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Over the last decade, Multi-UAS system (MUS) have found a variety of applications such as surveillance, 
data acquisition, search and rescue, and delivery tasks in various environments. However, for reliable op-
eration of MUS, it is critical to provide safety guarantee conditions assuring obstacle collision avoidance, 
as well as, inter-UAS collision avoidance. In this work, we apply the principles of continuum mechanics 
to develop a physics-inspired algorithm to ascertain safe and resilient operation of a MUS in the pres-
ence of disturbances and unforeseen UAS failure(s). In particular, the proposed approach consists of two 
modes: (i) Homogeneous Deformation Mode (HDM), and (ii) Failure Resilient Mode (FRM). We formally 
specify transitions between HDM and FRM using Cooperative Localization (CL) approach to quantify UAS 
tracking error and detect anomalous conditions due to UAS failure.
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1. Introduction

Unmanned Aerial Systems (UAS) have found a variety of aca-
demic and industrial applications such as small package delivery 
[1], autonomous sensing [2], data acquisition from hazardous en-
vironments [3] or agricultural farm fields [4], aerial surveillance 
[5,6], urban search and rescue [7], wildlife monitoring and explo-
ration [8], and urban traffic monitoring [9] over the past decade. 
Multi-UAS System (MUS) is a low-cost system with the capabil-
ity of performing complex tasks that require high controllability 
and agility. However, to leverage the capabilities of a MUS, effec-
tive decentralized coordination and path planning approaches, that 
are resilient to UAS failure are needed. The main goal of this pa-
per is to develop a physics-inspired algorithm ensuring safety of 
large-scale UAS coordination in the presence of unexpected actua-
tion failure/s.

1.1. Related work

Localization of an Unmanned Aerial System (UAS) team has 
been a challenging problem for researchers [10]. GPS-based coor-
dination [11,12], Simultaneous Localization And Mapping (SLAM) 
[13] and embedded beacon-based localization algorithms [14], 
which rely on GPS signals or existence of static landmarks, are the 
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available MUS localization approaches. GPS-based localization can 
have major drawbacks because UAS relying on GPS-based local-
ization may experience cybernetic attacks by malicious UAS [15]. 
Furthermore, it may not effectively work for position estimation of 
multiple UAS coordinating in GPS-denied environments. To over-
come these issues, researchers have applied Cooperative Localiza-
tion (CL) approaches [16,10] to estimate global positions of the 
MUS by processing local position information collected from in-
dividual UAS in a distributed fashion. Available CL approaches can 
be classified into centralized [17] and decentralized [18] methods, 
and applied by the available decentralized multi-UAS coordina-
tion techniques, such as Consensus [19,20], Containment Control 
[21], Partial Differential Equation (PDE)-based methods [22], Con-
tinuum Deformation [23–25], and Graph Rigidity [26], to localize 
UAS and estimate their global positions in the presence of noise 
and disturbances. For state estimation in the presence of distur-
bances modeled by Gaussian Processes (GP), existing CL methods 
have implemented various approaches such as Extended Kalman 
filters (EKFs) [27],[28]; maximum likelihood [29], maximum a pos-
teriori (MAP) [18], and particle filters [30]. Also, authors in [31]
present a CL technique to deal with systems under non-Gaussian 
noises.

Sense And Avoid (SAA) is an existing algorithm proposed for 
collision avoidance of UAS in case of pop-up failures or unexpected 
situations [32]. Authors in [33] proposed a collision avoidance 
method based on estimating and predicting the UAS trajectory. A 
reference SAA system architecture based on Boolean Decision Log-
ics was presented in [34]. Authors in [35] provided a complete 
survey on SAA technologies in the sequence of fundamental func-
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tions/components of SAA in sensing techniques, decision making, 
path planning, and path following.

1.2. Contributions and outline

This paper develops a physics-inspired solution for fault-

resilient multi-UAS (MUS) coordination. To assure safety and re-
silience of the MUS, we propose an approach with two opera-
tion modes: (i) Homogeneous Deformation Mode (HDM) and (ii) 
Failure-Resilient Mode (FRM). In HDM, active UAS are all healthy 
and considered as a finite number of particles of a 2-D deformable 
body moving collectively in a 3-D motion space. The desired co-
ordination of the MUS is defined by an affine transformation with 
non-singular Jacobian matrix which is called homogeneous trans-
formation in continuum mechanics. In FRM, the MUS has at least 
1 failed UAS that cannot follow the desired group coordination. 
Therefore, MUS are classified as healthy and failed UAS, and the 
desired trajectories of the healthy UAS are planned such that the 
failed UAS are safely wrapped and excluded from the shared mo-

tion space. More specifically, healthy UAS are treated as particles of 
an ideal fluid flow wrapping the failed UAS considered as singular-
ities in the motion space. Compared to the corresponding author’s 
previous work [36], this paper offers the following novel contribu-
tions:

1. We apply the cooperative localization approach to quickly de-
tect UAS failures in the presence of noise and disturbances 
only by filtering the relative position information.

