty, and to
complete the proof it suffices to show it satisfies the unique factorization requirement.
To that end, assume that (D4, D_) € B, and DZ'D, = (D")~'D/, for some operators
't € PBDO,(J4+). Since (D4, D_) € B, we have that (D’ ,D*) € A(—J), meaning
there exists a unique pair of operators Dy € PBDO,,(—J1) with Dy monic such that

D,D* =D_D. (20)

Moreover, by definition of B we have (D%, D*) € A(J4). Now, taking the dual of (20)
we get

D_D} =D,D* = DY (D) '=D'D, = (D.)"'D, = D.D; =D, D*.

So, since (ﬁj_,f?*_) € A(Jy), by Lemma 4.10 we have D', = oDy for some periodic
sequence «, as required. O

Proof of Theorem 4.1. We begin with the first statement of the theorem (equation
(1") defines a generically single-valued map ¥ ;, of the left-right quotient to itself).
By Lemma 4.10, for generic D+ € PBDO,(J+) equation (1’) has a solution Dy €
PBDO,,(J+) which is unique up to multiplying both D on the left by some n-periodic
sequence «. Thus, that equation defines a generically defined and generically single-
valued map from the space PBDO,,(J) x PBDO,,(J_) to its left quotient by the group
Hy := IDO,({0}) C H of non-vanishing n-periodic sequences. To show that this map
descends to the left-right quotient, it suffices to check that if the preimages are in the
same left-right orbit, then so are the images (note that the left-right action is still defined
on the left quotient by Hy, although it is not faithful). Assume that (1’) takes a pair Dy
to the Hy-orbit of D.. Take another element of the left-right orbit of D.. That has the
form oDy ! for some quasi-periodic sequences a, 3 with the same monodromy. Then
(1') has a solution given by #Dra~'. So, indeed elements of the same left-right orbit
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are mapped to elements of the same left-right orbit, proving the first statement of the
theorem.

The proof of the second statement (for disjoint Ji the maps ¥ ;, coincide with
pentagram maps on J-corrugated polygons) repeats, word for word, the proof of the
corresponding part of Theorem 1.1, so we proceed to the third statement (the map ¥,
can be identified with refactorization dynamics on rational operators). First, we need to
show that the map (16) given by D1 — D~'D, is generically a bijection. It is clearly
surjective by definition of the codomain, so it suffices to prove injectivity. That is, we
need to show that if D-'D_ is H-conjugate to (D'_)~'D’,, then for generic Dy the pairs
Dy and D/, are in the same left-right orbit. To that end, assume that

DDy =a (D) 'Dia=(D.a) 'D,a

for some periodic sequence o« € H. Then, for generic D1, by Lemma 4.11 we have
D' a = pD4. But that precisely means that the pairs Dy and D/, are in the same
left-right orbit, as desired.

Now that we know that (16) is a bijection, we show that it identifies ¥ ;, with refac-
torization dynamics. Indeed, (17) is equivalent to

ﬁ:1ﬁ+ = D+D:1, (27)

which precisely means that the operator £ := D-'D, associated with D is obtained
from the operator £ := D_'D, associated with D1 by means of refactorization (17).

To prove the fourth statement (the mapping ¥, is Poisson), depict (2’) as the fol-
lowing commutative diagram:

'
PBDO,(J+) x PBDO,(J_) /H % H —— PBDO,(J4) x PBDO,(J_) /H % H

D, D! DDy

PBDO,,(J_)"'PBDO,,(J,)/Ad H

Note that the left diagonal arrow is well-defined because by Lemma 4.10 almost every
right quotient D, D~" can be rewritten as a left quotient D~*D_, so

PBDO,,(J;)PBDO, (J_)"*' = PBDO,(J_)"'PBDO,(J),

up to Zariski closed subsets (Lemma 4.10 is only one containment direction, while
the opposite one can be proved by applying the lemma to dual operators, as in
Lemma 4.11). Furthermore, the diagonal arrows are Poisson, since multiplication in
I¥DO,, is Poisson, inversion is anti-Poisson, and the Poisson structure on the space
PBDO,,(J+) x PBDO,,(J_) of pairs of operators is defined by reversing the structure on
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the factor corresponding to D_. Also notice that by item 3 the right diagonal arrow is
generically invertible. So, ¥;, is a composition of Poisson maps and hence Poisson, as
stated.

