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The scalar auxiliary variable (SAV) approach [31] and its generalized version GSAV proposed 
in [20] are very popular methods to construct efficient and accurate energy stable schemes 
for nonlinear dissipative systems. However, the discrete value of the SAV is not directly 
linked to the free energy of the dissipative system, and may lead to inaccurate solutions if 
the time step is not sufficiently small. Inspired by the relaxed SAV method proposed in [21]
for gradient flows, we propose in this paper a generalized SAV approach with relaxation (R-
GSAV) for general dissipative systems. The R-GSAV approach preserves all the advantages of 
the GSAV approach, in addition, it dissipates a modified energy that is directly linked to the 
original free energy. We prove that the k-th order implicit-explicit (IMEX) schemes based 
on R-GSAV are unconditionally energy stable, and we carry out a rigorous error analysis for 
k = 1, 2, 3, 4, 5. We present ample numerical results to demonstrate the improved accuracy 
and effectiveness of the R-GSAV approach.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

When designing numerical schemes for nonlinear dissipative systems, it is crucial to preserve the energy dissipation law 
at the discrete level in order to eliminate non-physics numerical solutions. How to design efficient and accurate energy 
stable schemes for nonlinear dissipative systems has been a subject of extensive research in the past few decades. Existing 
popular approaches include, but not limited to: (i) Convex splitting approach [12,13,29,4]: it leads to unconditionally energy 
stable for a large class of gradient flows but it requires solving a nonlinear system at each time step; (ii) Stabilized linearly 
implicit approach [42,33]: It leads to unconditionally energy stable schemes for gradient flows with global Lipschitz condi-
tions and only requires solving linear systems with constant coefficients at each time step; (iii) Exponential time differencing 
(ETD) approach [36,10,11]: It can lead to unconditionally energy stable schemes for certain mildly nonlinear systems and 
requires the diagonalization of the discrete Laplace operator; (iv) Invariant energy quadratization (IEQ) approach [37,39]: 
it leads to unconditionally energy stable schemes for a large class of gradient flows, but requires solving a coupled linear 
system with variable coefficients at each time step; (v) Scalar auxiliary variable (SAV) approach [31,32]: it leads to uncon-
ditionally energy stable schemes for a large class of gradient flows, but only requires solving two decoupled linear systems 
with constant coefficients at each time step. We refer to [32,9,34,11] and references therein for a more complete literature 

✩ This work is supported in part by NSFC 11971407, NSF DMS-2012585 and AFOSR FA9550-20-1-0309.
* Corresponding author.

E-mail addresses: yanrongzhang@stu.xmu.edu.cn (Y. Zhang), shen7@purdue.edu (J. Shen).
https://doi.org/10.1016/j.jcp.2022.111311
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111311
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111311&domain=pdf
mailto:yanrongzhang@stu.xmu.edu.cn
mailto:shen7@purdue.edu
https://doi.org/10.1016/j.jcp.2022.111311


Y. Zhang and J. Shen Journal of Computational Physics 464 (2022) 111311
on this subject. Note that unconditional energy stable schemes constructed from the above approaches are mostly limited 
to first- or second-order (see, however, higher-order versions based on Runge-Kutta [1] or Gaussian collocation [16] which 
require solving coupled linear or nonlinear systems). In [20] (see also [19]), a generalized SAV approach is proposed for 
general dissipative systems. Its higher-order versions are also unconditionally energy stable and only requires solving one 
decoupled linear system with constant coefficients at each time step.

Thanks to their simplicity, efficiency, accuracy and generality, the SAV and GSAV approaches have received much attention 
recently, they, along with their various variations/extensions, have been used to construct unconditionally energy stable 
schemes for a large class of nonlinear systems, including various gradient flows (see, for instance, [43,5,6,28,24,34,41,40]), 
gradient flows with other global constraints (see, for instance, [8]), Navier-Stokes equations and related systems (see, for 
instance, [26,23,15,25]), time fractional PDEs [18,17], conservative or Hamiltonian systems (see, for instance, [3,2,14]), and 
many more. However, in the original SAV approach and its various variants, the discrete value of the SAV is not directly 
linked to its definition at the continuous level, and this may lead to a loss of accuracy when the time step is not sufficiently 
small. In order to see this more clearly, we briefly describe the original SAV approach below.

To fix the idea, we consider a free energy in the form

Etot(φ) = 1

2
(Lφ,φ) +

∫
�

F (φ)dx, (1.1)

where L is a linear self-adjoint elliptic operator, F (φ) is a nonlinear potential function. Then, the gradient flow associated 
with the above free energy can be written as⎧⎪⎪⎨

⎪⎪⎩
∂φ

∂t
= −Gμ,

μ = δEtot(φ)

δφ
= Lφ + F ′(φ),

(1.2)

with periodic or homogeneous Neumann boundary condition, and G is a positive definite operator. Let E1(φ) = ∫
�
F (φ)dx

and assume E1(φ) + C0 > 0, where C0 > 0 is a constant. The key idea of the original SAV approach [31,32] is to introduce a 
SAV r(t) = √

E1(φ) + C0 > 0, and expand (1.2) into the following equivalent system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
= −Gμ,

μ = Lφ + r(t)√
E1(φ) + C0

F ′(φ),

rt = 1

2
√

E1(φ) + C0

∫
�

F ′(φ)φtdx.

(1.3)

Then, instead of discretizing (1.2), we can discretize the expanded system (1.3) which, with the additional SAV r(t), allows 
us to construct efficient and unconditional energy stable schemes. For example, a first-order semi-discrete scheme for (1.3)
can be constructed as follows

φn+1 − φn

δt
= −Gμn+1, (1.4)

μn+1 = Lφn+1 + rn+1

√
E1(φn) + C0

F ′(φn), (1.5)

rn+1 − rn

δt
= 1

2
√

E1(φn) + C0

∫
�

F ′(φn)
φn+1 − φn

δt
dx. (1.6)

It can be easily shown that the above scheme is unconditionally energy stable with a modified energy Ẽ(φn) = 1
2 (Lφn, φn) +

|rn|2, and only requires solving two linear systems with constant coefficients [31,32].
While the expanded system and the original system are equivalent at the continuous level, rn+1 is not directly linked 

to 
√∫

�
F (φn+1)dx + C0 and may take very different values, if the time step is not sufficiently small, and lead to inaccurate 

solutions. In particular, for fixed δt , the ratio rn+1√∫
� F (φn+1)dx+C0

may converge to a value different from 1, leading to a wrong 

steady state solution (see Table 1 in [43]). One possible remedy for this is to monitor the ratio rn+1√∫
� F (φn+1)dx+C0

adaptively 

to ensure that it is always close to 1 at every time step. Another remedy is to use a Lagrange multiplier SAV approach [6]
such that it dissipates the original energy, but it involves solving a nonlinear algebraic equation at each time step which 
may not admit a suitable solution when the time step is not sufficiently small.
2
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Recently, an interesting relaxed SAV (R-SAV) approach was introduced in [21]. The idea is to add a relaxation step to 
the original SAV approach to link rn+1 with 

√∫
�
F (φn+1)dx+ C0 so that the updated sequence rn+1 is directly linked to √∫

�
F (φn+1)dx + C0 in some way and is still dissipative. The cost of this relaxation step is negligible while numerical results 

in [21] show that the R-SAV approach can significantly improve the accuracy of the original SAV approach. However, this R-
SAV approach is based on the original SAV approach which has two limitations/shortcomings: (i) it only applies to gradient 
flows; and (ii) it requires solving two linear systems at each time step. The generalized SAV (GSAV) approach proposed in 
[20,19] overcomes the above limitations/shortcomings while keeping the essential advantages of the original SAV approach, 
but it also suffers from the same problem that the computed SAV is not directly linked to the free energy and may lead to 
non accurate solutions as in the original SAV approach.

The main purpose of this paper is to construct a relaxed GSAV (R-GSAV) approach which links the SAV directly to the 
free energy, and enjoys the following advantages:

• It is unconditionally energy stable with respect to a modified energy that is closer to the original free energy, and 
provides a much improved accuracy when compared with the GSAV approach;

• it only requires solving one linear system with constant coefficients as opposed to the two linear systems by the R-SAV 
approach, so its computational cost is essentially half of the R-SAV approach;

• it can be applied to general dissipative systems, and its higher-order versions are shown to be unconditionally energy 
stable with optimal error estimates.

Moreover, our numerical results indicate that, for the ample numerical experiments that we tested, the modified energy of 
our R-GSAV schemes equals to the original free energy at almost all times.

The rest of this paper is organized as follows. In section 2, we provide a brief review of the original SAV approach and 
R-SAV approach for gradient flows, and the GSAV approach for general dissipative systems. In Section 3, we present the 
R-GSAV approach for general dissipative systems, and prove that the kth-order implicit-explicit (IMEX) schemes based on 
the R-GSAV approach is unconditionally stable. In Section 4, we carry out an error analysis for the kth order (1 ≤ k ≤ 5) 
IMEX schemes for Allen-Cahn type and Cahn-Hilliard type equations. In Section 5, we extend the R-GSAV approach to cases 
where multiple SAVs are used. We present in Section 6 comparisons of R-GSAV approach with original SAV, R-SAV and GSAV 
approaches, and provide ample numerical examples to validate its effectiveness.

