

xCCL: A Survey of Industry-Led Collective Communication
Libraries for Deep Learning

Adam Weingram, Yuke Li (李雨珂), Student Member, ACM, Hao Qi (戚　昊), Darren Ng
Liuyao Dai (代柳瑶), and Xiaoyi Lu (鲁小亿), Member, ACM, IEEE

Department of Computer Science and Engineering, University of California, Merced, Merced 95343, U.S.A.

E-mail: aweingram@ucmerced.edu; yli304@ucmerced.edu; hqi6@ucmerced.edu; dng350@ucmerced.edu
ldai8@ucmerced.edu; xiaoyi.lu@ucmerced.edu

Received October 8, 2022; accepted January 3, 2023.

Abstract Machine learning techniques have become ubiquitous both in industry and academic applications. Increasing

model sizes and training data volumes necessitate fast and efficient distributed training approaches. Collective communica-

tions greatly simplify inter- and intra-node data transfer and are an essential part of the distributed training process as in-

formation such as gradients must be shared between processing nodes. In this paper, we survey the current state-of-the-art

collective communication libraries (namely xCCL, including NCCL, oneCCL, RCCL, MSCCL, ACCL, and Gloo), with a

focus on the industry-led ones for deep learning workloads. We investigate the design features of these xCCLs, discuss

their use cases in the industry deep learning workloads, compare their performance with industry-made benchmarks (i.e.,

NCCL Tests and PARAM), and discuss key take-aways and interesting observations. We believe our survey sheds light on

potential research directions of future designs for xCCLs.

Keywords collective, deep learning, distributed training, GPUDirect, RDMA (remote direct memory access)

 1 Introduction

Designing high-performance communication sub-

systems is one of the most challenging tasks essential

to achieving scalable parallel computing goals[1] as the

communication performance can directly influence the

execution efficiency of large-scale distributed software.

Collectives are a form of organized communication

that has become ubiquitous in parallel computing,

distributed computing, and high-performance comput-

ing (HPC) applications. Collective communication op-

erations, such as Broadcast and All-Reduce, can ag-

gregate and disseminate data to multiple processes

while in practice retaining a relatively simple API

(Application Programming Interface). Collectives ab-

stract away much of the complexity of managing

communication; however, it is critical that both the

collective communication implementation and pro-

gramming model chosen are well architected, well de-

signed, and optimized for the particular intended ap-

plication.

Having existed for almost 30 years, Message Pass-

ing Interface (MPI)① is one of the most widely-used

programming models for large-scale scientific applica-

tions that involve collective communication. Due to

its high speed and portability, MPI has become the

model favored in the academic community. There are

various implementations of the MPI programming

model, such as MPICH②, MVAPICH③, and Open

Survey

Special Issue in Honor of Professor Kai Hwang’s 80th Birthday

This work was supported in part by the U.S. National Science Foundation under Grant No. CCF-2132049, a Google Research
Award, and a Meta Faculty Research Award. This work used the Expanse cluster at SDSC (San Diego Supercomputer Center)
through allocation CIS210053 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) pro-
gram, which is supported by the U.S. National Science Foundation under Grant Nos. 2138259, 2138286, 2138307, 2137603, and
2138296.

Weingram A, Li Y, Qi H et al. xCCL: A survey of industry-led collective communication libraries for deep learning.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(1): 166−195 Jan. 2023. DOI: 10.1007/s11390-023-2894-6

①MPI: A message-passing interface standard version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, Jan. 2023.
②MPICH. https://www.mpich.org/, Jan. 2023.
③MVAPICH. https://mvapich.cse.ohio-state.edu/, Jan. 2023.
�Institute of Computing Technology, Chinese Academy of Sciences 2023

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpich.org/
https://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/
http://www.openshmem.org/site/
https://openucx.org/
https://ucfconsortium.org/projects/ucc/
https://github.com/NVIDIA/nccl
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://rccl.readthedocs.io/en/rocm-5.2.3/
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://people.engr.ncsu.edu/efg/506/s02/lectures/notes/lec27.pdf
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://developer.nvidia.com/cuda-toolkit
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://rocmdocs.amd.com/en/latest/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://github.com/RadeonOpenCompute/ROCm
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/microsoft/npkit
https://github.com/microsoft/msccl
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/microsoft/msccl
https://github.com/microsoft/msccl
https://github.com/fchollet/keras
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://github.com/facebookresearch/param
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://www.sdsc.edu/services/hpc/expanse/
https://developer.nvidia.com/cuda-toolkit
https://www.mpich.org/
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://github.com/pmodels/mpich
https://www.uber.com/blog/scaling-michelangelo
https://github.com/google/nccl-fastsocket
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/NVIDIA/nccl
https://doi.org/10.1007/s11390-023-2894-6<linebreak/>

MPI④. Despite the age of MPI and the development

of new collective communication models and libraries,

few have been able to compete with MPI in terms of

popularity and generality. Some examples of newer

non-MPI libraries are OpenSHMEM (Open-source

Symmetric Hierarchical MEMory)⑤, UCX (Unified

Communication X)⑥, and UCC (Unified Collective

Communication)⑦. Fig.1 shows an overview of the

classic collective communication libraries, modern col-

lective communication libraries, as well as related

communication hardware and interconnects.

In recent years, machine learning (ML), especial-

ly deep learning (DL), has become an extremely hot

topic, and there have been numerous advancements in

many scientific fields such as computer vision and

natural language processing. With continuously in-

creasing data volume and model sizes, methods for re-

ducing training and inference time have themselves

become important research topics. For example, the

GPT-3[2] (Generative Pre-trained Transformer 3)

model contains approximately 175 billion parameters

and may take multiple days (or more) to train on ad-

vanced GPU-based clusters. Long training times are

often considered blockers for the practical deploy-

ment of such models. The case is similarly severe

when considering industry-level large-scale ML/DL

models such as deep learning recommendation mod-

els (DLRM)[3]. Therefore, it is necessary to accelerate

these processes with effective use of parallel comput-

ing, and collectives have the potential to significantly

influence the performance and scalability. Under the

influence of ML/DL, optimizations on some collective

routines are heavily investigated[4, 5]. This evolution

also applies to related communication hardware and

interconnects. For example, the traditional Remote

Direct Memory Access (RDMA) communication

mechanism has been widely used in many areas such

as HPC, big data[6–10], key-value store[11–14], and high-

performance cloud computing workloads[15– 17]. With

the advance of ML, there is an increasing demand for

RDMA and GPUDirect RDMA (GDR)[18, 19]. The in-

terconnect speed requirements can reach 400 Gbps

Evolve

Hardware

GPU AcceleratorCPU

(a)

Hardware Topology

Fat-TreeTorus

HypercubeDragonfly

P2P Communication

Collective

Gather(v) Scatter(v)Broadcast

All-Gather

Reduce-ScatterAll-Reduce

ReduceAll-to-All

Programming Model

UCX

MPI OpenSHMEM

UCC

(b)

CPU NPU(GPU/TPU)

Hardware

Hardware Topology

TorusRing Fat-Tree

P2P Communication

Collective

All-Gather All-to-AllAll-Reduce

Reduce-ScatterBroadcast

xCCL

Gloo MSCCLNCCL

RCCL oneCCLACCL

Highspeed Interconnect

InfiniBandEthernet RoCE

Highspeed Interconnect

InfiniBandEthernet

NVLinkRoCE

Fig.1. Overview of collective communication evolution. (a) Classic HPC scenarios. (b) Emerging deep learning scenarios.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 167

④Open MPI. https://www.open-mpi.org/, Jan. 2023.
⑤OpenSHMEM. http://www.openshmem.org/site/, Jan. 2023.
⑥UCX. https://openucx.org/, Jan. 2023.
⑦UCC. https://ucfconsortium.org/projects/ucc/, Jan. 2023.

per port[20].

However, while MPI has enjoyed success in the

academic world, it is not widely adopted in the indus-

try. Instead, many industry-leading companies like

NVIDIA and Microsoft have developed their own col-

lective communication libraries for deep learning ap-

plications. Most notably, the NVIDIA Collective

Communications Library (NCCL)⑧, first released by

NVIDIA in 2015, has gained enough traction to in-

spire other companies to develop and deploy similar

collective libraries such as AMD's ROCm Collective

Communication Library (RCCL)⑨ and parts of

Gloo⑩. In this paper, we refer to such collective com-

munication libraries as xCCL. The evolution from

MPI-dominated collectives for classic HPC scenarios

to emerging hardware-accelerated collectives for deep

learning scenarios is shown in Fig.1.

This momentum has motivated us to pose several

research questions. 1) What makes the contemporary

xCCL libraries more attractive than classic MPI de-

signs? 2) What are the performance characteristics of

each collective communication library? 3) How are

these xCCL libraries designed? Are there shared de-

sign patterns, and if so, why?

To answer these questions, we survey the current

state-of-the-art collective communication libraries

(i.e., xCCL), with a focus on those developed for in-

dustry deep learning workloads. We investigate the

features of these xCCLs, compare their performance

with experiments, and discuss key takeaways and in-

teresting observations.

The rest of this paper is organized as follows. Sec-

tion 2 introduces widely used collective communica-

tion routines. Section 3 and Section 4 describe the

popular physical network topologies and collective al-

gorithms. In Section 5, we present the impact of col-

lectives on machine learning training as well as some

case studies from industry. In Section 6, we survey

representative industry-developed collective communi-

cation libraries and introduce their features. In Sec-

tion 7, we select several libraries and run experi-

ments to benchmark them. We show a comparison of

their performance characteristics. Section 8 will dis-

cuss some of our observations and insights. Lastly,

Section 9 discusses some related work and Section 10

concludes this paper.

The main contributions of this paper are as fol-

lows.

● Summarizing and studying the collective com-

munication operations, network topologies, and algo-

rithms that underpin contemporary distributed deep

learning training.

● Discussing industry collective communication

solutions through case studies and a detailed exami-

nation of collective communication libraries.

● Comparing the performance of current collec-

tive communication libraries using industry-made

benchmarks.

 2 Collective Communication Routines

Collective communication operations are an essen-

tial tool used in many high-performance computing

applications to move and process data within multi-

process systems. Though there are many named rou-

tines as listed in Table 1, some are especially impor-

tant for machine learning applications. Programmers

can use individual or combinations of collective rou-

tines to build distributed training strategies. In this

section, we will review routines that are implemented

in contemporary collective communication libraries. A

high-level review of collective algorithms is included

in Section 4.

 2.1 Broadcast

The Broadcast collective operation describes a

process whereby the root node distributes the same

data to all nodes within the system. After the Broad-

cast operation is complete, every node will hold the

same data. Broadcast is one of the two most common

collectives in DL training applications (along with

All-Reduce; see Subsection 2.6) and can be used for

tasks such as sending training data to all processes.

p0 p1 p2 p3 p0
D t1
p0 p1 p2 p3

Example. Consider a system with four processes

(as in Fig.2(a)): , , , and . Process holds

data . After the Broadcast collective runs (), pro-

cesses , , , and will all hold data D.

 2.2 All-Gather

The All-Gather collective operation results in each

node receiving data from all nodes within the system.

168 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑧NVIDIA Collective Communication Library. https://github.com/NVIDIA/nccl, Jan. 2023.
⑨ROCm Collective Communication Library. https://rccl.readthedocs.io/en/rocm-5.2.3/, Jan. 2023.
⑩Collective Communications Library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

https://github.com/facebookincubator/gloo

Essentially, All-Gather can be described as all pro-

cesses performing a Broadcast operation with their re-

spective data or as all nodes performing a Gather op-

eration. Note that this is not necessarily how All-

Gather is actually implemented.

p0 p1 p2 p0
D0 p1 D1 p2

Example. Consider a system with three processes

(as in Fig.2(b)): , , and . Process holds data

, process holds data , and process holds da-

D2 p0 p1
p2 D0 D1 D2

ta . After All-Gather completes, processes , ,

and will all hold data , data , and data .

 2.3 Scatter

Unlike Broadcast, in which one node sends the

same data to every other process, the Scatter collec-

tive operation involves a single process transmitting

Table 1. Summary of Collective Support Within Libraries

Collective Discussed in MPI Function Implemented in

NCCL MSCCL Gloo oneCCL ACCL

Barrier Not discussed MPI_BARRIER No No† Yes Yes Unknown

Broadcast Subsection 2.1 MPI_BCAST Yes No† Yes Yes Yes

Reduce Subsection 2.5 MPI_REDUCE Yes No† Yes Yes Unknown

Gather Not discussed MPI_GATHER No No† Yes‡ No Unknown

Scatter Subsection 2.3 MPI_SCATTER No No† Yes‡ No Unknown

All-Gather Subsection 2.2 MPI_ALLGATHER Yes No† Yes‡ Yes Yes

All-to-All Subsection 2.4 MPI_ALLTOALL No Yes No Yes Unknown

All-Reduce Subsection 2.6 MPI_ALLREDUCE Yes Yes Yes Yes Yes

Reduce-Scatter Subsection 2.7 MPI_REDUCE_SCATTER Yes No† Yes Yes Yes

Scan Not discussed MPI_SCAN No No† No No Unknown

Note: MSCCL is unique because it allows programmers to implement their own collective routines and algorithms. †: algorithm not
provided but can be implemented using DSL or called via NCCL API; ‡: algorithm not supported on all accelerator types.



Reduce Operation , , 





  





 

  



Reduce Operation , , 

Result  Sent to All Processes

   

  



  

  



Reduce Operation , , v

Scatter Result Vector v  
Components

   

  



  

  



 







 

 

 

 
















 









  

  

  



  

  

  



  

  



  

  

  



















(b)(a) (c) (d)

(e) (f) (g)

0

0

0

Fig.2. Overview of collective operations. (a) Broadcast. (b) All-Gather. (c) Scatter. (d) All-to-All. (e) Reduce. (f) All-Reduce. (g)
Reduce-Scatter.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 169

n n

different data to the other processes based on some

splitting pattern or rule. By the traditional definition

of Scatter, the rule is that the input data are divided

into pieces where is the number of processes in

the system. Each piece is then sent to its correspond-

ing process[21].

p0 p1 p2 p0
vd = (D0, D1, D2) D0 D1 D2

vd

D0 D1 D2 D0

p0 D1 p1 D2

p2

Example. Consider a system with three processes

(as in Fig.2(c)): , , and . Process holds data

vector where , , and are da-

ta. When Scatter is run, vector is divided into

component pieces , , and . Data remains

on , is sent to process , and is sent to pro-

cess . There is a clear benefit to using Scatter over

Broadcast when dividing work among processes as

each process will not waste memory holding data it

does not need. Network bandwidth can also be con-

served by avoiding unnecessary data transfer opera-

tions[21].

 2.4 All-to-All(v)

All-to-Allv (note the addition of ``v'') is like stan-

dard All-to-All, except that participating processes

are not restricted to sending uniform data sizes and

can instead send messages with variable sizes. The

general All-to-All operation itself is where each pro-

cess sends data to each of the other processes in the

system. The resulting data layout is effectively a

transpose of the layout present before the operation.

The All-to-All collective is vital if high-performance

switching between data and model parallelism in a

deep learning training process is required because this

switch can be described as a transpose.

p0 p1 p2
Ai Bi Ci i

p0 A0 A1 A2

p1 B0 B1 B2

p2 C0 C1 C2

Example. Consider a system where there are three

processes (as in Fig.2(d)): , , and . Each process

holds unique data , , and where corresponds

to the process number. After the All-to-All collective

completes, process will hold data , , and ;

process will hold data , , and ; and process

 will hold data , , and .

 2.5 Reduce

The Reduce collective refers to a process in which

a single node receives data from each node in the sys-

tem and applies some operation on those data, result-

ing in a single output. Note that this operation can be

anything, provided it is associative. This allows the

operation to be performed in parallel while maintain-

ing the correctness and determinism of the program.

Example. Consider a system with three processes

p0 p1 p2 p0 D0 p1
D1 p2 D2

p0
p1 p2

f(D0, D1, D2) = Dρ p0
Dρ

p0
Dρ

Dρ

Dρ

(as in Fig.2(e)): , , and . Process holds ,

holds , and holds . When the Reduce collec-

tive is performed, data from process , data from

process , and data from process will be combined

to produce result . If is set as

the destination process, then result will be sent to

. Note that the Reduce collective does not itself dis-

tribute result to the other processes. Instead, one

must either broadcast result as shown in Subsec-

tion 2.1 or use the All-Reduce collective operation as

explained in Subsection 2.6. If the result must be

broken up before being distributed to the other pro-

cesses, either the Scatter operation can be used after

Reduce, or the Reduce-Scatter operation can be used

in place of both (as explained in Subsection 2.3 and

Subsection 2.7 respectively).