Finally, we prove the fifth statement (central functions of £ are Poisson-commuting
first integrals of the map ¥ ;. ). Central functions on I¥DO,, applied to £ are preserved
by the map ¥;, due to representation (18) so it suffices to prove that they commute.
More precisely, we need to establish Poisson commutativity for the pull-backs of central
functions on I¥DO,, by the map (16). But that follows from commutativity of central
functions on I¥DO,, along with the fact that (16) is a Poisson map (proved in item 4).
So, Theorem 4.1 is proved. O

4.2. Scaling invariance

Most of the known constructions of first integrals and Lax representations for
pentagram-type maps are based on scaling symmetries. A scaling symmetry is a 1-
parametric group of transformations of the polygon space which commutes with the
pentagram map. In most cases such symmetries were guessed by studying explicit for-
mulas for the corresponding map, and their geometric meaning is not known. The aim
of this section is to show that the scaling symmetry is an immediate corollary of our
construction.

Proposition 4.12. The map V;,, described in Theorem j.1, commutes with a 1-
parametric group R, of transformations which is defined, in terms of difference op-
erators, as

D+,D_ r—>D+,wD_. (21)
In terms of the Lax operator, this transformation is simply rescaling:
L(z) = w L(2). (22)

Remark 4.13. Transformation (21) commutes with the left-right H x H action (5) (while
(22) commutes with the conjugation action) and hence can be viewed as a map from the
space PBDO,,(J;) x PBDO,,(J_)/ H X H (which is where the map ¥, is defined) to
itself.

Proof of Proposition 4.12. Indeed, the defining equation (1) of the map ¥z, is invariant
under the transformation D_ — wD_, D_ +— wD_, while the Lax form (18) is invariant
under rescaling. O

Proposition 4.14. In the case of the classical pentagram map, as well as in short-diagonal
and dented cases, transformations R, defined in Proposition j.12 coincide with scaling
transformations introduced for these maps in [29,16,17].
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Proof. The proof is achieved by introducing coordinates on the polygon space and
rewriting the scaling symmetry in those coordinates. As an example, let us consider
short-diagonal maps in RP?* (the proof in other cases is analogous). This corresponds
to Jy = {0,2,4,...,2k}, J- = {1,3,5,...,2k + 1} (see Table 1). The phase space
of the associated short-diagonal map is the space P,(J)/PGL, with J = J, U J_ =
{0,...,2k + 1}, of arbitrary (twisted) polygons in RP?*, modulo projective equivalence.
In terms of difference operators, it is the space of operators supported in J and consid-
ered modulo the left-right action (5) of H x H. As can be seen from [16, Section 3.2], as
well as from [21, Section 8.2], if ged(2k + 1,n) = 1, then every orbit of the H x H action
has a unique representative of the form

2k
D=1+ a;T7 — T (23)

j=1
Thus, one can take entries of the sequences a;,j = 1,...,2k, as coordinates on the

polygon space. To write our scaling transformation R, in these coordinates, we need to
apply it to operator (23), which gives

2k—1 2k
D=1+ Y wa;TV 4+ a;T7 — wT*, (24)
j=1 j=2

and then normalize, i.e. find an operator D of the form (23) which belongs to the same
orbit of the H x H action as (24). Note that since the constant term of D’ is already
of necessary form, it remains to normalize the coefficient of T2**1  which can be done
using only the conjugation action of H. The condition for aD’a~!, where o € H, to have
coefficient of T2%*1 equal to —1 is a;jex110; ' = w. This has a quasi-periodic solution
a; = A", where X is such that \2**1 = w. Computing D = aD’a~! with such «, we find
that its coefficients aj are given by

P —Jg . — \2k+1-j .
a; =wA Ja; = A a;
when j is odd, and
5= \"Jg.
a; = \""a;

when j is even. Upon a parameter change s = A\=2 = W™ TR , this coincides with formulas
for the scaling given in [16, Section 9]. O

Remark 4.15. In [16], the invariance of short-diagonal maps under scaling was only estab-
lished in dimensions < 6, while the general case was proved in [19]. With our definition,
the invariance of pentagram maps under scaling is immediate.