2. A brief review of the original SAV, relaxed SAV and generalized SAV approaches

In order to motivate our new schemes, we briefly review below the original SAV, relaxed SAV and generalized SAV 
approaches.

2.1. The original SAV approach

A brief description of the original SAV approach for gradient flows is already provided in the introduction where a 
first-order scheme is introduced. Similarly, we can construct k-th order IMEX schemes for the expanded system (1.3) as 
follows:

αkφ
n+1 − Ak

(
φn
)

δt
= −Gμn+1, (2.1)

μn+1 = Lφn+1 + rn+1

√
E1(Bk(φ

n)) + C0
F ′(Bk(φ

n)), (2.2)

αkrn+1 − Ak
(
rn
)

δt
= 1

2
√

E1(Bk(φ
n)) + C0

∫
�

F ′(Bk(φ
n))

αkφ
n+1 − Ak

(
φn
)

δt
dx, (2.3)

where αk , Ak and Bk can be derived by Taylor expansion. For the readers’ convenience, we provide them for k = 1, 2, 3
below:

First-order:

α1 = 1, A1
(
φn)= φn, B1

(
φn)= φn; (2.4)

Second-order:

α2 = 3

2
, A2

(
φn)= 2φn − 1

2
φn−1, B2

(
φn)= 2φn − φn−1; (2.5)

Third-order:

α3 = 11
, A3

(
φn)= 3φn − 3

φn−1 + 1
φn−2, B3

(
φn)= 3φn − 3φn−1 + φn−2. (2.6)
6 2 3

3
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It has been shown that the scheme (2.1)-(2.3) for k = 1, 2 is unconditionally energy stable with a modified energy. 
For example, the modified energy is Ẽ(φn+1) = 1

2 (Lφn+1, φn+1) + |rn+1|2 for k = 1, where rn+1 is only weakly linked to √
E1(Bk(φ

n+1)) + C0. The consequence is that when the time step is not sufficiently small, the modified energy can deviate 
far away from the original energy, leading to inaccurate solutions.

2.2. The relaxed SAV approach

The relaxed SAV (R-SAV) approach proposed in [21] is as follows:
Step 1: Calculate the solution 

(
φn+1, r̃n+1

)
based on original SAV approach:

αkφ
n+1 − Ak

(
φn
)

δt
= −Gμn+1, (2.7)

μn+1 = Lφn+1 + r̃n+1

√
E1(Bk(φ

n)) + C0
F ′(Bk(φ

n)), (2.8)

αkr̃n+1 − Ak
(
rn
)

δt
= 1

2
√

E1(Bk(φ
n)) + C0

∫
�

F ′(Bk(φ
n))

αkφ
n+1 − Ak

(
φn
)

δt
dx. (2.9)

Step 2: Update the SAV rn+1 by a relaxation:

rn+1 = ζn+1
0 r̃n+1 +

(
1− ζn+1

0

)
E1
(
φn+1) , ζn+1

0 ∈ V. (2.10)

Here, V is a set defined by

V =
{
ζ ∈ [0,1] s.t. ∣∣rn+1

∣∣2 − ∣∣r̃n+1
∣∣2 ≤ δtγ

(
Gμn+1,μn+1)} (2.11)

for BDF1 scheme, and

V =
{
ζ ∈ [0,1] s.t. 1

2

(∣∣rn+1
∣∣2 + ∣∣2rn+1 − rn

∣∣2 − ∣∣r̃n+1
∣∣2 − ∣∣2r̃n+1 − r̃n

∣∣2)≤ δtγ
(
Gμn+1,μn+1)} (2.12)

for BDF2 scheme, where γ ∈ [0, 1] is a tunable parameter.

Remark 2.1 (Optimal choice for ζn+1
0 ). We describe below how to choose the relaxation parameter ζn+1

0 . Taking BDF2 as an 
example, ζn+1

0 can be chosen as a solution of the following optimization problem:

ζn+1
0 = min

ζ∈[0,1] ζ, s.t.
1

2

(∣∣rn+1
∣∣2 + ∣∣2rn+1 − rn

∣∣2 − ∣∣r̃n+1
∣∣2 − ∣∣2r̃n+1 − r̃n

∣∣2)≤ δtγ
(
Gμn+1,μn+1) , (2.13)

with rn+1 = ζn+1
0 r̃n+1 +

(
1− ζn+1

0

)
E1
(
φn+1

)
. This can be simplified as

ζn+1
0 = min

ζ∈[0,1] ζ, s.t. f (ζ ) = aζ 2 + bζ + c ≤ 0, (2.14)

where the coefficients are

a = 5
2

(
r̃n+1 − E1

(
φn+1

))2
,

b = (r̃n+1 − E1
(
φn+1

)) (
5E1

(
φn+1

)− 2rn
)
,

c = 1
2

((
E1
(
φn+1

))2 + (2E1
(
φn+1

)− rn
)2 − (r̃n+1

)2 − (2r̃n+1 − rn
)2)− δtγ

(
Gμn+1,μn+1

)
.

(2.15)

If a = 0, we set ζn+1
0 = 0. If a > 0, notice that f (1) = a + b + c = −δtγ

(
Gμn+1,μn+1

)≤ 0, then we have 1 ∈ V i.e., V �= ∅, 
and the quadratic function f (ζ ) has at least one real root. Then the solution of (2.13) is given by

ζn+1
0 = max

{
0,

−b − √
b2 − 4ac

2a

}
. (2.16)

It can be shown that the scheme (2.7)-(2.10) with k = 1, 2 is unconditionally energy stable in the sense that
(i) For k = 1, Rn+1

R−S AV−BDF1 − Rn
R−S AV−BDF1 ≤ −δt (1− γ )

(
Gμn+1,μn+1

)
, where

Rn+1
R−S AV−BDF1 = 1 (

Lφn+1, φn+1)+ ∣∣rn+1
∣∣2 ;
2

4
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(ii) For k = 2, Rn+1
R−S AV−BDF2 − Rn

R−S AV−BDF2 ≤ −δt (1− γ )
(
Gμn+1,μn+1

)
, where

Rn+1
R−S AV−BDF2 = 1

4

((
Lφn+1, φn+1)+ (L (2φn+1 − φn) ,2φn+1 − φn))

+ 1

2

(∣∣rn+1
∣∣2 + ∣∣2rn+1 − rn

∣∣2) .

Note that by the definition in (2.10), rn+1 is directly linked to E1(φ
n+1). Hence, the modified energy above is directly linked 

to the original free energy.

2.3. The generalized SAV (GSAV) approach

The GSAV approach was proposed in [19] for the following general dissipative systems:

∂φ

∂t
+Aφ + g(φ) = 0, (2.17)

where A is a positive definite operator and g(φ) is a semi-linear or quasi-linear operator. We assume it satisfies an energy 
dissipation law as follows

dEtot(φ)

dt
= −K(φ), (2.18)

where Etot(φ) is a free energy with lower bound −C0 and K(φ) ≥ 0 for all φ. Setting E(φ) = Etot(φ) + C0 and introducing 
a SAV R(t) = E(φ), we rewrite the equation (2.17) as the following system⎧⎪⎪⎨

⎪⎪⎩
∂φ

∂t
+Aφ + g(φ) = 0,

dR(t)

dt
= − R(t)

E(φ)
K(φ).

(2.19)

Then, the BDFk GSAV schemes are as follows:

αkφ̄
n+1 − Ak

(
φn
)

δt
+Aφ̄n+1 + g

[
Bk
(
φ̄n)]= 0, (2.20)

1

δt

(
Rn+1 − Rn)= − Rn+1

E
(
φ̄n+1

)K(φ̄n+1), (2.21)

ξn+1
k = Rn+1

E
(
φ̄n+1

) , (2.22)

φn+1 = ηn+1
k φ̄n+1 with ηn+1

k = 1−
(
1− ξn+1

k

)k+1
, (2.23)

where αk , the operators Ak and Bk are as above.
It is shown in [19] that the above scheme is unconditional energy stable with a modified energy. However, as the original 

SAV approach, the dynamics of SAV Rn+1 is only weakly linked to the energy E(φn+1) and may deviate from it when the 
time step is not sufficiently small.

3. The relaxed generalized (R-GSAV) SAV approach

Inspired by the R-SAV approach described above, we construct below the relaxed GSAV approach, which not only inherits 
all the advantages of the GSAV approach, but can also significantly improve its accuracy.