2. We specify transition conditions from HDM to FRM by using 
the cooperative localization.

3. We propose a novel approach for generation of the localization 
graph every time FRM is transitioned to HDM once the failed 
UAS leave the group of the healthy UAS.

4. While Ref. [36] assumes that the total number of failed UAS 
remains unchanged at FRM, this restriction is relaxed in this 
paper by authorizing multiple UAS failures that can occur at 
different times when FRM is active.

5. While Ref. [36] assumes that the total number of failed UAS 
remains inside a stationary containment domain, we develop 
a fault resilient multi-UAS coordination model in the presence 
of time-varying failed UAS.

This paper is organized as follows: Preliminaries and Assump-

tions are given in Section 2. Problem Statement is discussed in 
Section 3. Our approach for fault-resilient multi-UAS coordination 
is presented in Section 4. Simulation results are presented in Sec-
tion 5 and followed by concluding remarks in Section 6.

2. Preliminaries

Consider a MUS with n UAS in a 3-D motion space, where 
UAS are identified by the set V = {1, · · · ,n}. We use the follow-

ing notations throughout this paper: ri(t), ri,d(t) and r̂i(t) denote 
the global position, desired position and estimated position of UAS 
i ∈ V in the global Euclidean coordinate system at time t , respec-
tively.

Set V is divided into two disjoint subsets VA and VI , which rep-
resent the active and inactive UAS, respectively (i.e. V = VA

⋃

VI ). 
Active UAS, identified by set VA , are the cooperative UAS admit-

ting the desired continuum deformation coordination. They are 
enclosed by a ball C0(r̄h, ρ0) where r̄h is the centroid of all healthy 
UAS (see Fig. 1), given by r̄h = 1

nh

∑nh
j=1 r j(t) and ρ0 is the proper 

radius for C0 such that all healthy UAS are enclosed. On the 
other hand, inactive UAS are the UAS located outside the ball 
C0(r̄h, ρ0). The set of inactive UAS is denoted by VI and defined 
as VI = V \ VA .

Fig. 1. An example of multi-UAS (MUS) containing 12 UAS. Green area represents 
C0 . All UAS in C0 are active, whereas the UAS outside the green area are inactive 
UAS. UAS located in a red circle are failed UAS. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Definition 1. An active UAS is healthy, if the corresponding sensors 
and actuators work accurately, and it is able to track the desired 
trajectory within a predefined tracking error. The set of healthy 
UAS is denoted by VH = {i1, . . . , inh }, where nh denotes the number 
of healthy UAS.

Definition 2. An active UAS is called a failed UAS, if its actuators 
do not work accurately, and therefore, it is not able to track the 
desired trajectory within the predefined tracking error. The set of 
failed UAS is defined by VF = {i1, . . . , in f

} = VA \ VH , where n f

denotes the number of failed UAS.

For the MUS shown in Fig. 1, VA = {1, . . . , 9}, VH = {1, . . . , 7}, 
VF = {8, 9} and VI = {10, 11, 12} at a specific time with two failed 
UAS. Let na(t) and ni(t) denote the cardinality of VA and VI at 
time t , respectively. Note that VA and VI are time-varying sets, 
and na(t) + ni(t) = n. In the system shown in Fig. 1 na = 9, ni =

3, nh = 7, n f = 2.

Next, we review the basics of graph theory, homogeneous de-
formation coordination, and ideal fluid flow coordination in Sec-
tions 2.1, 2.2, and 2.3, respectively.

2.1. Graph theory notations

We define a directed graph G(VA(t), E(t)), where VA(t) is the 
node set, and the edge set E(t) ⊆ VA(t) × VA(t) is defined as a set 
of pairs (i, j) connecting node i to node j (i, j ∈ VA(t)). If (i, j) ∈
E(t), then, UAS i ∈ VA(t) can measure the relative position of UAS 
j ∈ VA(t) at time t . If (i, i) ∈ VA(t), then, UAS i ∈ V is able to use 
GPS to localize itself with respect to the global coordinate system 
at time t .

The set of in-neighbor UAS for i ∈ VA is defined by Ni(t) =
{ j|( j, i) ∈ E(t)}. We consider G(VA(t), E(t)) as a proximity-based 
graph in which Ni(t) defines k-nearest UAS to UAS i ∈ C . Without 
loss of generality, we choose k = 3, therefore, |Ni | = 3, ∀i ∈ VA .

