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Abstract— This paper develops a novel physics-based ap-
proach for fault-resilient multi-quadcopter coordination in the
presence of abrupt quadcopter failures. Our approach consists
of two main layers: (i) high-level physics-based guidance to
safely plan the desired recovery trajectory for every healthy
quadcopter and (ii) low-level trajectory control design by
choosing an admissible control for every healthy quadcopter to
safely recover from the anomalous situation, arisen from
quadcopter failure, as quickly as possible. For the high-level
trajectory planning, first, we consider healthy quadcopters as
particles of an irrotational fluid flow sliding along streamline
paths wrapping failed quadcopters in the shared motion space.
We then obtain the desired recovery trajectories by maximizing
the sliding speeds along the streamline paths such that the
rotor angular speeds of healthy quadcopters do not exceed
certain upper bounds at all times during the safety recovery. In
the low level, a feedback linearization control is designed for
every healthy quadcopter such that quadcopter rotor angular
speeds remain bounded and satisfy the corresponding safety
constraints. Simulation results are given to illustrate the efficacy
of the proposed method.

I . INTRODUCTION

Unmanned aerial vehicle (UAV) was originally developed
and used for military missions [1]. However, recently, appli-
cations of UAVs have been extended in different fields. For
instance, Multi quadcopter systems (MQS) have been used
for data acquisition from hazardous environments or agri-
cultural farm fields, surveillance applications, urban search
and rescue, wildlife monitoring and exploration [2] [3] [4].
One of the main notions in networked cooperative systems is
fault resilience [5] [6] [7]. In this work, we propose a novel
physics-based approach for recovery planning of an MQS
under failure of group of agents.

A. Related Work

Multi-agent coordination is one of the main challenges in
UAV-based systems. Researchers have proposed different
multi-agent coordination approaches in the past. For ex-
ample, authors in [8] proposed nonlinear consensus-based
control strategies for a group of agents under different
communication topologies. Another approach is containment
control in which a group of followers are coordinated by a
group of leaders through local communications. Authors in
[9] [10] provide distributed containment control of a group of
mobile autonomous agents with multiple stationary or
dynamic leaders under both fixed and switching directed
network topologies. Authors in [11], [12] and [13] propose
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Fig. 1: (a) Quadcopter team configurations: blue at t0 =
0 sec, green at t0     =  20 sec, yellow at t0     =  40 sec and
magenta at t0 =  60 sec. Unsafe zone due to failure f1  and f2
are shown as red cylinders. (b) Stream lines in x       y plane.

partial differential equations (PDE) based methods in which
the position of the agents is the state of the PDE. Another
coordination approach is continuum deformation proposed
in [14] [15] [16]. This method is also based on the local
communication between a group of followers and a group of
leaders. Graph rigidity method is proposed by [17] for the
leaderless case and the leader-follower case.

One of the main goals in MQS is to avoid collision
when an unexpected obstacle emerges in the airspace. For
instance, when a quadcopter fails, the rest of quadcopters
must change their path accordingly to satisfy the safety
conditions. Therefore, each quadcopter must have sense and
avoid (SSA) capabilities to avoid collision in case of pop up
failures of other agents. Many researches have been con-
ducted on autonomous collision avoidance of MQS. Authors
in [18] propose the collision avoidance method based on
estimating and predicting the agents’ trajectory. A  reference
S A A  system architecture is presented based on Boolean
Decision Logics in [19]. Authors in [20] provide a complete
survey on SSA  technologies in the sequence of fundamental
functions/components of SSA in sensing techniques, decision
making, path planning, and path following.