A. Izosimov / Advances in Mathematics 404 (2022) 108476 35

Corollary 4.16. For the classical, as well as short-diagonal and dented maps, first integrals
obtained from our construction coincide with the ones obtained in [2/,16,17].

Proof. Indeed, according to Corollary 4.5, our integrals can be interpreted as spectral
invariants of the monodromy for polygons obtained from the initial one by means of
scaling R,,. But this is exactly the definition of first integrals in [24,16,17]. O

Remark 4.17. For corrugated maps of [9] our first integrals also coincide with the known
ones. In fact, one can show more: for these maps, our refactorization description (17) is
equivalent to the one given in [9, Proposition 4.10]. The refactorization description of
[9] looks more complicated because it is given in terms of actual loop group elements
(equivalently, pseudo-difference operators) A;(z), A2(z), as opposed to elements of the
quotient by the H x H action. Rewriting refactorization on the quotient as operator
refactorization involves choosing a section of the action, which complicates the resulting
formulas.

4.3. Poisson brackets for the short-diagonal map in 3D

In this section we derive explicit formulas for Poisson brackets preserved by the short-
diagonal pentagram map in 3D. The corresponding sets Jy are J; = {—2,0,2}, J_ =
{-=1,1} (the choice J4 = {0,2,4}, J_ = {1, 3} indicated in Table 1 leads to the same
map up to the shift of indices and hence gives rise to the same Poisson bracket). The
phase space of the associated map is the space of all twisted n-gons in RP? modulo
projective equivalence. We coordinatize that space as in [16, Section 5.2], namely we
assign to a twisted n-gon {v; € RP3} three periodic n-sequences z;,y;, z; defined as the
following negative cross-ratios:

Tj i = —[Vit4, Vits, (Vi, Vig1, Vig2) N (Viga, Vigs)s (Vig1, Vig2, Vig3) N (Viga, Vigs)],
Yi = —[Vi, Vit 1, (Vit2, Vits, Viga) 0 (i, Vig1), (Viga, Vigd, Vigs) O Vi, Vig1)],
2 1= —[Vigd, Vits, (Vis Vi1, Vig3) N (Viga, Vigs), (Vig1, Viga, Vigs) 0 (Viga, Vigs)].

Proposition 4.18. In these coordinates, the Poisson structure for the short-diagonal pen-
tagram map in RP3 takes the following form:

{xi, Ii+1} = TiTi+1, {l“i, $i+2} = TiTi2Wi41, {yu yi+2} = YiYi+2Wi+1, {Zi, Z¢+2} = ZiZi4+2W;

{zi,vi—2} = wiyiowi—1, {2, yit2} = —TiYir2wit1,
{ri,zic1} = wizici(wicy — 1), {xe, zig1} = xizigr,  {®i, zig3} = —®izigswiga,
{vizic1} = vizica(l —wi—1),  {yi, ziv1} = —vizit1, {¥i, zi43} = Yizirawits,

where w; = Y;j+12;.
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Proof. A direct computation shows that for any difference operator D = aT 24+ b7~ +
¢+ dT + eT? representing the polygon {v;}, the coordinates x;,v;, z; can be expressed
in terms of coefficients of D as follows:

Cit1€; aiy1d; bit1€;

Tij—2 = — s i—2 = — ) Ri—2 = — . 25
' didit1 vi bicit1 ’ cidip1 ( )