 2.6 All-Reduce

At a high level, All-Reduce collective can be de-

scribed as a Reduce step followed by a Broadcast

step. After the operation completes, all processes in

the system will hold the result of the Reduce opera-

tion. All-Reduce is used extensively in data-parallel

distributed deep learning training tasks to compute

and communicate gradients during the backpropaga-

tion step.

p0 p1 p2 p0 D0 p1
D1 p2 D2

p0
p1 p2

f(D0, D1, D2) = Dρ

Dρ p0 p1
p2

Dρ

Example. Consider a system with three processes

(as in Fig.2(f)): , , and . Process holds ,

holds , and holds . When the All-Reduce col-

lective operation is performed, data from process ,

data from process , and data from process will be

combined to produce result . The

result is then sent to each of the processes , ,

and . All-Reduce implementations are tuned for

higher performance than running Reduce and Broad-

cast sequentially, even if both approaches result in all

processes holding .

 2.7 Reduce-Scatter

n

As the name implies, the Reduce-Scatter collec-

tive is best described as the combination of the Re-

duce operation and the Scatter operation in the given

order. This definition, however, is not fully descrip-

tive as it is the result of the Reduce operation that

must be divided into pieces so that it can be dis-

tributed to the processes in the system[21].

p0 p1 p2
D0 D1 D2

Example. In a system with three processes as

shown (as in Fig.2(g)): , , and where each pro-

cess holds corresponding data , , and , the Re-

170 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

vρ Dρ0 Dρ1 Dρ2

p0 p1 p2

duce portion of Reduce-Scatter produces an output

. The components of the result , , and

are scattered (e.g., via the Scatter collective) to pro-

cesses , , and respectively.

 3 Network Topologies for Collectives

In MPI, the Communicator construct is an ab-

straction that hides the complexity of lower-level

communication between processes. This makes pro-

gramming much more convenient. However, the phys-

ical network topology (i.e., not just the virtual topolo-

gy associated with MPI Communicators) chosen can

heavily impact the performance of collective commu-

nications. This is true for traditional collective appli-

cations and there are many studies focused on design-

ing network topology-aware collective algorithms to

best take advantage of different network architec-

tures[22]. The network topology is especially impor-

tant when considering hardware accelerated collec-

tives because poor architecture decisions have the po-

tential to wipe out the performance gains realized by

using accelerator-specific communications in commu-

nication-bound applications[23].

 3.1 Hypercube

2k k

The hypercube network topology[24] consists of a

set of nodes connected in a multi-dimensional cube

pattern (hypercube). Increasing the number of nodes

in the system will increase the dimensionality of the

hypercube. Complete hypercubes must contain exact-

ly nodes, where is the hypercube dimensionality.

As a comparison, incomplete hypercubes can have

any number of nodes[25]. The simplest hypercube net-

work is two nodes connected by a single link and is

described as a 1D (one-dimensional) hypercube. A 2D

hypercube is four nodes connected in a square pat-

tern. Fig.3 shows an example of a 4D hypercube con-

taining 16 nodes and is, as a consequence, complete.

While hypercube topologies may not be deployed

as frequently as other topologies in high-performance

computing (HPC) applications in favor of architec-

tures such as Fat-Tree (see Subsection 3.4) and Drag-

onfly+ (see Subsection 3.5), it serves as an important

reference that other more recent topologies can be

compared against. Hypercube topologies are resistant

to node failures due to their high connectivity; howev-

er, the same high connectivity can result in scaling is-

sues and higher complexity for networks with larger

numbers of nodes[25]. They are also unique in that in-

complete hypercube topologies can exhibit different

performance characteristics than complete hypercube

topologies[24, 25].

 3.2 Ring

A ring topology[26] is a configuration where all the

members are connected in a conceptually circular

fashion. Hence, each member has two connections:

one to each of its immediate neighbors. To communi-

cate, packets of data are transmitted from one device

to the next until reaching the destination. There are

two transfer modes: the unidirectional ring network,

in which packets of data travel in only one direction,

and the bidirectional ring network, in which packets

may travel in either direction.

The ring topology has three advantages. First, in

both transmission modes of the ring topology, all da-

ta flow in only one direction, thus reducing packet

collisions. Second, devices can be added easily with-

out affecting the transmission speed. Finally, there is

no need for a central server to coordinate network

connectivity. At the same time, the ring topology pos-

sesses notable disadvantages. First, in the worst case,

data transmitted through the network must pass

through all devices, which makes data transmission

less flexible. Second, the entire topology will be affect-

ed if one machine experiences a failure. Also, the

channel utilization of the ring topology is inefficient

for short packets, and bandwidth fragmentation may

occur.

 3.3 Torus

A torus topology[27] is a generalization of the ring

topology to higher dimensions, where the ring topolo-
























Fig.3. Example of a complete hypercube network topology
with 16 nodes. Vertices represent physical nodes and edges rep-
resent physical network connections.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 171

−x,+x

m

n

−x,+x,−y,+y

N

gy is viewed as a one-dimensional (1D) torus. In a 1D

torus, as mentioned in Subsection 3.2, each member is

connected to its two neighbors. The communication

can occur bidirectionally (). In a 2D torus con-

figuration, there are two dimensions consisting of

rows and columns. Each member in the topology is

connected to its four immediate neighbors and com-

munication can occur in four directions

(). Similarly, for an ND torus topolo-

gy where is the number of dimensions, each mem-

ber in the topology is connected to its 2N neighbors.

Communication is possible in 2N directions as each

member node will have two neighbors in each dimen-

sion. Some examples of torus topologies of different

dimensions are shown in Fig.4 (1D) and Fig.5 (2D).

n0 n1 n4

Fig.4. Example of the ring network topology. Vertices repre-
sent physical nodes and edges represent physical network con-
nections. Node is connected to node and node (for two
total connections).

Fig.5. Example of a 2D Torus network topology. Vertices rep-
resent physical nodes and edges represent physical network
connections. Node n0 is connected to nodes n1, n4, n5, and n20

for a total of four connections. In this case N = 2 dimensions,
therefore, each node will have exactly 2N = 2 × 2 = 4 physical
connections. If this particular topology were to be visualized in
three-dimensional space, it would resemble a ``donut'' or ``ring
torus'' shape.

One advantage of the torus topology is that it sig-

nificantly decreases the topology diameter and re-

duces the cost to add new members. All one must do

is to add additional links[28]⑪. The torus topology can

also provide higher bandwidth and lower latency than

some other network topologies while still achieving

high scalability. This is because the torus topology is

homogeneous and member nodes can communicate

with one another via multiple routes[29]. For the same

reason, it is also able to consume less power[29]⑪.

The torus topology also has certain limitations.

First, as dimensionality increases, the number of

physical network connections necessarily increases.

This means that wiring becomes more complex and

deployment cost grows[29]. Second, as new member

nodes are added to a given dimension, it will require

more energy and take longer to communicate within

the dimension as each message must travel through

more nodes[29, 30]. To address this problem, a modi-

fied version of torus topology, called folded-torus

topology, was developed[31].

 3.4 Fat-Tree

The fat-tree topology[32] is one of the most widely

used topologies for efficient data communication. Un-

like traditional tree structures in computer science,

the fat-tree topology resembles the trees in the real

world. In a traditional tree topology, all branches

have the same thickness (bandwidth) whereas in a

fat-tree topology, the communication bandwidth gets

larger, i.e., the fat-tree gets fatter, as one moves clos-

er to the root. An illustration of a fat-tree topology is

given in Fig.6.

In the fat-tree topology, only the leaves are used

for computation and all the other nodes are strictly

for communication. For example, when a leaf node

wants to communicate with another leaf node, data

will flow up the hierarchy recursively until a shared

ancestor with the second leaf node is found. Data

then flow back down the hierarchy to the second leaf

node.

There are numerous advantages to use the fat-tree

topology. First, the average distance between nodes

grows logarithmically since it is a tree structure in na-

ture⑫. In addition, it has also been proved that fat-

trees are recursively scalable and partitionable with

multiple well designed routing algorithms[33, 34]. Some

other advantages of the fat-tree topology include its

symmetry, regularity, and high connectivity[35], which

172 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑪The 3D Torus Architecture and the Eurotech Approach. https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_
and_the_eurotech_approach/, Jan. 2023.

⑫Fat Trees. https://people.engr.ncsu.edu/efg/506/s02/lectures/notes/lec27.pdf, Jan. 2023.

https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/

is attributable to its tree structure.

One disadvantage is the bandwidth requirement

for the branches connected to the root[36]. This band-

width requirement will get higher and higher when

the fat-tree grows bigger, leading to a challenge in im-

plementation. Another disadvantage is that due to

the the structure of the fat-tree topology, it is neces-

sary to traverse all nodes between two leaf nodes

when communicating data. In this case, load balanc-

ing and scheduling becomes another challenge[37].

 3.5 Dragonfly and Dragonfly+

p
a

h

k

k = a× (p+ h) a p h

Another commonly used topology is the dragonfly

topology[38], which is a hierarchical structure made up

of multiple levels (i.e., routers and groups). An exam-

ple of the dragonfly topology is shown in Fig.7. At

the lowest level, each router is connected to multiple

() terminals. Above this level is the group, which is

a collection of routers (routers) which have connec-

tions to routers in the same group (local channels)

and connections to routers in the other groups (

global channels). In a dragonfly topology, there will

be many groups. All routers within a group work as a

“virtual router” that has a very high radix (). This

radix is equal to the number of routers in the group

multiplying the number of connections each router

has (). All the numbers , , and can

be adjusted in accordance with the deployment re-

quirements.

Modularity is one of the advantages that the drag-

onfly topology can provide[39]. Because the designs of

intra-group connections and inter-group connections

are decoupled, the wiring within a group does not af-

fect the number of groups in the topology. In addi-

tion, this modular design also leads to the high scala-

bility of the topology[38, 39]. The dragonfly topology is

able to scale to a high number of nodes by simply in-

creasing the effective radix, while still keeping a rela-

tively low number of hops[38].

At the same time, this high number of connec-

tions also leads to a high construction cost for drag-

onfly topologies[39]. Also, these various connections

can bring the topology a high path diversity, causing

a low network utilization and throughput under cer-

tain traffic patterns[40]. To address this problem, an

extended version called dragonfly+ has been intro-

duced in recent years[41]. In the dragonfly+ topology,

routers inside the group are connected in a Clos-like

topology[32]. It also shows higher scalability and bet-

ter router utilization[41].







Root Switch

Level 2 Switch

Level 3 Switch Level 3 Switch Level 3 Switch Level 3 Switch

Level 2 Switch

β0 > β1 > β2

n0, ..., n15

Fig.6. Visualization of a fat-tree network topology. Bandwidth is represented by link line thickness, and follows . Nodes
 perform computation, while switches handle communication only.

Fig.7. Example of a dragonfly network topology. In this case,
all boxes represent routers that nodes (not shown) are connect-
ed to.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 173

 4 Collective Communication Algorithms

Though the collective routines are presented to

the programmer through a clean API, the collective

communication library must implement algorithms

that perform the actual intra-node and inter-node

communications.

 4.1 Classic Collective Communication

Algorithms

In recent years, new advancements have been

made in the development of collective communica-

tion algorithms. Table 2 briefly overviews the repre-

sentative state-of-the-art collective communication al-

Table 2. Classic and xCCL's Collective Communication Algorithms

Category Collective Algorithm Description on Suitability
(e.g., Message Size, Number of Processes)

Classic All-to-All Bruck[42] Short (e.g., < 32 B)

Isend-Irecv[43] Medium (e.g., 32 B to 32 KB)

Pairwise-Exchange[44]
2nLong (processes)

All-Gather Ring[43]
2nLong, medium (not processes)

Recursive-Doubling[43]
2nShort, medium (processes)

Bruck[42]
2nShort (not processes)

Broadcast Binomial Tree[45] Short (e.g., < 32 B)

Van de Geijn[46, 47] Long (e.g., > 32 KB)

Reduce-Scatter Recursive-Halving[44] Short (commutative reduction)

Recursive-Doubling[43] Short (not commutative reduction)

Pairwise-Exchange[43] !
!
Long (e.g., 512 KB for commutative,
 512 B for noncommutative)

Binomial Tree and Linear
Scatterv[43]

Medium

Reduce Binomial Tree[45] "Short (e.g., 2 KB)

Rabenseifner’s[48] Long (e.g., > 2 KB)

All-Reduce Recursive-Doubling[44] Short, long (user-defined reduction)

Rabenseifner’s[48] Long (predefined reduction)

Ring[44] Small or medium numbers of processes

Reduce/All-Reduce Vector Halving and Distance
Doubling[48] 2nLong (vectors and processes)

Binary Blocks[48]
2nNot processes

xCCL NCCL All-Reduce Double Binary Trees⑬ Short, medium

Ring⑭ Long

MSCCL All-Reduce⑮ Ring Medium (e.g., 32 KB to 3 MB)

All-Pairs Short and medium (e.g., 1 KB to 2 MB)

Hierarchical Short or long (e.g., < 64 MB or > 1 GB)

All-to-All⑮ Two-Step Long (e.g., > 2 MB)

Gloo All-Reduce⑯ Ring Long

Ring-Chunked Long

Halving-Doubling 2n processes

BCube Short

Reduce-Scatter⑯ Halving-Doubling 2n processes

Broadcast⑯ Pairwise-Exchange 2nLong (processes)

ACCL All-Reduce[49] Hybrid Medium, long (e.g., > 16 KB)

Note: ``not 2n processes'' means the number of processes is not 2n.

174 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑬Massively scale your deep learning training with NCCL 2.4. https://developer.nvidia.com/blog/massively-scale-deep-learning-
training-nccl-2-4/, Jan. 2023.

⑭NCCL: Accelerated multi-GPU collective communications. https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf,
Jan. 2023.

⑮MSCCL: Microsoft collective communication library. https://github.com/microsoft/msccl, Jan. 2023.
⑯Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

https://github.com/facebookincubator/gloo

gorithms and their features. In these algorithms: the

Ring, Binomial Tree, Recursive-Doubling, and Recur-

sive-Halving algorithms are the most widely used in

HPC workloads. Hence, we will focus on these algo-

rithms in particular.

α− β

α+ nβ

αuni + nβuni

α

β n

p

γ

To estimate the latency and bandwidth of collec-

tive communication algorithms, we use the cost

model[50]. The time taken by the bidirectional commu-

nication between processes is and the unidi-

rectional communication is [51]. In this

function, is the latency (startup time) per message,

 is the transfer time per byte, is the number of

transferred bytes, and is the number of processes in

the communication. In the case of reduction opera-

tions, is the computation cost per byte for one pro-

cess.

 4.1.1 Ring

p

p− 1

n

n/p

TAll-Gather
ring = (p− 1)α+ ((p− 1)/p)nβ

The Ring algorithm is traditionally utilized for

All-Gather. The implementation of All-Gather in this

method is that data are transferred around a virtual

ring of processes. First, each process sends its chunk

of data to the following process in the ring and re-

ceives the chunk of data from the previous process in

the ring. From the second step, each process sends

the data it received from the previous process in the

first step to the following process. If is the number

of processes, it takes steps to complete the en-

tire algorithm. If is the total amount of data to be

gathered on each process, then at every step, each

process sends and receives amounts of data.

Therefore, the time taken by this algorithm is
[43].

TAll-Reduce
ring =2(p− 1)α+2nβ+nγ−(1/p)(2nβ+nγ)

The Ring algorithm is also used for All-Reduce.

There are two phases in All-Reduce: Reduce-Scatter

and All-Gather. The Ring algorithm can be applied

for All-Gather, and the Reduce-Scatter phase can be

performed in the Pairwise-Exchange algorithm. When

the number of processes is not a power of 2, this algo-

rithm performs well in bandwidth utilization. Still,

the latency of this algorithm grows linearly as the

number of processes increases. Therefore, this algo-

rithm is only suitable for small or medium processes

or large vectors. For All-Reduce, the time taken is
[44].

