Weingram A, Li Y, Qi H et al. xCCL: A survey of industry-led collective communication libraries for deep learning.
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(1): 166-195 Jan. 2023. DOI: 10.1007/s11390-023-2894-6

xCCL: A Survey of Industry-Led Collective Communication
Libraries for Deep Learning

Adam Weingram, Yuke Li (ZXW), Student Member, ACM, Hao Qi (& %), Darren Ng
Liuyao Dai (fX#I%E), and Xiaoyi Lu (&/MZ), Member, ACM, IEEE

Department of Computer Science and Engineering, University of California, Merced, Merced 95343, U.S.A.

E-mail: aweingram@ucmerced.edu; yli304@Qucmerced.edu; hqi6@ucmerced.edu; dng350@Qucmerced.edu
ldai8@ucmerced.edu; xiaoyi.lu@Qucmerced.edu

Received October 8, 2022; accepted January 3, 2023.

Abstract
model sizes and training data volumes necessitate fast and efficient distributed training approaches. Collective communica-

Machine learning techniques have become ubiquitous both in industry and academic applications. Increasing

tions greatly simplify inter- and intra-node data transfer and are an essential part of the distributed training process as in-
formation such as gradients must be shared between processing nodes. In this paper, we survey the current state-of-the-art
collective communication libraries (namely xCCL, including NCCL, oneCCL, RCCL, MSCCL, ACCL, and Gloo), with a
focus on the industry-led ones for deep learning workloads. We investigate the design features of these xCCLs, discuss
their use cases in the industry deep learning workloads, compare their performance with industry-made benchmarks (i.e.,
NCCL Tests and PARAM), and discuss key take-aways and interesting observations. We believe our survey sheds light on
potential research directions of future designs for xCCLs.

Keywords collective, deep learning, distributed training, GPUDirect, RDMA (remote direct memory access)

1 Introduction stract away much of the complexity of managing

Designing high-performance communication sub- communication; however, it is critical that both the

systems is one of the most challenging tasks essential
to achieving scalable parallel computing goals(l as the
communication performance can directly influence the
execution efficiency of large-scale distributed software.
Collectives are a form of organized communication
that has become ubiquitous in parallel computing,
distributed computing, and high-performance comput-
ing (HPC) applications. Collective communication op-
erations, such as Broadcast and All-Reduce, can ag-
gregate and disseminate data to multiple processes
while in practice retaining a relatively simple API
(Application Programming Interface). Collectives ab-

collective communication implementation and pro-
gramming model chosen are well architected, well de-
signed, and optimized for the particular intended ap-
plication.

Having existed for almost 30 years, Message Pass-
ing Interface (MPI)? is one of the most widely-used
programming models for large-scale scientific applica-
tions that involve collective communication. Due to
its high speed and portability, MPI has become the
model favored in the academic community. There are
various implementations of the MPI programming
model, such as MPICH®, MVAPICH®, and Open

Survey

Special Issue in Honor of Professor Kai Hwang’s 80th Birthday

This work was supported in part by the U.S. National Science Foundation under Grant No. CCF-2132049, a Google Research
Award, and a Meta Faculty Research Award. This work used the Expanse cluster at SDSC (San Diego Supercomputer Center)
through allocation CIS210053 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) pro-
gram, which is supported by the U.S. National Science Foundation under Grant Nos. 2138259, 2138286, 2138307, 2137603, and
2138296.

OMPI: A message-passing interface standard version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, Jan. 2023.

@MPICH. https://www.mpich.org/, Jan. 2023.

@MVAPICH. https://mvapich.cse.ohio-state.edu/, Jan. 2023.

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpich.org/
https://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/
http://www.openshmem.org/site/
https://openucx.org/
https://ucfconsortium.org/projects/ucc/
https://github.com/NVIDIA/nccl
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://rccl.readthedocs.io/en/rocm-5.2.3/
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://people.engr.ncsu.edu/efg/506/s02/lectures/notes/lec27.pdf
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/
https://developer.nvidia.com/cuda-toolkit
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://rocmdocs.amd.com/en/latest/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://github.com/RadeonOpenCompute/ROCm
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/microsoft/npkit
https://github.com/microsoft/msccl
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/microsoft/msccl
https://github.com/microsoft/msccl
https://github.com/fchollet/keras
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://github.com/facebookresearch/param
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://www.sdsc.edu/services/hpc/expanse/
https://developer.nvidia.com/cuda-toolkit
https://www.mpich.org/
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://github.com/pmodels/mpich
https://www.uber.com/blog/scaling-michelangelo
https://github.com/google/nccl-fastsocket
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/NVIDIA/nccl
https://doi.org/10.1007/s11390-023-2894-6<linebreak/>

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 167

MPI®. Despite the age of MPI and the development
of new collective communication models and libraries,
few have been able to compete with MPI in terms of
popularity and generality. Some examples of newer
non-MPI libraries are OpenSHMEM (Open-source
Symmetric Hierarchical MEMory)®, UCX (Unified
Communication X)©, and UCC (Unified Collective
Communication)®. Fig.1 shows an overview of the
classic collective communication libraries, modern col-
lective communication libraries, as well as related
communication hardware and interconnects.

In recent years, machine learning (ML), especial-
ly deep learning (DL), has become an extremely hot
topic, and there have been numerous advancements in
many scientific fields such as computer vision and
natural language processing. With continuously in-
creasing data volume and model sizes, methods for re-
ducing training and inference time have themselves
become important research topics. For example, the
GPT-32
model contains approximately 175 billion parameters

(Generative Pre-trained Transformer 3)

Programming Model

[MPI][OpenSHMEM]

T vox e
Collective

| Broadcast ” Gather(v) ” Scatter(v) I

l All-Gather ” All-to-All ” Reduce l

| All-Reduce “ Reduce-Scatter I

| P2P Communication |

Hardware Topology

| Torus I | Fat-Tree I

| Dragonfly I | Hypercube I
Hardware

| CPU | | GPU | | Accelerator I

Highspeed Interconnect

| Ethernet || InfiniBand " RoCE |

(a)

Evolve

and may take multiple days (or more) to train on ad-
vanced GPU-based clusters. Long training times are
often considered blockers for the practical deploy-
ment of such models. The case is similarly severe
when considering industry-level large-scale ML/DL
models such as deep learning recommendation mod-
els (DLRM)I3l. Therefore, it is necessary to accelerate
these processes with effective use of parallel comput-
ing, and collectives have the potential to significantly
influence the performance and scalability. Under the
influence of ML/DL, optimizations on some collective
routines are heavily investigated[® . This evolution
also applies to related communication hardware and
interconnects. For example, the traditional Remote
Direct Memory Access (RDMA)
mechanism has been widely used in many areas such
as HPC, big datal619, key-value storel!l 14 and high-
performance cloud computing workloads!!5- 17, With
the advance of ML, there is an increasing demand for
RDMA and GPUDirect RDMA (GDR)[8: 9. The in-
terconnect speed requirements can reach 400 Gbps

communication

xCCL
| NCCL || Gloo ” MSCCL |
l ACCL ” RCCL “ oneCCL l
Collective

| All-Reduce ” All-Gather “ All-to-All |

| Broadcast H Reduce-Scatter |

| P2P Communication |

Hardware Topology

| Ring " Torus " Fat-Tree |
Hardware
’ CPU ” NPU(GPU/TPU) |

Highspeed Interconnect

I Ethernet “ InfiniBand I

NVLink |

I RoCE ||

(b)

Fig.1. Overview of collective communication evolution. (a) Classic HPC scenarios. (b) Emerging deep learning scenarios.

@Open MPI. https://www.open-mpi.org/, Jan. 2023.

©0penSHMEM. http://www.openshmem.org/site/, Jan. 2023.

©UCX. https://openucx.org/, Jan. 2023.
@UCC. https:/ /ucfconsortium.org/projects/ucc/, Jan. 2023.

168

per port[20,

However, while MPI has enjoyed success in the
academic world, it is not widely adopted in the indus-
try. Instead, many industry-leading companies like
NVIDIA and Microsoft have developed their own col-
lective communication libraries for deep learning ap-
plications. Most notably, the NVIDIA Collective
Communications Library (NCCL)®, first released by
NVIDIA in 2015, has gained enough traction to in-
spire other companies to develop and deploy similar
collective libraries such as AMD’s ROCm Collective
Communication Library (RCCL)® and parts of
Gloo®. In this paper, we refer to such collective com-
munication libraries as xCCL. The evolution from
MPI-dominated collectives for classic HPC scenarios
to emerging hardware-accelerated collectives for deep
learning scenarios is shown in Fig.1.

This momentum has motivated us to pose several
research questions. 1) What makes the contemporary
xCCL libraries more attractive than classic MPI de-
signs? 2) What are the performance characteristics of
each collective communication library? 3) How are
these xCCL libraries designed? Are there shared de-
sign patterns, and if so, why?

To answer these questions, we survey the current
state-of-the-art collective libraries
(i.e., xCCL), with a focus on those developed for in-
dustry deep learning workloads. We investigate the
features of these xCCLs, compare their performance
with experiments, and discuss key takeaways and in-
teresting observations.

The rest of this paper is organized as follows. Sec-
tion 2 introduces widely used collective communica-
tion routines. Section 3 and Section 4 describe the
popular physical network topologies and collective al-
gorithms. In Section 5, we present the impact of col-
lectives on machine learning training as well as some
case studies from industry. In Section 6, we survey
representative industry-developed collective communi-
cation libraries and introduce their features. In Sec-
tion 7, we select several libraries and run experi-
ments to benchmark them. We show a comparison of
their performance characteristics. Section 8 will dis-
cuss some of our observations and insights. Lastly,
Section 9 discusses some related work and Section 10
concludes this paper.

communication

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

The main contributions of this paper are as fol-
lows.

e Summarizing and studying the collective com-
munication operations, network topologies, and algo-
rithms that underpin contemporary distributed deep
learning training.

e Discussing industry collective communication
solutions through case studies and a detailed exami-
nation of collective communication libraries.

e Comparing the performance of current collec-
tive communication libraries using industry-made
benchmarks.

2 Collective Communication Routines

Collective communication operations are an essen-
tial tool used in many high-performance computing
applications to move and process data within multi-
process systems. Though there are many named rou-
tines as listed in Table 1, some are especially impor-
tant for machine learning applications. Programmers
can use individual or combinations of collective rou-
tines to build distributed training strategies. In this
section, we will review routines that are implemented
in contemporary collective communication libraries. A
high-level review of collective algorithms is included
in Section 4.

2.1 Broadcast

The Broadcast collective operation describes a
process whereby the root node distributes the same
data to all nodes within the system. After the Broad-
cast operation is complete, every node will hold the
same data. Broadcast is one of the two most common
collectives in DL training applications (along with
All-Reduce; see Subsection 2.6) and can be used for
tasks such as sending training data to all processes.

Ezample. Consider a system with four processes
(as in Fig.2(a)): po, p1, ps, and ps. Process p, holds
data D. After the Broadcast collective runs (¢,), pro-
cesses pg, p1, P2, and ps will all hold data D.

2.2 All-Gather

The All-Gather collective operation results in each
node receiving data from all nodes within the system.

®NVIDIA Collective Communication Library. https://github.com/NVIDIA /nccl, Jan. 2023.
@ROCm Collective Communication Library. https://rccl.readthedocs.io/en/rocm-5.2.3/, Jan. 2023.
®Collective Communications Library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

https://github.com/facebookincubator/gloo

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning

169

Table 1. Summary of Collective Support Within Libraries
Collective Discussed in MPI Function Implemented in
NCCL MSCCL Gloo oneCCL ACCL

Barrier Not discussed MPI_BARRIER No Not Yes Yes Unknown
Broadcast Subsection 2.1 MPI_BCAST Yes Not Yes Yes Yes
Reduce Subsection 2.5 MPI_ REDUCE Yes Noft Yes Yes Unknown
Gather Not discussed MPI_GATHER No Not Yest No Unknown
Scatter Subsection 2.3 MPI_ SCATTER No Nof Yest No Unknown
All-Gather Subsection 2.2 MPI_ ALLGATHER Yes Nof Yesi Yes Yes
All-to-All Subsection 2.4 MPI_ALLTOALL No Yes No Yes Unknown
All-Reduce Subsection 2.6 MPI_ALLREDUCE Yes Yes Yes Yes Yes
Reduce-Scatter Subsection 2.7 MPI_REDUCE_SCATTER Yes Nof Yes Yes Yes

Scan Not discussed MPI SCAN No Nof No No Unknown

Note: MSCCL is unique because it allows programmers to implement their own collective routines and algorithms. {: algorithm not
provided but can be implemented using DSL or called via NCCL API; {: algorithm not supported on all accelerator types.

Po D1 D2
D, D, D,
to
to t,
|po: D | Po D| Po P P>
|P15 [4] | P D| D, D, D,
|P25 [4] | Dat D| ti | Dy D, D,
|p3! [4] | J28 D| D, D, D,
(a) (b)
Po D1 D2
to | D, D, D, to
o £(0)

Reduce Operation f(D,, D,, D,)=D,

Po P1 P2 Do D1
(f)

(e)

Reduce Operation f(D,, D,, D,)=D,
Result D, Sent to All Processes

I TR Y
Ay A, A,
to | Bo B, B,
Cy C, C,
Po Y4 P
Ay By Co
t | A B, C,
A, B, C,
(d)
Po D1 D2
to | Dy D, D,
fG)

Reduce Operation f(D,, D,, D,)=wv,
Scatter Result Vector v, = (D,y, D,i, D,s)
Components

D2 Do D1 D2
t, Dy D, Dy

(2)

Fig.2. Overview of collective operations. (a) Broadcast. (b) All-Gather. (c¢) Scatter. (d) All-to-All. (e) Reduce. (f) All-Reduce. (g)

Reduce-Scatter.

Essentially, All-Gather can be described as all pro-
cesses performing a Broadcast operation with their re-
spective data or as all nodes performing a Gather op-
eration. Note that this is not necessarily how All-
Gather is actually implemented.

Ezxample. Consider a system with three processes
(as in Fig.2(b)): py, p1, and p,. Process p, holds data
Dy, process p; holds data D;, and process p, holds da-

ta D,. After All-Gather completes, processes pg, p1,
and p, will all hold data D, data D;, and data D,.

2.3 Scatter

Unlike Broadcast, in which one node sends the
same data to every other process, the Scatter collec-
tive operation involves a single process transmitting

170

different data to the other processes based on some
splitting pattern or rule. By the traditional definition
of Scatter, the rule is that the input data are divided
into n pieces where n is the number of processes in
the system. Each piece is then sent to its correspond-
ing process2Ll.

FEzample. Consider a system with three processes
(as in Fig.2(c)): po, p1, and p,. Process p, holds data
vector v, = (Dy, Dy, D;) where Dy, D;, and D, are da-
ta. When Scatter is run, vector v, is divided into
component pieces Dy, D;, and D,. Data D, remains
on py, D; is sent to process p;, and D, is sent to pro-
cess py. There is a clear benefit to using Scatter over
Broadcast when dividing work among processes as
each process will not waste memory holding data it
does not need. Network bandwidth can also be con-
served by avoiding unnecessary data transfer opera-
tionsf21l,

2.4 All-to-All(v)

All-to-Allv (note the addition of “v”) is like stan-
dard All-to-All, except that participating processes
are not restricted to sending uniform data sizes and
can instead send messages with variable sizes. The
general All-to-All operation itself is where each pro-
cess sends data to each of the other processes in the
system. The resulting data layout is effectively a
transpose of the layout present before the operation.
The All-to-All collective is vital if high-performance
switching between data and model parallelism in a
deep learning training process is required because this
switch can be described as a transpose.

Ezxample. Consider a system where there are three
processes (as in Fig.2(d)): py, p1, and p,. Each process
holds unique data A;, B;, and C; where i corresponds
to the process number. After the All-to-All collective
completes, process py will hold data A, A;, and Ay;
process p; will hold data By, B;, and B,; and process
po will hold data Cj, C}, and Cs.

2.5 Reduce

The Reduce collective refers to a process in which
a single node receives data from each node in the sys-
tem and applies some operation on those data, result-
ing in a single output. Note that this operation can be
anything, provided it is associative. This allows the
operation to be performed in parallel while maintain-
ing the correctness and determinism of the program.