The Poisson bracket between coefficients of D is, by construction, the product bracket
corresponding to the decomposition D = Dy + D_, where D, = aT 2 + ¢ + eT?,
D_ = bT~! + cT. The bracket on operators D, is defined as the restriction of the
bracket 7(2) on 2-sparse operators, while the D_ part is endowed with the negative of
that bracket. Similarly to Example 3.28, we get

1 1 1
{ai ¢} = i, {ai,e;} = i, {ci,ei} = S Cici, {ci,ai42} = 5 Citi+2,

1 1
{¢i,Cita} = aiyoei, {ei,cipa} = S€iCi+2, {€i,ai44} = 5 Cilita

and
1 1
{bi,d;} = —§bidi, {di,biy2} = _§biai+2-

It now remains to compute the brackets of functions (25) using these formulas. This is
done by a straightforward calculation. 0O

Remark 4.19. As shown in [16, Theorem 5.6], the short-diagonal map in zyz-coordinates
reads
Qi _ TiYi—2Zi Bim1Biv2 L Ti12i Bic1Bite

Ti =Tiv1—5, Yi= , P = s
Bi Tizi—1 Bt T 1B

where

=1+ yi—1 + 2igo + Yim12Zit2 — Yix12i,  Bi =1+ yi—1 + 2.

It follows from our construction that this map preserves the above bracket. This can of
course be verified with a computer algebra system.

4.4. Refactorization and Y-meshes

In this section we outline the connection between the refactorization description of
higher pentagram maps and the description in terms of Y-meshes given in [12]. Although
we only consider the example of a short-diagonal pentagram map in RP3, it is quite likely
that all the same arguments work for more general maps in any dimension.
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Fig. 2. A Y-pin corresponding to the short-diagonal map in 3D.

Let us briefly recall the Y-mesh description of the short-diagonal map from [12]. A Y-
pin S is four distinct points S = {a, b, c,d € Z?}, satisfying certain technical conditions.
Given a Y-pin S = {a, b, c,d}, a Y-mesh of type S and dimension d is a map v: Z2? — P
such that the points v(r + a), v(r + b), v(r + ¢), v(r + d) are collinear for any r € Z2.
One can view any Y-mesh as a polygon depending on a discrete time variable ¢t € Z. By
definition, the ¢’th vertex of the polygon at time ¢ is given by v(i,t). In what follows,
we will only consider Y-meshes such that v(i + n,t) = ¢(v(i,t)) for a fixed projective
transformation ¢. In other words, we assume that all the polygons defined by the Y-mesh
are twisted n-gons with the same monodromy.

The collinearity assumption on v(r 4+ a), v(r + b), v(r + ¢), v(r + d) defines a relation
between the polygon wv(x,t) and the polygons corresponding to several previous time
instances. Thus, Y-meshes can be regarded as dynamical systems. Since the polygon
v(*,t) may be expressed in terms of polygons corresponding to several previous values of
time, such a dynamical system is, generally speaking, defined on the space of k-tuples of
polygons (as opposed to pentagram maps which are defined on polygons). Furthermore,
those polygons need to satisfy certain additional restrictions. As an example, consider
the Y-pin S := {(-1,0),(1,0),(0,1),(0,2)} depicted in Fig. 2. In this case, the horizontal
level v(*,t+2) may be expressed in terms of the previous two levels. Indeed, by definition
of a Y-mesh, the vertex v(i,t + 2) may be reconstructed as the intersection of lines
(vt —1,t),v(i + 1,t)) N (v(i — 1,¢ + 1),v(i + 1,t 4+ 1)). Thus, in this case the Y-mesh
may be viewed as a dynamical system on pairs of polygons. These polygons satisfy two
additional conditions:

o The vertex v(i,t+1) of the second polygon lies on the diagonal (v(i—1,t),v(i+1,t))
of the first polygon.

o The respective diagonals (v(i —1,t),v(i + 1,t)) and (v(i—1,t+1),v(i+1,t+ 1)) of
the two polygons are coplanar.