 4.1.2 Binomial Tree

The Binomial Tree algorithm is commonly used

(root+ (p/2))

lg p
n

T Broadcast
tree = (lg p)(α+

nβ)

for Broadcast in MPICH. First of all, process

 receives data from the root. From the

second step, this process and the root act as new

roots in their respective subtrees. This algorithm will

run recursively and takes a total of steps. In this

algorithm, each process communicates bytes of da-

ta at any step. Therefore, the time taken by this algo-

rithm to perform Broadcast is
[43]. This algorithm performs well when communi-

cating short messages because of the logarithmic la-

tency term. As a result, the Binomial Tree algorithm

can be a good choice when working with short mes-

sages (e.g., < 12 KB) or when the number of process-

es is less than 8.

lg p
n

TReduce
tree = (lg p)(α+ nβ + nγ)

lg p

"

The Binomial Tree algorithm can also efficiently

implement Reduce. The Binomial Tree algorithm

takes steps to complete the process, and the am-

ount of data is at each step. In general, the time taken

by this algorithm is [43].

Owing to the steps, the Binomial Tree algorithm

performs Reduce efficiently for short messages. For

Reduce, the Binomial Tree algorithm is used for short

messages (e.g., 2 KB) when the reduction opera-

tion is predefined. Because the user-defined reduction

operations may pass or break up derived datatypes to

do the complex Reduce-Scatter, the Binomial Tree al-

gorithm is used for all message sizes when the reduc-

tion operations are user-defined. When executing the

All-Reduce process, the algorithm first does a Reduce

to rank 0 and then performs a Broadcast.

 4.1.3 Recursive-Doubling

lg p
n/p

2n/p

(2lg(p−1)n)/p

TAll-Gather
rec-dbl = lg pα+ ((p− 1)/p)nβ

Recursive-Doubling is an efficient algorithm for

All-Gather. In the first step, each process sends and

receives data from its neighbors. In the second step,

each process sends and receives data from the process

that is two processes away from it. In the third step,

the process exchanges data from the process that is

four processes away from it, and so on. In this way,

when the number of processes is a power of 2, all da-

ta communication can be completed in steps. The

amount of data exchanged by each process is in

the first step, in the second step, and so on. In

the last step, the amount of data is . In

general, the total time taken by this algorithm is
[43]. Due to the com-

munication's mathematical features, Recursive-Dou-

bling works very well for situations where the num-

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 175

ber of processes is a power of 2, but it does not work

well when the number of processes is not a power of 2.

(n− (n/p))

(n− (2n/p)) (n− (4n/p))

TReduce-Scatter
rec-dbl = lg pα+ (lg p− ((p− 1)/p))nβ + (lg p−

((p− 1/p))nγ

The Recursive-Doubling algorithm can be used in

Reduce-Scatter, similar to the one used in All-Gather.

However, more data are communicated in Reduce-

Scatter than in All-Gather. In step 1 of Reduce-Scat-

ter, the data needed for their result in each process is

not exchanged, and the amount of data exchanged by

each process is ; in step 2, the data re-

quired by themselves and by the processes communi-

cated in the previous step in each process are not ex-

changed, and the amount of data exchanged by each

process is ; in step 3, it is ;

and so on. Therefore, the time taken by this algorithm

is
[43]. This algorithm works well for con-

cise messages (e.g., < 32 B).

TAll-Reduce
rec-dbl = lg pα+ n lg pβ+

n lg pγ

The Recursive-Doubling algorithm can also per-

form All-Reduce similarly to how it performs All-

Gather, except that each communication step of the

Recursive-Doubling algorithm also involves a local re-

duction. The Recursive-Doubling algorithm performs

well for short messages and long messages with user-

defined reduction operations. The time taken by this

algorithm for All-Reduce is
[44].

 4.1.4 Recursive-Halving

p/2

p/4

Similar to applying the Recursive-Doubling algo-

rithm for All-Gather, the Recursive-Halving algo-

rithm can be used to perform Reduce-Scatter. First,

processes at a distance of away exchange data

with each other. Each process performs both the

sending and receiving operations. All processes need

the sent data in the other half, and all processes need

the received data in its half. The reduction operation

is performed on the received data. The reduction can

be made because the procedure is commutative. Sec-

ond, processes at a distance of away exchange da-

ta with each other: each process performs both the

sending and receiving operations. All processes need

the sent data in the other half of the current subtree,

and all processes require the received data in its half

of the current subtree. The reduction operation is per-

lg p p

TReduce-Scatter
rec-half = lg pα+

((p− 1)/p)nβ + ((p− 1)/p)nγ

formed on the received data. This procedure is per-

formed recursively, halving the data communicated at

each step. The total number of steps of this process is

. Therefore, if is a power of 2, the time taken by

this algorithm is given by
[44].

 4.2 xCCL Collective Communication

Algorithms

In practice, xCCL will select algorithms to per-

form collectives based on conditions such as system

configuration, network topology, and invocation cir-

cumstances to improve the performance[52]. Next, we

introduce these algorithms used by xCCL.

 4.2.1 NCCL

Ring. The Ring algorithm is used for All-Reduce

in NCCL to move data across all GPUs⑰. The data

are split into multiple chunks and transferred one by

one during the operation. This pipeline modality re-

duces the idle time the GPU spends waiting for data.

However, the latency of the Ring algorithm for All-

Reduce increases with the number of GPU devices.

Since NCCL is implemented with CUDA, one CUDA

thread block is allocated to one ring direction in this

library.

Double Binary Trees. Since the latency of the

Ring algorithm increases with the number of GPUs, it

is not suitable for communication among a large num-

ber of GPUs. The Double Binary Tree algorithm was

proposed to solve this problem because of its logarith-

mic latency⑱. Based on the architecture of a binary

tree, the leaves of one binary tree can be used as the

nodes of another. Almost every rank is connected to

two parents and two children ranks, except for the

root ranks. Compared with the Ring algorithm, the

latency of Double Binary Trees is more negligible in

the NCCL test on various large machines.

 4.2.2 MSCCL

Ring. MSCCL implements Ring for All-Reduce,

176 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑰NCCL: Accelerated multi-GPU collective communications. https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf,
Jan. 2023.

⑱Massively scale your deep learning training with NCCL 2.4. https://developer.nvidia.com/blog/massively-scale-deep-learning-
training-nccl-2-4/, Jan. 2023.

Reduce-Scatter, and All-Gather⑲. MSCCL allocates

multiple channels to one logical ring. In this way, dif-

ferent point-to-point connections can be implemented

between the same pairs of GPUs. The protocol for

scheduling a logical ring onto one channel varies ac-

cording to the message size. This strategy enables the

logical ring's distribution across channels and effi-

ciently overlaps point-to-point operations.

2n− 2

All-Pairs. In MSCCL, three different types (input,

output, and scratch) of GPU buffers are available for

chunks of data. Because the Ring algorithm is unsuit-

able for small message sizes, MSCCL implements All-

Pairs for All-Reduce when the message size is small⑲.

The Ring algorithm proceeds in two steps: rank re-

ceives the chunk of data from every rank and per-

forms computation operations, and then the chunks of

the result data are broadcast to every other rank.

Compared with steps in the Ring algorithm,

only two communication steps are used in the All-

Pairs algorithm, which makes the latency of the All-

Pairs algorithm lower.

Hierarchical. Different algorithms can be applied

to perform All-Reduce according to the input configu-

rations. Besides the above-mentioned algorithms, Hi-

erarchical is another possible one in MSCCL⑲. There

are four communication steps in this algorithm. The

first step is to perform Reduce-Scatter within a node,

the second step is to perform Reduce-Scatter across

nodes, the third step is to perform All-Gather across

nodes, and the final step is to perform All-Gather

within a node.

Two-Step. The traditional All-to-All algorithm on-

ly implements one communication step, but the num-

ber of small chunks transferred across nodes is large.

In MSCCL, a two-step All-to-All algorithm is imple-

mented with aggregated cross-node communication to

reduce the cost⑲.

 4.2.3 Gloo

Ring. In Gloo, the Ring algorithm is implemented

the same as mentioned in Subsection 4.1.1⑳.

Ring-Chunked. Based on the Ring algorithm, the

Ring-Chunked algorithm divides the buffer into

chunks so that each process can reduce a chunk into a

local result while it is transmitting another chunk⑳.

Halving-Doubling. The design of Halving-Dou-

bling in Gloo is similar to that of the All-Reduce Re-

cursive Halving and Doubling algorithms⑳. The Halv-

ing-Doubling algorithm uses the distance to decide

the communication pair between processes. For exam-

ple, each process sends and receives data buffers: from

the process next to it when the communication dis-

tance is 1; from the process that is one process away

from it when the distance is 2. The algorithm con-

sists of two phases. 1) The distance doubling the Re-

duce-Scatter operation phase. At the result, each pro-

cess holds part of the reduction results. 2) The dis-

tance halving All-Gather operation phase. At the re-

sult, all processes receive the rest parts of the reduc-

tion results from other processes.

Pairwise-Exchange. The Pairwise-Exchange algo-

rithm is a simplified Halving-Doubling algorithm⑳. In

each step, the nodes are partitioned into pairs and the

message size in the communication between pairs is

the same. Pairwise-Exchange is used for benchmark-

ing purposes in Gloo.

BCube. The Ring algorithm organizes the commu-

nication structure of processes one by one as a ring.

Halving-Doubling uses the distance to manage the

communication of processes. Different from the above

algorithms, the BCube algorithm divides the process-

es into groups⑳. Firstly, it performs Reduce-Scatter

among processes within the group and All-Reduce

among the corresponding processes from different

groups. Secondly, each group performs All-Gather

within the group so that every process receives the re-

duction results in the end.

 4.2.4 ACCL

Hybrid. ACCL uses a hybrid All-Reduce algo-

rithm to maximize bandwidth utilization[49]. Hybrid

All-Reduce decouples the All-Reduce operation into

several micro-operations, eliminating the meaningless

micro-operations. This hybrid algorithm proceeds in

three steps. In step 1, the intra-node Reduce-Scatter

is performed based on the Ring algorithm; in step 2,

the inter-node All-Reduce is performed based on the

Halving-Doubling algorithm; in step 3, the intra-node

All-Gather is performed based on the Ring algorithm.

 5 Collectives and Deep Learning

Machine learning techniques are increasingly be-

ing adopted both in industry and in research to solve

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 177

⑲MSCCL: Microsoft collective communication library. https://github.com/microsoft/msccl, Jan. 2023.
⑳Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

https://github.com/facebookincubator/gloo

problems not easily handled by traditional methods.

Machine learning can be seen in precision systems,

automation, cancer detection, self driving, and more.

It is well known that hardware accelerators have con-

tributed massively to the advancement of inter-disci-

plinary machine learning applications.

The adaptation of GPUs for general purpose com-

puting, often referred to as general purpose GPUs

(GPGPUs), has allowed training to be conducted in a

parallel fashion, drastically reducing the time re-

quired to achieve acceptable results when compared

with the CPU[53]㉑–㉕. Data volumes—and more imp-

ortantly, model sizes—continue to increase, creating a

need for distributed training solutions, including those

that integrate tightly with hardware accelerators.

There are many ways to parallelize the training pro-

cess, and the collective communication paradigm pro-

vides the requisite flexibility to implement these solu-

tions while remaining conceptually simple.

With the advent of large models, parallelizing the

training process becomes a necessity. Using NCCL

with TensorFlow, researchers from Uber found that

VGG-16 training can be sped up by a significant 30%

when leveraging RDMA networking[53]. Collectives

demonstrate a considerable speed-up in training time

that very large networks can achieve. Using 256

GPUs for distributed training, Meta trained a

ResNet-50 model within one hour with a 90% scaling

efficiency from an initial 8 GPUs[54].

Machine learning using collectives is an area of ac-

tive research. Multiple industry applications have

been proposed and implemented into daily workflow.

In the following Subsections 5.1–5.4, we observe some

representative use cases for Meta, Google, Uber, and

Amazon.

 5.1 Case Study with Meta Workloads

A recommendation model is a kind of ML work-

loads that aims to provide personalized recommenda-

tions to users. Such models are deployed often in e-

commerce, social media, and advertising settings. In

2020, Meta introduced its production-scale DNN-

based RMCs (recommendation model classes)[55].

These RMCs all exhibit computation and communica-

tion intensive characteristics. Additionally, since the

purpose of RMCs is to provide recommendation to

users, the ability to achieve a short inference time is a

critical metric to evaluate their performance.

For all the requirements mentioned above, the col-

lective plays an important role, as it can directly in-

fluence the communication time during the training

and inference stages. To improve the performance of

these production-scale recommendation models, Meta

developed a software-hardware co-design, named Neo,

which integrates their collective-related optimizati-

ons[56]. The implementation of Neo is closely related

to PyTorch[57], a widely-used machine learning frame-

work originally created by Meta. The kernel fusion in-

troduced in Neo is open sourced as part of the Meta

General Matrix Multiplication (FBGEMM) library

which serves as a matrix processesing backend for Py-

Torch[58].

Neo is built for efficient and scalable DLRM

(Deep Learning Recommendation Model) training uti-

lizing three key techniques. The first one is 4D paral-

lelism that combines table-wise parallelism, row-wise

parallelism, column-wise parallelism, and data paral-

lelism. It is aimed at reducing workload imbalance

among GPUs to minimize the costs of conducting

communication. Second, the hybrid kernel fusion

technique fuses the parameter update and the embed-

ding computation into a same CUDA kernel. Third, a

new hardware platform called ZionEX was intro-

duced. ZionEX is co-designed with the 4D parallelism

technique and also optimizes the inter-node communi-

cation for distributed training.

Image recognition networks that utilize residual

learning have become extremely popular since their

introduction in 2016 due to the fact that they enable

much deeper neural network architectures[59]. Ima-

geNet, a database of labeled image data is a popular

dataset used to train, test, and evaluate network ar-

chitectures and training systems[60]. Meta was able to

train a ResNet50 model on ImageNet in one hour on a

distributed training system[54].

32
8 256

In order to achieve this level of performance, all

components of the training system must be consid-

ered. Their deployment consisted of nodes each

with GPUs for a total of GPUs[54]. Nodes each

178 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

㉑MPI: A message-passing interface standard version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, Jan. 2023.
㉒Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.
㉓CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit, Jan. 2023.
㉔NVIDIA NVLink. https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/, Jan. 2023.
㉕NVIDIA collective communication library. https://github.com/NVIDIA/nccl, Jan. 2023.

https://github.com/facebookincubator/gloo

had 20 Gbit network cards and GPUs were directly

connected using NVIDIA NVLink. Collective opera-

tions were used both locally within nodes to compute

local reductions and to communicate gradients be-

tween nodes. Local and inter-node communications

used NCCL (see Subsection 6.1) while collectives were

performed using Gloo (see Subsection 6.5)[54]. At-

tempting to train with many GPUs can cause com-

munication and aggregation costs to increase to unac-

ceptable levels. To mitigate these issues, CPU and

GPU resources were balanced by splitting communi-

cation between them using the buffer size and manu-

ally selecting the most performant collective algo-

rithms for both the specific workload being tested and

the network topology[54].

 5.2 Case Study with Google Workloads

81

DistBelief[61] is a framework for parallel distribut-

ed training of DNN models developed by Google re-

searchers. In their paper, Dean et al.[61] observed that

very large DNN models can benefit greatly when they

are trained using many machines organized in a dis-

tributed training system. Their largest model with 1.7

billion parameters sees a speedup greater than 12x on

 machines.

Google's TensorFlow[62] is the most popular frame-

work for deep learning applications and the successor

to DistBelief. TensorFlow's flexibility makes it wide-

ly applicable to many ML problems and countless re-

searchers have utilized the framework. It provides

tools for deploying on GPU clusters, enabling the dis-

tributed training of very large models[62]. This allows

users with large-scale models to train more efficiently

and significantly reduce computation time. As indus-

try data volume and velocity both become larger,

quickly training models with enormous parameter

sizes increases model training productivity.

Awan et al. evaluated the designs and perfor-

mance of TensorFlow for training multiple DNNs on

distributed/HPC systems using different communica-

tion libraries[63]. In their paper, they showed that

MPI-based communication solutions for TensorFlow

achieve 71% scaling efficiency scaling up to 64 GPUs.

In a recent study[64], the authors designed a bench-

mark suite to characterize TensorFlow's communica-

tion patterns and performance. Biswas et al. devel-

oped an RDMA-based gRPC that can adjust commu-

nication mechanisms dynamically for TensorFlow-

based deep learning training workloads[65].