Given φn−k, ..., φn, Rn−k, ..., Rn , we compute φn+1, Rn+1 via the following two steps:
Step 1: Determine an intermediate solution (φn+1, R̃n+1) by using the GSAV method:

αkφ̄
n+1 − Ak

(
φn
)

δt
+Aφ̄n+1 + g

[
Bk
(
φ̄n)]= 0, (3.1)

1

δt

(
R̃n+1 − Rn

)
= − R̃n+1

E
(
φ̄n+1

)K(φ̄n+1), (3.2)

ξn+1
k = R̃n+1

E
(
φ̄n+1

) , (3.3)

φn+1 = ηn+1
k φ̄n+1 with ηn+1

k = 1−
(
1− ξn+1

k

)k+1
. (3.4)
5
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Step 2: Update the SAV Rn+1 via the following relaxation:

Rn+1 = ζn+1
0 R̃n+1 + (1− ζn+1

0 )E(φn+1), ζn+1
0 ∈ V, (3.5)

where

V =
{

ζ ∈ [0,1] s.t. Rn+1 − R̃n+1

δt
= −γ n+1K(φn+1) + R̃n+1

E(φ̄n+1)
K(φ̄n+1)

}
, (3.6)

with γ n+1 ≥ 0 to be determined so that V is not empty.
We explain below how to choose ζn+1

0 and γ n+1. Plugging (3.5) into the equality of (3.6), we find that if we choose ζn+1
0

and γ n+1 such that the following condition is satisfied:

(R̃n+1 − E(φn+1))ζn+1
0 = R̃n+1 − E(φn+1) − δtγ n+1K(φn+1) + δt

R̃n+1

E(φ̄n+1)
K(φ̄n+1), (3.7)

then, ζn+1
0 ∈ V . The next theorem summarizes the choice of ζn+1

0 and γ n+1.

Theorem 3.1. We choose ζn+1
0 in (3.5) and γ n+1 in (3.6) as follows:

1. If R̃n+1 = E(φn+1), we set ζn+1
0 = 0 and γ n+1 = R̃n+1K(φ̄n+1)

E(φ̄n+1)K(φn+1)
.

2. If R̃n+1 > E(φn+1), we set ζn+1
0 = 0 and

γ n+1 = R̃n+1 − E(φn+1)

δtK(φn+1)
+ R̃n+1K(φ̄n+1)

E(φ̄n+1)K(φn+1)
. (3.8)

3. If R̃n+1 < E(φn+1) and R̃n+1 − E(φn+1) + δt R̃n+1

E(φ̄n+1)
K(φ̄n+1) ≥ 0, we set ζn+1

0 = 0 and γ n+1 the same as (3.8).

4. If R̃n+1 < E(φn+1) and R̃n+1 − E(φn+1) + δt R̃n+1

E(φ̄n+1)
K(φ̄n+1) < 0, we set ζn+1

0 = 1 − δt R̃n+1K(φ̄n+1)

E(φ̄n+1)
(
E(φn+1)−R̃n+1

) and γ n+1 = 0.

Then, (3.7) is satisfied in all cases above and ζn+1
0 ∈ V . Furthermore, given Rn ≥ 0, we have Rn+1 ≥ 0, ξn+1

k ≥ 0, and the scheme 
(3.1)-(3.5) with the above choice of ζn+1

0 and γ n+1 is unconditionally energy stable in the sense that

Rn+1 − Rn = −δtγ n+1K(φn+1) ≤ 0. (3.9)

Furthermore, we have

Rn+1 ≤ E(φn+1) ∀n ≥ 0. (3.10)

In addition, if E(φ) = 1
2 (Lφ, φ) + E1(φ) with L being a linear positive definite operator and E1(φ) bounded from below, there exists 

Mk > 0 such that(
Lφn, φn)≤ M2

k , ∀n. (3.11)

Proof. It can be directly verified that, with the above choice of ζn+1
0 and γ n+1, (3.7) is satisfied in all cases so that ζn+1

0 ∈ V .
Given Rn ≥ 0. Since E(φ̄n+1) > 0, it follows from (3.2) that

R̃n+1 = Rn

1+ δtK(φ̄n+1)

E(φ̄n+1)

≥ 0. (3.12)

Then we derive from (3.3) that ξn+1
k ≥ 0, and we derive from (3.5) that Rn+1 ≥ 0.

Combining (3.2) and (3.6), we obtain (3.9).
For Cases 1-3, we have ζn+1

0 = 0 so Rn+1 = E(φn+1). For Case 4, since ζn+1
0 = 1 − δt R̃n+1K(φ̄n+1)

E(φ̄n+1)
(
E(φn+1)−R̃n+1

) ∈ [0, 1] and 

R̃n+1 < E(φn+1), we derive from (3.5) that Rn+1 ≤ E(φn+1).
The proof of (3.11) is essentially the same as the proof of Theorem 1 of the GSAV scheme in [19]. For the readers’ 

convenience, we provide the proof below.
Denote M := R0 = E[φ(·, 0)], then we derive from (3.9) and (3.12) that R̃n+1 ≤ M, ∀n.
Without loss of generality, we can assume E1(φ) > 1 for all φ. It then follows from (3.3) that

|ξn+1
k | = R̃n+1

¯n+1
≤ 2M

¯n+1 ¯n+1
. (3.13)
E(φ ) (Lφ ,φ ) + 2

6
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Then ηn+1
k = 1 −

(
1− ξn+1

k

)k+1 = ξn+1
k Pk(ξ

n+1
k ) with Pk being a polynomial of degree k. We derive from (3.13) that there 

exists Mk > 0 such that

|ηn+1
k | = |ξn+1

k Pk(ξ
n+1
k )| ≤ Mk

(Lφ̄n+1, φ̄n+1) + 2
,

which, along with φn+1 = ηn+1
k φ̄n+1, implies

(Lφn+1, φn+1) = (ηn+1
k )2(Lφ̄n+1, φ̄n+1)

≤ ( Mk

(Lφ̄n+1, φ̄n+1) + 2

)2
(Lφ̄n+1, φ̄n+1) ≤ M2

k .

The proof is complete. �
Remark 3.1. From an energy approximation point of view, it is best that Rn+1 = E(φn+1). However, simply setting Rn+1 =
E(φn+1) at each time step destroys the energy stability. We observe from the above statements that in most cases (Cases 1, 
2, 3), we have ζn+1

0 = 0 which implies Rn+1 = E(φn+1), and then thanks to (3.9) and (3.10), we have

E(φn+1) = Rn+1 ≤ Rn ≤ E(φn) (Cases 1, 2, 3). (3.14)

Only in Case 4 where R̃n+1 is significantly smaller than E(φn+1), Rn+1 is a value between (R̃n+1, E(φn+1)), and we can 
not prove E(φn+1) ≤ E(φn). Hence, the original energy is proved to be dissipative in most situations, which is a significant 
improvement over the GSAV scheme.

Remark 3.2. The R-GSAV scheme (3.1)-(3.5) can be easily modified to handle an external force. Indeed, assuming the energy 
law for (2.17) with an external force is

dEtot(φ)

dt
= −K(φ) +F(φ), (3.15)

where F(φ) is related to the external force f . Then, we only need to replace (3.2) by

1

δt

(
R̃n+1 − Rn

)
= − R̃n+1

E
(
φ̄n+1

) (K(φ̄n+1) +F(φ̄n+1)
)
. (3.16)

4. Error estimate

In this section, we will derive error estimates for the R-GSAV schemes applied to Allen-Cahn type equations and Cahn-
Hilliard type equations by using the stability results in Theorem 3.1.

We recall first some preliminary results which play a critical role in error analysis.

Lemma 4.1. [27] For 1 ≤ k ≤ 5, there exist 0 ≤ τk < 1, a positive definite symmetric matrix G = (gij) ∈ Rk,k and real numbers 
a0, ..., ak such that

(
αkφ

n+1 − Ak
(
φn) , φn+1 − τkφ

n)= k∑
i, j=1

gij
(
φn+1+i−k, φn+1+ j−k

)

−
k∑

i, j=1

gij
(
φn+i−k, φn+ j−k

)
+
∥∥∥∥∥

k∑
i=0

aiφ
n+1+i−k

∥∥∥∥∥
2

,

where the smallest possible values of τk are

τ1 = τ2 = 0, τ3 = 0.0836, τ4 = 0.2878, τ5 = 0.8160, (4.1)

and αk, Ak are constant and operator related to BDFk IMEX schemes as described in the last section.

The following regularity results for (1.2) are given in [30,35].

Theorem 4.1. Assume φ0 ∈ H2(�) and the following holds∣∣F ′′(x)
∣∣< C

(|x|p + 1
)
, p > 0 arbitrary if d = 1,2; 0 < p < 4 if d = 3. (4.2)
7
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Then for G = I , problem (1.2) has a unique solution for any T > 0 in the space

C
(
[0, T ]; H2(�)

)
∩ L2

(
0, T ; H3(�)

)
. (4.3)

Furthermore, assume∣∣F ′′′(x)
∣∣< C

(
|x|p′ + 1

)
, p′ > 0 arbitrary if d = 1,2; 0 < p′ < 3 if d = 3. (4.4)

Then for G = −�, there exists a unique solution for any T > 0 such that

φ ∈ C
(
[0, T ]; H2(�)

)
∩ L2

(
0, T ; H4(�)

)
. (4.5)

We also recall the following useful results to deal with the nonlinear term [30].

Theorem 4.2. Assume that ‖φ‖H1 ≤ M.