FEzample. Consider a system with three processes

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

(as in Fig.2(e)): po, p1, and p,. Process py holds Dy, p;
holds D;, and p, holds D,. When the Reduce collec-
tive is performed, data from process p,, data from
process p;, and data from process p, will be combined
to produce result f(Dg, Dy, D,) =D,. If py is set as
the destination process, then result D, will be sent to
po- Note that the Reduce collective does not itself dis-
tribute result D, to the other processes. Instead, one
must either broadcast result D, as shown in Subsec-
tion 2.1 or use the All-Reduce collective operation as
explained in Subsection 2.6. If the result D, must be
broken up before being distributed to the other pro-
cesses, either the Scatter operation can be used after
Reduce, or the Reduce-Scatter operation can be used
in place of both (as explained in Subsection 2.3 and
Subsection 2.7 respectively).

2.6 All-Reduce

At a high level, All-Reduce collective can be de-
scribed as a Reduce step followed by a Broadcast
step. After the operation completes, all processes in
the system will hold the result of the Reduce opera-
tion. All-Reduce is used extensively in data-parallel
distributed deep learning training tasks to compute
and communicate gradients during the backpropaga-
tion step.

FEzample. Consider a system with three processes
(as in Fig.2(f)): po, p1, and p,. Process p, holds Dy, p,
holds D,, and p, holds D,. When the All-Reduce col-
lective operation is performed, data from process py,
data from process p;, and data from process p, will be
combined to produce result f(Dg, D, D;) = D,. The
result D, is then sent to each of the processes p,, pi,
and p,. All-Reduce implementations are tuned for
higher performance than running Reduce and Broad-
cast sequentially, even if both approaches result in all
processes holding D,

2.7 Reduce-Scatter

As the name implies, the Reduce-Scatter collec-
tive is best described as the combination of the Re-
duce operation and the Scatter operation in the given
order. This definition, however, is not fully descrip-
tive as it is the result of the Reduce operation that
must be divided into n pieces so that it can be dis-
tributed to the processes in the system[2!],

Ezample. In a system with three processes as
shown (as in Fig.2(g)): po, p1, and p, where each pro-
cess holds corresponding data Dy, D, and D,, the Re-

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 171

duce portion of Reduce-Scatter produces an output
v,. The components of the result D,, D,, and D,,
are scattered (e.g., via the Scatter collective) to pro-

cesses pg, p1, and p, respectively.

3 Network Topologies for Collectives

In MPI, the Communicator construct is an ab-
straction that hides the complexity of lower-level
communication between processes. This makes pro-
gramming much more convenient. However, the phys-
ical network topology (i.e., not just the virtual topolo-
gy associated with MPI Communicators) chosen can
heavily impact the performance of collective commu-
nications. This is true for traditional collective appli-
cations and there are many studies focused on design-
ing network topology-aware collective algorithms to
best take advantage of different network architec-
tures?2. The network topology is especially impor-
tant when considering hardware accelerated collec-
tives because poor architecture decisions have the po-
tential to wipe out the performance gains realized by
using accelerator-specific communications in commu-
nication-bound applications/23.

3.1 Hypercube

The hypercube network topology24 consists of a
set of nodes connected in a multi-dimensional cube
pattern (hypercube). Increasing the number of nodes
in the system will increase the dimensionality of the
hypercube. Complete hypercubes must contain exact-
ly 2F nodes, where k is the hypercube dimensionality.
As a comparison, incomplete hypercubes can have
any number of nodes25l. The simplest hypercube net-
work is two nodes connected by a single link and is
described as a 1D (one-dimensional) hypercube. A 2D
hypercube is four nodes connected in a square pat-
tern. Fig.3 shows an example of a 4D hypercube con-
taining 16 nodes and is, as a consequence, complete.

While hypercube topologies may not be deployed
as frequently as other topologies in high-performance
computing (HPC) applications in favor of architec-
tures such as Fat-Tree (see Subsection 3.4) and Drag-
onfly+ (see Subsection 3.5), it serves as an important
reference that other more recent topologies can be
compared against. Hypercube topologies are resistant
to node failures due to their high connectivity; howev-
er, the same high connectivity can result in scaling is-
sues and higher complexity for networks with larger
numbers of nodes?3. They are also unique in that in-

Fig.3. Example of a complete hypercube network topology
with 16 nodes. Vertices represent physical nodes and edges rep-
resent physical network connections.

complete hypercube topologies can exhibit different
performance characteristics than complete hypercube
topologies(24 251,

3.2 Ring

A ring topology[?d is a configuration where all the
members are connected in a conceptually circular
fashion. Hence, each member has two connections:
one to each of its immediate neighbors. To communi-
cate, packets of data are transmitted from one device
to the next until reaching the destination. There are
two transfer modes: the unidirectional ring network,
in which packets of data travel in only one direction,
and the bidirectional ring network, in which packets
may travel in either direction.

The ring topology has three advantages. First, in
both transmission modes of the ring topology, all da-
ta flow in only one direction, thus reducing packet
collisions. Second, devices can be added easily with-
out affecting the transmission speed. Finally, there is
no need for a central server to coordinate network
connectivity. At the same time, the ring topology pos-
sesses notable disadvantages. First, in the worst case,
data transmitted through the network must pass
through all devices, which makes data transmission
less flexible. Second, the entire topology will be affect-
ed if one machine experiences a failure. Also, the
channel utilization of the ring topology is inefficient
for short packets, and bandwidth fragmentation may
occur.

3.3 Torus

A torus topology[?”l is a generalization of the ring
topology to higher dimensions, where the ring topolo-

172

gy is viewed as a one-dimensional (1D) torus. In a 1D
torus, as mentioned in Subsection 3.2, each member is
connected to its two neighbors. The communication
can occur bidirectionally (—z,+x). In a 2D torus con-
figuration, there are two dimensions consisting of m
rows and n columns. Each member in the topology is
connected to its four immediate neighbors and com-
munication can occur in four directions
(—z,+x, —y,+y). Similarly, for an ND torus topolo-
gy where [N is the number of dimensions, each mem-
ber in the topology is connected to its 2N neighbors.
Communication is possible in 2V directions as each
member node will have two neighbors in each dimen-
sion. Some examples of torus topologies of different

dimensions are shown in Fig.4 (1D) and Fig.5 (2D).

n n.

no 1/ "2 (— "3 — ™4

Fig.4. Example of the ring network topology. Vertices repre-
sent physical nodes and edges represent physical network con-
nections. Node ng is connected to node n; and node ny (for two
total connections).

ANANVANVANYA

ns ne nr ng ng
:

n10 ni1 1 N2 [N3 niq
. :

nis nie 1 N7 — M8 nig

20 n21 n22 na23 24

Fig.5. Example of a 2D Torus network topology. Vertices rep-
resent physical nodes and edges represent physical network
connections. Node ny is connected to nodes n;, ny, ns5, and ny,
for a total of four connections. In this case N = 2 dimensions,
therefore, each node will have exactly 2N = 2 x 2 = 4 physical
connections. If this particular topology were to be visualized in
three-dimensional space, it would resemble a ‘“‘donut’ or ‘ring
torus” shape.

One advantage of the torus topology is that it sig-
nificantly decreases the topology diameter and re-
duces the cost to add new members. All one must do

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

is to add additional links?8®. The torus topology can
also provide higher bandwidth and lower latency than
some other network topologies while still achieving
high scalability. This is because the torus topology is
homogeneous and member nodes can communicate
with one another via multiple routes2’l. For the same
reason, it is also able to consume less power29D,

The torus topology also has certain limitations.
First, as dimensionality increases, the number of
physical network connections necessarily increases.
This means that wiring becomes more complex and
deployment cost growsl?9. Second, as new member
nodes are added to a given dimension, it will require
more energy and take longer to communicate within
the dimension as each message must travel through
more nodes(?% 30, To address this problem, a modi-
fied version of torus topology, called folded-torus
topology, was developed3Ll.

3.4 Fat-Tree

The fat-tree topology3? is one of the most widely
used topologies for efficient data communication. Un-
like traditional tree structures in computer science,
the fat-tree topology resembles the trees in the real
world. In a traditional tree topology, all branches
have the same thickness (bandwidth) whereas in a
fat-tree topology, the communication bandwidth gets
larger, i.e., the fat-tree gets fatter, as one moves clos-
er to the root. An illustration of a fat-tree topology is
given in Fig.6.

In the fat-tree topology, only the leaves are used
for computation and all the other nodes are strictly
for communication. For example, when a leaf node
wants to communicate with another leaf node, data
will flow up the hierarchy recursively until a shared
ancestor with the second leaf node is found. Data
then flow back down the hierarchy to the second leaf
node.

There are numerous advantages to use the fat-tree
topology. First, the average distance between nodes
grows logarithmically since it is a tree structure in na-
ture®. In addition, it has also been proved that fat-
trees are recursively scalable and partitionable with
multiple well designed routing algorithmsB3 34, Some
other advantages of the fat-tree topology include its
symmetry, regularity, and high connectivity®3, which

@The 3D Torus Architecture and the Eurotech Approach. https://www.hpcwire.com/2011/06/20/the 3d_torus architecture

and_the eurotech_approach/, Jan. 2023.

©@Fat Trees. https://people.engr.ncsu.edu/efg/506/s02/lectures/notes/lec27.pdf, Jan. 2023.

https://www.hpcwire.com/2011/06/20/the_3d_torus_architecture_and_the_eurotech_approach/

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 173

Level 2 Switch

B

Level 3 Switch
Bs

o

Level 3 Switch

ny no ns g

Root Switch

Level 2 Switch

Level 3 Switch Level 3 Switch

nis

Ng n1o ni3 N4

Fig.6. Visualization of a fat-tree network topology. Bandwidth is represented by link line thickness, and follows By > 81 > B2. Nodes
ng, ..., n15 perform computation, while switches handle communication only.

is attributable to its tree structure.

One disadvantage is the bandwidth requirement
for the branches connected to the rootl36l. This band-
width requirement will get higher and higher when
the fat-tree grows bigger, leading to a challenge in im-
plementation. Another disadvantage is that due to
the the structure of the fat-tree topology, it is neces-
sary to traverse all nodes between two leaf nodes
when communicating data. In this case, load balanc-
ing and scheduling becomes another challengel37).

3.5 Dragonfly and Dragonfly+

Another commonly used topology is the dragonfly
topology[38l, which is a hierarchical structure made up
of multiple levels (i.e., routers and groups). An exam-
ple of the dragonfly topology is shown in Fig.7. At
the lowest level, each router is connected to multiple
(p) terminals. Above this level is the group, which is
a collection of routers (a routers) which have connec-
tions to routers in the same group (local channels)
and connections to routers in the other groups (h
global channels). In a dragonfly topology, there will
be many groups. All routers within a group work as a
“virtual router” that has a very high radix (k). This
radix is equal to the number of routers in the group
multiplying the number of connections each router
has (k =a x (p+ h)). All the numbers a, p, and h can
be adjusted in accordance with the deployment re-
quirements.

Modularity is one of the advantages that the drag-
onfly topology can provideB9. Because the designs of
intra-group connections and inter-group connections
are decoupled, the wiring within a group does not af-

Fig.7. Example of a dragonfly network topology. In this case,
all boxes represent routers that nodes (not shown) are connect-
ed to.

fect the number of groups in the topology. In addi-
tion, this modular design also leads to the high scala-
bility of the topology[® 39, The dragonfly topology is
able to scale to a high number of nodes by simply in-
creasing the effective radix, while still keeping a rela-
tively low number of hops/38l.

At the same time, this high number of connec-
tions also leads to a high construction cost for drag-
onfly topologies. Also, these various connections
can bring the topology a high path diversity, causing
a low network utilization and throughput under cer-
tain traffic patternsi4?l. To address this problem, an
extended version called dragonfly+ has been intro-
duced in recent yearsi*ll. In the dragonfly+ topology,
routers inside the group are connected in a Clos-like
topology32. It also shows higher scalability and bet-
ter router utilizationl41].

174 J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1
4 Collective Communication Algorithms 4.1 Classic Collective Communication
Algorithms
Though the collective routines are presented to
the programmer through a clean API, the collective In recent years, new advancements have been

communication library must implement algorithms
that perform the actual intra-node and inter-node

made in the development of collective communica-
tion algorithms. Table 2 briefly overviews the repre-

communications. sentative state-of-the-art collective communication al-
Table 2. Classic and xCCL’s Collective Communication Algorithms
Category Collective Algorithm Description on Suitability
(e.g., Message Size, Number of Processes)
Classic All-to-All Bruck!*! Short (e.g., < 32 B)
Isend-Trecv(*?! Medium (e.g., 32 B to 32 KB)
Pairwise-Exchangel*!] Long (27 processes)
All-Gather Ring/43! Long, medium (not 2» processes)
Recursive-Doubling!*’] Short, medium (2» processes)
Bruck!*! Short (not 2» processes)
Broadcast Binomial Treel*? Short (e.g., < 32 B)

Reduce-Scatter

Reduce

All-Reduce

Reduce/All-Reduce

xCCL NCCL All-Reduce

MSCCL All-Reduce®

All-to-AlI®
Gloo All-Reduce®

Reduce-Scatter®
Broadcast®

ACCL All-Reducel®

Van de Geijnl46: 47)
Recursive-Halving[*4

Recursive-Doubling(*’]
Pairwise-Exchangel43]

Binomial Tree and Linear
Scatterv!43]

Binomial Treel4?
Rabenseifner’s!]
Recursive-Doubling!4
Rabenseifner’s!)

Ring44

Vector Halving and Distance
Doubling!*8]

Binary Blocks!4?!
Double Binary Trees?
Ring®

Ring

All-Pairs
Hierarchical
Two-Step

Ring
Ring-Chunked
Halving-Doubling
BCube
Halving-Doubling

Pairwise-Exchange
Hybrid

Long (e.g., > 32 KB)
Short (commutative reduction)
Short (not commutative reduction)

Long (e.g., > 512 KB for commutative,
> 512 B for noncommutative)
Medium

Short (e.g., < 2 KB)

Long (e.g., > 2 KB)

Short, long (user-defined reduction)
Long (predefined reduction)

Small or medium numbers of processes

Long (vectors and 2» processes)

Not 2» processes

Short, medium

Long

Medium (e.g., 32 KB to 3 MB)

Short and medium (e.g., 1 KB to 2 MB)
Short or long (e.g., < 64 MB or > 1 GB)
Long (e.g., > 2 MB)

Long
Long

9n processes
Short
9n processes

Long (27 processes)
Medium, long (e.g., > 16 KB)

Note: “not 2" processes’ means the number of processes is not 2.

®

training-nccl-2-4/, Jan. 2023.

Massively scale your deep learning training with NCCL 2.4. https://developer.nvidia.com/blog/massively-scale-deep-learning-

®NCCL: Accelerated multi-GPU collective communications. https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf,

Jan. 2023.

®MSCCL: Microsoft collective communication library. https://github.com/microsoft/msccl, Jan. 2023.
®Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

https://github.com/facebookincubator/gloo

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 175

gorithms and their features. In these algorithms: the
Ring, Binomial Tree, Recursive-Doubling, and Recur-
sive-Halving algorithms are the most widely used in
HPC workloads. Hence, we will focus on these algo-
rithms in particular.

To estimate the latency and bandwidth of collec-
tive communication algorithms, we use the o — /3 cost
modell®. The time taken by the bidirectional commu-
nication between processes is a +nf and the unidi-
rectional communication is @y + nBulY. In this
function, « is the latency (startup time) per message,
3 is the transfer time per byte, n is the number of
transferred bytes, and p is the number of processes in
the communication. In the case of reduction opera-
tions, ~ is the computation cost per byte for one pro-
cess.
4.1.1 Ring

The Ring algorithm is traditionally utilized for
All-Gather. The implementation of All-Gather in this
method is that data are transferred around a virtual
ring of processes. First, each process sends its chunk
of data to the following process in the ring and re-
ceives the chunk of data from the previous process in
the ring. From the second step, each process sends
the data it received from the previous process in the
first step to the following process. If p is the number
of processes, it takes p — 1 steps to complete the en-
tire algorithm. If n is the total amount of data to be
gathered on each process, then at every step, each
process sends and receives n/p amounts of data.
Therefore, the time taken by this algorithm is
T = (p— D+ ((p — 1) /p)n .

The Ring algorithm is also used for All-Reduce.
There are two phases in All-Reduce: Reduce-Scatter
and All-Gather. The Ring algorithm can be applied
for All-Gather, and the Reduce-Scatter phase can be
performed in the Pairwise-Exchange algorithm. When
the number of processes is not a power of 2, this algo-
rithm performs well in bandwidth utilization. Still,
the latency of this algorithm grows linearly as the
number of processes increases. Therefore, this algo-
rithm is only suitable for small or medium processes
or large vectors. For All-Reduce, the time taken is
AR 25— 1)a+2n8+ny— (1/p) (2nB+n7)4.