There is ongoing work to increase the scaling effi-

ciency and communication efficiency of distributed

training in TensorFlow, which is highly desired by the

DNN community. Google's researchers and develop-

ers continue to update the communication subsystem

designs in TensorFlow to work with NCCL and other

optimized communication backends. For example, a

communication library called NCCL Fast Socket㉖

was proposed by Google to optimize NCCL collective

communication performance for distributed ML train-

ing on Google Cloud.

 5.3 Case Study with Uber Workloads

Uber has utilized machine learning in multiple di-

verse applications (e.g., UberEATS, Marketplace

Forecasting, Customer Support, Ride Check, Estimat-

ed Times of Arrival, One-Click Chat, and Self-Driv-

ing Cars). Specifically, Uber's Michelangelo㉗ ma-

chine learning platform runs several models for

UberEATS. Search ranking, search autocomplete, and

restaurant rankings are all examples of use case mod-

els that UberEATS utilizes from Michelangelo. With

the scale of Uber's models increasing, distributing the

training process is a practical necessity. Using

Michelangelo's Data Science Workbench (DSW),

large-scale distributed training and deployment of

deep learning models on GPU clusters is well support-

ed㉗, even for data scientists and developers with lit-

tle systems knowledge. Users can easily distribute

their training processes with DSW and use Michelan-

gelo's hyperparameter searching algorithms.

ring-allreduce

As Uber started using deep learning models for

self-driving cars, the dataflow grew exponentially and

required distributed training across an extensive set of

GPU machines. Michelangelo's Horovod㉗ was intro-

duced to enable much faster training and research

progress by implementing collective communications

between GPUs in TensorFlow. In their paper[53],

Sergeev and Del Balso replaced Baidu's

 implementation with NCCL for com-

munication in Horovod. The authors found that a

model with a large number of parameters (e.g., VGG-

16) saw a 30% speedup, and that other models (e.g.,

Inception V3 and ResNet-101) exceeded 90% scaling

efficiency when scaling to 128 GPUs. The default

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 179

㉖NCCL fast socket. https://github.com/google/nccl-fastsocket, Jan. 2023.
㉗Scaling machine learning at Uber with Michelangelo. https://www.uber.com/blog/scaling-michelangelo, Jan. 2023.

TensorFlow distributed implementation was found to

waste about half of GPU resources when training on

the same 128 GPUs, while Horovod is able to reach

the 88% efficiency mark. Though after Horovod's

work, TensorFlow has added support for NCCL2.

Horovod greatly simplifies the distributed training

process for users and supports multiple popular com-

munication libraries (e.g., MPI, NVIDIA's NCCL,

Meta's Gloo, Intel's MLSL, and IBM's DDL)[66].

Horovod's GitHub also provides model examples for

Keras, MXNet, PyTorch, Spark, TensorFlow, and

more, making it very simple to start working quickly

with various models.

 5.4 Case Study with Amazon Workloads

20

Amazon Web Services (AWS) provides develop-

ers with a wide variety of cloud-based tools. Dis-

tributed training is an important tool for building ca-

pable large models, especially if models are large

enough that training must be split across multiple de-

vices (model parallelism). However, capable systems

can be difficult and expensive to deploy. As a result,

many companies look for hosted solutions. Network

architectures and speeds available on public clouds

are often very different than those of dedicated ML

training clusters where bandwidths are more heteroge-

neous. On such cloud-based systems, intra-node and

inter-node bandwidth can differ by a factor of or

more, meaning assumptions about the cost of using

collectives may not longer be correct[67]. Attempting

to perform collective operations that involve all ranks

can be very expensive.

To help make model-parallel training faster on

cloud systems, researchers at Amazon have proposed

a system called MiCS[67], which reduces the impact of

highly-heterogeneous network architectures on train-

ing performance. The key idea is to reduce the num-

ber of participants in collective communications and

by extension reduce the data volume of the communi-

cations that take place over lower-bandwidth connec-

tions. This is possible even when model sizes surpass

on-node device memory requirements by using a hier-

archical communication strategy and breaking com-

munication up into stages. First, devices perform an

inter-node All-Gather operation with devices of the

same respective relative rank on the other nodes. Sec-

ond, nodes perform an intra-node All-Gather to com-

plete the communication[67]. Additionally, MiCS

makes use of a ``2-hop'' gradient synchronization pro-

cess rather than the standard gradient aggregation

process. This step is usually very expensive because

its cost increases with a higher number of devices. De-

vices are split into small groups that span across

nodes. Gradient partitioning and synchronization is

first performed within the small groups and then

globally, reducing total traffic. When compared with

the existing training optimizer ZeRO[68], MiCS was

2.98x faster[67]. MiCS was also shown to have

achieved 99.4% scaling efficiency in a cloud environ-

ment[67].

 6 Industry Solutions—xCCL

The rise in the popularity of distributed deep

learning training has contributed to growing interest

in fast, efficient, and portable collective implementa-

tions. A summary of industry collective communica-

tion libraries is shown in Table 3.

 6.1 NVIDIA NCCL

NVIDIA Collective Communication Library㉘ is

currently the most popular GPU-accelerated collec-

tive communication library. It implements collective

operations for multiple GPUs across multiple nodes as

well as specific point-to-point communication primi-

tives. NCCL officially supports NVIDIA GPUs only,

though there have been efforts to port it to AMD

graphics cards in the form of the ROCm Collective

Table 3. Summary Comparison of Collective Communication Libraries

CCL Accelerator License P2P Differentiation

NCCL NVIDIA GPU Open (MIT) Yes Industry standard for GPU-based collectives

Gloo GPU Open (BSD) No Combined CPU/GPU DL workloads

MSCCL GPU Open (MIT) Yes DSL for custom collective algorithms

Intel oneCCL Intel CPU, GPU, FPGA Open (Apache 2.0) Yes Support for heterogeneous accelerators

ROCm AMD GPU Open (MIT) Yes AMD GPU support

ACCL GPU Proprietary N/A Hybrid algorithms

180 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

㉘NVIDIA collective communication library. https://github.com/NVIDIA/nccl, Jan. 2023.

Communication Library (RCCL)㉙ (see Subsection

6.4).

NCCL's programming model is very similar to

MPI Collectives㉚. However, NCCL is geared toward

providing fast communication of messages among

GPUs in dense multi-GPU systems, while MPI focus-

es on efficient communication across thousands of

nodes in a cluster.

 6.1.1 Architecture

NCCL aims to perform communication among

GPUs using the CUDA, as shown in Fig.8(a). In NC-

CL collective communications, the communicators are

created using CUDA before launching any collective

algorithm design. After the collective algorithm is

launched using point-to-point primitives, the point-to-

point operation will be effectively enqueued to the

given stream.

NCCL uses rings to move data across all GPUs,

and therefore data are divided into chunks among all

ranks in the communicator to obtain reasonably good

bandwidth while lowering the latency. NCCL per-

forms intra-node communication through PCIe,

NVLink㉛, and GPUDirect㉜. Inter-node communica-

tion in NCCL is via GDR. NCCL's CUDA kernels

can copy data stored in the global memory of one

GPU to another GPU by using GDR and GPUDirect.

 6.1.2 NCCL API

In a similar fashion to NVIDIA's CUDA㉝, NCCL

was designed to be easy to program. Because NCCL

provides a C API, programmers can use NCCL with-

in existing C projects or even use C bindings in a

high-level language like Python.

ncclCommInitRank()
ncclCommInitRankConfig() ncclCommInitAll()

ncclAllReduce()
ncclBroadcast()

ncclSend()
ncclRecv()

NCCL can be initiated with the ,

, or fun-

ction. Each gives the programmer different options for

configuring ranks and communications. A communica-

tor is required to perform any communication opera-

tion. Individual collective operations can be run us-

ing the correspondingly named API calls. All-Reduce

can be run using the function,

Broadcast can be run using the func-

tion, and so on. Programmers familiar with MPI

should feel comfortable with the NCCL API. NCCL

also supports point-to-point communications in the

form of (sending data to a specific rank)

and (receiving data from a specific rank).

 6.1.3 Framework Support

Because deep neural networks training is becom-

ing too large to be performed on a single compute

node, some state-of-the-art deep learning frameworks

like TensorFlow[62], Caffe[69], PyTorch[57], CNTK[70],

and MXNet[71] have complimented distributed train-

CUDA Code (NCCL)

NCCL Communicator

NCCL Collective
Algorithm Design

Point-to-Point Primitives

CUDA Stream

Intranode Internode

NVLink,

PCIe,

GPUDirect,

P2P

Ethernet,

InfiniBand

with

GPUDirect

CUDA Code (NCCL)

Converted by

HIPify Tool

Converted into

HIP Code

Compiled by

NVCC

Compiler

HCC

Compiler

Run on

NVIDIA

GPU
AMD GPU

Run on

Gloo

NCCL

CPU CPU
GPU

GPU

GPU

GPU

MSCCL Program

Tracing

Chunk DAG

Lowering

Instruction DAG

Scheduling

IR

+NCCL

MSCCL Runtime

S
ch

ed
u
li
n
g

D
ir
ec

ti
v
es

(b)(a) (c) (d)
Fig.8. Overview of different architectures of xCCL from industry solutions. (a) NCCL. (b) ROCm. (c) Gloo. (d) MSCCL.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 181

㉙ROCm communication collectives library. https://github.com/ROCmSoftwarePlatform/rccl, Jan. 2023.
㉚MPI: A message-passing interface standard version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, Jan. 2023.
㉛NVIDIA NVLink. https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/, Jan. 2023.
㉜GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-rdma/index.html, Jan. 2023.
㉝CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit, Jan. 2023.

ing on multiple nodes by using NCCL. These frame-

works use NCCL to perform collective communica-

tion among all the available GPUs.

Horovod[53] enables faster, easier distributed train-

ing in TensorFlow by employing efficient inter-GPU

communication with NCCL.

 6.1.4 Supported Features

0 n− 1 n

Communicator. NCCL assigns a unique rank be-

tween and to each of the CUDA devices in

a communicator. Each communicator object associat-

ed with a fixed rank and CUDA device in the same

NCCL communicator will be used to launch collec-

tive communications.

Stream. Point-to-point primitives and collective

communication implementation perform communica-

tion and computation in a single CUDA kernel. The

entire message in each communication step is divided

into smaller chunks for fast synchronization. By

scheduling the operation in separate CUDA streams,

the NCCL call may return before the process is com-

plete.

Topology. Based on the interconnect network,

NCCL chooses from a set of topologies which include

ring- and tree-based approaches.

Protocols. There are three protocols when NCCL

sends data: ``low latency, 8 bytes atomic store (LL)'',

``low latency, 128 bytes atomic store (LL128)'', and

Simple㉞. The bandwidth and the latency of these

protocols are different because of the type of inter-

node synchronization.

 6.1.5 Example: Distributed Training with NCCL

Data-parallel distributed deep learning training on

many GPUs is one of the more compelling use-cases

for collective communications. As mentioned in Sub-

section 6.1.3, NCCL is used by many machine learn-

ing frameworks as a distributed training backend.

Here we will examine how collectives fit into the

training process and how NCCL's API makes imple-

menting distributed training strategies simple.

ncclSend()

In a data-parallel training arrangement, each de-

vice (GPU in the case of NCCL) holds a full model

locally. The training data are split and distributed to

each during each training step. NCCL's point-to-point

communication can be used here. Once the data are

broken up, a root process can send data using the

 function. Though NCCL does not provide

ncclSend() for

ncclRecv()

ncclAllReduce()

it directly, the programmer can emulate the Scatter

collective by placing in a loop where

the index corresponds to the target device rank. Once

each device finishes receiving data using the

 function, it can then run the forward pass

and compute local gradients. These local gradients

can be combined using an All-Reduce collective oper-

ation, or, in NCCL. After the All-Re-

duce completes, each device will hold the updated

gradients.

 6.1.6 Practical Workloads and Applications

In ResNet-101's distributed training, the Tensor-

Flow modified to use NCCL is compared with the

regular distributed TensorFlow[53]. The training using

NCCL was about twice as fast as standard distribut-

ed TensorFlow training. When running a distributed

training job for VGG-16, NCCL leveraging RDMA

networks provides a 30% improvement over NCCL

using TCP networks.

 6.2 Intel oneCCL

Intel oneAPI Collective Communications Library

(oneCCL) is a collective communication library creat-

ed with the intention of developing a single standard

API that is compatible with multiple different types

of hardware accelerators, ranging from CPUs to

GPUs to FPGAs, in a way that makes accelerating

deep learning training workloads easy. It is part of In-

tel's larger ``oneAPI'' project which incorporates a

deep neural network library and a C++ standard li-

brary for accelerators, among others. The library sup-

ports Intel products such as Core CPUs, Xeon CPUs,

Xeon Phi, and Intel graphics cards.

 6.2.1 Architecture

Intel oneCCL is built on top of existing lower-lev-

el middleware and thus has support for InfiniBand,

Ethernet, and other interconnects. More specifically it

is built upon, Intel's own customized MPICH-sup-

porting MPI library (i.e., Intel MPI Library) and

libfrabric, an open-source set of libraries for fabrics.

Low-level inter-node and inter-device communication

is handled by these libraries for portability and inter-

connect support. However, oneCCL still provides a di-

rect access to hardware (level 0) for performance criti-

cal computation and on-device communication.

182 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

㉞NCCL's environment variables. https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html, Jan. 2023.

There are three key abstractions present in oneC-

CL that the application programmer interacts with.

The first is the Communicator. Similar to other col-

lective communication libraries such as MPI, oneC-

CL uses communicators for inter-rank communica-

tion and they are used to define which resources

should participate in a given communication opera-

tion. However, in oneCCL, host communication and

device (e.g., GPU) communication requires the use of

separate communicators. Ranks in oneCCL can con-

tain either CPUs or devices depending on the type of

the communicator being considered. The second key

abstraction is the Stream object, instances of which

are used to pass execution context to communicator

objects. Streams also contain the collective operation

execution order. The third is the collective communi-

cations, the specifics of which are explained in Sec-

tion 4 and Subsection 6.2.2.

 6.2.2 Routines

Intel oneCCL currently has support for the All-

Gather(v), All-Reduce, All-to-All(v), Barrier, Broad-

cast, Reduce, and Reduce-Scatter collective opera-

tions. These operations can be run asynchronously,

and the status of operations can be tracked using

event objects returned when operations are run. The

programmer is also given some control over operation

scheduling via priority fields.

 6.2.3 Framework Support

Known previously as torch_ccl, PyTorch has im-

plemented bindings for Intel oneCCL. Code to inter-

act with oneCCL is written in Python alongside any

PyTorch code, making oneCCL easily accessible to

machine learning researchers who have Python-based

workflows. A set of profiling tools is included to help

programmers debug problems or improve the perfor-

mance oft their software.

There is also a oneCCL integration available for

Horovod. Unlike with PyTorch, Horovod does not ex-

pose any oneCCL details directly to the programmer.

Instead, Horovod is configured to use oneCCL for col-

lective communication using environment variables.

 6.3 Alibaba ACCL

Alibaba Collective Communication Library (AC-

CL) is another collectives library that takes advan-

tage of the fact that many deployments will have

multiple types of fabrics available, utilize multi-rail

networks, and will likely experience performance limi-

tations primarily as a result of communication cost[49].

By focusing on support for heterogeneous intercon-

nects, ACCL can outperform other collective commu-

nications libraries given that certain conditions are

met[49]. ACCL can be used with both Tensorflow and

Horovod, though it is not open source, which limits

its use outside of Alibaba's cloud products.

Alibaba provides their Apsara AI Accelerator

(AIACC) AI acceleration infrastructure as part of

their cloud service. A recent study by Alibaba Group

and Univesity of Leeds researchers found that AIACC

outperformed Horovod and BytePS for certain train-

ing workloads[72]. Like ACCL, AIACC is currently

proprietary.

 6.3.1 Hybrid Algorithms

One important feature of ACCL is its ability to

use hybrid collective algorithms. Hybrid algorithms

are sets of standard collective algorithms that are

combined in an effort to maximize network utiliza-

tion and therefore increase overall communication

performance. Choices about which algorithms to use

for any given situation are made by the system using

a model of the physical network derived from

probing[49].

 6.4 AMD RCCL

The AMD ROCm Communication Collectives Li-

brary (RCCL) is an AMD port of NCCL for commu-

nications used within single and multi-process appli-

cations running on AMD and NVIDIA GPUs. The

aim of RCCL is to allow developers to run programs

on both NVIDIA and AMD GPUs without rewriting

the code. RCCL is a component of AMD ROCm㉟

open software stack㊱ and is running on the system

with HIPify㊲ which can convert CUDA code to HIP

(Heterogeneous-Computing Interface for Portability)

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 183

㉟ROCm—Open software platform for GPU compute. https://github.com/RadeonOpenCompute/ROCm, Jan. 2023.
㊱New AMD ROCm™ information portal—ROCm v4.5 and above. https://rocmdocs.amd.com/en/latest/, Jan. 2023.
㊲HIP Programming Guide v4.5. https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html, Jan.