Further, the authors of [12] observe that in dimension d = 3 the square of the map

(v, t),v(x,t+ 1)) = (v(x,t+ 1), v(x,t + 2))
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defined by the Y-pin depicted in Fig. 2 is precisely the short-diagonal pentagram map.
Indeed, we have v(i—1,t4+1) € (v(i—2,t),v(,t)) and v(i+1,t+1) € (v(i,t),v(i+2,1)),
so the point v(i,t +2) € (v(i — 1,¢ 4+ 1),v(i + 1, 4+ 1)) belongs to the plane (v(i —
2,t),v(i,t),v(i + 2,t)). Given also that v(i,t +2) € (v(i — 1,t),v(i + 1,t)), we get

(it +2) € (w(i — 1,8),0(i + 1,8)) N (w(i — 2,8),v(i, ), v(i + 2, 1)),

which is precisely the definition of the short-diagonal map. Thus, the map defined by
the Y-pin depicted in Fig. 2 can be viewed as the “square root” of the short-diagonal
map. This square root, however, is not defined on the space of polygons itself, but on a
certain extension of that space which consists of pairs of polygons satisfying two above-
mentioned conditions. It can be shown, using purely geometric arguments, that this
extended space is generically a finite cover of the space of polygons. In other words,
given a level v(*,t) of a Y-mesh of type depicted in Fig. 2, there are generically finitely
many ways to reconstruct the next level v(x,t+ 1) and thus all subsequent levels. Below
we give an algebraic proof, by showing that this reconstruction problem is equivalent
to a factorization problem for the difference operator Dy corresponding to the initial
polygon v(x,t).

Recall that the short-diagonal map in 3D corresponds to progressions Jy = {—2,0, 2},
J_ ={—1,1}. To every twisted n-gon in P? we can assign two operators D1 € DO,,(J+)
supported in those sets, which identifies the short-diagonal map with refactorization
dynamics (17). Assume now that the polygon encoded by the operators D is realized
as a level v(x,t) of a Y-mesh of type depicted in Fig. 2. Let V (i,t) be the lifts of points
v(i,t) to R%. Since the levels v(*,t) and v(*,t+2) are related by the short-diagonal map,
their lifts V(x,t), V(*,t 4+ 2) may be chosen in such a way that

D+V(*7t) = _D*V(*at) = V(*at + 2)

(cf. the proof of Theorem 1.1). Furthermore, since v(i,t+2) € (v(i—1,t+1),v(i+1,t+2)),

there exists a difference operator DS}) supported in {—1,1} such that

V(s t+2) = DVV (s, t+1).
Analogously, there exists a difference operator Df) supported in {—1,1} such that
V(s t+1) =DV (x,1). (26)
Therefore, we have

(D = DYDE )V (x,1) = 0.

But since both operators D and Dg)Df) and hence their difference are supported in

{-2,0,2}, it follows that
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D, = DD,

Conversely, given such a factorization of D, we can reconstruct the level v(x,t + 1)
of the Y-mesh by using (26), and hence reconstruct all the subsequent levels.

Proposition 4.20. A generic difference operator D supported in {—2,0,2} has two fac-
torizations of the form D = D1 Da, where D;’s are supported in {—1,1}, if n is odd, and
four such factorizations if n is even. Two factorizations D1Dy and D1 Dy are considered
the same if D1 = Dia~! and Dy = oDy for a certain n-periodic non-vanishing sequence
Q.

Remark 4.21. The coefficients of the factors are, in general, complex numbers, even if
the initial operator D is real.

Proof of Proposition 4.20. The problem is equivalent to representing an operator sup-
ported in {0,2,4} as a product of two operators supported in {0,2}. If n is odd, this
problem further reduces, using the isomorphism described in Remark 3.27, to represent-
ing an operator D supported in {0, 1,2} as a product DD, of two operators supported
in {0,1}. The latter problem has two different solutions for generic D since D is a
right divisor of D if and only it annihilates a certain element of Ker D, and since D5
must be periodic, this element has to be of the two eigenvectors of the monodromy op-
erator. Similarly, if n is even, an operator supported in {0,2,4} can be identified with
two (n/2)-periodic operators supported in {0, 1,2} (see Remark 3.27), each of which has
two different factorizations. Hence, in this case we generically have 2 x 2 = 4 distinct
factorizations. 0O