4.1.2 Binomial Tree

The Binomial Tree algorithm is commonly used

in MPICH. First of all, process
(root + (p/2)) receives data from the root. From the

for Broadcast

second step, this process and the root act as new
roots in their respective subtrees. This algorithm will
run recursively and takes a total of lgp steps. In this
algorithm, each process communicates n bytes of da-
ta at any step. Therefore, the time taken by this algo-
rithm to perform Broadcast is TEroxdeast = (g p)(a+
nB)43]. This algorithm performs well when communi-
cating short messages because of the logarithmic la-
tency term. As a result, the Binomial Tree algorithm
can be a good choice when working with short mes-
sages (e.g., < 12 KB) or when the number of process-
es is less than 8.

The Binomial Tree algorithm can also efficiently
implement Reduce. The Binomial Tree algorithm
takes lgp steps to complete the process, and the am-
ount of data is n at each step. In general, the time taken
by this algorithm is TEedve = (Igp)(a + nB + ny)H3l.
Owing to the lgp steps, the Binomial Tree algorithm
performs Reduce efficiently for short messages. For
Reduce, the Binomial Tree algorithm is used for short
messages (e.g., < 2 KB) when the reduction opera-
tion is predefined. Because the user-defined reduction
operations may pass or break up derived datatypes to
do the complex Reduce-Scatter, the Binomial Tree al-
gorithm is used for all message sizes when the reduc-
tion operations are user-defined. When executing the
All-Reduce process, the algorithm first does a Reduce
to rank 0 and then performs a Broadcast.

4.1.3 Recursive-Doubling

Recursive-Doubling is an efficient algorithm for
All-Gather. In the first step, each process sends and
receives data from its neighbors. In the second step,
each process sends and receives data from the process
that is two processes away from it. In the third step,
the process exchanges data from the process that is
four processes away from it, and so on. In this way,
when the number of processes is a power of 2, all da-
ta communication can be completed in lgp steps. The
amount of data exchanged by each process is n/p in
the first step, 2n/p in the second step, and so on. In
the last step, the amount of data is (2'¢®»~Vn)/p. In
general, the total time taken by this algorithm is
TG — lgpa + ((p — 1)/p)nflid. Due to the com-
munication’s mathematical features, Recursive-Dou-
bling works very well for situations where the num-

176

ber of processes is a power of 2, but it does not work
well when the number of processes is not a power of 2.

The Recursive-Doubling algorithm can be used in
Reduce-Scatter, similar to the one used in All-Gather.
However, more data are communicated in Reduce-
Scatter than in All-Gather. In step 1 of Reduce-Scat-
ter, the data needed for their result in each process is
not exchanged, and the amount of data exchanged by
each process is (n — (n/p)); in step 2, the data re-
quired by themselves and by the processes communi-
cated in the previous step in each process are not ex-
changed, and the amount of data exchanged by each
process is (n — (2n/p)); in step 3, it is (n — (4n/p));
and so on. Therefore, the time taken by this algorithm
is Taedi®et =lgpa + (Igp — ((p — 1)/p))nB + (g p—
((p—1/p))ny43l. This algorithm works well for con-
cise messages (e.g., < 32 B).

The Recursive-Doubling algorithm can also per-
form All-Reduce similarly to how it performs All-
Gather, except that each communication step of the
Recursive-Doubling algorithm also involves a local re-
duction. The Recursive-Doubling algorithm performs
well for short messages and long messages with user-
defined reduction operations. The time taken by this
algorithm for All-Reduce is TAMedwee — 1o poy + nlg pB+
nlgpylH.

4.1.4 Recursive-Halving

Similar to applying the Recursive-Doubling algo-
rithm for All-Gather, the Recursive-Halving algo-
rithm can be used to perform Reduce-Scatter. First,
processes at a distance of p/2 away exchange data
with each other. Each process performs both the
sending and receiving operations. All processes need
the sent data in the other half, and all processes need
the received data in its half. The reduction operation
is performed on the received data. The reduction can
be made because the procedure is commutative. Sec-
ond, processes at a distance of p/4 away exchange da-
ta with each other: each process performs both the
sending and receiving operations. All processes need
the sent data in the other half of the current subtree,
and all processes require the received data in its half
of the current subtree. The reduction operation is per-

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

formed on the received data. This procedure is per-
formed recursively, halving the data communicated at
each step. The total number of steps of this process is

lgp. Therefore, if p is a power of 2, the time taken by

Reduce-Scatter
71rcc—h&lf

this algorithm is given by
((p = 1)/p)nB + ((p — 1) /p)ny.

= lgpa+

4.2 xCCL Collective Communication
Algorithms

In practice, xCCL will select algorithms to per-
form collectives based on conditions such as system
configuration, network topology, and invocation cir-
cumstances to improve the performancel®2l. Next, we
introduce these algorithms used by xCCL.

4.2.1 NCCL

Ring. The Ring algorithm is used for All-Reduce
in NCCL to move data across all GPUs®. The data
are split into multiple chunks and transferred one by
one during the operation. This pipeline modality re-
duces the idle time the GPU spends waiting for data.
However, the latency of the Ring algorithm for All-
Reduce increases with the number of GPU devices.
Since NCCL is implemented with CUDA, one CUDA
thread block is allocated to one ring direction in this
library.

Double Binary Trees. Since the latency of the
Ring algorithm increases with the number of GPUs, it
is not suitable for communication among a large num-
ber of GPUs. The Double Binary Tree algorithm was
proposed to solve this problem because of its logarith-
mic latency®. Based on the architecture of a binary
tree, the leaves of one binary tree can be used as the
nodes of another. Almost every rank is connected to
two parents and two children ranks, except for the
root ranks. Compared with the Ring algorithm, the
latency of Double Binary Trees is more negligible in
the NCCL test on various large machines.

4.2.2 MSCCL

Ring. MSCCL implements Ring for All-Reduce,

ONCCL: Accelerated multi-GPU collective communications. https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf,

Jan. 2023.

®Massively scale your deep learning training with NCCL 2.4. https://developer.nvidia.com/blog/massively-scale-deep-learning-

training-nccl-2-4/, Jan. 2023.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 177

Reduce-Scatter, and All-Gather®. MSCCL allocates
multiple channels to one logical ring. In this way, dif-
ferent point-to-point connections can be implemented
between the same pairs of GPUs. The protocol for
scheduling a logical ring onto one channel varies ac-
cording to the message size. This strategy enables the
logical ring’s distribution across channels and effi-
ciently overlaps point-to-point operations.

All-Pairs. In MSCCL, three different types (input,
output, and scratch) of GPU buffers are available for
chunks of data. Because the Ring algorithm is unsuit-
able for small message sizes, MSCCL implements All-
Pairs for All-Reduce when the message size is small®.
The Ring algorithm proceeds in two steps: rank re-
ceives the chunk of data from every rank and per-
forms computation operations, and then the chunks of
the result data are broadcast to every other rank.
Compared with 2n — 2 steps in the Ring algorithm,
only two communication steps are used in the All-
Pairs algorithm, which makes the latency of the All-
Pairs algorithm lower.

Hierarchical. Different algorithms can be applied
to perform All-Reduce according to the input configu-
rations. Besides the above-mentioned algorithms, Hi-
erarchical is another possible one in MSCCL®. There
are four communication steps in this algorithm. The
first step is to perform Reduce-Scatter within a node,
the second step is to perform Reduce-Scatter across
nodes, the third step is to perform All-Gather across
nodes, and the final step is to perform All-Gather
within a node.

Two-Step. The traditional All-to-All algorithm on-
ly implements one communication step, but the num-
ber of small chunks transferred across nodes is large.
In MSCCL, a two-step All-to-All algorithm is imple-
mented with aggregated cross-node communication to
reduce the cost®.

4.2.3 Gloo

Ring. In Gloo, the Ring algorithm is implemented
the same as mentioned in Subsection 4.1.19,

Ring-Chunked. Based on the Ring algorithm, the
Ring-Chunked algorithm divides the
chunks so that each process can reduce a chunk into a
local result while it is transmitting another chunk®.

Halving-Doubling. The design of Halving-Dou-
bling in Gloo is similar to that of the All-Reduce Re-

buffer into

cursive Halving and Doubling algorithms®. The Halv-
ing-Doubling algorithm uses the distance to decide
the communication pair between processes. For exam-
ple, each process sends and receives data buffers: from
the process next to it when the communication dis-
tance is 1; from the process that is one process away
from it when the distance is 2. The algorithm con-
sists of two phases. 1) The distance doubling the Re-
duce-Scatter operation phase. At the result, each pro-
cess holds part of the reduction results. 2) The dis-
tance halving All-Gather operation phase. At the re-
sult, all processes receive the rest parts of the reduc-
tion results from other processes.

Pairwise-Exchange. The Pairwise-Exchange algo-
rithm is a simplified Halving-Doubling algorithm®. In
each step, the nodes are partitioned into pairs and the
message size in the communication between pairs is
the same. Pairwise-Exchange is used for benchmark-
ing purposes in Gloo.

BCube. The Ring algorithm organizes the commu-
nication structure of processes one by one as a ring.
Halving-Doubling uses the distance to manage the
communication of processes. Different from the above
algorithms, the BCube algorithm divides the process-
es into groups®. Firstly, it performs Reduce-Scatter
among processes within the group and All-Reduce
among the corresponding processes from different
groups. Secondly, each group performs All-Gather
within the group so that every process receives the re-
duction results in the end.

4.24 ACCL

Hybrid. ACCL uses a hybrid All-Reduce algo-
rithm to maximize bandwidth utilization 9. Hybrid
All-Reduce decouples the All-Reduce operation into
several micro-operations, eliminating the meaningless
micro-operations. This hybrid algorithm proceeds in
three steps. In step 1, the intra-node Reduce-Scatter
is performed based on the Ring algorithm; in step 2,
the inter-node All-Reduce is performed based on the
Halving-Doubling algorithm; in step 3, the intra-node
All-Gather is performed based on the Ring algorithm.

5 Collectives and Deep Learning

Machine learning techniques are increasingly be-
ing adopted both in industry and in research to solve

®MSCCL: Microsoft collective communication library. https://github.com/microsoft/msccl, Jan. 2023.
DCollective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

https://github.com/facebookincubator/gloo

178

problems not easily handled by traditional methods.
Machine learning can be seen in precision systems,
automation, cancer detection, self driving, and more.
It is well known that hardware accelerators have con-
tributed massively to the advancement of inter-disci-
plinary machine learning applications.

The adaptation of GPUs for general purpose com-
puting, often referred to as general purpose GPUs
(GPGPUs), has allowed training to be conducted in a
parallel fashion, drastically reducing the time re-
quired to achieve acceptable results when compared
with the CPUB3? @, Data volumes—and more imp-
ortantly, model sizes—continue to increase, creating a
need for distributed training solutions, including those
that integrate tightly with hardware accelerators.
There are many ways to parallelize the training pro-
cess, and the collective communication paradigm pro-
vides the requisite flexibility to implement these solu-
tions while remaining conceptually simple.

With the advent of large models, parallelizing the
training process becomes a necessity. Using NCCL
with TensorFlow, researchers from Uber found that
VGG-16 training can be sped up by a significant 30%
when leveraging RDMA networkingl®l. Collectives
demonstrate a considerable speed-up in training time
that very large networks can achieve. Using 256
GPUs for distributed training,
ResNet-50 model within one hour with a 90% scaling
efficiency from an initial 8 GPUs[54.

Machine learning using collectives is an area of ac-
tive research. Multiple industry applications have
been proposed and implemented into daily workflow.
In the following Subsections 5.1-5.4, we observe some
representative use cases for Meta, Google, Uber, and
Amazon.

Meta trained a

5.1 Case Study with Meta Workloads

A recommendation model is a kind of ML work-
loads that aims to provide personalized recommenda-
tions to users. Such models are deployed often in e-
commerce, social media, and advertising settings. In
2020, Meta introduced its production-scale DNN-
based RMCs (recommendation model classes)®.
These RMCs all exhibit computation and communica-

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

tion intensive characteristics. Additionally, since the
purpose of RMCs is to provide recommendation to
users, the ability to achieve a short inference time is a
critical metric to evaluate their performance.

For all the requirements mentioned above, the col-
lective plays an important role, as it can directly in-
fluence the communication time during the training
and inference stages. To improve the performance of
these production-scale recommendation models, Meta
developed a software-hardware co-design, named Neo,
which integrates their collective-related optimizati-
onsB8. The implementation of Neo is closely related
to PyTorchP7, a widely-used machine learning frame-
work originally created by Meta. The kernel fusion in-
troduced in Neo is open sourced as part of the Meta
General Matrix Multiplication (FBGEMM) library
which serves as a matrix processesing backend for Py-
Torchl58],

Neo is built for efficient and scalable DLRM
(Deep Learning Recommendation Model) training uti-
lizing three key techniques. The first one is 4D paral-
lelism that combines table-wise parallelism, row-wise
parallelism, column-wise parallelism, and data paral-
lelism. It is aimed at reducing workload imbalance
among GPUs to minimize the costs of conducting
communication. Second, the hybrid kernel fusion
technique fuses the parameter update and the embed-
ding computation into a same CUDA kernel. Third, a
new hardware platform called ZionEX was intro-
duced. ZionEX is co-designed with the 4D parallelism
technique and also optimizes the inter-node communi-
cation for distributed training.

Image recognition networks that utilize residual
learning have become extremely popular since their
introduction in 2016 due to the fact that they enable
much deeper neural network architectures?. Ima-
geNet, a database of labeled image data is a popular
dataset used to train, test, and evaluate network ar-
chitectures and training systems[®. Meta was able to
train a ResNet50 model on ImageNet in one hour on a
distributed training system[4.

In order to achieve this level of performance, all
components of the training system must be consid-
ered. Their deployment consisted of 32 nodes each
with 8 GPUs for a total of 256 GPUsP4. Nodes each

DMPI: A message-passing interface standard version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpid0-report.pdf, Jan. 2023.
@Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

@CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit, Jan. 2023.
@NVIDIA NVLink. https://www.nvidia.com/en-us/design-visualization /nvlink-bridges/, Jan. 2023.
®NVIDIA collective communication library. https://github.com/NVIDIA /nccl, Jan. 2023.

https://github.com/facebookincubator/gloo

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 179

had 20 Gbit network cards and GPUs were directly
connected using NVIDIA NVLink. Collective opera-
tions were used both locally within nodes to compute
local reductions and to communicate gradients be-
tween nodes. Local and inter-node communications
used NCCL (see Subsection 6.1) while collectives were
performed using Gloo (see Subsection 6.5)P4. At-
tempting to train with many GPUs can cause com-
munication and aggregation costs to increase to unac-
ceptable levels. To mitigate these issues, CPU and
GPU resources were balanced by splitting communi-
cation between them using the buffer size and manu-
ally selecting the most performant collective algo-
rithms for both the specific workload being tested and
the network topologyl54l.

5.2 Case Study with Google Workloads

DistBeliefl0!] is a framework for parallel distribut-
ed training of DNN models developed by Google re-
searchers. In their paper, Dean et al.l01] observed that
very large DNN models can benefit greatly when they
are trained using many machines organized in a dis-
tributed training system. Their largest model with 1.7
billion parameters sees a speedup greater than 12x on
81 machines.

Google’s TensorFlow(62l is the most popular frame-
work for deep learning applications and the successor
to DistBelief. TensorFlow’s flexibility makes it wide-
ly applicable to many ML problems and countless re-
searchers have utilized the framework. It provides
tools for deploying on GPU clusters, enabling the dis-
tributed training of very large models(62l. This allows
users with large-scale models to train more efficiently
and significantly reduce computation time. As indus-
try data volume and velocity both become larger,
quickly training models with enormous parameter
sizes increases model training productivity.

Awan et al. evaluated the designs and perfor-
mance of TensorFlow for training multiple DNNs on
distributed/HPC systems using different communica-
tion libraries®l. In their paper, they showed that
MPI-based communication solutions for TensorFlow
achieve 71% scaling efficiency scaling up to 64 GPUs.
In a recent studyl®4, the authors designed a bench-
mark suite to characterize TensorFlow’s communica-
tion patterns and performance. Biswas et al. devel-
oped an RDMA-based gRPC that can adjust commu-

nication mechanisms dynamically for TensorFlow-
based deep learning training workloads/69].