• Assume that (4.2) holds. Then for any φ ∈ H3 , there exists 0 ≤ σ < 1 and a constant C(M) such that the following inequality holds

‖∇ F ′(φ)‖2 ≤ C(M)
(
1+ ‖∇�φ‖2σ

)
. (4.6)

• Assume that (4.2) and (4.4) hold. Then, for any φ ∈ H4 , there exists 0 ≤ σ < 1 and a constant C(M) such that the following 
inequality holds

‖�F ′(φ)‖2 ≤ C(M)
(
1+ ‖�2φ‖2σ

)
. (4.7)

We consider first the Allen-Cahn type equation

∂φ

∂t
− �φ + λφ + F ′(φ) = 0, (x, t) ∈ � × (0, T ], (4.8)

which is (1.2) with L = −� +λI and G = I . It can also be written in the form of (2.17) with A = −� +λI and g(φ) = F ′(φ). 
The corresponding (2.18) is with Etot(φ) = ∫

�
1
2 |∇φ|2 + λ|φ|2 + F (φ)dx and K(φ) = ‖ − �φ + λφ + F ′(φ)‖2.

In the following, we follow a similar procedure as in [19] to carry out a unified error analysis for the R-GSAV/BDFk
(1 ≤ k ≤ 5) defined by (3.1)-(3.5).

Theorem 4.3. Given initial conditions φ̄i = φi = φ(ti), Ri = E(φi), i = 0, 1, ..., k − 1. Let φ̄n+1 and φn+1 be computed with the 
R-GSAV/BDFk (1 ≤ k ≤ 5) scheme (3.1)-(3.5) for (4.8), except that when k = 1, we set

ηn+1
1 = 1−

(
1− ξn+1

1

)3
, (4.9)

and for Case 4 of k = 1, we set

ζn+1
0 = 1− δt2 R̃n+1K(φ̄n+1)

E(φ̄n+1)(E(φn+1) − R̃n+1)
. (4.10)

We assume (4.2) holds and

φ0 ∈ H3,
∂ jφ

∂t j
∈ L2

(
0, T ; H1) ,1 ≤ j ≤ k + 1. (4.11)

Then for δt < min{ 1
1+2Ck+2

0

, 1−τk
3k }, we have

∥∥φ̄n+1 − φ(·, tn+1)
∥∥
H2 ,

∥∥φn+1 − φ(·, tn+1)
∥∥
H2 ≤ Cδtk, ∀n + 1 ≤ T /δt,

where τk is given in (4.1), and the constants C0, C are independent of δt.

Remark 4.1. The choices (4.9) when k = 1 and (4.10) in Case 4 of k = 1 are made for purely technical reasons in the proof. 
In this case, we can choose γ n+1 = R̃n+1‖h(φ̄n+1)‖2

E(φ̄n+1)‖h(φn+1)‖2 (1 −δt), which satisfies energy stability (3.9) if δt ≤ 1. And it is clear that 

the original choices of ηn+1
1 and ζn+1

0 in Theorem 3.1 still lead to first-order accuracy which is confirmed by our numerical
experiments.
8
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Proof. We denote tn = nδt, ̄en = φ̄n − φ(·, tn), en = φn − φ(·, tn), ̃sn = R̃n − R(tn), sn = Rn − R(tn).
We will prove by induction∣∣1− ξ

q
k

∣∣≤ C0δt, ∀q ≤ T /δt, (4.12)

where C0 is dependent on T , � and the exact solution φ but is independent of δt . Under the assumption, (4.12) holds for 
q = 0. Assuming∣∣1− ξ

q
k

∣∣≤ C0δt, ∀q ≤m, (4.13)

we need to prove∣∣∣1− ξm+1
k

∣∣∣≤ C0δt. (4.14)

We first consider the cases k = 2, 3, 4, 5, and point out the slightly different proof process for the case k = 1 later. The Step 
1 and Step 2 below are essentially the same as in [19]. So we only list the results that will be used here and refer to [19]
for more details.
Step 1: H2 bound for φn and φ̄n for all n ≤m. The first step of the scheme (3.1)-(3.2) for (4.8) is

αkφ̄
n+1 − Ak

(
φn
)

δt
= �φ̄n+1 − λφ̄n+1 + F ′ [Bk

(
φ̄n)] . (4.15)

Multiplying the above by ηn+1
k , we obtain

αkφ
n+1 − ηn+1

k Ak
(
φn
)

δt
= �φn+1 − λφn+1 + ηn+1

k F ′ [Bk
(
φ̄n)] . (4.16)

Under the assumption (4.13), it can be shown that for δt small enough such that

δt ≤ min

{
1

2Ck+1
0

,1

}
, (4.17)

we have

1 − δtk

2
≤ ∣∣ηq

k

∣∣≤ 1+ δtk

2
,
∣∣1− η

q
k

∣∣≤ δtk

2
, ∀q ≤m. (4.18)

Taking the inner product of (4.16) with �2φq −τk�
2φq−1 and using Theorem 3.1, Lemma 4.1 and the property of symmetric 

positive definite matrix G = (gij), we can obtain

‖φn‖H2 ≤ C1, ∀δt < 1,n ≤m. (4.19)

We derive from the above and (4.18) that∥∥φ̄n
∥∥
H2 ≤ 2C1, ∀δt < 1,n ≤m. (4.20)

Step 2: estimate for ‖ēn+1‖H2 for all n ≤m. Subtracting (4.15) from (4.8), and using (4.19) and (4.20), we can derive that for 
δt < 1

C2
, we have

∥∥ēn+1
∥∥
H2 ≤

√
C2

(
1+ C2k+2

0

)
δtk, ∀0 ≤ n ≤m, (4.21)∥∥φ̄n+1

∥∥
H2 ≤ C̄, ∀0 ≤ n ≤m, (4.22)

and ∥∥F ′ (φ̄n+1)∥∥ ,
∥∥F ′′ (φ̄n+1)∥∥≤ C̄ ∀0 ≤ n ≤m. (4.23)

Step 3: estimate for 1 − ξm+1
k . By direct calculation,

Rtt =
∫
�

(
|∇φt |2 + ∇φ · ∇φtt + λφ2

t + λφφtt + F ′′(φ)φ2
t + F ′(φ)φtt

)
dx. (4.24)

It follows from (3.2) that the equation for the errors can be written as
9
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s̃n+1 − sn = δt

(∥∥h [φ (tn+1)]∥∥2 − R̃n+1

E
(
φ̄n+1

) ∥∥h (φ̄n+1)∥∥2)+ Tn
1 , (4.25)

where h(φ) = μ = −�φ + λφ + F ′(φ), and

Tn
1 = R

(
tn
)− R

(
tn+1)+ δtRt

(
tn+1)=

tn+1∫
tn

(
s − tn

)
Rtt(s)ds. (4.26)

Since Rn = ζn
0 R̃

n + (1− ζn
0

)
E
(
φn
)
and R 

(
tn
)= ζn

0 R 
(
tn
)+ (1− ζn

0

)
E
(
φ
(
tn
))
, we obtain

sn = ζn
0 s̃

n + (1− ζn
0

) [
E
(
φn)− E

(
φ
(
tn
))]

. (4.27)

Plugging (4.27) into (4.25), we obtain

s̃n+1 − ζn
0 s̃

n − (1− ζn
0

) [
E
(
φn)− E

(
φ
(
tn
))]= δt

(∥∥h [φ (tn+1)]∥∥2 − R̃n+1

E
(
φ̄n+1

) ∥∥h (φ̄n+1)∥∥2)+ Tn
1 , (4.28)

by using the triangle inequality principle, we derive∣∣s̃n+1
∣∣− ζn

0

∣∣s̃n∣∣≤ ∣∣s̃n+1 − ζn
0 s̃

n
∣∣

≤ δt

∣∣∣∣∣
∥∥h [φ (tn+1)]∥∥2 − R̃n+1

E
(
φ̄n+1

) ∥∥h (φ̄n+1)∥∥2
∣∣∣∣∣+ (1− ζn

0

) ∣∣E (φn)− E
(
φ
(
tn
))∣∣+ ∣∣Tn

1

∣∣ . (4.29)

Taking the sum of (4.29) for n from 0 to m, and noting that s̃0 = 0, we have

∣∣s̃m+1
∣∣+ m∑

n=1

(
1− ζn

0

) ∣∣s̃n∣∣≤ δt
m∑

n=0

∣∣∣∣∣
∥∥h [φ (tn+1)]∥∥2 − R̃n+1

E
(
φ̄n+1

) ∥∥h (φ̄n+1)∥∥2∣∣∣∣∣
+

m∑
n=0

(
1− ζn

0

) ∣∣E (φn)− E
(
φ
(
tn
))∣∣+ m∑

n=0

∣∣Tn
1

∣∣ .
(4.30)

Similarly to the analysis of GSAV approach in [19], we can bound the right hand terms of (4.30) as follows. First, thanks to 
(4.24), we have

∣∣Tn
1

∣∣≤ Cδt

tn+1∫
tn

|Rtt |ds ≤ Cδt

tn+1∫
tn

(
‖φt(s)‖2H1 + ‖φtt(s)‖H1

)
ds. (4.31)

Next, by (3.2) and (3.9), we have R̃n+1 < C and∣∣∣∥∥h [φ (tn+1
)]∥∥2 − R̃n+1

E
(
φ̄n+1

) ∥∥h (φ̄n+1
)∥∥2∣∣∣

≤ ∥∥h [φ (tn+1
)]∥∥2 ∣∣∣1− R̃n+1

E
(
φ̄n+1

) ∣∣∣+ R̃n+1

E
(
φ̄n+1

) ∣∣∣∥∥h [φ (tn+1
)]∥∥2 − ∥∥h (φ̄n+1

)∥∥2∣∣∣
:= Pn

1 + Pn
2.