2.2. Homogeneous deformation coordination

We apply homogeneous deformation coordination approach 
[23] to plan the desired coordination of active UAS when VF (t) = ∅

at time t . Three active UAS located at the vertices of a triangle, de-
fined by set L = {l1, l2, l3}, are considered as leader UAS. The rest 
of (na − 3) UAS are considered as followers and are defined by set 

2



H. Uppaluru, H. Emadi and H. Rastgoftar Aerospace Science and Technology 131 (2022) 107960

F = VA \L =
{

l4, · · · , lna
}

. Under homogeneous deformation coor-
dination, the desired trajectory of each UAS i ∈ L is defined with 
the following linear transformation [23]:

ri,d(t) = Q(t, t0)
(

ri,0 − d(t0)
)

+ d(t) t ∈
[

t0, t f
]

(1)

where Q(t, t0) ∈ R3×3 is the Jacobian matrix, ri,0=
[

xi,0 yi,0 0
]T

is the reference position, ri,d(t) =
[

xi,d(t) yi,d(t) zi,d(t)
]T

and 
d(.) ∈ R3 is the rigid body displacement vector [37]. Since (1)

is a linear transformation, followers’ desired trajectories can be 
expressed as a weighted summation of the leaders’ desired tra-
jectories. For every UAS i ∈ F , we define three parameters αi,1 , 
αi,2 , and αi,3 such that 

∑3
j=1 αi, j = 1. αi,1 , αi,2 , and αi,3 can be 

computed from the reference position of UAS i and the leaders’ 
reference positions as follows:

⎡

⎣

αi,1

αi,2

αi,3

⎤

⎦=

⎡

⎣

x1,0 x2,0 x3,0
y1,0 y2,0 y3,0
1 1 1

⎤

⎦

−1⎡

⎣

xi,0
yi,0
1

⎤

⎦ , ∀i ∈ F . (2)

The collective motion, under the homogeneous deformation co-
ordination, is defined as a leader-follower problem in which the 
desired trajectory of UAS i ∈F , denoted by ri,d , can be written as

ri,d(t) =
∑

j∈L

αi, jr j,d(t), ∀i ∈ F . (3)

2.3. Physics-based model properties

In the presence of failed UAS, when VF �= ∅, we treat healthy 
UAS as particles of an ideal fluid flow, defined by combining uni-
form and doublet flow patterns in the x − y plane [38,25]. To this 
end, we use complex variable z = x + iy to denote the position in 
the x − y plane, and obtain the potential function � (x, y, t) and 
stream function � (x, y, t) of the ideal fluid flow field by defining,

f (z, t) := � (x, y, t) + i� (x, y, t)

= u∞

∑

h∈VF

(

z− zh(t) +
a2
h

z− zh(t)

)

(4)

over the complex plane z, where zh(t) denotes the x, y compo-

nents of position of the failed UAS. In (4), u∞ and ah are constant 
design parameters for planning the safety recovery trajectory.

Using the ideal fluid flow model, x and y components of ev-
ery healthy UAS i ∈ VH are constrained to slide along the stream 
curve �i = �(xi(t), yi(t)) at any time t ≥ t0 , where t0 is the ref-
erence time when at least one failed UAS is detected. Therefore, 
every failed UAS is excluded from the motion space by a cylinder 
elongated in z direction.

Remark 1. If n f = 1, then, the cross-section of the wrapping cylin-
der is a circle of radius ah centered at zh . Otherwise (i.e. |VF | > 1), 
the cross sections of each cylinder enclosing a failed UAS is not an 
exact circle.

Equation (4) specifies a conformal mapping between the x − y

and � − � planes, where �(x, y, t) and �(x, y, t) satisfy the 
Cauchy-Riemann conditions and Laplace partial differential equa-
tion at any time t:

∇2� = 0, ∇2� = 0, ∀t. (5)

Fig. 2. The proposed hybrid system for fault resilient UAS coordination.

3. Problem statement

In this paper, we consider the collective motion of a MUS in 
compact 3-D airspace denoted by C . We aim to develop a model 
for multi-UAS coordination that is safe and resilient to UAS fail-
ure, and enables UAS to compute and track desired trajectories 
autonomously in the presence or absence of UAS failure. More 
specifically, the paper defines safety and resilience as follows:

1. The multi-UAS coordination is defined as safe, if collision be-
tween every two UAS is avoided.

2. The multi-UAS coordination is defined as resilient, if its’ 
healthy UAS can continue their operation in the presence of 
sudden pop-up UAS failure/s.

To this end, we design a hybrid model to enable the inter-
action between the physical continuous dynamics and the rules 
of discrete switching logic. The state of the hybrid system is de-
scribed by a combination of a continuous state variable x ∈ Rnx , 
and a discrete state variable σ ∈ I = {1, 2} which describes the 
two different operating modes of the hybrid system. σ = 1 and 
σ = 2 correspond to the homogeneous deformation mode (HDM) 
and fault resilient mode (FRM), respectively (see Fig. 2).