In [16], authors develop a continuum deformation frame-
work for traffic coordination management in a finite motion
space. In particular, authors propose macroscopic coordi-
nation planning based on Eulerian continuum mechanics,
and microscopic path planning of quadcopters considered as
particles of a rigid body. This work lies in a similar vein. In
this paper, we extend the work in [16] to address the scenario
in which a set of failures of quadcopters are reported. We
develop a physics-based approach for recovery planning, and
we verify the proposed method on dynamics of a group of
quadcopters.
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B. Contributions and Outline

We propose a new physics-based approach for resilient
multi-UAV coordination in the presence of UAV failure.
Without loss of generality, this paper considers each UAV
to be a quadcopter modeled by a 14-th order nonlinear
dynamics presented in [21]. In particular, we consider a
single quadcopter team coordinating in a 3-D motion space,
and classify individual quadcopters as healthy and failed
agents. While the healthy quadcopters can admit the desired
group coordination, the failed quadcopters cannot follow the
desired group coordination. To deal with this anomalous situ-
ation, we ensure safety of the healthy quadcopters and inter-
agent collision avoidance by developing a two-fold safety
recovery approach with planning and control layers. For the
planning of safety recovery, we treat the healthy quadcopters
as particles of an ideal fluid flow field sliding along the
streamline paths wrapping the failed quadcopters. For every
healthy quadcopter, the desired recovery trajectory is safely
planned by maximizing the sliding speed of the quadcopter,
along the safety recovery path, such that the constraints on
quadcopter rotor angular speeds are all satisfied. This safety
recovery planning is complemented by designing a nonlinear
recovery trajectory control for each healthy quadcopter that
assures satisfaction of all safety constraints.

This paper is organized as follows: Problem Statement is
discussed in Section II. Safety recovery planning and control
are presented in Sections II I  and IV, respectively. The results
of the safety recovery simulation are presented in Section V
and followed by Conclusion in Section VI.

I I . P RO B L E M S TAT E M E N T

We consider an MQS consisting of nq quadcopters de-
fined by set I  =  f1;  ; nqg. We assume that nf  <  nq

quadcopters identified by set F   I  unpredictably fail to
follow the desired group coordination at reference time t0

but the remaining quadcopters, defined by set L  =  I  n F ,
can still move cooperatively and follow the desired group co-
ordination. To safely recover from this anomalous situation,
we propose to treat the healthy quadcopters as particles of an
ideal fluid flow, defined by combining uniform flow in the x
y plane and doublet flow. To this end, we use complex
variable z  =  x  +  iy to denote the position in the x    y
plane, and obtain the potential function (x; y) and stream
function (x; y) of the ideal fluid flow field by defining

f  (z)      =      (x; y) +  i      (x; y)
2

=      u 1 z       z h  + ; (1)
h 2 F                                                h

over the complex plane z, where z h  denotes position of the
failed quadcopter h 2  F ;  u 1  and ah are constant design
parameters for planning the safety recovery.

By using the ideal fluid flow model, x  and y components of
every cooperative quadcopter i  2  I  are constrained to slide
along the stream curve i  = (xi (t); yi (t)) = i;0 at
any time t  t0, where

(xi (t0 ); yi (t0 )) = i;0 ; 8i 2  L : (2)

Also, every failed quadcopter is excluded from the motion
space by a circular cylinder elongated in z direction (see Fig.
1a).

Remark 1: If only one failed UAV exists at time t  t0,
then, the cross-section of the wrapping cylinder is a circle of
radius ah centered at zh . Otherwise (i.e. jF j  >  1), the cross
section of the wrapping cylinder is not an exact circle. Note
that expression (1) specifies a conformal mapping between
the x    y and   planes, where (x; y) and (x; y)
satisfy the Cauchy-Riemann and Laplace equations r 2 =
0 ; r 2  =  0.

Assumption 1: We assume that healthy quadcopters move
sufficiently fast or the ah is chosen sufficiently large such that
the failed quadcopters do not leave the wrapping cylinders
during the the safety recovery interval.

Assumption 2: We assume that the recovery trajectories
of all quadcopters are planned such that the altitude remains
constant. Thus, z component of velocity is 0.