(4.32)

By Theorem 4.1, we have 
∥∥h [φ (tn+1

)]∥∥2 < C , and by E(u) > C > 0, we find

Pn
1 ≤ C

∣∣∣∣∣1− R̃n+1

E
(
φ̄n+1

)
∣∣∣∣∣

≤ C

∣∣∣∣∣ R
(
tn+1

)
E
[
φ
(
tn+1

)] − R̃n+1

E
[
φ
(
tn+1

)]
∣∣∣∣∣+ C

∣∣∣∣∣ R̃n+1

E
[
φ
(
tn+1

)] − R̃n+1

E
(
φ̄n+1

)
∣∣∣∣∣

≤ C
(∣∣E [φ (tn+1)]− E

(
φ̄n+1)∣∣+ ∣∣s̃n+1

∣∣) ,
(4.33)

and ∣∣E [φ (tn+1)]− E
(
φ̄n+1)∣∣≤ CC̄

(∥∥∇ēn+1
∥∥+ ∥∥ēn+1

∥∥) . (4.34)

On the other hand,
10
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Pn
2 ≤ CC̄

(∥∥�ēn+1
∥∥+ ∥∥ēn+1

∥∥) , (4.35)

and ∣∣E (φn)− E
(
φ
(
tn
))∣∣≤ ∣∣E (φn)− E

(
φ̄n)∣∣+ ∣∣E (φ̄n)− E

(
φ
(
tn
))∣∣ . (4.36)

Thanks to (4.13), Theorem 3.1 and (4.20), we have

∣∣E (φn)− E
(
φ̄n)∣∣≤ 1

2

(∥∥∇φn
∥∥+ ∥∥∇φ̄n

∥∥)∥∥∇φn − ∇φ̄n
∥∥

+ λ

2

(∥∥φn
∥∥+ ∥∥φ̄n

∥∥)∥∥φn − φ̄n
∥∥+

∫
�

F
(
φn)− F

(
φ̄n)dx

≤ CC̄ (Mk + C1)
(∥∥∇φn − ∇φ̄n

∥∥+ ∥∥φn − φ̄n
∥∥)

≤ CC̄ (Mk + C1)
∣∣1− ηn

k

∣∣ ∥∥φ̄n
∥∥
H1

≤ CC̄ (Mk + C1)C
k+1
0 δtk+1,

(4.37)

and ∣∣E (φ̄n)− E
(
φ
(
tn
))∣∣≤ CC̄

(∥∥∇ēn
∥∥+ ∥∥ēn∥∥)≤ CC̄δtk. (4.38)

Now, combining (4.21), (4.30)-(4.38), we obtain

∣∣s̃m+1
∣∣≤ Cδt

m∑
n=0

∣∣s̃n+1
∣∣+ CC̄δt

m∑
n=0

∥∥ēn+1
∥∥
H2 + CC̄ (Mk + C1)C

k+1
0 δtk

+ CC̄δtk−1 + Cδt

T∫
0

(
‖φt(s)‖2H1 + ‖φtt(s)‖H1

)
ds

≤ Cδt
m∑

n=0

∣∣s̃n+1
∣∣+ CC̄

(√
C2

(
1+ C2k+2

0

)
+ (Mk + C1)C

k+1
0

)
δtk + Cδt.

(4.39)

Applying the discrete Gronwall lemma to the above inequality with δt < 1
2C , we derive

∣∣s̃m+1
∣∣≤ C exp

(
(1− Cδt)−1) δt

(
C̄

(√
C2

(
1+ C2k+2

0

)
+ (Mk + C1)C

k+1
0

)
δtk−1 + 1

)

≤ C3δt

(
C̄

(√
C2

(
1+ C2k+2

0

)
+ (Mk + C1)C

k+1
0

)
δtk−1 + 1

)
,

(4.40)

where C3 is independent of C0 and δt , can be defined as

C3 := C exp(2), (4.41)

then δt < 1
2C can be guaranteed by

δt <
1

C3
. (4.42)

Hence, using (4.33), (4.34), (4.40) and (4.21), we have∣∣∣1− ξm+1
k

∣∣∣≤ C
(∣∣E [φ (tm+1)]− E

(
φ̄m+1)∣∣+ ∣∣s̃m+1

∣∣)
≤ C

(
C̄
∥∥ēm+1

∥∥
H1 + ∣∣s̃m+1

∣∣)
≤ Cδt

(
C̄

√
C2

(
1+ C2k+2

0

)
δtk−1 + C3

(
C̄

(√
C2

(
1+ C2k+2

0

)
+ (Mk + C1)C

k+1
0

)
δtk−1 + 1

))

≤ C4δt

(√
1+ C2k+2

0 δtk−1 + 1

)
,

where C4 is independent of C0 and δt .
11
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For the cases k ≥ 2, we can define C0 exactly the same as [19] with the condition δt ≤ 1
1+Ck+1

0

to obtain 
∣∣∣1− ξm+1

k

∣∣∣ <
C0δt .

The case k = 1 needs special attention, and we need to modify the choices of ηn+1
1 and ζn+1

0 as specified in (4.9) and 
(4.10) for purely technical reasons. We can repeat the same process as the Step 1 and Step 2 in cases k ≥ 2 and arrive at a 
similar result. In Step 1, we can get H2 bound for φn and φ̄n for all n ≤m. In Step 2, we can obtain estimate for ‖ēn+1‖H2

for all n ≤m:∥∥ēn+1
∥∥
H2 ≤

√
C2
(
1+ C6

0δt
2
)
δt, ∀0 ≤ n ≤m. (4.43)

In Step 3, we need to discuss it case by case according to the different values of ζm
0 .

(i) For Cases 1-3, we have ζm
0 = 0, then let n =m, we derive from (4.29) that

∣∣s̃m+1
∣∣≤ δt

∣∣∣∣∣∥∥h [φ (tm+1)]∥∥2 − R̃m+1

E
(
φ̄m+1

) ∥∥h (φ̄m+1)∥∥2∣∣∣∣∣+ ∣∣E (φm)− E
(
φ
(
tm
))∣∣+ ∣∣Tm

1

∣∣ . (4.44)

Combining (4.43), (4.31)-(4.36), (4.38) and∣∣E (φn)− E
(
φ̄n)∣∣≤ CC̄ (M1 + C1)C

3
0δt

3, (4.45)

we obtain

∣∣s̃m+1
∣∣≤ δt

m∑
n=0

∣∣∣∣∣∥∥h [φ (tm+1)]∥∥2 − R̃m+1

E
(
φ̄m+1

) ∥∥h (φ̄m+1)∥∥2∣∣∣∣∣+ ∣∣E (φm)− E
(
φ
(
tm
))∣∣+ m∑

n=0

∣∣Tn
1

∣∣

≤ Cδt
m∑

n=0

∣∣s̃n+1
∣∣+ CC̄δt

m∑
n=0

∥∥ēm+1
∥∥
H2 + CC̄ (M1 + C1)C

3
0δt

3 + CC̄δt

≤ Cδt
m∑

n=0

∣∣s̃n+1
∣∣+ CC̄

(√
C2
(
1+ C6

0δt
2
)+ (Mk + C1)C

3
0δt

)
δt + Cδt.