HDM is active when there is no failed UAS detected and re-
ported to the system, and all active UAS are healthy (i.e. VA = VH

and σ = 1). In this mode, UAS are considered as particles of a 2-D 
deformable formation in a 3-D motion space and cooperative coor-
dination is performed by homogeneous deformation coordination 
presented in Section 2.2. Once a failed UAS is detected, VF �= ∅ and 
therefore, triggers a jump from σ = 1 to σ = 2 and switches the 
system to FRM. In FRM, we use the ideal fluid flow model, intro-
duced in Section 2.3 to safely plan the coordination of the healthy 
UAS in the presence of failed UAS.

The transitions between HDM and FRM are operated safely by 
planning the group coordination in a centralized manner. To this 
end, we enable every healthy UAS i ∈ VH to measure relative posi-
tions of its in-neighbor UAS and report them to a commander UAS 
which is assigned based on the proximity to the centroid of the 
configuration of the healthy UAS using the approach presented in 
[36]. The commander UAS is responsible for detecting failures and 
decision making for switching the modes. Moreover, we assume 
that UAS are not deceptive; i.e. we do not consider the stealth 
attack scenarios. In our model, disturbance is the only source of 
uncertainty. These can be formally expressed as following assump-

tions.

Under the aforementioned model, we investigate the following 
problems:

Problem 1. We develop an algorithm based on HDM to acquire the 
desired coordination of all UAS through direct communication with 
leaders while the collision avoidance is assured. MUS coordina-
tion should be planned such that leaders and followers track the 
desired trajectories obtained from (1) and (3), respectively, when 
HDM is active (i.e. VA = VH ).
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Problem 2. We develop an algorithm to detect anomalous condi-
tions, and realize the set of failed UAS defined by VF . Our proposed 
approach operates between HDM and FRM automatically by only 
estimating the state vector of the system.

Problem 3. We develop an algorithm based on FRM to recover 
from the unsafe conditions and switch to HDM once the safety is 
recovered. When system is switched to FRM, all active UAS should 
compute the corresponding desired trajectories based on the ideal 
fluid flow model explained in Section 2.3.

Remark 2. While HDM can safely plan n-D (n ∈ {1,2,3}) defor-
mation, the FRM treats UAS as particles of 2-D ideal fluid flow 
coordinating in a 3-D motion space. As a result, when FRM is di-
rected to restore the safety of the healthy UAS group coordination 
by having the faulty UAS leave the containment domain C0 , the de-
sired z components of the healthy UAS remain time-invariant (in a 
3-D motion space).

4. Methodology

Consider an airspace C with a group of n UAS which lie in a 
closed set C0 , where the dynamics of each active UAS i ∈ VA , is 
modeled by

ẋi = fi(xi) + gi(xi)ui + ηi . (6)

In Eq. (6), xi ∈ Rnx is the state vector of UAS i ∈ VA , fi(xi) : Rnx →

Rnx , gi(xi) : Rnx → Rnx×mu and ui ∈ Rmu is the control input vec-
tor of the system for UAS i ∈ VA . ηi is a process noise assumed to 
be a zero-mean independent Gaussian process with known covari-
ance Fi . The collective dynamics of this system can be expressed 
by

ẋ = f(x) + g(x)u+ η, (7)

where

x =

⎡

⎢

⎣

x1
...

xna

⎤

⎥

⎦
, f =

⎡

⎢

⎣

f1
...

fna

⎤

⎥

⎦
, u =

⎡

⎢

⎣

u1

...

una

⎤

⎥

⎦
,

η =

⎡

⎢

⎣

η1

...

ηna

⎤

⎥

⎦
, g = diag

⎛

⎜

⎝

⎡

⎢

⎣

g1
...

gna

⎤

⎥

⎦

⎞

⎟

⎠

(8)

We assume that leaders have access to GPS measurements and 
they can measure their global positions. However, a follower i ∈F

only measures the relative positions of its in-neighbors defined by 
Ni . Assuming i ∈ VA has three in-neighbors, Ni can be expressed 
by Ni = {i1, · · · , i3}, and

yi = hi(xi,xi1 , · · · ,xi3) + εi (9)

assigns the relative positions of in-neighbors of i ∈ VA , where

hi : R
nx × R

nx → R
ny

is a smooth function, and εi is the measurement noise, defined as a 
zero-mean independent Gaussian process with known covariances 
Ri . Let y =

[

yT1 . . . yTna

]T
denote the collective measurement of 

the system. Therefore,

y = h(x) + ε (10)

where

ε =

⎡

⎢

⎣

ε1
...

εna

⎤

⎥

⎦
, h =

⎡

⎢

⎣

h1

...

hna

⎤

⎥

⎦
. (11)

In this work, we use the Extended Kalman Filter (EKF) state 
estimation algorithm following [39] to localize UAS with respect to 
the inertial coordinate system by processing the relative position 
measurements reported to the commander UAS. In the first step, 
we initialize the system as follows:

x̂(t) = E[x(t)] (12)

P(t) = E[(x(t) − x̂(t))(x(t) − x̂(t))T ] (13)

where x̂(t) and P(t) refer to the predicted state estimate and pre-
dicted covariance estimate at time t , respectively. E[x(t)] is the 
expected value of random variable x(t). Executing the EKF [39]

leads to the following state estimation equations.