2023.

code automatically. RCCL supports data transfers lo-

cally over PCIe and xGMI interconnects, and over the

network through InfiniBand Verbs and TCP/IP sock-

ets. In a similar fashion to NCCL, RCCL supports

GPU-to-GPU direct communication operations.

 6.4.1 Architecture

RCCL includes the same collective routines as

NCCL. The algorithms used in RCCL collectives are

similar to those found in NCCL, and as such are im-

plemented based on the ring and tree algorithms.

Fig.8(b) shows how the CUDA code can be convert-

ed to run the application on AMD and NVIDIA

GPUs: the CUDA code, for example, the NCCL li-

brary itself, is converted into the HPI code by HIPify.

The HPI code can then run on NVIDIA GPUs when

compiled with the NVCC compiler and can run on

AMD GPU when compiled with HCC.

 6.4.2 Supported Features and Workloads

Starting from PyTorch 1.8 release, the ROCm

software stack—which includes the RCCL library—is

provided so that developers and researchers may use

PyTorch with AMD GPUs. RCCL was integrated in-

to Tensorflow in v1.15. In both PyTorch and Tensor-

flow, AMD GPUs can be used for deep learning work-

loads such as training and inference.

Because it uses the same API as NCCL, RCCL al-

so supports features such as communicator and topol-

ogy. The stream feature in RCCL is different from

the stream feature found in NCCL and uses a HIP

stream instead of a CUDA stream. The multi-GPU

communication in RCCL is supported by MPI. In ad-

dition, RCCL integrates NPKit㊳, which is a profiling

framework, to the communication routines so that

RCCL can give a profiling fine-grained trace on col-

lective routines.

 6.5 Meta Gloo

Meta's Gloo㊴ is a communication library for deep

learning workloads which run on multiple machines.

Its architecture is shown in Fig.8(c). Gloo supports

both point-to-point communications and collective

communications on CPUs, as well as All-Reduce, All-

Gather, and Broadcast when used on GPUs.

 6.5.1 Architecture

Gloo supports multi-GPU communication over in-

terconnects such as PCIe and NVLink. Gloo supports

different data transport methods for inter- and intra-

node data communication, for example, TCP, RoCE,

and IB for CPU-to-CPU transport and GPUDirect for

GPU-to-GPU transport.

 6.5.2 Supported Features and Workloads

torch.distributed
Gloo is provided by PyTorch as a communication

backend in the package. PyTorch

recommends that users choose Gloo mainly for dis-

tributed training on CPU and as the fallback option

for distributed training on GPU. Users can enable

Gloo as the part of components of Horovod in Tensor-

Flow, MXNet[71], and Keras㊵.

Gloo uses two methods to coordinate the commu-

nications channels for CPU data transport: MPI and

a custom rendezvous process㊴. Using MPI is straight-

forward. The MPI processes take control of the con-

nection channels across the devices and the MPI com-

municator is bound to the GPU context. Another way

to manage the communication across multiple ma-

chines is with Gloo's rendezvous channel setup pro-

cess. Rendezvous uses a central key-value store sys-

tem accessible to all processes to store the Gloo con-

texts. Every process has a set of keys for its peers.

When a process wants to send messages to another

process, it uses the key-value store system to get the

information such as the corresponding IP address and

port as the value.

Gloo is used as a part of the Multi-GPU commu-

nication coordination controller in Horovod, and also

serves as an alternative method to manage communi-

cation and coordination among processes in Horovod.

For each cross-node All-Reduce collective opera-

tion, there are three phases that happen in order: 1)

every process performs a local reduction if a process

holds more than one buffer; 2) the All-Reduce collec-

tive is performed across processes; 3) like the reverse

of step 1, every process broadcasts the reduction re-

sults to its buffers. Gloo provides multiple algorithm

184 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

㊳NCCL profiling kit. https://github.com/microsoft/npkit, Jan. 2023.
㊴Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.
㊵Keras. https://github.com/fchollet/keras, Jan. 2023.

https://github.com/facebookincubator/gloo

designs for phase 2 including the Ring, Ring-chunked,

Halving-Doubling, and BCube algorithms. More in-

depth design details are covered in Subsection 4.1.1.

 6.6 Microsoft MSCCL

The Microsoft Azure team proposed the Mi-

crosoft Collective Communication Library (MSCCL)㊶

to make creating and executing custom collective

communication algorithms much easier. MSCCL is

made up of three components: GC3[73], TACCL[74],

and SCCL[75]. GC3 provides a data-oriented domain-

specific language (DSL) and a corresponding compil-

er to simplify GPU communication programming.

TACCL is dedicated to automatically generating al-

gorithms by guiding a synthesizer. SCCL synthesizes

collective communication algorithms tailored to the

hardware topology. With the three components, cus-

tom collective communication algorithms can be im-

plemented efficiently and flexibly in MSCCL.

 6.6.1 Architecture

For a given collective communication algorithm

and physical topology, MSCCL can explore different

implementations and optimizations with high-level

specifications. MSCCL enables generating efficient

custom communication algorithms with a chunk-ori-

ented program, as shown in Fig.8(d). The chunk-ori-

ented program specifies the chunk routine from source

to destination. To specify chunk routing through

GPUs, a DSL is used in GC3 and communication

sketch is used in TACCL. After the program is creat-

ed, it can be traced into a chunk-directed acyclic

graph (DAG). Then the instruction DAG (distinct

from the chunk DAG) is created by expanding the

chunk operations into instruction operations. After

that, the instruction DAG is scheduled after being

compiled into an intermediate representation (IR).

After the IR is generated, the MSCCL runtime exe-

cutes it efficiently, since MSCCL runtime inherits

NCCL's capability to set point-to-point links over

various interconnects such as NVLink and PCIe.

 6.6.2 Framework Support

Because MSCCL's API is compatible with NCCL,

it is convenient to integrate the MSCCL runtime in-

to state-of-the-art deep learning frameworks such as

PyTorch by swapping out the NCCL backend with

the MSCCL backend.

 6.6.3 MSCCL Runtime

MSCCL DSL. The DSL is a chunk-oriented

dataflow language that can be used to write an effi-

cient communication kernel. The programmer speci-

fies how chunks are routed across GPUs in this lan-

guage.

MSCCL Runtime. IR is the executable file gener-

ated by MSCCL's compiler. It can be executed by the

MSCCL runtime. The MSCCL runtime extends NC-

CL and uses NCCL’s point-to-point send and receive

functionality and is backward compatible with

NCCL's API.

MSCCL Compiler. The MSCCL compiler traces

the program to record the chunk dependencies in the

chunk DAG. The compiler then performs a series of

optimizations and schedules the resulting chunk DAG

to thread blocks specified in the IR. The MSCCL

DSL allows users to guide the compiler into optimiz-

ing and scheduling the program.

Optimization. It is important to optimize the

schedules of the program to improve performance. A

set of scheduling directives is used to optimize the

trade-off for parallelization when scheduling instruc-

tions to multiple thread blocks. There are several as-

pects. 1) Multiple connections may exist in the same

pair of GPUs and are labeled as channels to help dis-

tinguish different connections. The most efficient

channel can then be allocated for a particular opera-

tion. 2) A transfer can be broken up into multiple

smaller transfers to improve execution parallelism. 3)

When multiple contiguous chunks are sent from one

GPU to another, aggregating these chunks in a single

transfer can reduce the latency.

 6.6.4 Practical Workloads and Applications

MSCCL㊶ has been used for inference with a pub-

lic-facing language model on 8x A100 GPUs; the oper-

ations of the GPU have been accelerated by

1.22x–1.29x, depending on the input batch size. MSC-

CL has also been used to train a sizeable Mixture-of-

Experts model on 256x A100 GPUs, providing

1.10x– 1.89x speed-up depending on the Mixture-of-

Experts model architecture.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 185

㊶MSCCL: Microsoft collective communication library. https://github.com/microsoft/msccl, Jan. 2023.

 7 Experimental Comparison of

Implementations

 7.1 Experimental Setup

In this subsection, we run experiments on the SD-

SC Expanse㊷ cluster to compare the performance of

different collective communication libraries. The hard-

ware details of Expanse are shown in Table 4. Tak-

ing into account availability and fairness, we select

PARAM㊸ from Meta, NCCL Tests㊹ from NVIDIA,

and OSU MPI Micro-Benchmarks (OMB)[76] as

benchmarks. We choose NCCL, Gloo, MSCCL, and

CUDA-aware MPI by MPICH㊺㊻ and UCX as the li-

braries of interest in our performance comparison.

PARAM communication benchmarks are PyTorch-

based collective benchmarks while NCCL Tests are

CUDA-based collective benchmarks. We use Python

3.7, PyTorch 1.13, CUDA 11.6, NCCL 2.14.3, MSC-

CL 0.7.3, MPICH v4.0.2, and UCX v1.13.1. We use

16 GPUs across four nodes at most in our experi-

ments. The rest of this section is organized as follows.

We first benchmark NCCL and MSCCL with NCCL

Tests, and CUDA-aware MPI with OMB. Though we

use two different benchmarks to make the compari-

son, we keep the message size and collective routines

consistent. We benchmark NCCL and Gloo with

PARAM. In the experiments, all numbers are taken

three times. We pick up the stable number and

present the average number as the result shown be-

low.

Table 4. SDSC Expanse Details

Specification SDSC Expanse

GPU 4x NVIDIA V100 SMX2 (32 GB, 34.4
TFlop/s) per node

CPU 40-Core Xeon Gold 6248 2.5 GHz (384 GB
DDR4 DRAM)

Interconnects HDR InfiniBand, NVLINK 2

Topology Hybrid Fat-Tree

 7.2 NCCL Tests Benchmark with NCCL

and MSCCL, and OMB with

CUDA-Aware MPI

The NCCL Tests benchmark can be used to com-

pare the latency of NCCL and MSCCL. This test in-

cludes four collectives: All-Reduce, All-Gather, All-to-

All, and Broadcast. OMB can be used to compare the

CUDA-aware MPI library with xCCL for the same

collective routines as NCCL Tests. MSCCL is built on

NCCL, and the runtime of MSCCL is an extension of

NCCL. Based on the configuration, the runtime of

MSCCL dynamically selects the efficient optimized al-

gorithms or NCCL's built-in algorithms. For this rea-

son, most tests have similar latency results for NCCL

and MSCCL.

The latency of the All-Reduce collective with NC-

CL, MSCCL, and CUDA-aware MPI for different

message sizes is shown in Fig.9(a). MSCCL can effi-

ciently explore different algorithms, and uses the All-

Pairs, Hierarchical, and Two-Step All-Reduce algo-

rithms to support algorithmic optimizations for All-

Reduce. These algorithms are described with more de-

tails in Subsection 4.2.2. In most instances, the laten-

cy of MSCCL is slightly lower than that of NCCL for

both small and large message sizes. In general, the

All-Reduce latency of NCCL is about 1.07 times that

of MSCCL. Because MSCCL is built on top of NCCL,

NCCL and MSCCL show similar performance at dif-

ferent numbers of GPUs. For both MSCCL and NC-

CL, the latency numbers for two-node tests are about

three times those of single-node tests. The latency

numbers of four-node tests are four times those of sin-

gle-node tests. CUDA-aware MPI always has a high-

er latency than NCCL and MSCCL. For example,

CUDA-aware MPI latency is 2x– 4x slower than the

one of NCCL and MSCCL when the message size is

smaller than 2 MB. When the message size is larger

than 2 MB, the CUDA-aware MPI latency is 4x–40x

slower than the one of NCCL and MSCCL. The rea-

son behind is that NCCL and MSCCL are optimized

based on NVIDIA GPU directly on both the program-

ming language and the algorithms.

The latency of the All-Gather collective with NC-

CL and MSCCL for different message sizes is shown

in Fig.9(b). MSCCL and NCCL use NCCL's built-in

algorithms to support the All-Gather collective com-

munication, and the results of MSCCL are almost the

same as those of NCCL. It can be observed that the

latency of All-Gather is lower than that of All-Re-

duce. This is because All-Gather is equivalent to a

186 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

㊷Expanse SDSC. https://www.sdsc.edu/services/hpc/expanse/, Jan. 2023.
㊸PARAM. https://github.com/facebookresearch/param, Jan. 2023.
㊹NCCL tests. https://github.com/NVIDIA/nccl-tests, Jan. 2023.
㊺MPICH. https://www.mpich.org/, Jan. 2023.
㊻Official MPICH repository. https://github.com/pmodels/mpich, Jan. 2023.

Gather followed by a Broadcast, while All-Reduce can

be formed by combining a reduction and a Broadcast.

For small message sizes, the trend of tests for differ-

ent numbers of GPUs is almost the same. When the

message size gets larger, the latency results of 2 and 4

nodes are close. When the message size is smaller

than 1.5 KB, CUDA-aware MPI can achieve lower la-

tency than NCCL and MSCCL. For example, the la-

tency of CUDA-aware MPI is 0.7x that of NCCL and

MSCCL when running on 16 GPUs. When the mes-

sage size becomes large, the latency of MPI can be

40x greater than that of NCCL and MSCCL when

running with 16 GPUs. CUDA-aware MPI provides

several algorithms and changes them automatically

based on several aspects, for example, the number of

nodes and the message size. Therefore, CUDA-aware

MPI can achieve lower latency than NCCL and MSC-

CL for small message sizes.

The All-to-All routine is the third collective we

compare among NCCL, MSCCL, and CUDA-aware

MPI, and the latency for different message sizes is

shown in Fig.9(c). We see that the overall latency re-

sults of NCCL and MSCCL among all message sizes

are similar because MSCCL also uses the built-in al-

gorithms of NCCL. Compared with the first two col-

lectives, All-to-All's latency measurements are the

largest when the message size is large. The behavior

of CUDA-aware MPI is similar for All-Gather as dis-

cussed above: the latency is lower than that of both

NCCL and MSCCL when the message size is smaller

than 6 KB, and higher than that of both NCCL and

MSCCL when the message size is large. For example,

when the message size is 24 MB, CUDA-aware MPI

latency is 98x slower than the ones of NCCL and

MSCCL.

NCCL and MSCCL use the built-in algorithms of

NCCL in Broadcast, and the latency results for differ-

ent message sizes are shown in Fig.9(d). When the

message size is small, the latency results scale to the

number of nodes. However, when the message size be-

128

128

300

250

200

150

100

50

0

0.10

0.08

0.06

0.04

0.02

10.0

7.5

5.0

2.5

0.0

600

400

200

0

0.12

0.10

0.08

0.06

0.04

0.02

0.05

0.04

0.03

0.02

0.01

0.20

0.15

0.10

0.05

40

20

0

1.5

1.0

0.5

0.0

75

50

25

0

0.30

0.25

0.20

0.15

0.10

0.05

0.00

512

512

NCCL, 4 GPUs
NCCL, 8 GPUs
NCCL, 16 GPUs

MSCCL, 4 GPUs
MSCCL, 8 GPUs
MSCCL, 16 GPUs

MPICH-CUDA, 4 GPUs
MPICH-CUDA, 8 GPUs
MPICH-CUDA, 16 GPUs

2K

2K

8K

8K

32K

32K

Message Size (byte)

128K

128K

24K

768 1.5K 6K 1.5M 6M 24M

96K 384K

24K 96K 384K

512K 2M 8M 32M 128M

L
a
te

n
cy

 (
m

s)
L
a
te

n
cy

 (
m

s)

L
a
te

n
cy

 (
m

s)
L
a
te

n
cy

 (
m

s)

Message Size (byte)

768 1.5K 6K 1.5M 6M 24M

Message Size (byte)

128

128K

512 2K

32K8K

512K 8M 32M2M 128M

Message Size (byte)

(b)(a)

(c) (d)
Fig.9. Latency comparison among NCCL, MSCCL, and CUDA-aware MPICH with different collectives. (a) All-Reduce. (b) All-
Gather. (c) All-to-All. (d) Broadcast. NCCL and MSCCL are tested with NCCL Tests benchmark, while CUDA-aware MPICH is
tested with OSU MPI Micro-Benchmarking.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 187

comes larger, the latency results for the 2-node and 4-

node tests no longer increase linearly because inter-

node communication becomes the bottleneck. In some

cases, the latency differences between xCCL (NCCL

and MSCCL) and CUDA-aware MPI are not so large.