Therefore, the square root of the short-diagonal map defined by the Y-pin depicted
in Fig. 2 acts on the space which is generically a 2-to-1 or 4-to-1 covering of the space of
polygons. This space can be described as the space of triples of operators D(j), Df), D_,
all of which are supported in {—1,1}. These operators should be considered up to the
action

DY s aDMpt, DY s gDy, Do aDoy 7,

where «, 3, are n-quasi-periodic sequences with the same monodromy. This space
projects to the space of polygons in P3 by means of the map

pp® o s DUDP D_.

Furthermore, the Y-mesh dynamics (i.e. the square root of the short-diagonal map) can
be expressed in terms of difference operators as follows:

5 p® _ pW A _ p)
DD =pp_, DY =D,
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Fig. 3. A network.

which can also be described as the following refactorization:
p-'pMp? s pPp-iph.

Since ﬁ(f) = DEFI), applying this refactorization twice we obtain the operator
DE:)Df)Dil, which is equivalent to the short-diagonal map. Thus, the Y-mesh inter-
pretation of higher pentagram maps can be regarded as a step-by-step refactorization,
where on each step one needs to solve a refactorization-type problem for binomial dif-
ference operators (i.e. operators whose support consists of two elements). As shown in
[12], each of these individual steps can be identified with a sequence of mutations in an
appropriately defined cluster algebra. We conjecture that refactorization problems for
binomial operators always admit a cluster description. An example of that is discussed
in the next section. Namely, we show how the refactorization description of the classi-
cal pentagram map yields a description in terms of networks, in the spirit of [9]. Since
network moves are well-known to correspond to cluster mutations, this also provides a
cluster algebra description.

4.5. From refactorization to networks

In this section we show how the refactorization approach to the classical pentagram
map yields a description in terms of weighted directed networks, in the spirit of [9]. Such
networks were introduced by A. Postnikov [26] to study totally positive Grassmannians.
For the purposes of our paper, a network is a directed graph embedded in an infinite
strip, as shown in Fig. 3. All vertices located at one boundary component of the strip
are 1-valent sources labeled by integers (so there are countably many of them). Likewise,
all vertices at the other boundary component are 1-valent sinks also labeled by integers.
All interior vertices are 3-valent and are neither sources nor sinks. Some edges of the
graph are assigned with numbers, called weights. If no weight is explicitly assigned, it is
assumed that the weight of the corresponding edge is 1. We also assume for simplicity
that there are no directed cycles.

The weight of a directed path in a network is the product of weights of edges on that
path. The boundary measurement between the source ¢ and sink j is the sum of weights of
all directed paths going from i to j (we will only consider networks for which every such



A. Izosimov / Advances in Mathematics 404 (2022) 108476 41

as 12
2 by

al tl
1 bo

ag 10
04

Fig. 4. Networks representing the difference operator a + bT" and its inverse.

sum is finite). The boundary measurement matriz is the bi-infinite matrix whose entries
are the boundary measurements (below we use the convention that the (i,7) entry of
that matrix corresponds to boundary measurement between the source j and sink 7). In
what follows, we only consider networks whose boundary measurement matrices repre-
sent difference or pseudo-difference operators. If the boundary measurement matrix of a
certain network represents an operator, we will also say that the network itself represents
that operator.

Example 4.22. For two bi-infinite scalar sequences a, b, consider the difference operator
a + bT. Fig. 4 shows networks representing that operator and its inverse (which is a
pseudo-difference operator). To prove that these two networks represent inverse opera-
tors, one considers their concatenation, i.e. glues the sinks of one network to the sources
of the other (which corresponds to composition of the corresponding operators), and
shows that the resulting network represents the identity operator. Note that if the oper-
ator a + b7 is periodic, then these networks are also periodic and can be thought of as
networks on a cylinder, as in [9].