There is ongoing work to increase the scaling effi-
ciency and communication efficiency of distributed
training in TensorFlow, which is highly desired by the
DNN community. Google’s researchers and develop-
ers continue to update the communication subsystem
designs in TensorFlow to work with NCCL and other
optimized communication backends. For example, a
communication library called NCCL Fast Socket®
was proposed by Google to optimize NCCL collective
communication performance for distributed ML train-
ing on Google Cloud.

5.3 Case Study with Uber Workloads

Uber has utilized machine learning in multiple di-
verse applications (e.g., UberEATS, Marketplace
Forecasting, Customer Support, Ride Check, Estimat-
ed Times of Arrival, One-Click Chat, and Self-Driv-
ing Cars). Specifically, Uber’s Michelangelo? ma-
chine learning platform runs several models for
UberEATS. Search ranking, search autocomplete, and
restaurant rankings are all examples of use case mod-
els that UberEATS utilizes from Michelangelo. With
the scale of Uber’s models increasing, distributing the
training process is a practical necessity. Using
Michelangelo’s Data Science Workbench (DSW),
large-scale distributed training and deployment of
deep learning models on GPU clusters is well support-
ed?, even for data scientists and developers with lit-
tle systems knowledge. Users can easily distribute
their training processes with DSW and use Michelan-
gelo’s hyperparameter searching algorithms.

As Uber started using deep learning models for
self-driving cars, the dataflow grew exponentially and
required distributed training across an extensive set of
GPU machines. Michelangelo’s Horovod? was intro-
duced to enable much faster training and research
progress by implementing collective communications
between GPUs in TensorFlow. In their paper(53,
Sergeev. and Del Balso replaced Baidu’s
ring-allreduce implementation with NCCL for com-
munication in Horovod. The authors found that a
model with a large number of parameters (e.g., VGG-
16) saw a 30% speedup, and that other models (e.g.,
Inception V3 and ResNet-101) exceeded 90% scaling
efficiency when scaling to 128 GPUs. The default

®NCCL fast socket. https://github.com/google/nccl-fastsocket, Jan. 2023.

@

Scaling machine learning at Uber with Michelangelo. https://www.uber.com/blog/scaling-michelangelo, Jan. 2023.

180

TensorFlow distributed implementation was found to
waste about half of GPU resources when training on
the same 128 GPUs, while Horovod is able to reach
the 88% efficiency mark. Though after Horovod’s
work, TensorFlow has added support for NCCL2.
Horovod greatly simplifies the distributed training
process for users and supports multiple popular com-
munication libraries (e.g., MPI, NVIDIA’s NCCL,
Meta’s Gloo, Intel’s MLSL, and IBM’s DDL)I66].
Horovod’s GitHub also provides model examples for
Keras, MXNet, PyTorch, Spark, TensorFlow, and
more, making it very simple to start working quickly
with various models.

5.4 Case Study with Amazon Workloads

Amazon Web Services (AWS) provides develop-
ers with a wide variety of cloud-based tools. Dis-
tributed training is an important tool for building ca-
pable large models, especially if models are large
enough that training must be split across multiple de-
vices (model parallelism). However, capable systems
can be difficult and expensive to deploy. As a result,
many companies look for hosted solutions. Network
architectures and speeds available on public clouds
are often very different than those of dedicated ML
training clusters where bandwidths are more heteroge-
neous. On such cloud-based systems, intra-node and
inter-node bandwidth can differ by a factor of 20 or
more, meaning assumptions about the cost of using
collectives may not longer be correctl67. Attempting
to perform collective operations that involve all ranks
can be very expensive.

To help make model-parallel training faster on
cloud systems, researchers at Amazon have proposed
a system called MiCSI®7), which reduces the impact of
highly-heterogeneous network architectures on train-
ing performance. The key idea is to reduce the num-
ber of participants in collective communications and
by extension reduce the data volume of the communi-

Table 3. Summary Comparison

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

cations that take place over lower-bandwidth connec-
tions. This is possible even when model sizes surpass
on-node device memory requirements by using a hier-
archical communication strategy and breaking com-
munication up into stages. First, devices perform an
inter-node All-Gather operation with devices of the
same respective relative rank on the other nodes. Sec-
ond, nodes perform an intra-node All-Gather to com-
plete the Additionally, MiCS
makes use of a ‘“2-hop’” gradient synchronization pro-

communication(67,

cess rather than the standard gradient aggregation
process. This step is usually very expensive because
its cost increases with a higher number of devices. De-
vices are split into small groups that span across
nodes. Gradient partitioning and synchronization is
first performed within the small groups and then
globally, reducing total traffic. When compared with
the existing training optimizer ZeROI[®8], MiCS was
2.98x fasterl67. MiCS was also
achieved 99.4% scaling efficiency in a cloud environ-
ment[67],

shown to have

6 Industry Solutions—xCCL

The rise in the popularity of distributed deep
learning training has contributed to growing interest
in fast, efficient, and portable collective implementa-
tions. A summary of industry collective communica-
tion libraries is shown in Table 3.

6.1 NVIDIA NCCL

NVIDIA Collective Communication Library® is
currently the most popular GPU-accelerated collec-
tive communication library. It implements collective
operations for multiple GPUs across multiple nodes as
well as specific point-to-point communication primi-
tives. NCCL officially supports NVIDIA GPUs only,
though there have been efforts to port it to AMD
graphics cards in the form of the ROCm Collective

of Collective Communication Libraries

CCL Accelerator License P2P Differentiation

NCCL NVIDIA GPU Open (MIT) Yes Industry standard for GPU-based collectives
Gloo GPU Open (BSD) No Combined CPU/GPU DL workloads
MSCCL GPU Open (MIT) Yes DSL for custom collective algorithms

Intel oneCCL Intel CPU, GPU, FPGA Open (Apache 2.0) Yes Support for heterogeneous accelerators
ROCm AMD GPU Open (MIT) Yes AMD GPU support

ACCL GPU Proprietary N/A Hybrid algorithms

®NVIDIA collective communication library. https://github.com/NVIDIA /nccl, Jan. 2023.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 181

Communication Library (RCCL)® (see Subsection
6.4).

NCCL’s programming model is very similar to
MPI Collectives®?. However, NCCL is geared toward
providing fast communication of messages among
GPUs in dense multi-GPU systems, while MPI focus-
es on efficient communication across thousands of
nodes in a cluster.

6.1.1 Architecture

NCCL aims to perform communication among
GPUs using the CUDA, as shown in Fig.8(a). In NC-
CL collective communications, the communicators are
created using CUDA before launching any collective
algorithm design. After the collective algorithm is
launched using point-to-point primitives, the point-to-
point operation will be effectively enqueued to the
given stream.

NCCL uses rings to move data across all GPUs,
and therefore data are divided into chunks among all
ranks in the communicator to obtain reasonably good
bandwidth while lowering the latency. NCCL per-
forms intra-node communication through PCle,
NVLink®, and GPUDirect®?. Inter-node communica-
tion in NCCL is via GDR. NCCL’s CUDA kernels
can copy data stored in the global memory of one
GPU to another GPU by using GDR and GPUDirect.

| CUDA Code (NCCL) |

CUDA Code (NCCL)

6.1.2 NCCL API

In a similar fashion to NVIDIA’s CUDA®, NCCL
was designed to be easy to program. Because NCCL
provides a C API, programmers can use NCCL with-
in existing C projects or even use C bindings in a
high-level language like Python.

NCCL can be initiated with the ncc1CommInitRank(),
ncclCommInitRankConfig(), or ncclCommInitAll() fun-
ction. Each gives the programmer different options for
configuring ranks and communications. A communica-
tor is required to perform any communication opera-
tion. Individual collective operations can be run us-
ing the correspondingly named API calls. All-Reduce
can be run using the ncclAllReduce() function,
Broadcast can be run using the ncclBroadcast() func-
tion, and so on. Programmers familiar with MPI
should feel comfortable with the NCCL API. NCCL
also supports point-to-point communications in the
form of ncclSend() (sending data to a specific rank)
and ncclRecv() (receiving data from a specific rank).

6.1.3 Framework Support

Because deep neural networks training is becom-
ing too large to be performed on a single compute
node, some state-of-the-art deep learning frameworks
like TensorFlowl62, Caffel6%, PyTorchb7, CNTKI™,
and MXNetl™! have complimented distributed train-

| NCCL Communicator 1
T Converted by MSCCL Program [~ —|
|
NCCL Collective HIPify Tool ﬂ Tracing |
Algorithm Design Oy
ﬂConverted into Chunk DAG Sz
Point-to-Point Primiti . oIg
| oint-to 031 rimitives | HIP Code ﬂ Lowering %Ig
. . wn |
| CUDA Stream | 4 Compiled by [Gloo | Instruction DAG | |
: l
Intranodeu U,Internode NVCAC HCQ ﬂScheduhng<—---
Compiler || Compiler
NVLink, Ethernet, NCCL | IR |
. l]v Run on ﬂ “ R U,
PCle, InfiniBand un on [+NCCL [
GPUDirect, with NVIDIA | A MD GPU cpul lepu GPU| |GPU
P2P GPUDirect GPU apul lapu | MSCCL Runtime |

(a)

(b)

(c

~

(d)

Fig.8. Overview of different architectures of xCCL from industry solutions. (a) NCCL. (b) ROCm. (c) Gloo. (d) MSCCL.

®ROCm communication collectives library. https://github.com/ROCmSoftwarePlatform/rccl, Jan. 2023.

DMPI: A message-passing interface standard version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, Jan. 2023.
@NVIDIA NVLink. https://www.nvidia.com/en-us/design-visualization /nvlink-bridges/, Jan. 2023.

®GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-rdma/index.html, Jan. 2023.

®CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit, Jan. 2023.

182

ing on multiple nodes by using NCCL. These frame-
works use NCCL to perform collective communica-
tion among all the available GPUs.

Horovod[33] enables faster, easier distributed train-
ing in TensorFlow by employing efficient inter-GPU
communication with NCCL.

6.1.4 Supported Features

Communicator. NCCL assigns a unique rank be-
tween 0 and n — 1 to each of the n CUDA devices in
a communicator. Each communicator object associat-
ed with a fixed rank and CUDA device in the same
NCCL communicator will be used to launch collec-
tive communications.

Stream. Point-to-point primitives and collective
communication implementation perform communica-
tion and computation in a single CUDA kernel. The
entire message in each communication step is divided
into smaller chunks for fast synchronization. By
scheduling the operation in separate CUDA streams,
the NCCL call may return before the process is com-
plete.

Topology. Based on the interconnect network,
NCCL chooses from a set of topologies which include
ring- and tree-based approaches.

Protocols. There are three protocols when NCCL
sends data: “low latency, 8 bytes atomic store (LL)”,
“low latency, 128 bytes atomic store (LL128)”, and
Simple®. The bandwidth and the latency of these
protocols are different because of the type of inter-
node synchronization.

6.1.5 Example: Distributed Training with NCCL

Data-parallel distributed deep learning training on
many GPUs is one of the more compelling use-cases
for collective communications. As mentioned in Sub-
section 6.1.3, NCCL is used by many machine learn-
ing frameworks as a distributed training backend.
Here we will examine how collectives fit into the
training process and how NCCL’s API makes imple-
menting distributed training strategies simple.

In a data-parallel training arrangement, each de-
vice (GPU in the case of NCCL) holds a full model
locally. The training data are split and distributed to
each during each training step. NCCL’s point-to-point
communication can be used here. Once the data are
broken up, a root process can send data using the
ncclSend() function. Though NCCL does not provide

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

it directly, the programmer can emulate the Scatter
collective by placing ncclSend() in a for loop where
the index corresponds to the target device rank. Once
receiving data using the
ncclRecv() function, it can then run the forward pass

each device finishes
and compute local gradients. These local gradients
can be combined using an All-Reduce collective oper-
ation, or, ncclAllReduce() in NCCL. After the All-Re-
duce completes, each device will hold the updated
gradients.

6.1.6 Practical Workloads and Applications

In ResNet-101’s distributed training, the Tensor-
Flow modified to use NCCL is compared with the
regular distributed TensorFlow[33l. The training using
NCCL was about twice as fast as standard distribut-
ed TensorFlow training. When running a distributed
training job for VGG-16, NCCL leveraging RDMA
networks provides a 30% improvement over NCCL
using TCP networks.

6.2 Intel oneCCL

Intel oneAPI Collective Communications Library
(oneCCL) is a collective communication library creat-
ed with the intention of developing a single standard
API that is compatible with multiple different types
of hardware accelerators, ranging from CPUs to
GPUs to FPGAs, in a way that makes accelerating
deep learning training workloads easy. It is part of In-
tel’s larger ‘“oneAPI” project which incorporates a
deep neural network library and a C++ standard li-
brary for accelerators, among others. The library sup-
ports Intel products such as Core CPUs, Xeon CPUs,
Xeon Phi, and Intel graphics cards.

6.2.1 Architecture

Intel oneCCL is built on top of existing lower-lev-
el middleware and thus has support for InfiniBand,
Ethernet, and other interconnects. More specifically it
is built upon, Intel’s own customized MPICH-sup-
porting MPI library (i.e., Intel MPI Library) and
libfrabric, an open-source set of libraries for fabrics.
Low-level inter-node and inter-device communication
is handled by these libraries for portability and inter-
connect support. However, oneCCL still provides a di-
rect access to hardware (level 0) for performance criti-
cal computation and on-device communication.

®NCCL’s environment variables. https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html, Jan. 2023.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 183

There are three key abstractions present in oneC-
CL that the application programmer interacts with.
The first is the Communicator. Similar to other col-
lective communication libraries such as MPI, oneC-
CL uses communicators for inter-rank communica-
tion and they are used to define which resources
should participate in a given communication opera-
tion. However, in oneCCL, host communication and
device (e.g., GPU) communication requires the use of
separate communicators. Ranks in oneCCL can con-
tain either CPUs or devices depending on the type of
the communicator being considered. The second key
abstraction is the Stream object, instances of which
are used to pass execution context to communicator
objects. Streams also contain the collective operation
execution order. The third is the collective communi-
cations, the specifics of which are explained in Sec-
tion 4 and Subsection 6.2.2.

6.2.2 Routines

Intel oneCCL currently has support for the All-
Gather(v), All-Reduce, All-to-All(v), Barrier, Broad-
cast, Reduce, and Reduce-Scatter collective opera-
tions. These operations can be run asynchronously,
and the status of operations can be tracked using
event objects returned when operations are run. The
programmer is also given some control over operation
scheduling via priority fields.

6.2.3 Framework Support

Known previously as torch ccl, PyTorch has im-
plemented bindings for Intel oneCCL. Code to inter-
act with oneCCL is written in Python alongside any
PyTorch code, making oneCCL easily accessible to
machine learning researchers who have Python-based
workflows. A set of profiling tools is included to help
programmers debug problems or improve the perfor-
mance oft their software.

There is also a oneCCL integration available for
Horovod. Unlike with PyTorch, Horovod does not ex-
pose any oneCCL details directly to the programmer.
Instead, Horovod is configured to use oneCCL for col-
lective communication using environment variables.

6.3 Alibaba ACCL

Alibaba Collective Communication Library (AC-
CL) is another collectives library that takes advan-
tage of the fact that many deployments will have
multiple types of fabrics available, utilize multi-rail
networks, and will likely experience performance limi-
tations primarily as a result of communication cost[9.
By focusing on support for heterogeneous intercon-
nects, ACCL can outperform other collective commu-
nications libraries given that certain conditions are
met[9. ACCL can be used with both Tensorflow and
Horovod, though it is not open source, which limits
its use outside of Alibaba’s cloud products.

Alibaba provides their Apsara AI Accelerator
(ATACC) AI acceleration infrastructure as part of
their cloud service. A recent study by Alibaba Group
and Univesity of Leeds researchers found that ATACC
outperformed Horovod and BytePS for certain train-
ing workloads(™. Like ACCL, AIACC is currently
proprietary.

6.3.1 Hybrid Algorithms

One important feature of ACCL is its ability to
use hybrid collective algorithms. Hybrid algorithms
are sets of standard collective algorithms that are
combined in an effort to maximize network utiliza-
tion and therefore increase overall communication
performance. Choices about which algorithms to use
for any given situation are made by the system using
a model of the physical network derived from
probingl49.