˙̂x(t) = f(x̂) + g(x̂)u+ K(y− h(x̂, t)) (14)

K = PHTR−1 (15)

Ṗ = AP+ PAT +Q− PHTR−1HP (16)

where A = ∂f
∂x

∣

∣

∣

x̂
and H = ∂h

∂x

∣

∣

∣

x̂
.

4.1. Coordination planning at HDM

In HDM, the leaders’ desired trajectories are given in the form 
of (1). Therefore, the desired trajectory of the followers can be 
written as a linear combination of the leaders’ desired trajectories 
as provided in (3). Thus, the desired trajectory of all active UAS can 
be given by

ri,d =

{

Q(t, t0)
(

ri,0 − d(t0)
)

+ d(t) i ∈ L
∑

j∈L αi, jr j,d(t) i ∈ F
. (17)

Because of affinity of the homogeneous deformation coordination, 
the first and second rows of Eq. (17) are the two (equivalent) 
forms of homogeneous deformation coordination. The first row of 
Eq. (17) is same as Eq. (1). Indeed Eq. (1) (the first row of Eq. 
(17)) enables leaders to plan safe HDM trajectories assuring inter-
UAS collision avoidance by constraining the minimum eigenvalue 
of matrix 

(

QTQ
)

per Remark 3 of the revised manuscript. The sec-
ond row of Eq. (17) presents a leader-follower formulation of the 
homogeneous transformation suitable for followers to acquire the 
HDM desired trajectories planned by the leaders.

Generation of localization graph. The localization graph is defined 
or updated at reference time t∗ when HDM starts. At reference 
time t∗ , all UAS contained in C0 are healthy UAS; i.e. VA(t∗) =
VH (t∗). The localization graph is defined based on UAS’ proximity 
such that every follower can strictly measure relative positions of k
nearest neighbors. Without loss of generality, we choose k = 3 and 
use the Algorithm 1 to generate/update graph G (VA(t∗),E (t∗)). 
Because desired configuration of the MUS is 2-dimensional, we 
choose three leaders at the boundary of the MUS configuration 
when HDM is activated and graph G is generated. If there exists 
more that three UAS at the boundary of the MQS configuration, 
we choose three (out of all boundary UAS) as leaders by using the 
algorithm provided in [36], and the remaining non-leader bound-
ary UAS are considered as followers.

Assumption 1. The topology of localization remains G(VA(t∗),

E(t∗)) time-invariant until HDM is again recovered from FRM.

4



H. Uppaluru, H. Emadi and H. Rastgoftar Aerospace Science and Technology 131 (2022) 107960

Fig. 3. The circular paths indicate that the UAS is able to localize itself in the environment (either using GPS or SLAM). The directional straight arrows between UAS i, j
shows that the UAS i is able to calculate ri(t) − r j(t) i.e., relative positions of its in-neighbor UAS j. (a) Old localization graph G (VA(t),E(t)) at time t ≤ t∗ . (b) Regeneration 
of localization graph G (VA(t),E(t)) at time t∗ when FRM is transitioned to HDM.

Per Assumption 1, the topology of graph G (VA(t∗),E (t∗)) does 
not change, if HDM is transitioned to FRM. This implies that any 
UAS contained by C0 can measure and share relative position mea-

surements regardless of the status of healthiness/failure of the con-
tained UAS.

Regeneration of localization graph G (VA(t∗),E (t∗)) takes place 
when the system has transitioned back to HDM as shown in 
Fig. 3a. As illustrated, 8 UAS are contained by C0 before HDM 
resumes; UAS 8 is faulty but the remaining UAS are all healthy. 
At t = t∗ , UAS 8 is outside C0 , the operating mode of the system 
switches from FRM to HDM and the new localization graph is re-
generated using Algorithm 1.

Remark 3. In HDM, collision avoidance is assured by constraining 

the eigenvalues of matrix U (t) =
(

QT (t)Q(t)
)
1
2 , denoted by λ1 , λ2 , 

and λ3 , to satisfy

3
∧

j=1

(

λ j(t) ≥ λmin

)

, j = 1,2,3, t ≥ t0

where λmin = δ+ε
pmin

is obtained based on upper bound control er-
ror δ, UAS size ε , and minimum separation distance pmin in the 
reference configuration, at time t0 when HDM is active [40].