By the above problem setting, the main objective of this
paper is to plan the recovery trajectory for every healthy
quadcopter i  2  L  so that MQS can recover safety as quickly
as possible, by wrapping the failed quadcopters. Here, we
assume that the rotor speeds of every quadcopter must not
exceed ! m a x .  This safety condition can be formally specified
by

0 <  ! r i ; j ( t )   ! m a x ; 8 i  2  I ;  j  2  f1;  ; 4g ; 8t  t0 (3)
where ! r i ; j ( t )  is the angular speed of rotor j  2  f1;  ; 4g of
quadcopter i  2  L  at time t  t0. r i (t )  and r i ;d (t) denote the
actual position and desired trajectory of quadcopter i  at t  t0,
respectively. We decompose this safety recovery planning

Fig. 2: Block diagram of MQS with the proposed method

into (i) high-level trajectory planning presented in Section
III  and (ii) low-level trajectory tracking control presented in
Section IV. More specifically, Section II I  obtains the safety
recovery stream lines ( (xi (t0 ); yi (t0 )) = i;0) for every
healthy quadcopter i  2  L ,  numerically, by using the finite
difference method. This is complemented by determining
the desired safety recovery trajectory through assignment the
maximum sliding speed along the stream      i;0 (8i 2  L) ,
satisfying safety condition (3), in Section III. Section I V
applies the feedback linearization control approach presented
in [21] to safely track the recovery trajectory by choosing an
admissible quadcopter control satisfying safety constraint (3).
Fig 2 shows the block diagram of MQS with the proposed
approach.
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I I I . H I G H - L E V E L PLANNING: R E C O V E R Y  T R A J E C T O R Y
PLANNING

The complex function f (z) ,  expressed in (1), provides a
closed form solution for  and . However, as mentioned
in Remark 1, in case of multiple failures, the area enclosed
by each unsafe zone is not an exact circle, and we cannot
arbitrarily shape the enclosing unsafe area for multiple
failures in the motion space. To deal with this issue, we
use the finite difference approach to determine  and
values over the motion space and arbitrarily shape of the
area enclosing the failed quadcopter.

Let C be a set representing the projection of the airspace
on the x    y plane, and failures identified by set F  =
fn1; : : : ; nf g occur at r n  ; : : : ; rn      in C. In the presence of
abrupt quadcopter failure, quadcopters’ trajectories should be
modified accordingly to provide a safe maneuver in C and
safely wrap the unsafe zones in C. To this end, the unsafe
zone Ui corresponding to the failed quadcopter ni 2  F  is
defined by a circle with radius an      centered at ( x n  ; yn ).
Then, the recovery trajectories of healthy quadcopters can
be defined by the stream functions of an ideal flow around a
set of circular cylinders enclosing F .

Without loss of generality, we assume that C is a rectan-
gular environment lies in the x    y plane and use the finite
difference method to compute ; over C. The idea of finite-
difference-method is to discretize the governing PDE and the
environment by replacing the partial derivatives with their
approximations. We uniformly discretize C into small regions
with increments in the x; y directions given as x; y,
respectively. Discretizing C in x    y plane results in the
directed graph G(V ; E ) in which, each node is connected to
the adjacent nodes in x  and y direction (Fig 3). Node set and
edge set are defined as V =  f1; : : : ; mg and E  V V,
respectively. E is a set of pairs ( i ; j )  connecting nodes
i; j  2  V.

Fig. 3: Di-graph G  resulted from discretizing x       y plane.
Without loss of generality, suppose that nodes are labeled

such that the boundary nodes, interior nodes over the safe
zone and interior nodes over the unsafe zone are labeled
as Vb =  f1; : : : ; mbg, Vf  =  fmb +  1; : : : ; mb +  mf  g and
Vc =  fmb +  mf  +  1; : : : ; mg, respectively. Let @C1;@C3 and
@C2;@C4 denote the boundaries of rectangular area C in x
and y directions, respectively (see Fig 3). We plan the safety
recovery trajectories such that the average bulk motion of
the healthy MQS is from left to right along the positive x
direction. To fulfill this requirement, we choose the boundary
conditions of as follows:

( j )  = K y j j  2  @C1 @C2
Vf 

@C3 @C4 (4)

where yj  is the y component of position of node j ,  and K

is a positive constant number. From the above expression,
is constant over @C1;@C2. Hence, @C1;@C2 are stream lines.