6.4 AMD RCCL

The AMD ROCm Communication Collectives Li-
brary (RCCL) is an AMD port of NCCL for commu-
nications used within single and multi-process appli-
cations running on AMD and NVIDIA GPUs. The
aim of RCCL is to allow developers to run programs
on both NVIDIA and AMD GPUs without rewriting
the code. RCCL is a component of AMD ROCm®
open software stack® and is running on the system
with HIPify® which can convert CUDA code to HIP
(Heterogeneous-Computing Interface for Portability)

PROCmM—Open software platform for GPU compute. https://github.com/RadeonOpenCompute/ROCm, Jan. 2023.
®New AMD ROCm™ information portal -ROCm v4.5 and above. https://rocmdocs.amd.com/en/latest/, Jan. 2023.
PHIP Programming Guide v4.5. https://rocmdocs.amd.com/en/latest/Programming Guides/Programming-Guides.html, Jan.

2023.

184

code automatically. RCCL supports data transfers lo-
cally over PCle and xGMI interconnects, and over the
network through InfiniBand Verbs and TCP/IP sock-
ets. In a similar fashion to NCCL, RCCL supports
GPU-to-GPU direct communication operations.

6.4.1 Architecture

RCCL includes the same collective routines as
NCCL. The algorithms used in RCCL collectives are
similar to those found in NCCL, and as such are im-
plemented based on the ring and tree algorithms.
Fig.8(b) shows how the CUDA code can be convert-
ed to run the application on AMD and NVIDIA
GPUs: the CUDA code, for example, the NCCL li-
brary itself, is converted into the HPI code by HIPify.
The HPI code can then run on NVIDIA GPUs when
compiled with the NVCC compiler and can run on
AMD GPU when compiled with HCC.

6.4.2 Supported Features and Workloads

Starting from PyTorch 1.8 release, the ROCm
software stack—which includes the RCCL library—is
provided so that developers and researchers may use
PyTorch with AMD GPUs. RCCL was integrated in-
to Tensorflow in v1.15. In both PyTorch and Tensor-
flow, AMD GPUs can be used for deep learning work-
loads such as training and inference.

Because it uses the same API as NCCL, RCCL al-
so supports features such as communicator and topol-
ogy. The stream feature in RCCL is different from
the stream feature found in NCCL and uses a HIP
stream instead of a CUDA stream. The multi-GPU
communication in RCCL is supported by MPI. In ad-
dition, RCCL integrates NPKit®, which is a profiling
framework, to the communication routines so that
RCCL can give a profiling fine-grained trace on col-
lective routines.

6.5 Meta Gloo

Meta’s Gloo® is a communication library for deep
learning workloads which run on multiple machines.
Its architecture is shown in Fig.8(c). Gloo supports
both point-to-point communications and collective
communications on CPUs, as well as All-Reduce, All-

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1
Gather, and Broadcast when used on GPUs.

6.5.1 Architecture

Gloo supports multi-GPU communication over in-
terconnects such as PCle and NVLink. Gloo supports
different data transport methods for inter- and intra-
node data communication, for example, TCP, RoCE,
and IB for CPU-to-CPU transport and GPUDirect for
GPU-to-GPU transport.

6.5.2 Supported Features and Workloads

Gloo is provided by PyTorch as a communication
backend in the torch.distributed package. PyTorch
recommends that users choose Gloo mainly for dis-
tributed training on CPU and as the fallback option
for distributed training on GPU. Users can enable
Gloo as the part of components of Horovod in Tensor-
Flow, MXNet(7, and Keras®.

Gloo uses two methods to coordinate the commu-
nications channels for CPU data transport: MPI and
a custom rendezvous process?. Using MPI is straight-
forward. The MPI processes take control of the con-
nection channels across the devices and the MPI com-
municator is bound to the GPU context. Another way
to manage the communication across multiple ma-
chines is with Gloo’s rendezvous channel setup pro-
cess. Rendezvous uses a central key-value store sys-
tem accessible to all processes to store the Gloo con-
texts. Every process has a set of keys for its peers.
When a process wants to send messages to another
process, it uses the key-value store system to get the
information such as the corresponding IP address and
port as the value.

Gloo is used as a part of the Multi-GPU commu-
nication coordination controller in Horovod, and also
serves as an alternative method to manage communi-
cation and coordination among processes in Horovod.

For each cross-node All-Reduce collective opera-
tion, there are three phases that happen in order: 1)
every process performs a local reduction if a process
holds more than one buffer; 2) the All-Reduce collec-
tive is performed across processes; 3) like the reverse
of step 1, every process broadcasts the reduction re-
sults to its buffers. Gloo provides multiple algorithm

®NCCL profiling kit. https://github.com /microsoft /npkit, Jan. 2023.
®Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.
©@Keras. https://github.com/fchollet /keras, Jan. 2023.

https://github.com/facebookincubator/gloo

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 185

designs for phase 2 including the Ring, Ring-chunked,
Halving-Doubling, and BCube algorithms. More in-
depth design details are covered in Subsection 4.1.1.

6.6 Microsoft MSCCL

The Microsoft Azure team proposed the Mi-
crosoft Collective Communication Library (MSCCL)®
to make creating and executing custom collective
communication algorithms much easier. MSCCL is
made up of three components: GC3[™l, TACCLI™,
and SCCLI™]. GC3 provides a data-oriented domain-
specific language (DSL) and a corresponding compil-
er to simplify GPU communication programming.
TACCL is dedicated to automatically generating al-
gorithms by guiding a synthesizer. SCCL synthesizes
collective communication algorithms tailored to the
hardware topology. With the three components, cus-
tom collective communication algorithms can be im-
plemented efficiently and flexibly in MSCCL.

6.6.1 Architecture

For a given collective communication algorithm
and physical topology, MSCCL can explore different
implementations and optimizations with high-level
specifications. MSCCL enables generating efficient
custom communication algorithms with a chunk-ori-
ented program, as shown in Fig.8(d). The chunk-ori-
ented program specifies the chunk routine from source
to destination. To specify chunk routing through
GPUs, a DSL is used in GC3 and communication
sketch is used in TACCL. After the program is creat-
ed, it can be traced into a chunk-directed acyclic
graph (DAG). Then the instruction DAG (distinct
from the chunk DAG) is created by expanding the
chunk operations into instruction operations. After
that, the instruction DAG is scheduled after being
compiled into an intermediate representation (IR).
After the IR is generated, the MSCCL runtime exe-
cutes it efficiently, since MSCCL runtime inherits
NCCL’s capability to set point-to-point links over
various interconnects such as NVLink and PCle.

6.6.2 Framework Support

Because MSCCL’s API is compatible with NCCL,
it is convenient to integrate the MSCCL runtime in-
to state-of-the-art deep learning frameworks such as

PyTorch by swapping out the NCCL backend with
the MSCCL backend.

6.6.3 MSCCL Runtime

MSCCL DSL. The DSL is a chunk-oriented
dataflow language that can be used to write an effi-
cient communication kernel. The programmer speci-
fies how chunks are routed across GPUs in this lan-
guage.

MSCCL Runtime. IR is the executable file gener-
ated by MSCCL’s compiler. It can be executed by the
MSCCL runtime. The MSCCL runtime extends NC-
CL and uses NCCL’s point-to-point send and receive
functionality and is backward
NCCL’s APL

MSCCL Compiler. The MSCCL compiler traces
the program to record the chunk dependencies in the

compatible with

chunk DAG. The compiler then performs a series of
optimizations and schedules the resulting chunk DAG
to thread blocks specified in the IR. The MSCCL
DSL allows users to guide the compiler into optimiz-
ing and scheduling the program.

Optimization. It is important to optimize the
schedules of the program to improve performance. A
set of scheduling directives is used to optimize the
trade-off for parallelization when scheduling instruc-
tions to multiple thread blocks. There are several as-
pects. 1) Multiple connections may exist in the same
pair of GPUs and are labeled as channels to help dis-
tinguish different connections. The most efficient
channel can then be allocated for a particular opera-
tion. 2) A transfer can be broken up into multiple
smaller transfers to improve execution parallelism. 3)
When multiple contiguous chunks are sent from one
GPU to another, aggregating these chunks in a single
transfer can reduce the latency.

6.6.4 Practical Workloads and Applications

MSCCL® has been used for inference with a pub-
lic-facing language model on 8x A100 GPUs; the oper-
ations of the GPU have been accelerated by
1.22x-1.29x%, depending on the input batch size. MSC-
CL has also been used to train a sizeable Mixture-of-
Experts model on 256x A100 GPUs,
1.10x—1.89x speed-up depending on the Mixture-of-

providing

Experts model architecture.

@MSCCL: Microsoft collective communication library. https://github.com/microsoft/msccl, Jan. 2023.

186

7 Experimental Comparison of
Implementations

7.1 Experimental Setup

In this subsection, we run experiments on the SD-
SC Expanse® cluster to compare the performance of
different collective communication libraries. The hard-
ware details of Expanse are shown in Table 4. Tak-
ing into account availability and fairness, we select
PARAM® from Meta, NCCL Tests® from NVIDIA,
and OSU MPI Micro-Benchmarks (OMB)[7 as
benchmarks. We choose NCCL, Gloo, MSCCL, and
CUDA-aware MPI by MPICH®® and UCX as the li-
braries of interest in our performance comparison.
PARAM communication benchmarks are PyTorch-
based collective benchmarks while NCCL Tests are
CUDA-based collective benchmarks. We use Python
3.7, PyTorch 1.13, CUDA 11.6, NCCL 2.14.3, MSC-
CL 0.7.3, MPICH v4.0.2, and UCX v1.13.1. We use
16 GPUs across four nodes at most in our experi-
ments. The rest of this section is organized as follows.
We first benchmark NCCL and MSCCL with NCCL
Tests, and CUDA-aware MPI with OMB. Though we
use two different benchmarks to make the compari-
son, we keep the message size and collective routines
consistent. We benchmark NCCL and Gloo with
PARAM. In the experiments, all numbers are taken
three times. We pick up the stable number and
present the average number as the result shown be-

low.
Table 4. SDSC Expanse Details

Specification SDSC Expanse

GPU 4x NVIDIA V100 SMX2 (32 GB, 34.4
TFlop/s) per node

CPU 40-Core Xeon Gold 6248 2.5 GHz (384 GB
DDR4 DRAM)

Interconnects HDR InfiniBand, NVLINK 2

Topology Hybrid Fat-Tree

7.2 NCCL Tests Benchmark with NCCL
and MSCCL, and OMB with
CUDA-Aware MPI

The NCCL Tests benchmark can be used to com-
pare the latency of NCCL and MSCCL. This test in-

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

cludes four collectives: All-Reduce, All-Gather, All-to-
All, and Broadcast. OMB can be used to compare the
CUDA-aware MPI library with xCCL for the same
collective routines as NCCL Tests. MSCCL is built on
NCCL, and the runtime of MSCCL is an extension of
NCCL. Based on the configuration, the runtime of
MSCCL dynamically selects the efficient optimized al-
gorithms or NCCL’s built-in algorithms. For this rea-
son, most tests have similar latency results for NCCL
and MSCCL.

The latency of the All-Reduce collective with NC-
CL, MSCCL, and CUDA-aware MPI for different
message sizes is shown in Fig.9(a). MSCCL can effi-
ciently explore different algorithms, and uses the All-
Pairs, Hierarchical, and Two-Step All-Reduce algo-
rithms to support algorithmic optimizations for All-
Reduce. These algorithms are described with more de-
tails in Subsection 4.2.2. In most instances, the laten-
cy of MSCCL is slightly lower than that of NCCL for
both small and large message sizes. In general, the
All-Reduce latency of NCCL is about 1.07 times that
of MSCCL. Because MSCCL is built on top of NCCL,
NCCL and MSCCL show similar performance at dif-
ferent numbers of GPUs. For both MSCCL and NC-
CL, the latency numbers for two-node tests are about
three times those of single-node tests. The latency
numbers of four-node tests are four times those of sin-
gle-node tests. CUDA-aware MPI always has a high-
er latency than NCCL and MSCCL. For example,
CUDA-aware MPI latency is 2x—4x slower than the
one of NCCL and MSCCL when the message size is
smaller than 2 MB. When the message size is larger
than 2 MB, the CUDA-aware MPI latency is 4x-40x
slower than the one of NCCL and MSCCL. The rea-
son behind is that NCCL and MSCCL are optimized
based on NVIDIA GPU directly on both the program-
ming language and the algorithms.

The latency of the All-Gather collective with NC-
CL and MSCCL for different message sizes is shown
in Fig.9(b). MSCCL and NCCL use NCCL’s built-in
algorithms to support the All-Gather collective com-
munication, and the results of MSCCL are almost the
same as those of NCCL. It can be observed that the
latency of All-Gather is lower than that of All-Re-
duce. This is because All-Gather is equivalent to a

©@Expanse SDSC. https://www.sdsc.edu/services/hpc/expanse/, Jan. 2023.
©PARAM. https://github.com/facebookresearch/param, Jan. 2023.
@NCCL tests. https://github.com/NVIDIA /nccl-tests, Jan. 2023.

®MPICH. https://www.mpich.org/, Jan. 2023.

®0Official MPICH repository. https://github.com/pmodels/mpich, Jan. 2023.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning

300

187

--NCCL, 4 GPUs —-MSCCL, 4GPUs] 0.10 =|1.5 .
NCCL, 8 GPUs MSCCL, 8 GPUs ; ;
2501 *-NCCL, 16 GPUs —-MSCCL, 16 GPUs “ho
0.301-=-MPICH-CUDA, 4GPUs ~ .° 0.08
2001 0 25] " MPICH-CUDA, 8 GPUs . K 05l® e -
z +291-a-MPICH-CUDA, 16 GPUs - 0 g
g 0.20 .’ »E/ 3 0.0 4
» 150 - >.0.06 K .
g 0.15 g ; 24K 96K 384K
Q K AL
ElOO 0.10 ! %004 ._'—’/"____Ti—~———t75 .
0.05 A |7 %50
501 oo Lot ——t——t——t" e . -
128 512 2K 8K 32K 128K . 25 W
] Il S s i P 018 =
128 512 2K 8K 32K 128K 512K 2M 8M 32M 128M 768 1.5K 6K 1.5M 6M 24M
Message Size (byte) Message Size (byte)
(a) (b)
10.
0.12 " 008 0.20
‘ 7.5 A
0.10 004 > 77 0-15
: 5.0 . ~ ez
. _ s 0.10
" 2.5 -u)
é0.08 . . . Eoo3 0.05
> . ’ &
€ 0.06{ — gl — | 24K 96K 384K &
9 ’ o | £0.02
= , - 1600 = ——— _ -l40
— 0.04 a ——— ey ————12
- 400
ool TSI TR T by) 0.01{ g ocemnne - [20
. S =1 e I |)
.- ole S-- = L PR - ols
768 1.5K 6K 1.5M 6M 24M 128 512 2K 512K 2M 8M 32M 128M

Message Size (byte)
()

Message Size (byte)
(d)

Fig.9. Latency comparison among NCCL, MSCCL, and CUDA-aware MPICH with different collectives. (a) All-Reduce. (b) All-
Gather. (c) All-to-All. (d) Broadcast. NCCL and MSCCL are tested with NCCL Tests benchmark, while CUDA-aware MPICH is

tested with OSU MPI Micro-Benchmarking.

Gather followed by a Broadcast, while All-Reduce can
be formed by combining a reduction and a Broadcast.
For small message sizes, the trend of tests for differ-
ent numbers of GPUs is almost the same. When the
message size gets larger, the latency results of 2 and 4
nodes are close. When the message size is smaller
than 1.5 KB, CUDA-aware MPI can achieve lower la-
tency than NCCL and MSCCL. For example, the la-
tency of CUDA-aware MPI is 0.7x that of NCCL and
MSCCL when running on 16 GPUs. When the mes-
sage size becomes large, the latency of MPI can be
40x greater than that of NCCL and MSCCL when
running with 16 GPUs. CUDA-aware MPI provides
several algorithms and changes them automatically
based on several aspects, for example, the number of
nodes and the message size. Therefore, CUDA-aware
MPI can achieve lower latency than NCCL and MSC-
CL for small message sizes.

The All-to-All routine is the third collective we
compare among NCCL, MSCCL, and CUDA-aware

MPI, and the latency for different message sizes is
shown in Fig.9(c). We see that the overall latency re-
sults of NCCL and MSCCL among all message sizes
are similar because MSCCL also uses the built-in al-
gorithms of NCCL. Compared with the first two col-
lectives, All-to-All’s latency measurements are the
largest when the message size is large. The behavior
of CUDA-aware MPI is similar for All-Gather as dis-
cussed above: the latency is lower than that of both
NCCL and MSCCL when the message size is smaller
than 6 KB, and higher than that of both NCCL and
MSCCL when the message size is large. For example,
when the message size is 24 MB, CUDA-aware MPI
latency is 98x slower than the ones of NCCL and
MSCCL.