When the message size is smaller than 512 KB, CU-

DA-aware MPI latency is 0.2x– 0.5x of NCCL and

MSCCL latency. When the message size is larger than

8 MB, CUDA-aware MPI latency is 2x– 5x slower

than NCCL and MSCCL latency.

Overall, CUDA-aware MPI has higher latency

than NCCL and MSCCL when the message size is

larger than 1 MB. It may have lower latency than

NCCL and MSCCL when the message size is smaller

than 1.5 KB for All-Gather and All-to-All, and 512

KB for Broadcast.

 7.3 PARAM Benchmark with NCCL and

Gloo

In this subsection, we benchmark NCCL and Gloo

as the communication backend with PARAM in

terms of latency for three collectives: All-Reduce, All-

Gather, and Broadcast. PARAM uses PyTorch as the

backend engine and therefore PARAM can better re-

flect the performance or overhead of PyTorch with

deep learning workloads. Not surprisingly, the laten-

cy of NCCL is lower than that of Gloo for all mes-

sage sizes and collectives. The reason behind is that

NCCL is involved in Gloo's procedure on performing

collectives and they share some design concepts like

communicator, as described in Subsection 6.5. Also,

Gloo performs the collective operations on CPUs,

which is different from NCCL that performs the col-

lectives on GPUs. This is another reason why Gloo's

performance is slower than NCCL's.

Fig.10(a) shows the latency of the All-Reduce col-

lective with NCCL and Gloo for different message

sizes. On average, the All-Reduce latency of Gloo is

about 10 times to 20 times that of NCCL. In the ex-

treme case with 16 GPUs and small message sizes,

NCCL can be 40 times faster than Gloo. NCCL and

Gloo also show similar latency performance when

varying the number of GPUs. For small message

sizes, the All-Reduce latency measured with 2-node

tests is around twice that with 1-node tests. The la-

tency measured with 4-node tests is around four times

that with 1-node tests. For large message sizes, the la-

tency numbers with 8 GPUs and 16 GPUs are simi-

lar, while the latency with 4 GPUs is much smaller.

The reason could be that 4 GPUs residing in one

node are connected with the much faster NVLink,

which means there is no inter-node communication

200

150

100

50

0

4

3

2

1

0

L
a
te

n
c
y
 (

m
s)

128 512 2 K 8K 32K

Message Size (byte)

128K 512K

128 512 2K 8K 32K 128K 512K

2M 8M 32M 128M

NCCL, 1 Node, 4 GPUs
Gloo, 1 Node, 4 GPUs
NCCL, 2 Nodes, 8 GPUs

Gloo, 2 Nodes, 8 GPUs
NCCL, 4 Nodes, 16 GPUs
Gloo, 4 Nodes, 16 GPUs

NCCL, 1 Node, 4 GPUs
Gloo, 1 Node, 4 GPUs
NCCL, 2 Nodes, 8 GPUs

Gloo, 2 Nodes, 8 GPUs
NCCL, 4 Nodes, 16 GPUs
Gloo, 4 Nodes, 16 GPUs

128 512 2K 8K 32K

Message Size (byte)

128K512K

128 512 2K 8K 32K 128K 512K

2M 8M 32M 128M

800

600

400

200

0

L
a
te

n
c
y
 (

m
s)

768 1.5K 6K 24K 96K

Message Size (byte)

384K

768 1.5K 6K 24K 96K 384K

1.5M 6M 24M 96M

NCCL, 1 Node, 4 GPUs
Gloo, 1 Node, 4 GPUs
NCCL, 2 Nodes, 8 GPUs

Gloo, 2 Nodes, 8 GPUs
NCCL, 4 Nodes, 16 GPUs
Gloo, 4 Nodes, 16 GPUs

100

80

60

40

20

0

L
a
te

n
c
y
 (

m
s) 2.0

1.5

1.0

0.5

0.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(b)

(a)

(c)

Fig.10. Latency of PARAM communication benchmarks for
NCCL/Gloo with different collectives. (a) All-Reduce. (b) All-
Gather. (c) Broadcast.

188 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

necessary for 4-GPU tests.

The latency of the All-Gather collective with NC-

CL and Gloo for different message sizes is shown in

Fig.10(b). The overall trend of the latency of the All-

Gather collective is almost the same as that of the

All-Reduce collective. The influence of the number of

GPUs and message size is also very similar to the pre-

vious experiments. In the small message range, the

All-Gather latency of Gloo is about three times to six

times that of NCCL for different numbers of GPUs.

When it goes to a large message size, Gloo is getting

slower than NCCL, where its latency becomes around

10 times of NCCL's latency on average. One differ-

ence is that the latency of All-Gather is lower than

that of All-Reduce, since All-Gather can be treated as

a Broadcast operation from all ranks while All-Re-

duce can be described as a reduction and a Broadcast.

The last collective we compare between NCCL

and Gloo is Broadcast. The latency for different mes-

sage sizes is shown in Fig.10(c). We still see the same

trend of the overall latency comparison among all

message sizes. The comparison with different num-

bers of GPUs still shows similar trends. One thing to

notice is that the NCCL's latency is very consistent

among different message sizes and the number of

nodes, while the Gloo's latency is less stable, especial-

ly when the message size becomes larger. For exam-

ple, when running with 4 GPUs, the range of the la-

tency for different messages from NCCL is around

0.03 ms to 1 ms but it is around 0.1 ms to 100 ms

from Gloo. Compared with the first two collectives,

Broadcast's latency has a wide range depending on

the message size. When the message is small, the col-

lective can finish within 1 ms because the operation is

simple.

 8 Discussion

Why Have xCCLs Become More Attractive Than
Classic MPI in the Industry? We summarize the fol-

lowing possible reasons. First, due to the popularity

of ML/DL in recent years, GPUs have become com-

mon in both industry and research. Therefore, the

community is interested in investigating collective

communication libraries for GPUs and specialized

hardware, like NVIDIA's NCCL. Second, the NCCL

itself is well-designed. In essence, NCCL can be treat-

ed as a simpler implementation of MPI with CUDA,

which allows it to better utilize the powerful GPUs,

especially for the ML/DL workloads. NCCL is easy to

use, light-weight, and it provides high scalability and

stable performance. Third, compared with xCCL,

classic MPI communication libraries have not yet

been able to make effective use of hardware accelera-

tion, making them less attractive. For example, while

many features have been added to the MPI libraries

over the decades (such as GPU support), these nu-

merous features make the libraries increasingly bloat-

ed, which harms the performance and usability of

MPI.

Which Among the xCCLs Has the Best Perfor-
mance? As shown and discussed in the results from

Section 7, NCCL from NVIDIA shows better perfor-

mance more reliably. Beyond this, researchers are still

looking for opportunities where xCCL's performance

can be further improved. For example, researchers

from the University of California, Berkeley, found

that NCCL's model parameter synchronization con-

tains high overheads when performing distributed

training and they proposed Blink[77], a set of fast col-

lectives for distributed machine learning that reduces

end-to-end training time for the image classification

task up to 40%. Blink does this by dynamically gener-

ating optimal communication primitives. Another ex-

ample is MSCCL. MSCCL aims to look for the best

communication patterns or algorithms instead of di-

rectly using the traditional collective communication

algorithms. In [74], an abstraction called communica-

tion sketch is introduced. After obtaining important

information, such as hardware topology, the commu-

nication sketch will guide the synthesizer to find bet-

ter algorithms to perform a certain collective. Both of

these studies and our survey work shed light on po-

tential directions of future designs for xCCLs.

What Are the Common and Distinct Design Con-
siderations in Each xCCL? From the collective com-

munication routine perspective, we can observe some

similarities. xCCLs are evolving the classic MPI im-

plementations into their ML versions. Among all col-

lective routines shown in Table 1, two routines, All-

Reduce and Broadcast, are supported by all xCCLs.

Both collectives are useful and commonly ultilized

communication patterns in ML/DL applications. An-

other reason is that many xCCLs are designed based

on NCCL and/or use NCCL as the backend. Al-

though they share some design considerations for sup-

ported routines, the xCCLs have diverse feature sup-

ports, which are shown in Table 3. For example, dif-

ferent xCCLs may adopt different open source licens-

es or choose to be proprietary. In terms of supported

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 189

accelerators, NCCL is the industry defacto standard

for GPU-accelerated collectives, ROCm is aimed to

provide support for AMD GPUs, and Intel oneCCL

can support heterogeneous accelerators.

Will Current-Generation Networks Become the
Bottleneck for xCCLs? From Blink[77], it is noted that

communication bottlenecks between GPUs cannot be

fully mitigated, for reasons such as differing server

configurations and GPU job scheduling. The network-

ing protocol can also affect scaling efficiency as TCP

networking will not significantly increase perfor-

mance compared with RDMA (over 90% scaling)

when running Inception V3 and ResNet-101 models

on Uber's Horovod. In [78], researchers argued that

the network speed itself is not the bottleneck, but

choosing how to utilize fast network speeds more effi-

ciently is. The network speed is one important factor

which influences the performance of xCCLs, while the

real-world xCCL design is another one. The trend of

xCCLs is to adopt even faster networks. In the case of

ZionEX[56] from Meta, a single node accommodates 8

GPUs and each GPU has a dedicated 200 Gbps

RoCE NIC. In the case of ACCL[49] from Alibaba,

each node contains four Mellanox CX-5 (MT27800)

100 Gbps NICs. These real-world deployments in the

industry clearly show that network speed and the ap-

propriate software-hardware co-designs are playing

significant roles in modern deep learning applications.

 9 Related Work

In our survey, we provide an in-depth overview of

multiple collective communication methods with a fo-

cus on industrial led collective communication solu-

tions. Different from our survey, many other existing

surveys focus more on computations, optimization, or

tuning.

Many existing surveys contribute extensive

overviews within collectives and tuning of parameters

or optimizations. A survey of collectives provides an

in-depth analysis into existing and state-of-the-art

methods for optimization and tuning[79]. A paper on

the implementation of collective communication on

distributed-memory reviews best practices, analyzes

existing algorithms, and implements tunable libraries

for users[80]. A paper on the performance analysis of

MPI collective operations observes and improves col-

lective communication[81] and researchers from Uni-

versity of Tennessee created automatically tuned col-

lective communications using matrix operations and

Fast Fourier Transforms[82]. These surveys are unlike

our survey, where we do not explicate computation

acceleration and rather focus on general algorithms

and industrial designs.

Distributed machine learning work also heavily re-

lies on collective communication systems to reduce

training time. A distributed machine learning survey

provides an extensive overview of current methods in-

cluding techniques and a review of the available sys-

tems[83]. An overview of parallel systems can guide

those who are unaware of which system may suit

their applications best. Recently, Wang et al. re-

viewed over 200 papers to present an overview on

large-scale machine learning from a computational

perspective, providing guidance in this direction[84].

The authors gave analysis on distributed deep learn-

ing, diving deep into each component that builds its

structure while covering popular implementations in

the community. A survey on distributed deep learn-

ing presents parallelism strategies for deep neural net-

works with analysis[85], while another survey takes a

broader view and provides an overview on scalable

deep learning systems[86]. Understanding scalability on

deep learning systems is important for realizing the

amount of hardware to allocate. A survey on dis-

tributed training using TensorFlow details the struc-

ture of TensorFlow for collectives and implements a

design faster than Horovod-NCCL2[63]. Ouyang et al.
provided a survey on methods to tackle communica-

tion overhead during distributed deep neural net-

works training from an inter-disciplinary perspective[87].

The authors focused on the structure of distributed

deep neural networks and computations for collective

communication, including architectures and network

protocols. A performance analysis on multiple dis-

tributed deep learning frameworks (i.e., Caffe-MPI[88],

CNTK[70], MXNet[71], and TensorFlow[62]) on three

convolutional neural network models (i.e., AlexNet[89],

GoogleNet[90] and ResNet-50[91]) focuses on collective

communication bottlenecks[92]. Shi et al.[92] presented

a very vast combination of different configurations for

distributed training of Convolutional Neural Network

model that provides guidance on how to select frame-

works and models. The paper also reviews Convolu-

tional Neural Network training computations.

There are also other studies to further analyze

performance factors other than latency in collective

communication. For example, Hoefler and Moor re-

ported on tradeoffs between energy, memory, and

runtime of different algorithms for collectives[93], al-

190 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

though it should be noted that each application of

collectives will require its own specific implementa-

tion. It may not always be the case that the results

can be reproduced perfectly.

 10 Conclusions

This paper presented an extensive survey on in-

dustry-led collective communication libraries (xCCL)

which are frequently used in distributed deep learn-

ing training workloads. We started at the physical

network topology layer that underlies all communica-

tion between devices. We then discussed the data

transfer algorithms used in collective routines. Next,

we explored different industry solutions by compar-

ing their feature sets and explaining real-world deep

learning application use cases. We evaluated xCCL

performance by running two industry-made bench-

marks (NCCL Tests and PARAM). Based on our re-

sults, we explained the performance characteristics of

evaluated xCCLs. We also discussed why xCCLs are

gaining traction in the industry when the classic com-

munication libraries such as MPI implementations ex-

ist. We further explained how these libraries take ad-

vantage of hardware accelerators and fast intercon-

nects to support deep learning training workloads.

Through our tests and investigation, we have deter-

mined that NCCL is currently the most mature col-

lective communication library. We hope that future

efforts will be made to explore the optimizations

present in NCCL and effectively apply them in other

xCCLs.

Acknowledgments　 On the momentous occasion of

Prof. Kai Hwang’ 80th birthday, we would like to ex-

press our deepest gratitude and admiration for his ex-

ceptional contributions to the field of Parallel Com-

puting, as well as for his unwavering commitment to

educating and inspiring generations of students, in-

cluding ourselves. We want to thank the anonymous

reviewers for their insightful comments and sugges-

tions.

References

 Hwang K, Xu Z W. Scalable Parallel Computing: Tech-

nology, Architecture, Programming. McGraw-Hill, 1998.

[1]

 Brown T B, Mann B, Ryder N et al. Language models are

few-shot learners. In Proc. the 34th Int. Conf. Neural In-

formation Processing Systems, Dec. 2020, pp.1877–1901.

[2]

 Naumov M, Mudigere D, Shi H J M et al. Deep learning

recommendation model for personalization and recommen-

[3]

dation systems. arXiv: 1906.00091, 2019. https://arxiv.or

g/abs/1906.00091, Jan. 2023.

 Bayatpour M, Chakraborty S, Subramoni H, Lu X Y,

Panda D K. Scalable reduction collectives with data par-

titioning-based multi-leader design. In Proc. the 2017 Int.

Conf. High Performance Computing, Networking, Stor-

age and Analysis (SC), Nov. 2017. DOI: 10.1145/31269

08.3126954.

[4]

 Chu C H, Lu X Y, Awan A A, Subramoni H, Hashmi J,

Elton B, Panda D K. Efficient and scalable multi-source

streaming broadcast on GPU clusters for deep learning. In

Proc. the 46th Int. Conf. Parallel Processing (ICPP),

Aug. 2017, pp.161–170. DOI: 10.1109/ICPP.2017.25.

[5]

 Panda D K, Lu X Y, Shankar D. High-Performance Big

Data Computing. The MIT Press, 2022.

[6]

 Lu X Y, Islam N S, Wasi-Ur-Rahman et al. High-perfor-

mance design of Hadoop RPC with RDMA over Infini-

Band. In Proc. the 42nd ICPP, Oct. 2013, pp.641–650.

DOI: 10.1109/ICPP.2013.78.

[7]

 Wasi-Ur-Rahman, Lu X Y, Islam N S, Panda D K.

HOMR: A hybrid approach to exploit maximum overlap-

ping in MapReduce over high performance interconnects.

In Proc. the 28th ACM Int. Conf. Supercomputing (ICS),

Jun. 2014, pp.33–42. DOI: 10.1145/2597652.2597684.

[8]

 Islam N S, Lu X Y, Wasi-Ur-Rahman, Panda D K. SOR-

HDFS: A SEDA-based approach to maximize overlap-

ping in RDMA-enhanced HDFS. In Proc. the 23rd Int.

Symp. High–Performance Parallel and Distributed Com-

puting, Jun. 2014, pp.261–264. DOI: 10.1145/2600212.26

00715.