Algorithm 1 Network Generating.
Input: VA(t), L(t), F(t), ̂ri(t), ∀i ∈VA

Output: G(VA(t), E)

E = ∅

for i ∈VA do

if i ∈L then

(i, i) ∈ E

Ni = {i}

else if i ∈F then

Ni = 3 − Nearest nodes ∈ VA

(i, j) ∈ E∀ j ∈Ni

end if

Generate a graph G(VA, E) with node set VA and edge set E
end for

4.2. Coordination planning at FRM

When FRM is active, we use the ideal fluid flow model to plan 
safety recovery trajectory for every healthy UAS i ∈ VH such that 
each UAS safely slides along the stream curve �i = �(xi(t), yi(t))
at any time t ≥ t∗∗ when FRM is active, where t∗∗ is the FRM ac-
tivation time. This leads to excluding every failed UAS from the 

motion space by a cylinder elongated in z direction. In order to 
compute the direction of desired motion for a specific time t′ > t∗∗ , 
we assume that along a stream line, which provides the direc-
tion of motion at xi(t′), yi(t′), value of � is constant for all t > t′ . 
Therefore, at time t′

�i = �(xi, yi, t
′) =⇒

∂�

∂x
dx+

∂�

∂ y
dy = 0 (18)

dy

dx
= −

∂�

∂x
∂�

∂ y

(19)

From (4), �(xi(t), yi(t)) can be written as

�(xi(t), yi(t)) =
∑

j∈VF

yi(t) − y j(t)

−
a2
j
(yi(t) − y j(t))

(xi(t) − x j(t))2 + (yi(t) − y j(t))2
.

(20)

Substituting the above expression in (19) leads to

dy

dx
=
∑

j∈VF

⎡

⎢

⎢

⎢

⎢

⎣

−
2a2

j
(xi − x j)(yi − y j)

�2

(

2a2
j
(yi − y j)(yi − y j)

�2
−

a2
j

�
+ �

)

⎤

⎥

⎥

⎥

⎥

⎦

(21)

where � = (xi − x j)
2 + (yi − y j)

2 .

In this work, without loss of generality, we suppose that each 
healthy UAS maintains its speed along x direction. Thus, ẋi,d(t) is 
given, and since healthy UAS i ∈ VH should move along a path with 
instantaneous slope given by (21), ẏi,d(t) can be computed in the 
form of

ẏi,d(t) = ẋi,d(t)

×
∑

j∈VF

⎡

⎢

⎢

⎢

⎢

⎣

−
2a2

j
(xi − x j)(yi − y j)

�2

(

2a2
j
(yi − y j)(yi − y j)

�2
−

a2
j

�
+ �

)

⎤

⎥

⎥

⎥

⎥

⎦

.

(22)

Let 
t denote the time-step for which we want to figure 
out the desired position of UAS i ∈ VH . In order to find xi,d(t +

5
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t), yi,d(t + 
t), we can integrate from ẋi,d(t) and ẏi,d(t), respec-
tively. Therefore,

xi,d(t + 
t) =

t+
t
∫

t

ẋi,d(ζ )dζ = xi,d(t) + ẋi,d(t)
t, (23)

yi,d(t + 
t) =

t+
t
∫

t

ẏi,d(ζ )dζ = yi,d(t) + ẏi,d(t)
t. (24)

Note that we assume healthy UAS move in a plane parallel to x − y

plane. That is

zi,d(t + 
t) = zi,d(t), żi,d(t) = 0, z̈i,d(t) = 0 ∀i ∈ VH . (25)

In order to find the desired acceleration ẍi,d(t), ÿi,d(t), we use 
path curvature in our analysis. Let êi,t and êi,n represent the tan-
gential and normal unit vectors at xi(t), yi(t) corresponding to 
stream line �i , respectively. We define θi as the counter clock-
wise angle between positive direction of x axis and êi,t . Therefore, 
θi = tan−1(

dyi
dxi

). Curvature of stream line �i at xi(t), yi(t), denoted 
by κi , can be computed in the following way:

κi =

d2 yi

dx2
i

[

1+

(

dyi

dxi

)2
]

3
2

(26)

where

d2 yi

dx2
i

= −

∂2�

∂x2
∂�

∂ y
−

∂2�

∂ y2
∂�

∂x
(

∂�

∂ y

)2
. (27)

In the above expression, ∂2�

∂x2
and ∂2�

∂ y2
can be computed directly 

from (20). Let ai,t, ai,n denote the tangential and normal accelera-
tion along the stream line �i , respectively. We assume that each 
healthy UAS i ∈ VH moves with zero acceleration along the stream 
line �i . Hence, ai,t = 0. Moreover, normal component of the accel-
eration is

ai,n = (ẋ2i + ẏ2i )κi êi,n. (28)

From the above expression, ẍi,d(t) and ÿi,d(t) can be computed in 
the following form

ẍi,d(t) = |ai,n| cos(θi), (29)

ÿi,d(t) = |ai,n| sin(θi). (30)

Using the collective dynamics of (7) and the desired trajectories 
of each UAS, the multi-UAS (MUS) is enabled to deploy a proper 
control input to track the desired trajectories.