NCCL and MSCCL use the built-in algorithms of
NCCL in Broadcast, and the latency results for differ-
ent message sizes are shown in Fig.9(d). When the
message size is small, the latency results scale to the
number of nodes. However, when the message size be-

188

comes larger, the latency results for the 2-node and 4-
node tests no longer increase linearly because inter-
node communication becomes the bottleneck. In some
cases, the latency differences between xCCL (NCCL
and MSCCL) and CUDA-aware MPI are not so large.
When the message size is smaller than 512 KB, CU-
DA-aware MPI latency is 0.2x—0.5x of NCCL and
MSCCL latency. When the message size is larger than
8 MB, CUDA-aware MPI latency is 2x— 5x slower
than NCCL and MSCCL latency.

Overall, CUDA-aware MPI has higher latency
than NCCL and MSCCL when the message size is
larger than 1 MB. It may have lower latency than
NCCL and MSCCL when the message size is smaller
than 1.5 KB for All-Gather and All-to-All, and 512
KB for Broadcast.

7.3 PARAM Benchmark with NCCL and
Gloo

In this subsection, we benchmark NCCL and Gloo
as the communication backend with PARAM in
terms of latency for three collectives: All-Reduce, All-
Gather, and Broadcast. PARAM uses PyTorch as the
backend engine and therefore PARAM can better re-
flect the performance or overhead of PyTorch with
deep learning workloads. Not surprisingly, the laten-
cy of NCCL is lower than that of Gloo for all mes-
sage sizes and collectives. The reason behind is that
NCCL is involved in Gloo’s procedure on performing
collectives and they share some design concepts like
communicator, as described in Subsection 6.5. Also,
Gloo performs the collective operations on CPUs,
which is different from NCCL that performs the col-
lectives on GPUs. This is another reason why Gloo’s
performance is slower than NCCL’s.

Fig.10(a) shows the latency of the All-Reduce col-
lective with NCCL and Gloo for different message
sizes. On average, the All-Reduce latency of Gloo is
about 10 times to 20 times that of NCCL. In the ex-
treme case with 16 GPUs and small message sizes,
NCCL can be 40 times faster than Gloo. NCCL and
Gloo also show similar latency performance when
varying the number of GPUs. For small message
sizes, the All-Reduce latency measured with 2-node
tests is around twice that with 1-node tests. The la-
tency measured with 4-node tests is around four times
that with 1-node tests. For large message sizes, the la-
tency numbers with 8 GPUs and 16 GPUs are simi-
lar, while the latency with 4 GPUs is much smaller.

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

—e—NCCL, 1 Node, 4 GPUs Gloo, 2 Nodes, 8 GPUs
—4—Gloo, 1 Node, 4 GPUs —e—NCCL, 4 Nodes, 16 GPUs,
200 NCCL, 2 Nodes, 8 GPUs—a— Gloo, 4 Nodes, 16 GPUs |

2 150 // |
g 4 A
G A |/
& 3 s N
g 100 e [
z) SR . |/
[|/
11 i i/
50 &~ Val
A —k — kA — &k — & -:/. /4

0 M N N N - y Vg
128 512 2K 8K 32K 128K 512K —:/ :
0 === === ===
128 512 2K 8K 32K 128K 512K 2M 8M 32M 128M
Message Size (byte)

(a)

100 {—*—NCCL, 1 Node, 4 GPUs Gloo, 2 Nodes, 8 GPUs 4
—a—Gloo, 1 Node, 4 GPUs —e—-NCCL, 4 Nodes, 16 GPUsf
NCCL, 2 Nodes, 8 GPUs—4—Gloo, 4 Nodes, 16 GPUs /*
801 ///
a i
0 2.0 e f/
Eoeoy © - ,//
? 1 S S /’,
1
‘% 40 1.0 l/
A l
|
0.5 A A
20 - t———ﬁ——‘———ﬁ———l’ 1%
0.0°—= T T - — 47
768 1.5K 6K 24K 96K 384K_ _g”
0 =A==t =a==fF===F—_

768 1.5K 6K 24K 96K 384K 1.5M 6M 24M 96M

Message Size (byte)

(b)
——NCCL, 1 Node, 4 GPUs Gloo, 2 Nodes, 8 GPUs /‘
8001-4-Gloo, 1 Node, 4 GPUs ——NCCL, 4 Nodes, 16 GPUs,
NCCL, 2 Nodes, 8 GPUs—4—Gloo, 4 Nodes, 16 GPUs |
/
] /
_ 600 0.6 A)
w / |
E 0.5 / |
/
& 400{ 04 /A I
5 0.3 s /
B i /
A 0.2 _‘/ A/ /
2001 o EZEZEZE=1- A
—o—0o—0o—0—o—0
0.0 T T T . . - 4 "
128 512 2K 8K 32K 128K 512K 4/ 7
o _

128 512 2K 8K 32K 128K512K 2M 8M 32M 128M
Message Size (byte)

(c)

Fig.10. Latency of PARAM communication benchmarks for
NCCL/Gloo with different collectives. (a) All-Reduce. (b) All-
Gather. (c) Broadcast.

The reason could be that 4 GPUs residing in one
node are connected with the much faster NVLink,
which means there is no inter-node communication

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 189

necessary for 4-GPU tests.

The latency of the All-Gather collective with NC-
CL and Gloo for different message sizes is shown in
Fig.10(b). The overall trend of the latency of the All-
Gather collective is almost the same as that of the
All-Reduce collective. The influence of the number of
GPUs and message size is also very similar to the pre-
vious experiments. In the small message range, the
All-Gather latency of Gloo is about three times to six
times that of NCCL for different numbers of GPUs.
When it goes to a large message size, Gloo is getting
slower than NCCL, where its latency becomes around
10 times of NCCL’s latency on average. One differ-
ence is that the latency of All-Gather is lower than
that of All-Reduce, since All-Gather can be treated as
a Broadcast operation from all ranks while All-Re-
duce can be described as a reduction and a Broadcast.

The last collective we compare between NCCL
and Gloo is Broadcast. The latency for different mes-
sage sizes is shown in Fig.10(c). We still see the same
trend of the overall latency comparison among all
message sizes. The comparison with different num-
bers of GPUs still shows similar trends. One thing to
notice is that the NCCL’s latency is very consistent
among different message sizes and the number of
nodes, while the Gloo’s latency is less stable, especial-
ly when the message size becomes larger. For exam-
ple, when running with 4 GPUs, the range of the la-
tency for different messages from NCCL is around
0.03 ms to 1 ms but it is around 0.1 ms to 100 ms
from Gloo. Compared with the first two collectives,
Broadcast’s latency has a wide range depending on
the message size. When the message is small, the col-
lective can finish within 1 ms because the operation is
simple.

8 Discussion

Why Have xCCLs Become More Attractive Than
Classic MPI in the Industry? We summarize the fol-
lowing possible reasons. First, due to the popularity
of ML/DL in recent years, GPUs have become com-
mon in both industry and research. Therefore, the
community is interested in investigating collective
communication libraries for GPUs and specialized
hardware, like NVIDIA’s NCCL. Second, the NCCL
itself is well-designed. In essence, NCCL can be treat-
ed as a simpler implementation of MPI with CUDA,
which allows it to better utilize the powerful GPUs,
especially for the ML /DL workloads. NCCL is easy to

use, light-weight, and it provides high scalability and
stable performance. Third, compared with xCCL,
classic MPI communication libraries have not yet
been able to make effective use of hardware accelera-
tion, making them less attractive. For example, while
many features have been added to the MPI libraries
over the decades (such as GPU support), these nu-
merous features make the libraries increasingly bloat-
ed, which harms the performance and usability of
MPI.

Which Among the xCCLs Has the Best Perfor-
mance? As shown and discussed in the results from
Section 7, NCCL from NVIDIA shows better perfor-
mance more reliably. Beyond this, researchers are still
looking for opportunities where xCCL’s performance
can be further improved. For example, researchers
from the University of California, Berkeley, found
that NCCL’s model parameter synchronization con-
tains high overheads when performing distributed
training and they proposed Blink["7], a set of fast col-
lectives for distributed machine learning that reduces
end-to-end training time for the image classification
task up to 40%. Blink does this by dynamically gener-
ating optimal communication primitives. Another ex-
ample is MSCCL. MSCCL aims to look for the best
communication patterns or algorithms instead of di-
rectly using the traditional collective communication
algorithms. In [74], an abstraction called communica-
tion sketch is introduced. After obtaining important
information, such as hardware topology, the commu-
nication sketch will guide the synthesizer to find bet-
ter algorithms to perform a certain collective. Both of
these studies and our survey work shed light on po-
tential directions of future designs for xCCLs.

What Are the Common and Distinct Design Con-
siderations in Each xCCL? From the collective com-
munication routine perspective, we can observe some
similarities. xCCLs are evolving the classic MPI im-
plementations into their ML versions. Among all col-
lective routines shown in Table 1, two routines, All-
Reduce and Broadcast, are supported by all xCCLs.
Both collectives are useful and commonly ultilized
communication patterns in ML/DL applications. An-
other reason is that many xCCLs are designed based
on NCCL and/or use NCCL as the backend. Al-
though they share some design considerations for sup-
ported routines, the xCCLs have diverse feature sup-
ports, which are shown in Table 3. For example, dif-
ferent xCCLs may adopt different open source licens-
es or choose to be proprietary. In terms of supported

190

accelerators, NCCL is the industry defacto standard
for GPU-accelerated collectives, ROCm is aimed to
provide support for AMD GPUs, and Intel oneCCL
can support heterogeneous accelerators.

Will Current-Generation Networks Become the
Bottleneck for CCLs? From Blink[7, it is noted that
communication bottlenecks between GPUs cannot be
fully mitigated, for reasons such as differing server
configurations and GPU job scheduling. The network-
ing protocol can also affect scaling efficiency as TCP
networking will not significantly increase perfor-
mance compared with RDMA (over 90% scaling)
when running Inception V3 and ResNet-101 models
on Uber’s Horovod. In [78], researchers argued that
the network speed itself is not the bottleneck, but
choosing how to utilize fast network speeds more effi-
ciently is. The network speed is one important factor
which influences the performance of xCCLs, while the
real-world xCCL design is another one. The trend of
xCCLs is to adopt even faster networks. In the case of
ZionEXP6 from Meta, a single node accommodates 8
GPUs and each GPU has a dedicated 200 Gbps
RoCE NIC. In the case of ACCLM from Alibaba,
each node contains four Mellanox CX-5 (MT27800)
100 Gbps NICs. These real-world deployments in the
industry clearly show that network speed and the ap-
propriate software-hardware co-designs are playing
significant roles in modern deep learning applications.

9 Related Work

In our survey, we provide an in-depth overview of
multiple collective communication methods with a fo-
cus on industrial led collective communication solu-
tions. Different from our survey, many other existing
surveys focus more on computations, optimization, or
tuning.

Many existing surveys contribute extensive
overviews within collectives and tuning of parameters
or optimizations. A survey of collectives provides an
in-depth analysis into existing and state-of-the-art
methods for optimization and tuningl™. A paper on
the implementation of collective communication on
distributed-memory reviews best practices, analyzes
existing algorithms, and implements tunable libraries
for users®. A paper on the performance analysis of
MPI collective operations observes and improves col-
lective communication®! and researchers from Uni-
versity of Tennessee created automatically tuned col-

lective communications using matrix operations and

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

Fast Fourier Transforms/82l. These surveys are unlike
our survey, where we do not explicate computation
acceleration and rather focus on general algorithms
and industrial designs.

Distributed machine learning work also heavily re-
lies on collective communication systems to reduce
training time. A distributed machine learning survey
provides an extensive overview of current methods in-
cluding techniques and a review of the available sys-
tems(®]. An overview of parallel systems can guide
those who are unaware of which system may suit
their applications best. Recently, Wang et al. re-
viewed over 200 papers to present an overview on
large-scale machine learning from a computational
perspective, providing guidance in this direction/84.
The authors gave analysis on distributed deep learn-
ing, diving deep into each component that builds its
structure while covering popular implementations in
the community. A survey on distributed deep learn-
ing presents parallelism strategies for deep neural net-
works with analysis®, while another survey takes a
broader view and provides an overview on scalable
deep learning systems/86. Understanding scalability on
deep learning systems is important for realizing the
amount of hardware to allocate. A survey on dis-
tributed training using TensorFlow details the struc-
ture of TensorFlow for collectives and implements a
design faster than Horovod-NCCL2[63l. Ouyang et al.
provided a survey on methods to tackle communica-
tion overhead during distributed deep neural net-
works training from an inter-disciplinary perspectivel87.
The authors focused on the structure of distributed
deep neural networks and computations for collective
communication, including architectures and network
protocols. A performance analysis on multiple dis-
tributed deep learning frameworks (i.e., Caffe-MPI[8]
CNTKI™ MXNet[™, and TensorFlowl62l) on three
convolutional neural network models (i.e., AlexNet/8)
GoogleNet??l and ResNet-50) focuses on collective
communication bottlenecksl®2. Shi et al.%2 presented
a very vast combination of different configurations for
distributed training of Convolutional Neural Network
model that provides guidance on how to select frame-
works and models. The paper also reviews Convolu-
tional Neural Network training computations.

There are also other studies to further analyze
performance factors other than latency in collective
communication. For example, Hoefler and Moor re-
ported on tradeoffs between energy, memory, and
runtime of different algorithms for collectives®l, al-

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 191

though it should be noted that each application of
collectives will require its own specific implementa-
tion. It may not always be the case that the results
can be reproduced perfectly.

10 Conclusions

This paper presented an extensive survey on in-
dustry-led collective communication libraries (xCCL)
which are frequently used in distributed deep learn-
ing training workloads. We started at the physical
network topology layer that underlies all communica-
We then discussed the data
transfer algorithms used in collective routines. Next,

tion between devices.

we explored different industry solutions by compar-
ing their feature sets and explaining real-world deep
learning application use cases. We evaluated xCCL
performance by running two industry-made bench-
marks (NCCL Tests and PARAM). Based on our re-
sults, we explained the performance characteristics of
evaluated xCCLs. We also discussed why xCCLs are
gaining traction in the industry when the classic com-
munication libraries such as MPI implementations ex-
ist. We further explained how these libraries take ad-
vantage of hardware accelerators and fast intercon-
nects to support deep learning training workloads.
Through our tests and investigation, we have deter-
mined that NCCL is currently the most mature col-
lective communication library. We hope that future
efforts will be made to explore the optimizations
present in NCCL and effectively apply them in other
xCClLs.

Acknowledgments On the momentous occasion of
Prof. Kai Hwang’ 80th birthday, we would like to ex-
press our deepest gratitude and admiration for his ex-
ceptional contributions to the field of Parallel Com-
puting, as well as for his unwavering commitment to
educating and inspiring generations of students, in-
cluding ourselves. We want to thank the anonymous
reviewers for their insightful comments and sugges-
tions.

References

[1] Hwang K, Xu Z W. Scalable Parallel Computing: Tech-
nology, Architecture, Programming. McGraw-Hill, 1998.

[2] Brown T B, Mann B, Ryder N et al. Language models are
few-shot learners. In Proc. the 34th Int. Conf. Neural In-
formation Processing Systems, Dec. 2020, pp.1877-1901.

[3] Naumov M, Mudigere D, Shi H J M et al. Deep learning

recommendation model for personalization and recommen-

[4]

(6]

[7]

(8]

[9]

(10]

[11]

[12]

[13]

(14]

[15]

dation systems. arXiv: 1906.00091, 2019. https://arxiv.or
g/abs/1906.00091, Jan. 2023.

Bayatpour M, Chakraborty S, Subramoni H, Lu X Y,
Panda D K. Scalable reduction collectives with data par-
titioning-based multi-leader design. In Proc. the 2017 Int.
Conf. High Performance Computing, Networking, Stor-
age and Analysis (SC), Nov. 2017. DOI: 10.1145/31269
08.3126954.

Chu C H, Lu X Y, Awan A A, Subramoni H, Hashmi J,
Elton B, Panda D K. Efficient and scalable multi-source
streaming broadcast on GPU clusters for deep learning. In
Proc. the 46th Int. Conf. Parallel Processing (ICPP),
Aug. 2017, pp.161-170. DOI: 10.1109/ICPP.2017.25.
Panda D K, Lu X Y, Shankar D. High-Performance Big
Data Computing. The MIT Press, 2022.