By substituting the approximated derivatives from the
Taylor series to r 2        =  0, stream value function     i  at node
i  2  Vc satisfies the following equation:

i x ; 1   
x

i  +      i x ; 2  + i y ; 1   
y2 

+      i y ; 2      =  0; (5)

where     i          and     i          are potential values at neighbor nodes
in x  direction. Similarly,      i           and      i           are the potential
values at neighbor nodes in y direction.

Let = 1 : : : m  
T  represent the nodal vector of

the potential function. (5) can be written in the compact form
of L       =  0. where L  2  R m m  is the Laplacian matrix of the
network. Entries of L  are defined as

<deg( i ) i  =  j
L i j  =  1 i  =  j ; ( i ; j )  2  E (6)

0               otherwise

where deg(i) is the in-degree of node i. According to [22] the
multiplicity of the eigenvalue 0 of L  equals to the number of
maximal reachable vertex sets. In other words, multiplicity
of zero eigenvalues is the number of trees needed to cover
G. Therefore, matrix L  has mb +  mf  eigenvalues equal to
0. Hence, rank of L  is m   mb +  mf  , and L =  0 can
be solved for unknown values of corresponding to the
interior nodes.

By obtaining over C, recovery path of healthy quad-
copter i  2  L  is an stream line i  defined by (2). Note
that the stream line i  is tangent to the desired velocity
of quadcopter i  2  L .  By provoking the Cauchy-Riemann
Theorem, the desired velocity of quadcopter i  2  L  is given
by

r i ; d  =  vi @y 
i    

@x 
j +  0k; 8i 2  L ; (7)

where vi is the sliding speed of quadcopter i  2  L .  Without
loss of generality, we assume that all quadcopters move with
the same sliding speed v during the safety recovery. That is
vi (t) =  v(t); 8i 2  L ;  8t  t0.

To recover safety as quickly as possible, we maximize
v such that the safety conditions presented in (3) are all
satisfied. To this end, the maximum sliding v is assigned
by bi-section method as shown in Fig. 2.

Consequently, by integrating from (7), we can update the
desired trajectories for all agents in case of existence of
failure(s) in C.

I V. M AT H E M AT I C A L MODELING OF QUA D C O P T E R S AND
T R A J E C T O R Y  T R A C K I N G C O N T RO L

A. Equations of motion
In this work, we consider the following assumptions in

mathematical modeling of quadcopter motions.
Assumption 3: Quadcopter is a symmetrical rigid body

with respect to the axes of body-fixed frame.
Assumption 4: Aerodynamic loads are neglected due to

low speed assumption for quadcopters.
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Let i ; j ; k  be the base unit vectors of inertial coordinate
system, and i b ; j  ; kb be the base unit vectors of a body-
fixed coordinate system whose origin is at the center of
mass of the quadcopter. In this section, for convenience,
we omitted i  subscript of ith quadcopter in the governing
equations. The attitude of the quadcoper is defined by three
Euler angles ;  and as roll angle, pitch angle and yaw
angle, respectively. In this work, we use 3-2-1 standard Euler
angles to determine orientation of the quadcopter. Therefore,
the rotation matrix between fixed-body frame and the inertial
frame can be written as

R( ; ;  )  =  R(; 0; 0)R(0; ; 0)R(0; 0; ) (8)
cc sc s      s c sc c +  s s

=      cs ss s +  c c ss c      c s (9)
 s cs cc

where s(:) =  sin(:); c(:) =  cos(:). Let r  =  x      y zT

denote the position of the center of mass of the quadcopter
in inertial frame, and !  = ! x ! y ! z  

T      denote the
angular velocity of the quadcopter represented in the fixed-
body frame.