Remark 4. In FRM, collision avoidance is assured by choosing the 
proper sliding speed along the streamline allocated to each UAS so 
that the control error upper bound of each healthy UAS does not 
exceed δ.

4.3. Transitions between HDM and FRM

The HDM is transitioned into FRM once a failed UAS is detected. 
We define error as ei = ‖r̂i(t) − ri,d(t)‖ at time t , where r̂i(t) is 

Fig. 4. Initial configuration of the MUS. Leaders 1, 2, 3 are able to localize them-

selves in the environment.

the estimated global position of UAS i ∈ VA and ri,d(t) is the de-
sired position of UAS i. We consider i ∈ VA as a failed (active) UAS, 
when ei(t) exceeds a predefined threshold value δ. Therefore, FRM 
is commanded if the following condition holds:

∨

i∈V

(ei(t) > δ) , ∀t, (31)

where symbol 
∨

implies “at least one”. Using the above criterion, 
the commander UAS triggers σ to jump from 1 to 2 when (31) is 
satisfied (we denote this trigger time by t∗∗), and consequently, the 
system switches to FRM. All healthy UAS in VH = VA \ VF should 
update their desired trajectories according to the position of failed 
UAS. Note that VF (t) is defined based only on those UAS which are 
contained in C0 . Further, failed UAS i ∈ VF is not necessarily static. 
Algorithm 2 presents the failure detection algorithm used in our 
paper.

Algorithm 2 Failure Detection Algorithm.

Input: VA(t), ri,d(t), ̂ri,d(t) ∀i ∈VA

Output: VF (t), σ (t)

VF = ∅

for i = 1 : na do

ei(t) = ‖r̂i(t) − ri,d(t)‖

if ei(t) ≥ δ then

VF = {i} 
⋃

VF

σ = 1

end if

end for

Note that FRM is transitioned to HDM once all UAS enclosed by 
C0 are healthy. Therefore, HDM is active if

VH (t) = VA(t) (32)

at time t .

5. Simulation results

In our simulations, we consider a group of 8 UAS in 3-D 
airspace where each UAS is a quadcopter equipped with propri-
oceptive sensors. We use the model and trajectory control devel-
oped in [41] to obtain the MUS dynamics (7), where k1,i = 10, 
k2,i = 35, k3,i = 50, and k4,i = 24 for every quadcopter UAS i ∈ VH

6
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Fig. 5. (a) Initial desired paths of MUS at HDM when all UAS are healthy. (b) x component of desired trajectory of MUS. (c) y component of desired trajectory of MUS.

(k1,i through k4,i are defined in Ref. [41]). We consider the co-
variance of 10−3 for process noise ηi and measurement noise εi . 
Sampling time in our simulations is 
t = 0.01 sec.

We assume that all UAS are located at the altitude of 20 m 
(i.e. z = 20 m), and desired altitude is also zd = 20 m. In other 
words, UAS only move in a plane parallel to x − y plane at z = 20

m. The initial configuration of the MUS in x − y plane is shown 
in Fig. 4. Arrows in Fig. 4 represents the graph G(VA, E) at initial 
time. Note that graph G(VA, E) is a proximity time-varying graph 
at each node. Initially, MUS is in HDM and all UAS are active and 
healthy. Hence, VF = ∅ and VA = VH = {1, . . . , 8}. We label the 
UAS such that L = {1, 2, 3} and F = {4, . . . , 8}. When the MUS is 
at HDM, the desired trajectories of the leaders and followers are 
computed based on (1) and (3), respectively. Fig. 5a shows the ini-
tial desired path of all UAS when MUS is in HDM and all UAS are 

healthy. Fig. 5b and 5c show the x and y components of the de-
sired trajectories of all UAS, respectively.

5.1. A group of 8 UAS with multiple static failed UAS

Consider a scenario in which two UAS are subjected to actu-
ation failures at predefined times t∗∗ = 10 sec and t2 = 15 sec. In 
order to simulate the failure in the MUS, we deploy an external 
control on UAS 8, 7 to stop at t∗∗ = 10 sec and t2 = 15 sec, re-
spectively. Using the Algorithm 2 and considering δ = 0.5, UAS 8 is 
detected as a failed UAS in the MUS at t′1 = 10.64 sec. Fig. 6a shows 
the trajectories of UAS from t0 = 0 to t′1 = 10.64 sec. In Fig. 6, blue 
and green lines correspond to the actual and desired trajectories
in x − y plane, respectively. Also, green and red star correspond 
to healthy and failed UAS in Fig. 6, respectively. Moreover, unsafe 
zone corresponding to the failure of UAS is shown by a circular 

7
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Fig. 6. Desired and actual paths. Red circles are the unsafe-zone corresponding to each failure. (a) Paths before failure at t∗∗. (b) Paths before failure at t2 . (c) Paths before 
switching to HDM.