Lu X Y, Islam N S, Wasi-Ur-Rahman et al. High-perfor-
mance design of Hadoop RPC with RDMA over Infini-
Band. In Proc. the 42nd ICPP, Oct. 2013, pp.641-650.
DOI: 10.1109/ICPP.2013.78.

Wasi-Ur-Rahman, Lu X Y, Islam N S, Panda D K.
HOMR: A hybrid approach to exploit maximum overlap-
ping in MapReduce over high performance interconnects.
In Proc. the 28th ACM Int. Conf. Supercomputing (ICS),
Jun. 2014, pp.33-42. DOI: 10.1145/2597652.2597684.
Islam N S, Lu X Y, Wasi-Ur-Rahman, Panda D K. SOR-
HDFS: A SEDA-based approach to maximize overlap-
ping in RDMA-enhanced HDFS. In Proc. the 23rd Int.
Symp. High-Performance Parallel and Distributed Com-
puting, Jun. 2014, pp.261-264. DOI: 10.1145/2600212.26
00715.

Lu X Y, Shankar D, Gugnani S, Panda D K. High-perfor-
mance design of Apache Spark with RDMA and its bene-
fits on various workloads. In Proc. the 2016 IEEE Int.
Conf. Big Data, Dec. 2016, pp.253-262. DOI: 10.1109/
BigData.2016.7840611.

Kalia A, Kaminsky M, Andersen D G. Using RDMA effi-
ciently for key-value services. In Proc. the 2014 ACM
Conference on SIGCOMM, Aug. 2014, pp.295-306. DOLI:
10.1145/2619239.2626299.

Shankar D, Lu X Y, Panda D K. SCOR-KV: SIMD-aware
client-centric and optimistic RDMA-based key-value store
for emerging CPU architectures. In Proc. the 2019 SC,
Dec. 2019, pp.257-266. DOI: 10.1109/HiPC.2019.00040.
Dragojevi¢ A, Narayanan D, Hodson O, Castro M. FaRM:
Fast remote memory. In Proc. the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation,
Apr. 2014, pp.401-414.

Shankar D, Lu X Y, Islam N, Wasi-Ur-Rahman, Panda D
K. High-performance hybrid key-value store on modern
clusters with RDMA interconnects and SSDs: Non-block-
ing extensions, designs, and benefits. In Proc. the 2016
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2016, pp.393-402. DOI:
10.1109/IPDPS.2016.112.

Gugnani S, Lu X Y, Panda D K. Swift-X: Accelerating
OpenStack swift with RDMA for building an efficient
HPC cloud. In Proc. the 17th IEEE/ACM International

https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://doi.org/10.1145/3126908.3126954
https://doi.org/10.1145/3126908.3126954
https://doi.org/10.1109/ICPP.2017.25
https://doi.org/10.1109/ICPP.2017.25
https://doi.org/10.1109/ICPP.2017.25
https://doi.org/10.1109/ICPP.2013.78
https://doi.org/10.1145/2597652.2597684
https://doi.org/10.1145/2597652.2597684
https://doi.org/10.1145/2597652.2597684
https://doi.org/10.1145/2600212.2600715
https://doi.org/10.1145/2600212.2600715
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1109/BigData.2016.7840611
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1109/HiPC.2019.00040
https://doi.org/10.1109/IPDPS.2016.112
https://doi.org/10.1109/IPDPS.2016.112
https://doi.org/10.1109/IPDPS.2016.112

192

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

25]

[26]

27]

28]

Symposium on Cluster, Cloud and Grid Computing, May
2017, pp.238-247. DOI: 10.1109/CCGRID.2017.103.
Gugnani S, Lu X Y, Panda D K. Designing virtualization-
aware and automatic topology detection schemes for ac-
celerating Hadoop on SR-IOV-enabled clouds. In Proc.
the 2016 IEEE Int. Conf. Cloud Computing Technology
and Science, Dec. 2016, pp.152-159. DOI: 10.1109/Cloud-
Com.2016.0037.

Zhang J, Lu X Y, Panda D K. Designing locality and NU-
MA aware MPI runtime for nested virtualization based
HPC cloud with SR-IOV enabled InfiniBand. In Proc. the
13th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execu-
tion Environments, Apr. 2017, pp.187-200. DOI:
10.1145/3050748.3050765.

Chu C H, Lu X Y, Awan A A et al. Exploiting hardware
multicast and GPUDirect RDMA for efficient broadcast.
IEEE Trans. Parallel and Distributed Systems, 2019,
30(3): 575-588. DOI: 10.1109/TPDS.2018.2867222.

Zhang J, Lu X Y, Chu C H, Panda D K. C-GDR: High-
performance container-aware GPUDirect MPI communi-
cation schemes on RDMA networks. In Proc. the 2019
IPDPS, May 2019, pp.242-251. DOIL: 10.1109/IPDPS.
2019.00034.

Li YK, Qi H Lu G, Jin F, Guo Y F, Lu X Y. Under-
standing hot interconnects with an extensive benchmark
survey. BenchCouncil Trans. Benchmarks, Standards and
Evaluations, 2022, 2(3): 100074. DOI: 10.1016/J. TBENCH.
2022.100074.

Pacheco P. An Introduction to Parallel Programming. El-
sevier, 2011. DOI: 10.1016/C2009-0-18471-4.

Gong Y F, He B S, Zhong J L. Network performance
aware MPI collective communication operations in the
cloud. IEEE Trans. Parallel and Distributed Systems,
2015, 26(11): 3079-3089. DOI: 10.1109/TPDS.2013.96.
Brown K A, Domke J, Matsuoka S. Hardware-centric
analysis of network performance for MPI applications. In
Proc. the 21st IEEE Int. Conf. Parallel and Distributed
Systems (ICPADS), Dec. 2015, pp.692-699. DOL:
10.1109/ICPADS.2015.92.

Katseff H P. Incomplete hypercubes. IEEE Trans. Com-
puters, 1988, 37(5): 604-608. DOI: 10.1109/12.4611.

Kalb J L, Lee D S. Network topology analysis. Technical
Report SAND2008-0069. Sandia National Laboratories,
Albuquerque, New Mexico, 2008. https://digital.library.unt.
edu/ark: /67531 /metadc845229/m2/1/high_res d/1028919.
pdf, Jan. 2023.

Kim J, Kim H. Router microarchitecture and scalability
of ring topology in on-chip networks. In Proc. the 2nd Int.
Workshop on Network on Chip Architectures, Dec. 2009,
pp-5-10. DOI: 10.1145/1645213.1645217.

Bouknight W J, Denenberg S A, McIntyre D E, Randall J
M, Sameh A H, Slotnick D L. The Illiac IV system. Pro-
ceedings of the IEEE, 1972, 60(4): 369-388. DOI: 10.
1109/PROC.1972.8647.

Cheng S H, Zhong W, Isaacs K E, Mueller K. Visualizing
the topology and data traffic of multi-dimensional torus

interconnect networks. IEEE Access, 2018, 6: 57191-

[29]

(30]

31]

[32]

33]

34]

[35]

(36]

37]

(38]

[39]

(40]

[41]

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

57204. DOI: 10.1109/ACCESS.2018.2872344.

Romanov A Y, Amerikanov A A, Lezhnev E V. Analysis
of approaches for synthesis of networks-on-chip by using
circulant topologies. Journal of Physics: Conference Se-
ries, 2018, 1050(1): 012071. DOI: 10.1088/1742-6596/
1050/1/012071.

Ravankar A A, Sedukhin S G. Mesh-of-Tori: A novel in-
terconnection network for frontal plane cellular proces-
sors. In Proc. the 1st Int. Conf. Networking and Comput-
ing, Nov. 2010, pp.281-284. DOI: 10.1109/IC-NC.2010.30.
Pham P H, Mau P, Kim C. A 64-PE folded-torus intra-
chip communication fabric for guaranteed throughput in
network-on-chip based applications. In Proc. the 2009
IEEE Custom Integrated Circuits Conference, Sept. 2009,
pp.645-648. DOI: 10.1109/CICC.2009.5280748.

Al-Fares M, Loukissas A, Vahdat A. A scalable, commod-
ity data center network architecture. ACM SIGCOMM
Computer Communication Review, 2008, 38(4): 63-74.
DOI: 10.1145/1402946.1402967.

Leiserson C E, Abuhamdeh Z S, Douglas D C et al. The
network architecture of the connection machine CM-5
(extended abstract). In Proc. the 4th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, Jun.
1992, pp.272-285. DOI: 10.1145/140901.141883.

Valerio M, Moser L E, Melliar-Smith P M. Recursively
scalable fat-trees as interconnection networks. In Proc.
the 13th IEEE Annual International Phoenix Conference
on Computers and Communications, Apr. 1994. DOI:
10.1109/PCCC.1994.504091.

Nienaber W. Effective routing on fat-tree topologies [Ph.
D. Thesis|. Florida State University, Tallahassee, 2014.
Prisacari B, Rodriguez G, Minkenberg C, Hoefler T.
Bandwidth-optimal all-to-all exchanges in fat tree net-
works. In Proc. the 27th ICS, Jun. 2013, pp.139-148.
DOI: 10.1145/2464996.2465434.

Li Y, Pan D. OpenFlow based load balancing for fat-tree
networks with multipath support. In Proc. the 12th IEEE
International Conference on Communications, Jun. 2013.
Kim J, Dally W J, Scott S, Abts D. Technology-driven,
highly-scalable dragonfly topology. In Proc. the 2008 In-
ternational Symposium on Computer Architecture, Jun.
2008, pp.77-88. DOI: 10.1109/ISCA.2008.19.

Teh M Y, Wilke J J, Bergman K, Rumley S. Design space
exploration of the dragonfly topology. In Lecture Notes in
Computer Science 10524, Kunkel J, Yokota R, Taufer M
et al. (eds.), Springer. pp.57-74. DOI: 10.1007/978-3-319-
67630-2 5.

Prisacari B, Rodriguez G, Garcia M, Vallejo E, Beivide R,
Minkenberg C. Performance implications of remote-only
load balancing under adversarial traffic in dragonflies. In
Proc. the 8th International Workshop on Interconnection
Network Architecture: On-Chip, Multi-Chip, Jan. 2014.
DOI: 10.1145/2556857.2556860.

Shpiner A, Haramaty Z, Eliad S, Zdornov V, Gafni B, Za-
havi E. Dragonfly+: Low cost topology for scaling data-
centers. In Proc. the 3rd IEEE International Workshop on
High-Performance Interconnection Networks in the Exas-

https://doi.org/10.1109/CCGRID.2017.103
https://doi.org/10.1109/CloudCom.2016.0037
https://doi.org/10.1109/CloudCom.2016.0037
https://doi.org/10.1109/CloudCom.2016.0037
https://doi.org/10.1145/3050748.3050765
https://doi.org/10.1109/TPDS.2018.2867222
https://doi.org/10.1109/IPDPS.2019.00034
https://doi.org/10.1109/IPDPS.2019.00034
https://doi.org/10.1016/J.TBENCH.2022.100074
https://doi.org/10.1016/J.TBENCH.2022.100074
https://doi.org/10.1016/C2009-0-18471-4
https://doi.org/10.1109/TPDS.2013.96
https://doi.org/10.1109/ICPADS.2015.92
https://doi.org/10.1109/12.4611
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://digital.library.unt.edu/ark:/67531/metadc845229/m2/1/high_res_d/1028919.pdf
https://doi.org/10.1145/1645213.1645217
https://doi.org/10.1109/PROC.1972.8647
https://doi.org/10.1109/PROC.1972.8647
https://doi.org/10.1109/ACCESS.2018.2872344
https://doi.org/10.1088/1742-6596/1050/1/012071
https://doi.org/10.1088/1742-6596/1050/1/012071
https://doi.org/10.1109/IC-NC.2010.30
https://doi.org/10.1109/CICC.2009.5280748
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1145/140901.141883
https://doi.org/10.1109/PCCC.1994.504091
https://doi.org/10.1145/2464996.2465434
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1007/978-3-319-67630-2_5
https://doi.org/10.1007/978-3-319-67630-2_5
https://doi.org/10.1007/978-3-319-67630-2_5
https://doi.org/10.1145/2556857.2556860

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning

(42]

(43]

44]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

cale and Big-Data Era (HIiPINEB), Feb. 2017. DOL
10.1109/HiPINEB.2017.11.

Bruck J, Ho C T, Kipnis S, Weathersby D. Efficient algo-
rithms for all-to-all communications in multi-port mes-
sage-passing systems. In Proc. the 6th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, Aug.
1994, pp.298-309. DOI: 10.1145/181014.181756.

Thakur R, Rabenseifner R, Gropp W. Optimization of
collective communication operations in MPICH. The In-
ternational Journal of High Performance Computing Ap-
plications, 2005, 19(1): 49-66. DOI: 10.1177/1094342005
051521.

Pjesivac-Grbovic J. Towards automatic and adaptive op-
timizations of MPI collective operations [Ph.D. Thesis].
University of Tennessee, Knoxville, 2007.

Huse L P. Collective communication on dedicated clus-
ters of workstations. In Proc. the 6th FEuropean
PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
Sept. 1999, pp.469-476. DOI: 10.1007/3-540-48158-3 58.
Barnett M, Shuler L, van De Geijn R, Gupta S, Payne D
G, Watts J. Interprocessor collective communication li-
brary (InterCom). In Proc. the IEEE Scalable High Per-
formance Computing Conference, May 1994, pp.357-364.
DOI: 10.1109/SHPCC.1994.296665.

Shroff M, Van De Geijn R A. CollMark: MPI collective
communication benchmark. In Proc. the 2000 ICS, June
29-July 2.

Rabenseifner R. Optimization of collective reduction oper-
ations. In Proc. the 4th Int. Conf. Computational Science,
Jun. 2004. DOI: 10.1007/978-3-540-24685-5 1.

Dong J B, Wang S C, Feng F et al. ACCL: Architecting
highly scalable distributed training systems with highly
efficient collective communication library. IEEE Micro,
2021, 41(5): 85-92. DOI: 10.1109/MM.2021.3091475.
Hockney R 'W. The communication challenge for MPP:
Intel paragon and Meiko CS-2. Parallel Computing, 1994,
20(3): 389-398. DOI: 10.1016/S0167-8191(06)80021-9.
Benson G D, Chu C W, Huang Q, Caglar S G. A compar-
ison of MPICH allgather algorithms on switched net-
works. In Proc. the 10th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, Oct. 2003,
pp-335-343. DOI: 10.1007/978-3-540-39924-7_47.

Almiési G, Heidelberger P, Archer C J et al. Optimiza-
tion of MPI collective communication on BlueGene/L sys-
tems. In Proc. the 19th ICS, Jun. 2005, pp.253-262. DOI:
10.1145/1088149.1088183.

Sergeev A, Del Balso M. Horovod: Fast and easy dis-
tributed deep learning in TensorFlow. arXiv: 1802.05799,
2018. https://arxiv.org/abs/1802.05799, Jan. 2023.

Goyal P, Dollér P, Girshick R et al. Accurate, large mini-
batch SGD: Training imagenet
1706.02677, 2017. https://arxiv.org/abs/1706.02677, Jan.-
2023.

Gupta U, Wu C, Wang X et al. The architectural impli-
cations of Facebook’s DNN-based personalized recommen-

in 1 hour. arXiv:

[56]

[57]

(58]

[59]

[60]

(61]

(62]

(63]

(64]

[65]

[66]

(67]

193

dation. In Proc. the 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
Feb. 2020, pp.488-501. DOIL: 10.1109/HPCA47549.2020.
00047.

Mudigere D, Hao Y, Huang J et al. Software-hardware co-
design for fast and scalable training of deep learning rec-
ommendation models. In Proc. the 49th Annual Interna-
tional Symposium on Computer Architecture, Jun. 2022,
pp-993-1011. DOI: 10.1145/3470496.3533727.

Paszke A, Gross S, Massa F et al. Pytorch: An impera-
tive style, high-performance deep learning library. In
Proc. the 33rd International Conference on Neural Infor-
mation Processing Systems, Dec. 2019.

Khudia D, Huang J Y, Basu P, Deng S, Liu H, Park J,
Smelyanskiy M. FBGEMM: Enabling high-performance
low-precision deep learning inference. arXiv: 2101.05615,
2021. https://arxiv.org/abs/2101.05615, Jan. 2023.

He K M, Zhang X Y, Ren S Q, Sun J. Deep residual
learning for image recognition. In Proc. the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016, pp.770-778. DOI: 10.1109/CVPR.
2016.90.

Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Ima-
geNet: A large-scale hierarchical image database. In Proc.
the 2009 CVPR, Jun. 2009, pp.248-255. DOIL: 10.1109/
CVPR.2009.5206848.

Dean J, Corrado G S, Monga R, Chen K, Devin M, Le Q
V, Mao M Z, Ranzato M A, Senior A, Tucker P, Yang K,
Ng A Y. Large scale distributed deep networks. In Proc.
the 25th Int. Conf. Neural Information Processing Sys-
tems, Dec. 2012, pp.1223-1231.

Abadi M, Barham P, Chen J et al. TensorFlow: A sys-
tem for large-scale machine learning. In Proc. the 12th
USENIX Conference on Operating Systems Design and
Implementation, Nov. 2016, pp.265-283.

Awan A A, Bédorf J, Chu C H et al. Scalable distributed
DNN training using TensorFlow and CUDA-aware MPI:
Characterization, designs, and performance evaluation. In
Proc. the 19th IEEE/ACM Int. Symp. Cluster, Cloud and
Grid Computing (CCGRID), May 2019, pp.498-507. DOI:
10.1109/CCGRID.2019.00064.

Biswas R, Lu X Y, Panda D K. Designing a micro-bench-
mark suite to evaluate gRPC for TensorFlow: Early expe-
riences. In Proc. the 9th Workshop on Big Data Bench-
marks, Performance Optimization, and Emerging Hard-
ware, Mar. 2018.

Biswas R, Lu X Y, Panda D K. Accelerating TensorFlow
with adaptive RDMA-based gRPC. In Proc. the 25th
IEEE Int. Conf. High Performance Computing (HiPC),
Dec. 2018, pp.2-11. DOI: 10.1109/HiPC.2018.00010.

Jain A, Awan A A, Subramoni H, Panda D K. Scaling
TensorFlow, PyTorch, and MXNet using MVAPICH2 for
high-performance deep learning on Frontera. In Proc. the
3rd IEEE/ACM Workshop on Deep Learning on Super-
computers (DLS), Nov. 2019, pp.76-83. DOI: 10.1109/
DLS49591.2019.00015.

Zhang Z, Zheng S, Wang Y S et al. MiCS: Near-linear

https://doi.org/10.1109/HiPINEB.2017.11
https://doi.org/10.1145/181014.181756
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1007/3-540-48158-3_58
https://doi.org/10.1007/3-540-48158-3_58
https://doi.org/10.1109/SHPCC.1994.296665
https://doi.org/10.1007/978-3-540-24685-5_1
https://doi.org/10.1007/978-3-540-24685-5_1
https://doi.org/10.1109/MM.2021.3091475
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1007/978-3-540-39924-7_47
https://doi.org/10.1007/978-3-540-39924-7_47
https://doi.org/10.1145/1088149.1088183
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1706.02677
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1145/3470496.3533727
https://doi.org/10.1145/3470496.3533727
https://doi.org/10.1145/3470496.3533727
https://arxiv.org/abs/2101.05615
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CCGRID.2019.00064
https://doi.org/10.1109/CCGRID.2019.00064
https://doi.org/10.1109/CCGRID.2019.00064
https://doi.org/10.1109/HiPC.2018.00010
https://doi.org/10.1109/DLS49591.2019.00015
https://doi.org/10.1109/DLS49591.2019.00015

194

(68]

(69]

[70]

(71]

(72]

(73]

(74]

(73]

[76]

[77]

(78]

(79]

(80]

scaling for training gigantic model on public cloud. Pro-
ceedings of the VLDB Endowment, 2022, 16(1): 37-50.
DOI: 10.14778/3561261.3561265.

Rajbhandari S, Rasley J, Ruwase O, He Y X. ZeRO:
Memory optimizations toward training trillion parameter
models. In Proc. the 2020 SC, Nov. 2020.

Jia Y, Shelhamer E, Donahue J et al. Caffe: Convolution-
al architecture for fast feature embedding. In Proc. the
22nd ACM International Conference on Multimedia, Nov.
2014, pp.675-678. DOIL: 10.1145/2647868.2654889.

Seide F, Agarwal A. CNTK: Microsoft’s open-source
deep-learning toolkit. In Proc. the 22nd ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining, Aug.
2016, p.2135. DOIL: 10.1145/2939672.2945397.

Chen T Q,Li M, Li Y T, Lin M, Wang N Y, Wang M J,
Xjao T J, Xu B, Zhang C Y, Zhang Z. MXNet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv: 1512.01274, 2015. https://arx-
iv.org/abs/1512.01274, Jan. 2023.

Lin L X, Qiu S H, YuZ Q, You L, Long X, Sun X Y, Xu
J, Wang Z. AIACC-training: Optimizing distributed deep
learning training through multi-streamed and concurrent
gradient communications. In Proc. the 42nd IEEE Int.
Conf. Distributed Computing Systems, Jul. 2022,
pp-853-863. DOI: 10.1109/ICDCS54860.2022.00087.
Cowan M, Maleki S, Musuvathi M et al. MSCCL: Mi-

crosoft collective = communication library. arXiv:
2201.11840, 2022. https://arxiv.org/abs/2201.11840v1,
Jan. 2023.

Shah A, Chidambaram V, Cowan M et al. TACCL: Guid-
ing collective algorithm synthesis using communication
sketches. In Proc. the 2023 USENIX Symposium on Net-
worked Systems Design and Implementation, April 2023.
Cai Z X, Liu Z Y, Maleki S, Musuvathi M, Mytkowicz T,
Nelson J, Saarikivi O. Synthesizing optimal collective al-
gorithms. In Proc. the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Feb.
2021, pp.62-75. DOI: 10.1145/3437801.3441620.

Panda D K, Tomko K, Schulz K, Majumdar A. The
MVAPICH project: Evolution and sustainability of an
open source production quality MPI library for HPC. In
Proc. the Workshop on Sustainable Software for Science:
Practice and Experiences, Nov. 2013.

Wang G H, Venkataraman S, Phanishayee A et al. Blink:
Fast and generic collectives for distributed ML. In Proc.
the 2020 Machine Learning and Systems 2, Mar. 2020,
pp.172-186.

Zhang Z, Chang C K, Lin H B et al. Is network the bot-
tleneck of distributed training? In Proc. the 2020 Work-
shop on Network Meets AI & ML, Aug. 2020, pp.8-13.
DOI: 10.1145/3405671.3405810.

Wickramasinghe U, Lumsdaine A. A survey of methods
for collective communication optimization and tuning.
arXiv: 1611.06334, 2016. https://arxiv.org/abs/1611.06334,
Jan. 2023.

Chan E N, Heimlich M, Purkayastha A, van de Geijn R.
Collective communication: Theory, practice, and experi-

[81]

(82]

(83]

[84]

(85]

(86]

(87]

(88]

(89]

(90]

(91]

(92]

(93]

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

ence. Concurrency and Computation: Practice and Expe-
rience, 2007, 19(13): 1749-1783. DOI: 10.1002/cpe.1206.
Pjesivac-Grbovi¢ J, Angskun T, Bosilca G, Fagg G E,
Gabriel E, Dongarra J J. Performance analysis of MPI
collective operations. Cluster Computing, 2007, 10(2):
127-143. DOI: 10.1007/s10586-007-0012-0.

Vadhiyar S S, Fagg G E, Dongarra J. Automatically
tuned collective communications. the 2000
ACM/IEEE Conference on Supercomputing, Nov. 2000.
DOI: 10.1109/SC.2000.10024.

Verbraeken J, Wolting M, Katzy J et al. A survey on dis-

In Proc.

tributed machine learning. ACM Computing Surveys,
2020, 53(2): 30. DOI: 10.1145/3377454.

Wang M, Fu W J, He X N, Hao S J, Wu X D. A survey
on large-scale machine learning. IEEE Trans. Knowledge
and Data Engineering, 2022, 34(6): 2574-2594. DOI: 10.
1109/TKDE.2020.3015777.

Ben-Nun T, Hoefler T. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys, 2019, 52(4): Article No. 65.
DOI: 10.1145/3320060.

Mayer R, Jacobsen H A. Scalable deep learning on dis-
tributed infrastructures: Challenges, techniques, and tools.
ACM Computing Surveys, 2020, 53(1): Article No. 3.
DOI: 10.1145/3363554.

Ouyang S, Dong D Z, Xu Y M, Xiao L Q. Communica-
tion optimization strategies for distributed deep neural
network training: A survey. Journal of Parallel and Dis-
tributed Computing, 2021, 149: 52-65. DOI: 10.1016/j.
jpdc.2020.11.005.

Lee S, Purushwalkam S, Cogswell M, Crandall D, Batra
D. Why M heads are better than one: Training a diverse
ensemble of deep networks. 1511.06314, 2015.
https://arxiv.org/abs/1511.06314, Jan. 2023.

Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi-

cation with deep convolutional neural networks. In Proc.

arXiv:

the 25th International Conference on Neural Information
Processing Systems, Dec. 2012, pp.1097-1105.

Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S,
Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Go-
ing deeper with convolutions. In Proc. the 2015 CVPR,
Jun. 2015. DOI: 10.1109/CVPR.2015.7298594.

He K M, Zhang X Y, Ren S Q, Sun J. Deep residual
learning for image recognition. In Proc. the 2016 CVPR,
Jun. 2016, pp.770-778. DOI: 10.1109/CVPR.2016.90.

Shi S H, Wang Q, Chu X W. Performance modeling and
evaluation of distributed deep learning frameworks on
GPUs. the DASC/PiCom/DataCom/Cyber-
SciTech, Aug. 2018, pp.949-957. DOIL: 10.1109/DASC/
PiCom/DataCom/CyberSciTec.2018.000-4.

Hoefler T, Moor D. Energy, memory, and runtime trade-

In Proc.

offs for implementing collective communication opera-
tions. Supercomputing Frontiers and Innovations, 2014,
1(2): 58-75. DOI: 10.14529/jsfi140204.

https://doi.org/10.14778/3561261.3561265
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1512.01274
https://doi.org/10.1109/ICDCS54860.2022.00087
https://doi.org/10.1109/ICDCS54860.2022.00087
https://doi.org/10.1109/ICDCS54860.2022.00087
https://arxiv.org/abs/2201.11840v1
https://arxiv.org/abs/2201.11840v1
https://arxiv.org/abs/2201.11840v1
https://doi.org/10.1145/3437801.3441620
https://doi.org/10.1145/3405671.3405810
https://arxiv.org/abs/1611.06334
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1007/s10586-007-0012-0
https://doi.org/10.1109/SC.2000.10024
https://doi.org/10.1145/3377454
https://doi.org/10.1109/TKDE.2020.3015777
https://doi.org/10.1109/TKDE.2020.3015777
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3363554
https://doi.org/10.1016/j.jpdc.2020.11.005
https://doi.org/10.1016/j.jpdc.2020.11.005
https://arxiv.org/abs/1511.06314
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4
https://doi.org/10.14529/jsfi140204

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 195

Adam Weingram is a Ph.D. stude-
nt in the Parallel and Distributed Sys-
tems Laboratory (PADSYS Lab) of De-
partment of Computer Science and En-
gineering at the University of Califor-
nia, Merced (UCM). Previously, he re-

ceived his B.S. degree in computer sci-

ence from UCM. His research interests include systems
for machine learning and applications of computer scie-

nce in remote sensing.

Yuke Li is a Ph.D. student in the
PADSYS Lab of Department of Com-
puter Science and Engineering at the
University of California, Merced. Pre-

viously, she received her M.S. degree

and B.E. degree from The University
) of Edinburgh, Edinburgh, and Sun
Yat-sen University (SYSU), Guangzhou, in 2020 and
2019, respectively. Her research interests include high-
performance computing, MPI, RDMA, and DPU. She is
a student member of ACM.

Hao Qi is a M.S. student in the
PADSYS Lab of Department of Com-
puter Science and Engineering at the
University of California, Merced. Pre-
viously, he received his M.S. degree in

biomedical engineering from the Ohio

State University, Columbus, and B.S.
degree in bioscience from Nankai University, Tianjin, in
2021 and 2019, respectively. His research interests main-
ly include high-performance computing, parallel comput-

ing, and system for machine learning.

Darren Ng is a M.S. student in the
PADSYS Lab of Department of Com-
puter Science and Engineering at the
University of California, Merced. Pre-
viously, he received his B.E. degree in
computer science from UCM. His re-

search interests include deep learning,

convolutional neural networks, and cloud computing.

Liuyao Dai is a Ph.D. student in
the PADSYS Lab of Department of

Computer Science and Engineering at

— _—
A o &>
' the University of California, Merced.
— Previously, he received his M.S. de-

', gree in electrical engineering from
“ Southern University of Science and
Technology, Shenzhen, and B.S. degree from Huazhong
University of Science and Technology, Wuhan, in 2022
and 2018, respectively. His research interests include the

co-design of computer software and hardware, and
GPU-based systems.

Xjaoyi Lu is an assistant professor
in the Department of Computer Scie-
nce and Engineering at the University
of California, Merced (UC Merced), Me-
rced. He is leading the Parallel and
Distributed Systems Laboratory (PA-
DSYS Lab) at UC Merced. His curr-
ent research interests include parallel and distributed co-
mputing, high-performance interconnects, advanced I/0
technologies, big data analytics, cloud computing, and
deep learning system software. He has published one
book and more than 100 papers in prestigious interna-
tional conferences, workshops, and journals with multi-
ple Best (Student) Paper Awards or Nominations. He
has delivered more than 100 times of invited talks, tuto-
rials, and presentations worldwide. Many of Dr. Lu’s re-
search outcomes (e.g., PMIdioBench, HiBD, MVA-
PICH2-Virt, DataMPI) are made publicly available to
the community and are currently being used by hun-
dreds of organizations all over the world. Dr. Lu has re-
ceived a Meta/Facebook Faculty Research Award and a
Google Research Award. Dr. Lu’s research has also been
funded by the National Science Foundation (NSF) of
USA. Dr. Lu is a member of ACM and IEEE. More de-
tails about Dr. Lu can be found at http://faculty.

ucmerced.edu/luxi.

http://faculty.ucmerced.edu/luxi
http://faculty.ucmerced.edu/luxi

	1 Introduction
	2 Collective Communication Routines
	2.1 Broadcast
	2.2 All-Gather
	2.3 Scatter
	2.4 All-to-All(v)
	2.5 Reduce
	2.6 All-Reduce
	2.7 Reduce-Scatter

	3 Network Topologies for Collectives
	3.1 Hypercube
	3.2 Ring
	3.3 Torus
	3.4 Fat-Tree
	3.5 Dragonfly and Dragonfly+

	4 Collective Communication Algorithms
	4.1 Classic Collective Communication Algorithms
	4.1.1 Ring
	4.1.2 Binomial Tree
	4.1.3 Recursive-Doubling
	4.1.4 Recursive-Halving

	4.2 xCCL Collective Communication Algorithms
	4.2.1 NCCL
	4.2.2 MSCCL
	4.2.3 Gloo
	4.2.4 ACCL

	5 Collectives and Deep Learning
	5.1 Case Study with Meta Workloads
	5.2 Case Study with Google Workloads
	5.3 Case Study with Uber Workloads
	5.4 Case Study with Amazon Workloads

	6 Industry Solutions—xCCL
	6.1 NVIDIA NCCL
	6.1.1 Architecture
	6.1.2 NCCL API
	6.1.3 Framework Support
	6.1.4 Supported Features
	6.1.5 Example: Distributed Training with NCCL
	6.1.6 Practical Workloads and Applications

	6.2 Intel oneCCL
	6.2.1 Architecture
	6.2.2 Routines
	6.2.3 Framework Support

	6.3 Alibaba ACCL
	6.3.1 Hybrid Algorithms

	6.4 AMD RCCL
	6.4.1 Architecture
	6.4.2 Supported Features and Workloads

	6.5 Meta Gloo
	6.5.1 Architecture
	6.5.2 Supported Features and Workloads

	6.6 Microsoft MSCCL
	6.6.1 Architecture
	6.6.2 Framework Support
	6.6.3 MSCCL Runtime
	6.6.4 Practical Workloads and Applications

	7 Experimental Comparison of Implementations
	7.1 Experimental Setup
	7.2 NCCL Tests Benchmark with NCCL and MSCCL, and OMB with CUDA-Aware MPI
	7.3 PARAM Benchmark with NCCL and Gloo

	8 Discussion
	9 Related Work
	10 Conclusions
	References