[9]

 Lu X Y, Shankar D, Gugnani S, Panda D K. High-perfor-

mance design of Apache Spark with RDMA and its bene-

fits on various workloads. In Proc. the 2016 IEEE Int.

Conf. Big Data, Dec. 2016, pp.253–262. DOI: 10.1109/

BigData.2016.7840611.

[10]

 Kalia A, Kaminsky M, Andersen D G. Using RDMA effi-

ciently for key-value services. In Proc. the 2014 ACM

Conference on SIGCOMM, Aug. 2014, pp.295–306. DOI:

10.1145/2619239.2626299.

[11]

 Shankar D, Lu X Y, Panda D K. SCOR-KV: SIMD-aware

client-centric and optimistic RDMA-based key-value store

for emerging CPU architectures. In Proc. the 2019 SC,

Dec. 2019, pp.257–266. DOI: 10.1109/HiPC.2019.00040.

[12]

 Dragojević A, Narayanan D, Hodson O, Castro M. FaRM:

Fast remote memory. In Proc. the 11th USENIX Sympo-

sium on Networked Systems Design and Implementation,

Apr. 2014, pp.401–414.

[13]

 Shankar D, Lu X Y, Islam N, Wasi-Ur-Rahman, Panda D

K. High-performance hybrid key-value store on modern

clusters with RDMA interconnects and SSDs: Non-block-

ing extensions, designs, and benefits. In Proc. the 2016

IEEE International Parallel and Distributed Processing

Symposium (IPDPS), May 2016, pp.393–402. DOI:

10.1109/IPDPS.2016.112.

[14]

 Gugnani S, Lu X Y, Panda D K. Swift-X: Accelerating

OpenStack swift with RDMA for building an efficient

HPC cloud. In Proc. the 17th IEEE/ACM International

[15]

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 191

https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://doi.org/10.1145/3126908.3126954
https://doi.org/10.1145/3126908.3126954
https://doi.org/10.1109/ICPP.2017.25
https://doi.org/10.1109/ICPP.2017.25
https://doi.org/10.1109/ICPP.2017.25
https://doi.org/10.1109/ICPP.2013.78
https://doi.org/10.1145/2597652.2597684
https://doi.org/10.1145/2597652.2597684
https://doi.org/10.1145/2597652.2597684
https://doi.org/10.1145/2600212.2600715
https://doi.org/10.1145/2600212.2600715
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1109/HiPC.2019.00040
https://doi.org/10.1109/IPDPS.2016.112
https://doi.org/10.1109/IPDPS.2016.112
https://doi.org/10.1109/IPDPS.2016.112

Symposium on Cluster, Cloud and Grid Computing, May

2017, pp.238–247. DOI: 10.1109/CCGRID.2017.103.

 Gugnani S, Lu X Y, Panda D K. Designing virtualization-

aware and automatic topology detection schemes for ac-

celerating Hadoop on SR-IOV-enabled clouds. In Proc.

the 2016 IEEE Int. Conf. Cloud Computing Technology

and Science, Dec. 2016, pp.152–159. DOI: 10.1109/Cloud-

Com.2016.0037.

[16]

 Zhang J, Lu X Y, Panda D K. Designing locality and NU-

MA aware MPI runtime for nested virtualization based

HPC cloud with SR-IOV enabled InfiniBand. In Proc. the

13th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execu-

tion Environments, Apr. 2017, pp.187-200. DOI:

10.1145/3050748.3050765.

[17]

 Chu C H, Lu X Y, Awan A A et al. Exploiting hardware

multicast and GPUDirect RDMA for efficient broadcast.

IEEE Trans. Parallel and Distributed Systems, 2019,

30(3): 575–588. DOI: 10.1109/TPDS.2018.2867222.

[18]

 Zhang J, Lu X Y, Chu C H, Panda D K. C-GDR: High-

performance container-aware GPUDirect MPI communi-

cation schemes on RDMA networks. In Proc. the 2019

IPDPS, May 2019, pp.242–251. DOI: 10.1109/IPDPS.

2019.00034.

[19]

 Li Y K, Qi H, Lu G, Jin F, Guo Y F, Lu X Y. Under-

standing hot interconnects with an extensive benchmark

survey. BenchCouncil Trans. Benchmarks, Standards and

Evaluations, 2022, 2(3): 100074. DOI: 10.1016/J.TBENCH.

2022.100074.

[20]

 Pacheco P. An Introduction to Parallel Programming. El-

sevier, 2011. DOI: 10.1016/C2009-0-18471-4.

[21]

 Gong Y F, He B S, Zhong J L. Network performance

aware MPI collective communication operations in the

cloud. IEEE Trans. Parallel and Distributed Systems,

2015, 26(11): 3079–3089. DOI: 10.1109/TPDS.2013.96.

[22]

 Brown K A, Domke J, Matsuoka S. Hardware-centric

analysis of network performance for MPI applications. In

Proc. the 21st IEEE Int. Conf. Parallel and Distributed

Systems (ICPADS), Dec. 2015, pp.692-699. DOI:

10.1109/ICPADS.2015.92.

[23]

 Katseff H P. Incomplete hypercubes. IEEE Trans. Com-

puters, 1988, 37(5): 604–608. DOI: 10.1109/12.4611.

[24]

 Kalb J L, Lee D S. Network topology analysis. Technical

Report SAND2008-0069. Sandia National Laboratories,

Albuquerque, New Mexico, 2008. https://digital.library.unt.

edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.

pdf, Jan. 2023.

[25]

 Kim J, Kim H. Router microarchitecture and scalability

of ring topology in on-chip networks. In Proc. the 2nd Int.

Workshop on Network on Chip Architectures, Dec. 2009,

pp.5–10. DOI: 10.1145/1645213.1645217.

[26]

 Bouknight W J, Denenberg S A, McIntyre D E, Randall J

M, Sameh A H, Slotnick D L. The Illiac IV system. Pro-

ceedings of the IEEE, 1972, 60(4): 369–388. DOI: 10.

1109/PROC.1972.8647.

[27]

 Cheng S H, Zhong W, Isaacs K E, Mueller K. Visualizing

the topology and data traffic of multi-dimensional torus

interconnect networks. IEEE Access, 2018, 6: 57191–

[28]

57204. DOI: 10.1109/ACCESS.2018.2872344.

 Romanov A Y, Amerikanov A A, Lezhnev E V. Analysis

of approaches for synthesis of networks-on-chip by using

circulant topologies. Journal of Physics: Conference Se-

ries, 2018, 1050(1): 012071. DOI: 10.1088/1742-6596/

1050/1/012071.

[29]

 Ravankar A A, Sedukhin S G. Mesh-of-Tori: A novel in-

terconnection network for frontal plane cellular proces-

sors. In Proc. the 1st Int. Conf. Networking and Comput-

ing, Nov. 2010, pp.281–284. DOI: 10.1109/IC-NC.2010.30.

[30]

 Pham P H, Mau P, Kim C. A 64-PE folded-torus intra-

chip communication fabric for guaranteed throughput in

network-on-chip based applications. In Proc. the 2009

IEEE Custom Integrated Circuits Conference, Sept. 2009,

pp.645–648. DOI: 10.1109/CICC.2009.5280748.

[31]

 Al-Fares M, Loukissas A, Vahdat A. A scalable, commod-

ity data center network architecture. ACM SIGCOMM

Computer Communication Review, 2008, 38(4): 63–74.

DOI: 10.1145/1402946.1402967.

[32]

 Leiserson C E, Abuhamdeh Z S, Douglas D C et al. The

network architecture of the connection machine CM-5

(extended abstract). In Proc. the 4th Annual ACM Sym-

posium on Parallel Algorithms and Architectures, Jun.

1992, pp.272–285. DOI: 10.1145/140901.141883.

[33]

 Valerio M, Moser L E, Melliar-Smith P M. Recursively

scalable fat-trees as interconnection networks. In Proc.

the 13th IEEE Annual International Phoenix Conference

on Computers and Communications, Apr. 1994. DOI:

10.1109/PCCC.1994.504091.

[34]

 Nienaber W. Effective routing on fat-tree topologies [Ph.

D. Thesis]. Florida State University, Tallahassee, 2014.

[35]

 Prisacari B, Rodriguez G, Minkenberg C, Hoefler T.

Bandwidth-optimal all-to-all exchanges in fat tree net-

works. In Proc. the 27th ICS, Jun. 2013, pp.139–148.

DOI: 10.1145/2464996.2465434.

[36]

 Li Y, Pan D. OpenFlow based load balancing for fat-tree

networks with multipath support. In Proc. the 12th IEEE

International Conference on Communications, Jun. 2013.

[37]

 Kim J, Dally W J, Scott S, Abts D. Technology-driven,

highly-scalable dragonfly topology. In Proc. the 2008 In-

ternational Symposium on Computer Architecture, Jun.

2008, pp.77–88. DOI: 10.1109/ISCA.2008.19.

[38]

 Teh M Y, Wilke J J, Bergman K, Rumley S. Design space

exploration of the dragonfly topology. In Lecture Notes in

Computer Science 10524, Kunkel J, Yokota R, Taufer M

et al. (eds.), Springer. pp.57–74. DOI: 10.1007/978-3-319-

67630-2_5.

[39]

 Prisacari B, Rodriguez G, Garcia M, Vallejo E, Beivide R,

Minkenberg C. Performance implications of remote-only

load balancing under adversarial traffic in dragonflies. In

Proc. the 8th International Workshop on Interconnection

Network Architecture: On-Chip, Multi-Chip, Jan. 2014.

DOI: 10.1145/2556857.2556860.

[40]

 Shpiner A, Haramaty Z, Eliad S, Zdornov V, Gafni B, Za-

havi E. Dragonfly+: Low cost topology for scaling data-

centers. In Proc. the 3rd IEEE International Workshop on

High-Performance Interconnection Networks in the Exas-

[41]

192 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

https://doi.org/10.1109/CCGRID.2017.103
https://doi.org/10.1109/CloudCom.2016.0037
https://doi.org/10.1109/CloudCom.2016.0037
https://doi.org/10.1109/CloudCom.2016.0037
https://doi.org/10.1145/3050748.3050765
https://doi.org/10.1109/TPDS.2018.2867222
https://doi.org/10.1109/IPDPS.2019.00034
https://doi.org/10.1109/IPDPS.2019.00034
https://doi.org/10.1016/J.TBENCH.2022.100074
https://doi.org/10.1016/J.TBENCH.2022.100074
https://doi.org/10.1016/C2009-0-18471-4
https://doi.org/10.1109/TPDS.2013.96
https://doi.org/10.1109/ICPADS.2015.92
https://doi.org/10.1109/12.4611
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://doi.org/10.1145/1645213.1645217
https://doi.org/10.1109/PROC.1972.8647
https://doi.org/10.1109/PROC.1972.8647
https://doi.org/10.1109/ACCESS.2018.2872344
https://doi.org/10.1088/1742-6596/1050/1/012071
https://doi.org/10.1088/1742-6596/1050/1/012071
https://doi.org/10.1109/IC-NC.2010.30
https://doi.org/10.1109/CICC.2009.5280748
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1145/140901.141883
https://doi.org/10.1109/PCCC.1994.504091
https://doi.org/10.1145/2464996.2465434
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1007/978-3-319-67630-2_5
https://doi.org/10.1007/978-3-319-67630-2_5
https://doi.org/10.1007/978-3-319-67630-2_5
https://doi.org/10.1145/2556857.2556860

cale and Big-Data Era (HiPINEB), Feb. 2017. DOI:

10.1109/HiPINEB.2017.11.

 Bruck J, Ho C T, Kipnis S, Weathersby D. Efficient algo-

rithms for all-to-all communications in multi-port mes-

sage-passing systems. In Proc. the 6th Annual ACM Sym-

posium on Parallel Algorithms and Architectures, Aug.

1994, pp.298–309. DOI: 10.1145/181014.181756.

[42]

 Thakur R, Rabenseifner R, Gropp W. Optimization of

collective communication operations in MPICH. The In-

ternational Journal of High Performance Computing Ap-

plications, 2005, 19(1): 49–66. DOI: 10.1177/1094342005

051521.

[43]

 Pjesivac-Grbovic J. Towards automatic and adaptive op-

timizations of MPI collective operations [Ph.D. Thesis].

University of Tennessee, Knoxville, 2007.

[44]

 Huse L P. Collective communication on dedicated clus-

ters of workstations. In Proc. the 6th European

PVM/MPI Users’ Group Meeting on Recent Advances in

Parallel Virtual Machine and Message Passing Interface,

Sept. 1999, pp.469–476. DOI: 10.1007/3-540-48158-3_58.

[45]

 Barnett M, Shuler L, van De Geijn R, Gupta S, Payne D

G, Watts J. Interprocessor collective communication li-

brary (InterCom). In Proc. the IEEE Scalable High Per-

formance Computing Conference, May 1994, pp.357–364.

DOI: 10.1109/SHPCC.1994.296665.

[46]

 Shroff M, Van De Geijn R A. CollMark: MPI collective

communication benchmark. In Proc. the 2000 ICS, June

29–July 2.

[47]

 Rabenseifner R. Optimization of collective reduction oper-

ations. In Proc. the 4th Int. Conf. Computational Science,

Jun. 2004. DOI: 10.1007/978-3-540-24685-5_1.

[48]

 Dong J B, Wang S C, Feng F et al. ACCL: Architecting

highly scalable distributed training systems with highly

efficient collective communication library. IEEE Micro,

2021, 41(5): 85–92. DOI: 10.1109/MM.2021.3091475.

[49]

 Hockney R W. The communication challenge for MPP:

Intel paragon and Meiko CS-2. Parallel Computing, 1994,

20(3): 389–398. DOI: 10.1016/S0167-8191(06)80021-9.

[50]

 Benson G D, Chu C W, Huang Q, Caglar S G. A compar-

ison of MPICH allgather algorithms on switched net-

works. In Proc. the 10th European PVM/MPI Users'

Group Meeting on Recent Advances in Parallel Virtual

Machine and Message Passing Interface, Oct. 2003,

pp.335–343. DOI: 10.1007/978-3-540-39924-7_47.

[51]

 Almási G, Heidelberger P, Archer C J et al. Optimiza-

tion of MPI collective communication on BlueGene/L sys-

tems. In Proc. the 19th ICS, Jun. 2005, pp.253–262. DOI:

10.1145/1088149.1088183.

[52]

 Sergeev A, Del Balso M. Horovod: Fast and easy dis-

tributed deep learning in TensorFlow. arXiv: 1802.05799,

2018. https://arxiv.org/abs/1802.05799, Jan. 2023.

[53]

 Goyal P, Dollár P, Girshick R et al. Accurate, large mini-

batch SGD: Training imagenet in 1 hour. arXiv:

1706.02677, 2017. https://arxiv.org/abs/1706.02677, Jan.-

2023.

[54]

 Gupta U, Wu C, Wang X et al. The architectural impli-

cations of Facebook’s DNN-based personalized recommen-

[55]

dation. In Proc. the 2020 IEEE International Symposium

on High Performance Computer Architecture (HPCA),

Feb. 2020, pp.488–501. DOI: 10.1109/HPCA47549.2020.

00047.

 Mudigere D, Hao Y, Huang J et al. Software-hardware co-

design for fast and scalable training of deep learning rec-

ommendation models. In Proc. the 49th Annual Interna-

tional Symposium on Computer Architecture, Jun. 2022,

pp.993–1011. DOI: 10.1145/3470496.3533727.

[56]

 Paszke A, Gross S, Massa F et al. Pytorch: An impera-

tive style, high-performance deep learning library. In

Proc. the 33rd International Conference on Neural Infor-

mation Processing Systems, Dec. 2019.

[57]

 Khudia D, Huang J Y, Basu P, Deng S, Liu H, Park J,

Smelyanskiy M. FBGEMM: Enabling high-performance

low-precision deep learning inference. arXiv: 2101.05615,

2021. https://arxiv.org/abs/2101.05615, Jan. 2023.

[58]

 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual

learning for image recognition. In Proc. the 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2016, pp.770–778. DOI: 10.1109/CVPR.

2016.90.

[59]

 Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Ima-

geNet: A large-scale hierarchical image database. In Proc.

the 2009 CVPR, Jun. 2009, pp.248–255. DOI: 10.1109/

CVPR.2009.5206848.