area with radius of a = 1.5 m. At t′1 = 10.64 sec, FRM is activated 
and the system is switched to FRM. In this mode, desired trajec-
tories of the MUS are computed based on the approach explained 
in Section 4.2. Actual paths of all healthy UAS are shown in Fig. 6. 
As shown in this figure, all UAS modify their desired trajectories 
to wrap the failed UAS 8 and avoid collision in the system. We 
deploy a second failure in the system at t2 = 15 sec, which is de-
tected automatically at t′2 = 15.54 sec. Note that system maintains 
the underlying graph till the operating mode is switched. After the 
second failure, system is still in FRM till all 6 healthy UAS pass 
the failed UAS 7, 8. This condition is satisfied at t3 = 17.86 sec. 
Fig. 6c shows the path of all UAS for t < t3 . At t3 = 17.86 sec the 
commander UAS decides to switch the system to HDM, and con-
sequently, a new coordination graph is generated at this time and 
new desired trajectories are constructed for all 6 healthy UAS. As 
shown in Fig. 7, at t3 = 17.86 sec, underlying graph G(VA, E) has 
been updated. Fig. 7 shows the trajectories of all UAS in two dif-
ferent modes in x − y plane. Fig. 8a and 8b show the x and y
components of the actual trajectories of all UAS in each mode.

5.2. A group of 8 UAS with 1 time-varying failed UAS

In these simulations, we consider the scenario where a single 
UAS is subjected to failure at t∗∗ = 10 sec and then moves at a 
constant velocity in a random direction. We have presented re-
sults where the failed UAS moves in 1-D for some time t′∗ , but 
our approach can be extended to multiple directions. Figs. 9a, 10a 

shows the trajectories of UAS from t0 to t′1 where t′1 is the time 
at which failure is detected. Blue dots and green lines correspond 
to the actual and desired trajectories in x − y plane, respectively, 
whereas green and red star correspond to healthy and failed UAS, 
respectively. The unsafe zone is represented as a circular area with 
radius of a = 1.5 m which corresponds to failure of UAS 8 and 
7 in Figs. 9a, 10a respectively. FRM is activated at t′1 and the 
desired trajectories of the MUS are computed based on the ap-
proach explained in Section 4.2. However in each case, the failed 
UAS is also moving at a constant velocity in a particular direction 
i.e., negative x direction when UAS 8 fails and positive y direc-

tion when UAS 7 fails. We can observe in Figs. 9b, 10b that all 
healthy UAS modify their desired trajectories to wrap the failed 
UAS when the failed UAS is moving at constant velocity and avoid 
collision with the failed UAS and other healthy UAS. At t2 , after all 
the healthy UAS have passed the failed UAS, the system switches 
back to HDM, and consequently, a new coordination graph will be 
generated at this time and new desired trajectories are constructed 
for all 7 healthy UAS. The table below shows the different times at 
which the failures are detected, and the system switches back to 
HDM.

Experiment Failed UAS t0 sec t′1 sec t2 sec t′∗ sec

1 8 0 10.4 17.3 0.5

2 7 0 10.2 15.7 2

8
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Fig. 7. Green lines are desired trajectories and blue lines are actual trajectories of UAS. Updated G(VA ,E) is shown when system is switched to HDM after FRM.

Fig. 8. (a) x and (b) y components of actual trajectories of all UAS.

6. Conclusion, discussion, and future work

This paper presents a novel approach for fault-resilient multi-

UAS coordination in the presence of abrupt and unpredictable UAS 
failure. We applied the principles of continuum mechanics to en-
force safety of the multi-UAS coordination and specify the con-
ditions for transitions between Homogeneous Deformation Mode 
(HDM) and Fault Resilient Mode (FRM) and vice versa. We also 
applied the Cooperative Localization approach to detect the failed 
UAS and localize healthy UAS with respect to the global coordi-
nate system at low computational cost. We have also accounted for 
multiple UAS failures in the MUS and the conditions for switching 
between HDM and FRM in such a case. Our approach was vali-
dated through simulations by successfully conducting experiments 
on two different sets of failures: (1) with multiple static UAS fail-
ure in the MUS, and (2) with a single time-varying UAS failure in 
the MUS. A drawback of this approach is that we consider actu-

ation failure and assume that the sensors for the failed UAS are 
functioning. Future works in this area would be to account for this 
drawback and further develop a data-driven approach by leverag-
ing the principles of continuum mechanics to guarantee safety.
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Fig. 9. Desired and actual paths. Red circle is the unsafe-zone corresponding to UAS failure 8. (a) Paths before failure at t∗∗. (b) Paths after the system switched from FRM to 
HDM.

Fig. 10. Desired and actual trajectories. Red circle is the unsafe-zone corresponding to failed UAS 7. (a) Trajectories before failure at t∗∗. (b) Trajectories after the system 
switched from FRM to HDM.
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