(4.46)

Applying the discrete Gronwall lemma to the above inequality with δt < 1
2C , we derive

∣∣s̃m+1
∣∣≤ C exp

(
(1− Cδt)−1) δt(C̄ (√C2

(
1+ C6

0δt
2
)+ (M1 + C1)C

3
0δt

)
+ 1

)

≤ C3δt

(
C̄

(√
C2
(
1+ C6

0δt
2
)+ (M1 + C1)C

3
0δt

)
+ 1

)
,

(4.47)

where C3 is independent of C0 and δt , can be defined as

C3 := C exp(2), (4.48)

then δt < 1
2C can be guaranteed by

δt <
1

C3
. (4.49)

Similarly, we have∣∣∣1− ξm+1
1

∣∣∣≤ C
(∣∣E [φ (tm+1)]− E

(
φ̄m+1)∣∣+ ∣∣s̃m+1

∣∣)
≤ C

(
C̄
∥∥ēm+1

∥∥
H1 + ∣∣s̃m+1

∣∣)
≤ Cδt

(
C̄
√
C2
(
1+ C6

0δt
2
)+ C3

(
C̄

(√
C2
(
1+ C6

0δt
2
)+ (M1 + C1)C

3
0δt

)
+ 1

))

≤ C4δt

(√
1+ C6

0δt
2 + 1

)
,

where C4 is independent of C0 and δt .
(ii) For Case 4, we choose ζm

0 = 1 − δt2 R̃m‖h(φ̄m)‖2
E(φ̄m)

(
E(φm)−R̃m

) as specified in (4.10), then it follows from (4.25) and (4.27) that

s̃m+1 − s̃m = δt

(∥∥h [φ (tm+1)]∥∥2 − R̃m+1

E
(
φ̄m+1

) ∥∥h (φ̄m+1)∥∥2)+ Tm
1 + δt2

R̃m‖h(φ̄m)‖2
E(φ̄m)

. (4.50)
12
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Taking the sum of above from p (0 ≤ p ≤m) to m with ζp−1 = 0, and using (4.44), we obtain

∣∣s̃m+1
∣∣≤ ∣∣s̃p∣∣+ δt

m∑
n=p

∣∣∣∣∣∥∥h [φ (tn+1)]∥∥2 − R̃n+1

E
(
φ̄n+1

) ∥∥h (φ̄n+1)∥∥2∣∣∣∣∣+
m∑

n=p

∣∣Tn
1

∣∣+ m∑
n=p

δt2
R̃n‖h(φ̄n)‖2

E(φ̄n)

≤ δt
m∑

n=p−1

∣∣∣∣∣
∥∥h [φ (tn+1)]∥∥2 − R̃n+1

E
(
φ̄n+1

) ∥∥h (φ̄n+1)∥∥2∣∣∣∣∣+
m∑

n=p−1

∣∣Tn
1

∣∣+ m∑
n=p−1

δt2
R̃n‖h(φ̄n)‖2

E(φ̄n)

+ ∣∣E (φp−1)− E
(
φ
(
t p − 1

))∣∣ .
(4.51)

Furthermore, we have

∣∣s̃m+1
∣∣≤ δt

m∑
n=0

∣∣∣∣∣
∥∥h [φ (tm+1)]∥∥2 − R̃m+1

E
(
φ̄m+1

) ∥∥h (φ̄m+1)∥∥2
∣∣∣∣∣+

m∑
n=0

∣∣Tn
1

∣∣+ Cδt + ∣∣E (φp−1)− E
(
φ
(
t p − 1

))∣∣ . (4.52)

Then we can repeat the same process as (i) and derive that∣∣∣1− ξm+1
1

∣∣∣≤ C4δt

(√
1+ C6

0δt
2 + 1

)
.

We can also define C0 exactly the same as [19] with the condition δt ≤ 1
C3
0
to obtain 

∣∣∣1− ξm+1
1

∣∣∣< C0δt .

Finally, we can show that∥∥em+1
∥∥2
H2 ≤ 2

∥∥ēm+1
∥∥2
H2 + 2

∥∥φm+1 − φ̄m+1
∥∥2
H2

≤ 2
∥∥ēm+1

∥∥2
H2 + 2

∣∣∣ηm+1
k − 1

∣∣∣2 ∥∥φ̄m+1
∥∥2
H2 .

Then for k ≥ 2, we have∥∥em+1
∥∥2
H2 ≤ 2C2

(
1+ C2(k+1)

0

)
δt2k + 2C̄2C2(k+1)

0 δt2(k+1),

and for k = 1, we have∥∥em+1
∥∥2
H2 ≤ 2C2

(
1+ C6

0δt
2
)

δt2 + 2C̄2C6
0δt

6,

provided that δt < min

{
1

1+2Ck+2
0

,
1−τk
3k

}
. The proof is complete. �

Similar results can also be established for the Cahn-Hilliard type equation

∂φ

∂t
= �(−�φ + λφ + F ′(φ)), (x, t) ∈ � × (0, T ], (4.53)

which is (1.2) with L = −� +λI and with G = −�, with initial condition φ(x, 0) = φ0(x) and periodic or Neumann boundary 
condition. It can also be written in the form of (2.17) with A = −�(−� + λI) and g(φ) = −�(F ′(φ)). The corresponding 
(2.18) is with Etot(φ) = ∫

�
1
2 |∇φ|2 + λ|φ|2 + F (φ)dx and K(φ) = ‖∇(−�φ + λφ + F ′(φ))‖2.

Theorem 4.4. Given initial condition φ̄i = φi = φ(ti), Ri = E(φi), i = 0, 1, ..., k − 1. Let φ̄n+1 and φn+1 be computed with the R-
GSAV/BDFk (1 ≤ k ≤ 5) scheme (3.1)-(3.5) for (4.53), except that when k = 1, we set

ηn+1
1 = 1−

(
1− ξn+1

1

)3
, (4.54)

and for Case 4 of k = 1, we set

ζn+1
0 = 1− δt2 R̃n+1K(φ̄n+1)

E(φ̄n+1)(E(φn+1) − R̃n+1)
. (4.55)

We assume (4.2) and (4.4) holds and

φ ∈ C
(
[0, T ]; H3

)
,

∂ jφ

∂t j
∈ L2

(
0, T ; H2

)
,1 ≤ j ≤ k,

∂k+1φ

∂tk+1
∈ L2

(
0, T ; H1) . (4.56)

Then for δt < min{ 1
k+2 , 1−τk

3k }, we have

1+4C0

13



Y. Zhang and J. Shen Journal of Computational Physics 464 (2022) 111311
∥∥φ̄n+1 − φ(·, tn+1)
∥∥
H2 ,

∥∥φn+1 − φ(·, tn+1)
∥∥
H2 ≤ Cδtk, ∀n + 1 ≤ T /δt,

where τk is given in (4.1), and the constants C0, C are independent of δt.

The above results can be established by combining the proofs of the above theorem and Theorem in [19], we leave the 
detail to the interested readers.

5. Extension to the multiple SAV approach

In some cases, the nonlinear part of the free energy may contain disparate terms such that schemes with a single SAV 
may require excessively small time steps to obtain correct simulations [7]. It is shown in [7] that the multiple SAV (MSAV) 
approach can overcome this difficulty.

In this section, we demonstrate how to construct relaxed MGSAV schemes for gradient flow. Without loss of generality, 
we consider the following gradient flow with two disparate nonlinear terms (extension to more than two disparate nonlinear 
terms is straightforward):⎧⎨

⎩
∂φ

∂t
= −Gμ,

μ = Lφ + F ′
1(φ) + F ′

2(φ),

(5.1)

where L is a linear self-adjoint elliptic operator, F1(φ), F2(φ) are nonlinear potential function, G is a positive definite linear 
operator. The system (5.1) satisfies an energy dissipation law as follows

dEtot(φ)

dt
= − (Gμ,μ) , (5.2)

where

Etot(φ) = 1

2
(Lφ,φ) +

∫
�

F1(φ)dx +
∫
�

F2(φ)dx (5.3)

is a free energy with lower bound −C0. Setting E(φ) = Etot(φ) + C0 = E1(φ) + E2(φ) with E1(φ) = 1
2 (Lφ, φ) + ∫

�
F1(φ)dx+

C1 > 0, E2(φ) = ∫
�
F2(φ)dx + C2 > 0 and introducing two SAVs R1(t) = E1(φ), R2(t) = E2(φ), we can rewrite the equation 

(5.1) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
= −Gμ,

μ = δE

δφ
= Lφ + F ′

1(φ) + F ′
2(φ),

dR1(t)

dt
= − R1(t) + R2(t)

E1(φ) + E2(φ)

(
G

δE1

δφ
,μ

)
,

dR2(t)

dt
= − R1(t) + R2(t)

E1(φ) + E2(φ)

(
G

δE2

δφ
,μ

)
.

(5.4)

Note that the above MSAV formulation is different from that used in [7]. Then we construct the relaxed MGSAV BDFk
schemes as follows:

Given φn−k, ..., φn, Rn−k
1 , ..., Rn

1, R
n−k
2 , ..., Rn

2, we compute φn+1, Rn+1
1 , Rn+1

2 via the following two steps:
Step 1:

• solve φn+1
1 and φn+1

2 from

αkφ
n+1
1 − 1

2 Ak(φ
n)

δt
= −G

(
Lφn+1

1 + F ′
1(Bk(φ

n))
)

, (5.5)

αkφ
n+1
2 − 1

2 Ak(φ
n)

δt
= −G

(
Lφn+1

2 + F ′
2(Bk(φ

n))
)

; (5.6)

and set

φ̄n+1 = φn+1
1 + φn+1

2 , (5.7)

μ̄n+1 = Lφ̄n+1 + F ′
1(φ̄

n+1) + F ′ (φ̄n+1); (5.8)
2
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• solve R̃n+1
1 and R̃n+1

2 from

R̃n+1
1 − Rn

1

δt
= − R̃n+1

1 + R̃n+1
2

E1(φ̄n+1) + E2(φ̄n+1)

(
G

δE1

δφ

(
φ̄n+1) , μ̄n+1

)
, (5.9)

R̃n+1
2 − Rn

2

δt
= − R̃n+1

1 + R̃n+1
2

E1(φ̄n+1) + E2(φ̄n+1)

(
G

δE2

δφ

(
φ̄n+1) , μ̄n+1

)
; (5.10)

• set

ξn+1
k,1 = R̃n+1

1

E1(φ̄n+1)
, ξn+1

k,2 = R̃n+1
2

E2(φ̄n+1)
, (5.11)

ηn+1
k,1 = 1− (1 − ξn+1

k,1 )k+1, ηn+1
k,2 = 1− (1 − ξn+1

k,2 )k+1, (5.12)

φn+1 = ηn+1
k,1 φn+1

1 + ηn+1
k,2 φn+1

2 , (5.13)

μn+1 = Lφn+1 + F ′
1(φ

n+1) + F ′
2(φ

n+1); (5.14)

Step 2: Update Rn+1
1 , Rn+1

2 by

Rn+1
1 = ζn+1

0 R̃n+1
1 + (1− ζn+1

0 )E1(φ
n+1), Rn+1

2 = ζn+1
0 R̃n+1

2 + (1− ζn+1
0 )E2(φ

n+1), ζn+1
0 ∈ V. (5.15)

Here V is a set defined by

V =
⎧⎨
⎩ζ ∈ [0,1] s.t.