[60]

 Dean J, Corrado G S, Monga R, Chen K, Devin M, Le Q

V, Mao M Z, Ranzato M A, Senior A, Tucker P, Yang K,

Ng A Y. Large scale distributed deep networks. In Proc.

the 25th Int. Conf. Neural Information Processing Sys-

tems, Dec. 2012, pp.1223–1231.

[61]

 Abadi M, Barham P, Chen J et al. TensorFlow: A sys-

tem for large-scale machine learning. In Proc. the 12th

USENIX Conference on Operating Systems Design and

Implementation, Nov. 2016, pp.265–283.

[62]

 Awan A A, Bédorf J, Chu C H et al. Scalable distributed

DNN training using TensorFlow and CUDA-aware MPI:

Characterization, designs, and performance evaluation. In

Proc. the 19th IEEE/ACM Int. Symp. Cluster, Cloud and

Grid Computing (CCGRID), May 2019, pp.498–507. DOI:

10.1109/CCGRID.2019.00064.

[63]

 Biswas R, Lu X Y, Panda D K. Designing a micro-bench-

mark suite to evaluate gRPC for TensorFlow: Early expe-

riences. In Proc. the 9th Workshop on Big Data Bench-

marks, Performance Optimization, and Emerging Hard-

ware, Mar. 2018.

[64]

 Biswas R, Lu X Y, Panda D K. Accelerating TensorFlow

with adaptive RDMA-based gRPC. In Proc. the 25th

IEEE Int. Conf. High Performance Computing (HiPC),

Dec. 2018, pp.2–11. DOI: 10.1109/HiPC.2018.00010.

[65]

 Jain A, Awan A A, Subramoni H, Panda D K. Scaling

TensorFlow, PyTorch, and MXNet using MVAPICH2 for

high-performance deep learning on Frontera. In Proc. the

3rd IEEE/ACM Workshop on Deep Learning on Super-

computers (DLS), Nov. 2019, pp.76–83. DOI: 10.1109/

DLS49591.2019.00015.

[66]

 Zhang Z, Zheng S, Wang Y S et al. MiCS: Near-linear[67]

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 193

https://doi.org/10.1109/HiPINEB.2017.11
https://doi.org/10.1145/181014.181756
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1007/3-540-48158-3_58
https://doi.org/10.1007/3-540-48158-3_58
https://doi.org/10.1109/SHPCC.1994.296665
https://doi.org/10.1007/978-3-540-24685-5_1
https://doi.org/10.1007/978-3-540-24685-5_1
https://doi.org/10.1109/MM.2021.3091475
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1007/978-3-540-39924-7_47
https://doi.org/10.1007/978-3-540-39924-7_47
https://doi.org/10.1145/1088149.1088183
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1706.02677
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1145/3470496.3533727
https://doi.org/10.1145/3470496.3533727
https://doi.org/10.1145/3470496.3533727
https://arxiv.org/abs/2101.05615
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CCGRID.2019.00064
https://doi.org/10.1109/CCGRID.2019.00064
https://doi.org/10.1109/CCGRID.2019.00064
https://doi.org/10.1109/HiPC.2018.00010
https://doi.org/10.1109/DLS49591.2019.00015
https://doi.org/10.1109/DLS49591.2019.00015

scaling for training gigantic model on public cloud. Pro-

ceedings of the VLDB Endowment, 2022, 16(1): 37–50.

DOI: 10.14778/3561261.3561265.

 Rajbhandari S, Rasley J, Ruwase O, He Y X. ZeRO:

Memory optimizations toward training trillion parameter

models. In Proc. the 2020 SC, Nov. 2020.

[68]

 Jia Y, Shelhamer E, Donahue J et al. Caffe: Convolution-

al architecture for fast feature embedding. In Proc. the

22nd ACM International Conference on Multimedia, Nov.

2014, pp.675–678. DOI: 10.1145/2647868.2654889.

[69]

 Seide F, Agarwal A. CNTK: Microsoft’s open-source

deep-learning toolkit. In Proc. the 22nd ACM SIGKDD

Int. Conf. Knowledge Discovery and Data Mining, Aug.

2016, p.2135. DOI: 10.1145/2939672.2945397.

[70]

 Chen T Q, Li M, Li Y T, Lin M, Wang N Y, Wang M J,

Xiao T J, Xu B, Zhang C Y, Zhang Z. MXNet: A flexible

and efficient machine learning library for heterogeneous

distributed systems. arXiv: 1512.01274, 2015. https://arx-

iv.org/abs/1512.01274, Jan. 2023.

[71]

 Lin L X, Qiu S H, Yu Z Q, You L, Long X, Sun X Y, Xu

J, Wang Z. AIACC-training: Optimizing distributed deep

learning training through multi-streamed and concurrent

gradient communications. In Proc. the 42nd IEEE Int.

Conf. Distributed Computing Systems, Jul. 2022,

pp.853–863. DOI: 10.1109/ICDCS54860.2022.00087.

[72]

 Cowan M, Maleki S, Musuvathi M et al. MSCCL: Mi-

crosoft collective communication library. arXiv:

2201.11840, 2022. https://arxiv.org/abs/2201.11840v1,

Jan. 2023.

[73]

 Shah A, Chidambaram V, Cowan M et al. TACCL: Guid-

ing collective algorithm synthesis using communication

sketches. In Proc. the 2023 USENIX Symposium on Net-

worked Systems Design and Implementation, April 2023.

[74]

 Cai Z X, Liu Z Y, Maleki S, Musuvathi M, Mytkowicz T,

Nelson J, Saarikivi O. Synthesizing optimal collective al-

gorithms. In Proc. the 26th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, Feb.

2021, pp.62–75. DOI: 10.1145/3437801.3441620.

[75]

 Panda D K, Tomko K, Schulz K, Majumdar A. The

MVAPICH project: Evolution and sustainability of an

open source production quality MPI library for HPC. In

Proc. the Workshop on Sustainable Software for Science:

Practice and Experiences, Nov. 2013.

[76]

 Wang G H, Venkataraman S, Phanishayee A et al. Blink:

Fast and generic collectives for distributed ML. In Proc.

the 2020 Machine Learning and Systems 2, Mar. 2020,

pp.172–186.

[77]

 Zhang Z, Chang C K, Lin H B et al. Is network the bot-

tleneck of distributed training? In Proc. the 2020 Work-

shop on Network Meets AI & ML, Aug. 2020, pp.8–13.

DOI: 10.1145/3405671.3405810.

[78]

 Wickramasinghe U, Lumsdaine A. A survey of methods

for collective communication optimization and tuning.

arXiv: 1611.06334, 2016. https://arxiv.org/abs/1611.06334,

Jan. 2023.

[79]

 Chan E N, Heimlich M, Purkayastha A, van de Geijn R.

Collective communication: Theory, practice, and experi-

[80]

ence. Concurrency and Computation: Practice and Expe-

rience, 2007, 19(13): 1749–1783. DOI: 10.1002/cpe.1206.

 Pješivac-Grbović J, Angskun T, Bosilca G, Fagg G E,

Gabriel E, Dongarra J J. Performance analysis of MPI

collective operations. Cluster Computing, 2007, 10(2):

127–143. DOI: 10.1007/s10586-007-0012-0.

[81]

 Vadhiyar S S, Fagg G E, Dongarra J. Automatically

tuned collective communications. In Proc. the 2000

ACM/IEEE Conference on Supercomputing, Nov. 2000.

DOI: 10.1109/SC.2000.10024.

[82]

 Verbraeken J, Wolting M, Katzy J et al. A survey on dis-

tributed machine learning. ACM Computing Surveys,

2020, 53(2): 30. DOI: 10.1145/3377454.

[83]

 Wang M, Fu W J, He X N, Hao S J, Wu X D. A survey

on large-scale machine learning. IEEE Trans. Knowledge

and Data Engineering, 2022, 34(6): 2574–2594. DOI: 10.

1109/TKDE.2020.3015777.

[84]

 Ben-Nun T, Hoefler T. Demystifying parallel and dis-

tributed deep learning: An in-depth concurrency analysis.

ACM Computing Surveys, 2019, 52(4): Article No. 65.

DOI: 10.1145/3320060.

[85]

 Mayer R, Jacobsen H A. Scalable deep learning on dis-

tributed infrastructures: Challenges, techniques, and tools.

ACM Computing Surveys, 2020, 53(1): Article No. 3.

DOI: 10.1145/3363554.

[86]

 Ouyang S, Dong D Z, Xu Y M, Xiao L Q. Communica-

tion optimization strategies for distributed deep neural

network training: A survey. Journal of Parallel and Dis-

tributed Computing, 2021, 149: 52–65. DOI: 10.1016/j.

jpdc.2020.11.005.

[87]

 Lee S, Purushwalkam S, Cogswell M, Crandall D, Batra

D. Why M heads are better than one: Training a diverse

ensemble of deep networks. arXiv: 1511.06314, 2015.

https://arxiv.org/abs/1511.06314, Jan. 2023.

[88]

 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi-

cation with deep convolutional neural networks. In Proc.

the 25th International Conference on Neural Information

Processing Systems, Dec. 2012, pp.1097–1105.

[89]

 Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S,

Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Go-

ing deeper with convolutions. In Proc. the 2015 CVPR,

Jun. 2015. DOI: 10.1109/CVPR.2015.7298594.

[90]

 He K M, Zhang X Y, Ren S Q, Sun J. Deep residual

learning for image recognition. In Proc. the 2016 CVPR,

Jun. 2016, pp.770–778. DOI: 10.1109/CVPR.2016.90.

[91]

 Shi S H, Wang Q, Chu X W. Performance modeling and

evaluation of distributed deep learning frameworks on

GPUs. In Proc. the DASC/PiCom/DataCom/Cyber-

SciTech, Aug. 2018, pp.949–957. DOI: 10.1109/DASC/

PiCom/DataCom/CyberSciTec.2018.000-4.

[92]

 Hoefler T, Moor D. Energy, memory, and runtime trade-

offs for implementing collective communication opera-

tions. Supercomputing Frontiers and Innovations, 2014,

1(2): 58–75. DOI: 10.14529/jsfi140204.

[93]

194 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

https://doi.org/10.14778/3561261.3561265
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1512.01274
https://doi.org/10.1109/ICDCS54860.2022.00087
https://doi.org/10.1109/ICDCS54860.2022.00087
https://doi.org/10.1109/ICDCS54860.2022.00087
https://arxiv.org/abs/2201.11840v1
https://arxiv.org/abs/2201.11840v1
https://arxiv.org/abs/2201.11840v1
https://doi.org/10.1145/3437801.3441620
https://doi.org/10.1145/3405671.3405810
https://arxiv.org/abs/1611.06334
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1007/s10586-007-0012-0
https://doi.org/10.1109/SC.2000.10024
https://doi.org/10.1145/3377454
https://doi.org/10.1109/TKDE.2020.3015777
https://doi.org/10.1109/TKDE.2020.3015777
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3363554
https://doi.org/10.1016/j.jpdc.2020.11.005
https://doi.org/10.1016/j.jpdc.2020.11.005
https://arxiv.org/abs/1511.06314
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4
https://doi.org/10.14529/jsfi140204

Adam Weingram is a Ph.D. stude-

nt in the Parallel and Distributed Sys-

tems Laboratory (PADSYS Lab) of De-

partment of Computer Science and En-

gineering at the University of Califor-

nia, Merced (UCM). Previously, he re-

ceived his B.S. degree in computer sci-

ence from UCM. His research interests include systems

for machine learning and applications of computer scie-

nce in remote sensing.

Yuke Li is a Ph.D. student in the

PADSYS Lab of Department of Com-

puter Science and Engineering at the

University of California, Merced. Pre-

viously, she received her M.S. degree

and B.E. degree from The University

of Edinburgh, Edinburgh, and Sun

Yat-sen University (SYSU), Guangzhou, in 2020 and

2019, respectively. Her research interests include high-

performance computing, MPI, RDMA, and DPU. She is

a student member of ACM.

Hao Qi is a M.S. student in the

PADSYS Lab of Department of Com-

puter Science and Engineering at the

University of California, Merced. Pre-

viously, he received his M.S. degree in

biomedical engineering from the Ohio

State University, Columbus, and B.S.

degree in bioscience from Nankai University, Tianjin, in

2021 and 2019, respectively. His research interests main-

ly include high-performance computing, parallel comput-

ing, and system for machine learning.

Darren Ng is a M.S. student in the

PADSYS Lab of Department of Com-

puter Science and Engineering at the

University of California, Merced. Pre-

viously, he received his B.E. degree in

computer science from UCM. His re-

search interests include deep learning,

convolutional neural networks, and cloud computing.

Liuyao Dai is a Ph.D. student in

the PADSYS Lab of Department of

Computer Science and Engineering at

the University of California, Merced.

Previously, he received his M.S. de-

gree in electrical engineering from

Southern University of Science and

Technology, Shenzhen, and B.S. degree from Huazhong

University of Science and Technology, Wuhan, in 2022

and 2018, respectively. His research interests include the

co-design of computer software and hardware, and

GPU-based systems.

Xiaoyi Lu is an assistant professor

in the Department of Computer Scie-

nce and Engineering at the University

of California, Merced (UC Merced), Me-

rced. He is leading the Parallel and

Distributed Systems Laboratory (PA-

DSYS Lab) at UC Merced. His curr-

ent research interests include parallel and distributed co-

mputing, high-performance interconnects, advanced I/O

technologies, big data analytics, cloud computing, and

deep learning system software. He has published one

book and more than 100 papers in prestigious interna-

tional conferences, workshops, and journals with multi-

ple Best (Student) Paper Awards or Nominations. He

has delivered more than 100 times of invited talks, tuto-

rials, and presentations worldwide. Many of Dr. Lu’s re-

search outcomes (e.g., PMIdioBench, HiBD, MVA-

PICH2-Virt, DataMPI) are made publicly available to

the community and are currently being used by hun-

dreds of organizations all over the world. Dr. Lu has re-

ceived a Meta/Facebook Faculty Research Award and a

Google Research Award. Dr. Lu's research has also been

funded by the National Science Foundation (NSF) of

USA. Dr. Lu is a member of ACM and IEEE. More de-

tails about Dr. Lu can be found at http://faculty.

ucmerced.edu/luxi.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 195

http://faculty.ucmerced.edu/luxi
http://faculty.ucmerced.edu/luxi

	1 Introduction
	2 Collective Communication Routines
	2.1 Broadcast
	2.2 All-Gather
	2.3 Scatter
	2.4 All-to-All(v)
	2.5 Reduce
	2.6 All-Reduce
	2.7 Reduce-Scatter

	3 Network Topologies for Collectives
	3.1 Hypercube
	3.2 Ring
	3.3 Torus
	3.4 Fat-Tree
	3.5 Dragonfly and Dragonfly+

	4 Collective Communication Algorithms
	4.1 Classic Collective Communication Algorithms
	4.1.1 Ring
	4.1.2 Binomial Tree
	4.1.3 Recursive-Doubling
	4.1.4 Recursive-Halving

	4.2 xCCL Collective Communication Algorithms
	4.2.1 NCCL
	4.2.2 MSCCL
	4.2.3 Gloo
	4.2.4 ACCL

	5 Collectives and Deep Learning
	5.1 Case Study with Meta Workloads
	5.2 Case Study with Google Workloads
	5.3 Case Study with Uber Workloads
	5.4 Case Study with Amazon Workloads

	6 Industry Solutions—xCCL
	6.1 NVIDIA NCCL
	6.1.1 Architecture
	6.1.2 NCCL API
	6.1.3 Framework Support
	6.1.4 Supported Features
	6.1.5 Example: Distributed Training with NCCL
	6.1.6 Practical Workloads and Applications

	6.2 Intel oneCCL
	6.2.1 Architecture
	6.2.2 Routines
	6.2.3 Framework Support

	6.3 Alibaba ACCL
	6.3.1 Hybrid Algorithms

	6.4 AMD RCCL
	6.4.1 Architecture
	6.4.2 Supported Features and Workloads

	6.5 Meta Gloo
	6.5.1 Architecture
	6.5.2 Supported Features and Workloads

	6.6 Microsoft MSCCL
	6.6.1 Architecture
	6.6.2 Framework Support
	6.6.3 MSCCL Runtime
	6.6.4 Practical Workloads and Applications

	7 Experimental Comparison of Implementations
	7.1 Experimental Setup
	7.2 NCCL Tests Benchmark with NCCL and MSCCL, and OMB with CUDA-Aware MPI
	7.3 PARAM Benchmark with NCCL and Gloo

	8 Discussion
	9 Related Work
	10 Conclusions
	References