Using the Newton-Euler formulas, equations of motion of
a quadcopter can be written in the following form:

r  =   gk +  m kb ; (10)
!  =   J  1 [ !   ( J ! ) ]  +  J  1; (11)

where m; J  denote, respectively, mass and mass moment of
inertia of the quadcopter. g is the gravity acceleration and
p is the thrust force generated by the four rotors. Relation
between the thrust force p and angular speed of the rotors,
denoted by ! r i  , can be written as

4 4

p = f r i  =  b ! 2  ; (12)
i = 1                        i = 1

where b is the aerodynamic force constant (b is a function
of the density of air, the shape of the blades, the number of
the blades, the chord length of the blades, the pitch angle of
the blade airfoil and the drag constant), and f r i  is the thrust
force of ith rotor. In (10),  =  is the control
torques generated by four rotors. Relation between the  and
angular speed of the rotors can be written in the following
form

bl (! 2       ! 2  )
 =  4  5  =  4 bl (! 2       ! 2  ) 5 ; (13)

k (! 2
2  +  ! 2

4       ! 2
1       ! 2

3  )

where l is the distance of each rotor from center of the
quadcopter, and k is a positive constant corresponding to
the aerodynamic torques. By concatenating p and  as input
vector to the system, we can write

2  
p 

3 2  
b b b b

3 2
! 2  3

6  7 6  0  bl 0 b l 7 6 ! 2  7
4  5 4  bl 0 bl 0 5 4 ! 2  5

k k        k k ! 2
4

By defining state vector x =
r T r T      ! T  T and input vector

u      =        p                        
T  , (10),(11) can be written in the state

space non-linear form of

x  =  f ( x )  +  g (x )u
r  =  C x

where, f ( x )  and g (x)  are defined as
2 3 2 3

31 33

f ( x )  =  
6  gk 7

; g (x)  =  
6  ^b 033

7 
(16)

31           33
 J [ !   ( J ! ) ] 031 J

and C  =  [I 33; 039]. v  is the velocity vector of the
quadcopter, and   is the matrix which relates Euler angular
velocity to the angular velocity of the quadcopter. 0 i j  is a i
j  zero matrix. In order to find  , we can represent !  in the
following form

!  =  _k1 +  j 2  +  ib ; (17)

where j      =  R(; 0; 0)j      and k1 =  R(; ; 0)kb . Conse-
quently,

1 0  s
  =      0 c cs      : (18)

0      s cc

From (17), the angular acceleration !  can be formulated in
the following way:

!  =  B 1  • • •T +  B 2 (19)
where B 1  =  ib j 2 k1

 
and

B 2  =   _(k1  j 2 )  +  ( _k1 +  j 2 )   ib (20)

On the other hand, from (15),
!  =  J  1       !   ( J ! )  +  u2 u3 u4

T     
 : (21)

From (19) and (21)

2
u 

3 2 • 3
4u3 5 =  J B 1  4 • 5 +  J B 2  +  !   ( J ! ) (22)

u4

B. Recovery control
In this subsection, we provide the input control for the

non-linear state space system (15) to track the desired
trajectory r d  obtained from section III. Since we consider
low speed quadcopters, agents have enough time to update
their path in case of failures. Moreover, we suppose r d  is a
smooth function for all t  t0 (i.e. r d  has derivatives of all
orders).

In this work, we use the input-output feedback lineariza-
tion approach [23] to design the input control for a quad-
copter to track the desired trajectory [21]. We use the Lie
derivative notation which is defined in the following.

Definition 1: Let h : R n       !  R  be a smooth scalar
function, and f  : R n  !  R n  be a smooth vector field on

2530

Authorized licensed use limited to: The University of Arizona. Downloaded on May 15,2023 at 05:30:14 UTC from IEEE Xplore. Restrictions apply.