Networks admit local transformations which do not change boundary measurements.
These transformations are known as Postnikov moves. Following [9], we consider three
types of moves depicted in Fig. 5. For the third move, the updated weights w, , , Z are
rational functions of the initial weights w, x, y, z whose particular form can be easily
derived from preservation of boundary measurements and is irrelevant to our purposes.
For other types of moves, weights do not change.

We now show how to use Postnikov moves to encode refactorization of pseudo-
difference operators. We will do that using the classical pentagram map as an example.
Consider the progressions J4 = {0,1}, J_ = {2,3}. Then the equation D,D_ = D_D_,
where the operators Dy and Dy are supported in Jy, encodes the inverse pentagram
map. Accordingly, the pentagram map itself can be described by D, D_ = D_D., which
is the same as

N -1 -1
D_D;'=DI'D_.
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Type 1
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Type 3

Fig. 5. Postnikov moves.

Thus, an application of the pentagram map can be thought of as rewriting an operator
of the form D;lD_ as @_ﬁj_l. This operation can be represented as a sequence of
Postnikov moves, as follows. The network representing DjrlD,, where Dy = a+ b7 and
D_ = cI? + dT? is basically the concatenation of networks in Fig. 4, up to a change of
weights and shift of indices, see upper left picture in Fig. 6. Applying Postnikov moves
as shown in the figure (the figure does not show transformations of weights since those
are irrelevant) results in the network depicted in the bottom left picture. That resulting
network represents an operator of the form ﬁ_f?:_l, as can be seen by cutting it along
the dashed line and labeling the newly obtained boundary vertices as shown (simply
put, the left half of the new network looks the same as the right half of the initial one,
and vice versa). Furthermore, since this new network is obtained from the initial one by
Postnikov moves, these networks represent the same operator:

D_D;'=D;'D_,

as required. Thus, the pentagram map can be represented as a sequence of Postnikov
moves. Furthermore, it is well known that Postnikov moves give rise to cluster transfor-
mations of certain variables associated with faces, which gives the cluster description of
the pentagram map, see [9].
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Fig. 6. A network representing a pseudo-difference operator (a 4+ bT) ™ (cT? 4+ dT?) and its refactorization.

Remark 4.23. In [9], the authors consider two different networks describing the penta-
gram map, in a sense dual to each other. One of their networks coincides with the one
shown in the upper right picture in Fig. 6, cf. [9, Figure 14]. Thus, their network is ob-
tained from ours by type 2 Postnikov moves. The advantage of our approach is that we
obtain networks directly from the refactorization description and hence essentially from
the geometry of the map, while in [9] the identification between maps and networks is
done at the level of formulas.

More generally, one gets a network description for all refactorization corresponding to
Jy of the form {k, k+ 1}, thus recovering the results of [9]. It is an open problem whether
it is possible to represent other pentagram maps using networks. This problem reduces
to the question of constructing networks representing operators with support other than
{k,k 4+ 1}. This can definitely be done by means of factorization, as in the previous
section. However, the weights of so obtained networks will not be rational functions in
terms of the initial data. It is an interesting question whether one can represent an
operator supported, say, in {0, 1,2} by means of a network whose weights are rational in
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terms of the operator coefficients. If this can be done, one may hope to obtain a cluster
description of higher pentagram maps.

5. Open problems

1. Relation to cluster algebras. The classical pentagram map, as well as pentagram
maps on corrugated polygons, can be described as sequences of cluster mutations [11,9].
It would be interesting to find a similar description for more general pentagram maps on
J-corrugated polygons or, even more generally, the maps W, associated with arbitrary
pairs of progressions with the same common difference.

Short-diagonal and dented maps were recently treated from the cluster perspective in
[12] (see also Section 4.4 above), where the authors introduced certain variables which
transform, under the corresponding pentagram map, according to a cluster rule. However,
the definition of those variables involves introduction of the k’th root of the corresponding
map, which in general results in multivalued functions on the space of polygons (as we
show in Section 4.4, computation of such a root is equivalent to a factorization problem
for a certain difference operator; in general, this operation cannot be performed using
only rational functions). Do there exist single-valued cluster variables for short-diagonal,
dented, and more general maps studied in the present paper? A possible approach to
this problem is outlined in Section 4.5: first construct networks representing arbitrary
difference operators and their inverses, and then show that refactorization is equivalent
to a sequence of Postnikov moves.