(
Rn+1
1 + Rn+1

2

)
−
(
R̃n+1
1 + R̃n+1

2

)
δt

= (5.16)

−γ n+1 (Gμn+1,μn+1)+ R̃n+1
1 + R̃n+1

2

E1(φ̄n+1) + E2(φ̄n+1)

(
Gμ̄n+1, μ̄n+1) , γ n+1 ≥ 0

}
,

with γ n+1 ≥ 0 to be determined so that V is not empty.
Setting R̃n+1 = R̃n+1

1 + R̃n+1
2 , Rn+1 = Rn+1

1 + Rn+1
2 , E(φ̄n+1) = E1(φ̄

n+1) + E2(φ̄
n+1) and plugging (5.15) into the equality 

of (5.16), we find that if we choose ζn+1
0 and γ n+1 such that the following condition is satisfied:

(R̃n+1 − E(φn+1))ζn+1
0 = R̃n+1 − E(φn+1) − δtγ n+1 (Gμn+1,μn+1)+ δt

R̃n+1

E(φ̄n+1)

(
Gμ̄n+1, μ̄n+1) , (5.17)

then ζn+1
0 ∈ V . Following the same arguments as in the proof of Theorem 3.1, we can prove the following results for the 

schemes (5.5)-(5.15).

Theorem 5.1. We choose ζn+1
0 in (5.15) and γ n+1 in (5.16) as follows:

1. If R̃n+1 = E(φn+1), we set ζn+1
0 = 0 and γ n+1 = R̃n+1

(
Gμ̄n+1,μ̄n+1

)
E(φ̄n+1)

(
Gμn+1,μn+1

) .
2. If R̃n+1 > E(φn+1), we set ζn+1

0 = 0 and

γ n+1 = R̃n+1 − E(φn+1)

δt
(
Gμn+1,μn+1

) + R̃n+1
(
Gμ̄n+1, μ̄n+1

)
E(φ̄n+1)

(
Gμn+1,μn+1

) . (5.18)

3. If R̃n+1 < E(φn+1) and R̃n+1 − E(φn+1) + δt R̃n+1

E(φ̄n+1)

(
Gμ̄n+1, μ̄n+1

)≥ 0, we set ζn+1
0 = 0 and γ n+1 the same as (5.18).

4. If R̃n+1 < E(φn+1) and R̃n+1 − E(φn+1) + δt R̃n+1

E(φ̄n+1)

(
Gμ̄n+1, μ̄n+1

)
< 0, we set ζn+1

0 = 1 − δt R̃n+1
(
Gμ̄n+1,μ̄n+1

)
E(φ̄n+1)

(
E(φn+1)−R̃n+1

) and γ n+1 =
0.

Then, (5.17) is satisfied in all cases above and ζn+1
0 ∈ V . Furthermore, given Rn ≥ 0, we have Rn+1 ≥ 0, and the scheme (5.5)-(5.15)

with the above choice of ζn+1
0 and γ n+1 is unconditionally energy stable in the sense that

Rn+1 − Rn = −δtγ n+1 (Gμn+1,μn+1)≤ 0. (5.19)

Furthermore, we have

Rn+1 ≤ E(φn+1) ∀n ≥ 0. (5.20)
15
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Fig. 1. Example 1A. Convergence rates for Allen-Cahn equation using various schemes. Left: first-order; Right: Second-order. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Example 1A. Left: GSAV/BDFk and R-GSAV/BDFk (k = 3, 4, 5) schemes; Right: evolution of relaxation ζn+1
0 using R-GSAV/BDF2 scheme with δt =

1e − 3.

6. Numerical results and discussions

We present in this section some numerical results to validate the efficiency and accuracy of the R-GSAV approach, and 
provide detailed comparisons between the original SAV, R-SAV, GSAV and R-GSAV approaches.

Unless specified otherwise, we consider examples with periodic boundary condition and use the Fourier spectral method 
for spatial discretization. The default value of the parameter γ is set to 0.95 for the R-SAV approaches.

Example 1. The Allen-Cahn equation

∂φ

∂t
= α�φ −

(
1− φ2

)
φ. (6.1)

Case A. We add an external force f to (6.1) so that its exact solution is

φ(x, y, t) = exp(sin(πx) sin(π y)) sin(t). (6.2)

We set � = [0, 2] × [0, 2], α = 0.012, and use 642 Fourier modes for space discretization so that the spatial discretization 
error is negligible when compared with the time discretization error.

In Fig. 1, we plot the convergence rate of the H2 error at T = 1 by using various first- and second-order schemes. 
We observe that (i) the expected convergence rates are obtained for all cases; (ii) the errors of R-SAV (resp. R-GSAV) 
schemes are significantly smaller than that of SAV (resp. GSAV) schemes; (iii) the R-SAV approach is the most accurate but 
it requires solving two linear systems. In the left of Fig. 2, we plot the convergence rate of the H2 error at T = 1 by using 
GSAV/BDFk and R-GSAV/BDFk (k = 3, 4, 5) schemes, and observe that all schemes achieve their desired order of accuracy, 
but the improvements by R-SAV and R-GSAV over SAV and GSAV for higher-order schemes are not as significant as for 
lower-order schemes. In the right of Fig. 2, we present evolution of relaxation parameter ζn+1

0 using R-GSAV/BDF2 scheme 
with δt = 1e − 3, and observe that, except at an initial time interval, ζn+1 takes the value zero.
0
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Table 1
Example 1B. A comparison of L2-error by SAV/BDF2, 
R-SAV/BDF2, GSAV/BDF2 and R-GSAV/BDF2 schemes for 
Allen-Cahn equation at T = 200 with different time step.

SAV R-SAV GSAV R-GSAV

1E-1 4.30E-04 2.72E-04 1.27E-03 2.65E-04
1E-2 4.53E-05 2.93E-06 1.47E-04 2.90E-06
1E-3 6.26E-07 2.96E-08 2.38E-06 2.94E-08

Fig. 3. Example 1B. Allen-Cahn equation: a comparison of energy (left) and energy error (middle) of SAV/BDF2, R-SAV/BDF2, GSAV/BDF2 and R-GSAV/BDF2
schemes; and a comparison of error of ξn+1 of GSAV/BDF2 and R-GSAV/BDF2 schemes (right).

Case B. We set � = [0, Lx] × [0, L y] with Lx = L y = 1, and choose the initial condition as

φ(x, y) = tanh
1.5+ 1.2cos(6θ) − 2πr√

2α
,

θ = arctan
y − 0.5L y

x− 0.5Lx
, r =

√(
x− Lx

2

)2

+
(
y − L y

2

)2

,

(6.3)

where (θ, r) are the polar coordinates of (x, y). The other parameters are α = 0.012, m0 = 0.1 and 1282 Fourier modes. We 
use the results of the semi-implicit/BDF2 scheme with δt = 1e − 5 as the reference solution. The L2-norm error of four 
schemes at T = 200 with different time steps are shown in Table 1. We observe that R-GSAV (resp. R-SAV) schemes can 
significantly reduce the error of the solution compared with GSAV (resp. SAV) schemes, and the effect of R-GSAV scheme 
on improving accuracy is more obvious. In Fig. 3, we present a comparison of energy (left) and energy error (middle) of 
schemes with δt = 1e − 3. Fig. 3 (right) shows the evolution of error of ξn+1, which indicates that the R-GSAV scheme can 
improve the accuracy of ξn+1.

Example 2. The Cahn-Hilliard equation

∂φ

∂t
= −m0�

(
α�φ −

(
1− φ2

)
φ
)

. (6.4)

Case A. We set the exact solution to be (6.2), and set α = 0.04, m0 = 0.005. Convergence rates of different schemes are 
presented in Fig. 4. The results are similar to those for the Allen-Cahn equation.