~ ~

_ ~ ~ ~ ~ ~
~ ~r  =  C x

~ ~ ~ ~

~ ~
0

4 5
m

^
0

4 5 ~ ~

2 3

0 J  1

0 13

6 76 7

~ ~ ~ ~ ~
T

q ~f

X
~ f

g i f

~

_ 0     0 0

_

_ • r

0 I 0
0 0 I

_

... ... • • _ _

~....
• • m

^ ^

r
1

• •
^ ^^ ^ ^ ^

~ ^ ^ ^

~ ~

 1 ~0 J B

0
~ ~

1 ~

r; i

r ; i

1 2

1 1 2 2

R n .  Lie derivative of h with respect to f  is a scalar function
defined by L f  h =  r h f .

Concept of input-output linearization is based on differ-
entiating the output until the input appears in the deriva-
tive expression. Since u2; u3 and u4 do not appear in the
derivative of outputs, we use the technique, called dynamic
extension, in which we redefine the input vector u  as the
derivative of some of the original system inputs. In particular,

we define x  =  x T         p     p_ T  and u  =  up                          
T  .

Therefore, extended dynamics of the quadcopter can be
expressed in the following form [21]:

x~  =  f ( x )  +  g (x )u (23)

where, f ( x )  and g (x)  are defined as
2

f ( x )
3 2

031
3 091 093

f ( x )  = p_ + p k b      ; g (x) =  4  
31

0 5 : (24)
81 1 013

Let g i (x)  denote the ith column of matrix g (x)  and u  =
u~1 : : : u~4          where u~1; : : : ; u~4 corresponds to up; ; ;  ,

respectively. We consider the position of the quadcopter as
the output of the system (i.e. x; y; z). Inputs appear in the
fourth order derivative of the outputs. Particularly,

.... 
=  L 4  q +  

4     

L g i  L ~
3 qu~i q 2  fx; y; zg (25)

i = 1

where L  ~ L ~
3 q =  0 for i  =  1; : : : ; 4. By choosing the state

transformation T ( x )  =  z  T  , (23) can be converted to
the following internal and external dynamics:

 =  0     1  +  1 u ; (26)

z  =  A z  +  B s (27)

where z  =  r T r T r T ...T ;T , and  =  
         _T

A  = 93 9 ; B  = 93 (28)
33 39 3

where I j  is a j   j  identity matrix.
Next, we can figure out the control inputs s  and u ,

such that the linear systems (26) and (27) track the de-
sired trajectory rd . By choosing u =   K 1   K 2 ,
where K 1  >  0; K2 >  0. Thus, the internal dynamics (26)
asymptotically converges to 0. Moreover, we choose s  =
K 3  ( r d    r )  +  K 4  (r d       r )  +  K 5  (r d       r )  +  K 6  (r d       r ) ,
where K3 ; : : : ; K6 can be chosen such that the roots of the
characteristic equation 4 + 3 K 3  + 2 K 4  + K 5  + K 6  =  0 are
located in the OLH complex plane. Hence, r  converges to rd .
In order to find the relation between s  and u, we need
to find r  by differentiating twice with respect to time from
r .  From (15), r  =  p kb      gk, and twice differentiating w.r.t.
time leads to

.... =  
m

(O1  +  O2 ); (29)

where  =  p•          •T and
O 1  =  k b  pj b p(j 2  kb )     p(k1 )  kb (30)

O 2  =  pB 2   kb +  !   ( !   pkb ) +  2p_!  kb (31)

where B 2  is defined in (20). From (22),  =  O 3 u +  O 4

where
" #

O 3  =
1 013 

1      ; "
13                        1      #

O 4  =  
 B 1  

1
B 2       J  1 !   ( J ! )  

:

Substituting  in (29) leads to

s  =  
m 

(O 1 O 3 u +  O 1 O 4  +  O2 ) :                     (32)

Trajectory recovery method of a quadcopter is shown in
Algorithm 1 .