A related question is whether our maps fit into a construction of [13] of integrable
systems associated with dimer models on bipartite graphs, or perhaps some generalized
version of it.

2. Refactorization and Y-meshes. Generalize the approach of Section 4.4 to all types
of Y-meshes. What is the precise relation between maps described in the present paper
and maps that admit a Y-mesh description? In particular, is it possible to interpret the
cluster dynamics of [12] as refactorization of ratios of binomial difference operators, as
in Section 4.4 above?

3. Maps associated with pairs of non-disjoint progressions. In this paper we con-
structed refactorization maps associated with pairs of progressions Jy C Z with the
same common difference. When these progressions are disjoint, such maps can be inter-
preted as pentagram-type maps. What is a geometric interpretation in the non-disjoint
case?

4. The leapfrog map. Give a geometric proof of the fact that for J = {—1,0},
J_ ={0,1} our construction leads to the leapfrog map of [9] (cf. Remark 4.7).

5. Integrability. For all maps ¥ ;, associated with pairs of progressions we constructed
a Lax representation with spectral parameter and a Poisson structure such that the first
integrals coming from the Lax representation Poisson-commute. This suggests that all
these maps are both algebraically and Liouville integrable. Find a proof of this fact, i.e.
show that the joint levels sets of first integrals are Lagrangian submanifolds of symplectic
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leaves, that each of those submanifolds can be identified with an open subset in the
Jacobian of the corresponding spectral curve, and that a suitable power of the map ¥,
is a translation relative to the natural group structure on the Jacobian.

6. Difference operators with matrix coefficients and pentagram maps on Grassman-
nians. The construction of the present paper can be generalized to difference operators
with matrix coefficients. Does this lead to pentagram maps on Grassmannians defined
in [7]? How are the corresponding Poisson structures related to double brackets of [23]?

7. Partial difference operators and the Laplace transform. One can generalize the
construction of the present paper to partial difference operators supported in arithmetic
progressions Jy C Z2. This leads to pentagram-type maps defined on polyhedra. The
simplest example of such a map is the discrete Laplace transform of [5] corresponding
to J+ = {(0,0),(1,0)}, J- ={(0,1),(1,1)}. Are maps of this type integrable?

Note that pentagram map as well as its generalizations to corrugated polygons can
be thought of as reductions of the Laplace transform, see [1]. This should correspond to
certain reductions of partial difference operators to ordinary ones.

8. Poisson structures on reductions of difference operators. Poisson structures stud-
ied in the present paper arise as reductions of structures on rational pseudo-difference
operators. One can also study Poisson structures on polygons arising as reductions of
difference operators, see Remark 3.12. For example, taking d = 1 and coordinatizing the
moduli space of polygons in RP! by means of cross-ratios of quadruples of consecutive
vertices, one gets the following Poisson bracket:

{xiaxi—&-l} = $i$i+1(l‘i + T — 1)a {$i7$i+2} = TjTi41Ti42-

This bracket is well-known in relation to the Volterra lattice and also arises in the
study of cross-ratio dynamics on polygons [2,32]. Furthermore, this structure is often
considered as a lattice analogue of the Virasoro algebra [6]. Similarly, computing the
bracket on polygons in RP?, one recovers the Belov-Chaltikian lattice W3-algebra [3].
More generally, we believe that Poisson structures on polygons obtained by reduction
from difference operators can be viewed as lattice versions of classical W-algebras. In
particular, we conjecture that these structures coincide with the ones constructed by
means of difference Drinfeld-Sokolov reduction [20]. One interesting property that such
structures have is that, in contrast to Poisson brackets studied in the present paper, they
restrict to the space of closed polygons.
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