Case B. We set the initial condition as in (6.3), and set m0 = 0.1, α = 0.012. The other parameters are chosen to be the 
same as in Case B of Example 1. Numerical solutions at T = 0.1 using the GSAV/BDF2 and R-GSAV/BDF2 schemes with 
δt = 1e − 3 are plotted in Fig. 5 along with the reference solution obtained by semi-Implicit/BDF2 scheme with time step 
δt = 1e − 5. We observe that with δt = 1e − 3, the solution by the GSAV scheme is totally wrong while the solution by the 
R-GSAV scheme is indistinguishable with the reference solution. We also observe that for this example ζn+1

0 = 0 at all times.

Example 3. In order to show that the R-GSAV approach can be used to simulate more complex nonlinear phenomena, we 
consider, as an example, the phase-field crystal model⎧⎨

⎩
∂φ
∂t = M�μ, x ∈ �, t > 0,
μ = (� + β)2φ + φ3 − εφ, x ∈ �, t > 0,
φ(x,0) = φ0(x),

(6.5)

which is a gradient flow based on the following total free energy
17
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Fig. 4. Example 2A. Convergence test for Cahn-Hilliard equation using SAV/BDFk, R-SAV/BDFk (k = 1, 2), GSAV/BDFk and R-GSAV/BDFk (k = 1, 2, 3, 4, 5) 
schemes.

Fig. 5. Example 2B. Profiles of φ at T = 0.1. Dynamics driven by the Cahn-Hilliard equation using GSAV/BDF2 scheme (first), R-GSAV/BDF2 scheme (second) 
and reference solution (third), and the evolution of ζn+1

0 (fourth).

E(φ) =
∫
�

(
1

2
φ(� + β)2φ + 1

4
φ4 − ε

2
φ2
)
dx, (6.6)

where M > 0 is the mobility coefficient. In the following simulations, we choose M = 1, β = 1.
Case A. Crystal growth in a super-cooled liquid in 2D . We set the initial condition to be

φ (xl, yl,0) = φ̄ + C1

(
cos

(
C2√
3
yl

)
cos (C2xl) − 0.5cos

(
2C2√

3
yl

))
, l = 1,2,3, (6.7)

where xl and yl define a local system of Cartesian coordinates that is oriented with the crystallite lattice, and the constant 
parameters φ̄ = 0.285, C1 = 0.446, C2 = 0.66. Then, three crystallites in three small square patches with each length of 40
which located at (350, 400), (200, 200), and (600, 300) respectively, are defined perfectly. In order to generate crystallites 
with different orientations, we use the following affine transformation to produce rotation

xl(x, y) = x sin(θ) + y cos(θ), yl(x, y) = −x cos(θ) + y sin(θ), (6.8)

where angles are chosen as θ = −π
4 , 0, π4 respectively. We choose 10242 Fourier modes to discretize the space and use rel-

atively small the time step δt = 0.02 for better accuracy. And we take the other parameters ε = 0.25, T = 2000. Fig. 6 shows 
crystal growth in a super-cooled liquid driven by the PFC equation using the R-GSAV/BDF2 scheme. It also demonstrates 
that the different alignment of the crystallites causes defects and dislocations. These results are consistent with those in 
[24,38]. For this example, the relaxation parameter ζn+1

0 is also zero at all times.
Case B. Phase transition behaviors in 3D . We choose the initial data φ(x, y, t = 0) = φ̄ + 0.01rand and computational 

domains [0,50]3. Other parameters are chosen as ε = 0.56, δt = 0.02, T = 3000 and 643 Fourier modes. Fig. 7 shows the 
steady state microstructure of the phase transition behavior for φ̄ = −0.20, −0.35 and −0.43, respectively. These results are 
also consistent with those in [22].

Example 4. In this example, we use the phase-field vesicle membrane (PFVM) model [7,8] as an example to demonstrate 
how to construct relaxed MSAV schemes.

Since the vesicle membrane is area and volume preserving, we consider the following penalized free energy

Etot(φ) = Eb(φ) + 1
(A(φ) − α)2 + 1

(B(φ) − β)2, (6.9)

2σ1 2σ2
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Fig. 6. Example 3A. The dynamic evolution of crystal growth in a supercooled liquid driven by the PFC equation using R-GSAV/BDF2 scheme. Snapshots of 
the numerical solution φ at T = 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, respectively.

where σ1 and σ2 are two small parameters, and α, β represent the initial volume and surface area, the bending energy 
Eb(φ), volume A(φ) and surface area B(φ) of the vesicle are defined by

Eb(φ) = ε

2

∫
�

(
−�φ + 1

ε2
G(φ)

)2

dx = ε

2

∫
�

w2dx, (6.10)

A(φ) =
∫
�

(φ + 1)dx and B(φ) =
∫
�

(
ε

2
|∇φ|2 + 1

ε
F (φ)

)
dx, (6.11)

where

w := −�φ + 1

ε2
G(φ), G(φ) := F ′(φ), F (φ) = 1

4

(
φ2 − 1

)2
.

Then, the L2 gradient flow associated with the above free energy is⎧⎨
⎩

φt = −Mμ,

μ = −ε�w + 1
ε G

′(φ)w + 1
σ1

(A(φ) − α) + 1
σ2

(B(φ) − β)
(−ε�φ + 1

ε F
′(φ)

)
,

w = −�φ + 1
ε2 G(φ),

(6.12)

with the boundary conditions being

(i) periodic or (ii) ∂nφ|∂� = ∂n�φ|∂� = 0, (6.13)

and M is the mobility constant. Then, one can easily see that the system (6.12) admits the following energy law
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Fig. 7. Example 3B. Evolution of φ driven by the PFC equation using R-GSAV/BDF2 scheme. Snapshots of density field φ (left) and isosurface plots of φ = 0
(right) at T = 3000.

d

dt
Etot(φ) = −M‖μ‖2. (6.14)

We observe that (6.12) contains small parameters ε, σ1, σ2, but σ1 is only associated with the linear non-local term A(φ)

so it can be treated implicitly. Hence, we need to introduce two SAVs to deal with the nonlinear terms associated with ε
and σ2 separately. More precisely, we set

E1(φ) = Eb(φ) + 1

2σ1
(A(φ) − α)2, E2(φ) := 1

2σ2
(B(φ) − β)2. (6.15)

Then, we can apply the R-MGSAV scheme (5.5)-(5.15) directly.
We consider the phase-field vesicle membrane model (6.12) in � = (−π, π)3 with ε = 6π

128 , M = 1 and σ1 = σ2 = 0.01. 
We use the R-MSAV/BDF2 scheme with δt = 1e − 4 and 1283 Fourier modes.

Case A. We first simulate the evolution of two close-by spherical vesicles by consider the following initial condition for 
φ to describe two close-by spherical vesicles in 3D

φ(x, y, z,0) = tanh

(
0.28π −√x2 + y2 + (z − 0.35π)2√

2ε

)

+ tanh

(
0.28π −√x2 + y2 + (z + 0.35π)2√

2ε

)
+ 1.

(6.16)
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Fig. 8. Example 4A. The evolution of two close-by spherical vesicles: Snapshots of iso-surfaces of φ = 0 driven by the PFVM equation at T =
0, 0.02, 0.1, 0.5, 1, 2.

Fig. 9. Example 4B. The evolution of six close-by spherical vesicles. Snapshots of iso-surfaces of φ = 0 driven by the PFVM equation at T =
0, 0.02, 0.1, 0.5, 1, 2.

We depict the evolution process in Fig. 8. We observe that two spheres connect within a small time interval, then merge 
into a capsule shape which is a steady state. The results are consistent with those presented in [7].
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Case B. Then we consider six closeby spheres as initial condition given by

φ(x, y, z,0) =
6∑

i=1

tanh

⎛
⎜⎝ ri −

√
(x− xi)

2 + (y − yi)
2 + (z − zi)

2

√
2ε

⎞
⎟⎠+ 5, (6.17)

where ri = π
6 , zi = 0 for i = 1, 2, . . . , 6, (x1, x2, x3, x4, x5, x6) = (−π

4 , π
4 ,0, π

2 ,−π
2 ,0

)
, and (y1, y2, y3, y4, y5, y6) = (−π

4 ,

−π
4 , π4 , π4 , π4 , − 3π

4 ).
In Fig. 9, we plot snapshots of iso-surfaces φ = 0 at T = 0, 0.02, 0.1, 0.5, 2 by using the R-MGSAV/BDF2 scheme. It shows 

that the initially separated spheres connect with each other gradually and finally merge into a big vesicle with two small 
holes in upper and lower parts respectively. The results are also consistent with those presented in [8].

Finally, we note that for the simulations in all examples except in the accuracy test, the relaxation parameter ζn+1
0 is zero 

at all times. This indicates that, at least for these simulations, the modified energy is in fact equal to the original energy, 
which means that the R-GSAV schemes are effectively energy stable with the original energy.

In summary, the R-GSAV approach fixes a flaw in the GSAV approach and leads to more robust and accurate numerical 
schemes while keeping the simplicity, efficiency and generality of the GSAV approach.
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