Algorithm 1 Trajectory Recovery Algorithm for ith UAV
Input r i ; 0 ; F  and ! m a x

Output r i ; d (t) ,! r ; i (t )
Discretize the environment in x       y plane
Compute from L =  0.
Compute stream lines ( constant curves)
Find r i ;d (t) as a contour line corresponding to i;0

while ! r ; i  <  ! m a x  do
Increase quadcopter’s translation speed
Find control input from (32)
Compute ! i ; r ( t )  from (14)

end while

V. S I M U L AT I O N R E S U LT S

In this section, we deploy the proposed recovery and
control approach to the motion planning of a group of
quadcopters. We consider a given airspace C, in which a set
of failures F  =  fn1; n2g is reported at specific positions r n

; r n  . We consider a group of 10 similar quadcopters at
different positions at t0 (Fig 1a). Quadcopters’ specification
are listed in Table I. In this scenario, all agents should
modify their trajectories such that the collision avoidance and
safety conditions are satisfied. To do so, we consider each
failure zone as a circular cylinder of radius 2 and centered at
( x n  ; yn ) ; (xn  ; yn )  along z-axis direction. Note that
collision avoidance are guaranteed by the recovery trajec-
tories obtained from the potential function and stream lines in
Section III.

m g l I x

0.47 9.81 0.225 4:856  10     3

I y I z b k
4:86  10     3 8:801  10     3 2:98  10     6 1:14  10     7

TA B L E  I: Quadcopters’ specification

Using the proposed technique in Section II I  enables to
update the trajectory of each agent, based on the stream
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Fig. 4: (a) Solid lines represent r i ;d , and dashed lines
represent r i .  (b) Solid lines: ! 2 ; r i  . Dashed line: ! max .

function over C. Fig 1b shows the contours of constants
in x       y plane.

In the next step, desired trajectory r i ;d (t) is assigned to
each quadcopter based on the initial position and (2). As
shown in Fig 1b, desired trajectories are smooth functions.
We use the curve-fitting toolbox in M AT L A B  to approximate
the desired trajectory as a polynomial function in x    y
plane, and consequently, we figure out the time derivatives of
corresponding desired trajectories. Fig 4a shows the desired
trajectories and the actual trajectories of each quadcopter by
using the control input proposed in Section IV. We choose
K 1     

 
=  1; K2    

 
=  1; K3    

 
=  14; K4    

 
=  71; K5    

 
=  154

and K 6  =  120 as control parameters.
In order to satisfy the safety condition (3) and keep

the angular speed of rotors in the safe performance limit,
translation speed of each agent i  can be changed along a
desired trajectory of rd;i (t). Thus, the finite horizon optimal
problem can be solved numerically to find the optimal speed
for each quadcopter such that ! r i ; j  <  ! m a x  for j  =  1; : : : ; 4.
Fig 4b shows the angular speeds of quadcopter which is
upper-bounded by ! max .

V I . CO N C L U S I O N

We developed a new physics-based method for fault-
resilient multi-agent coordination in the presence of unpre-
dictable agent failure. Without loss of generality, we assumed
that agents represent quadcopters that are modeled by 14-th
order nonlinear dynamics. By classifying quadcopters as
healthy and failed agents, coordinating in a shared motion
space, we defined the safety recovery paths of the healthy
quadcopters as streamlines in an ideal fluid flow wrapping
failed quadcopters. To assure quadcopter coordination safety
is recovered as quickly as possible, desired trajectories of
cooperative quadcopters were determined by maximization
of sliding speed along the recovery streamlines such that
rotor speeds of all quadcopters do not exceed a certain upper
limit at all times. We also show that every healthy quadcopter
can stably track the desired recovery trajectory by applying
the input-output feedback linearization control.
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