
SBGT: Scaling Bayesian-based Group Testing for
Disease Surveillance

1st Weicong Chen
Department of Computer and Data Sciences

Case Western Reserve University
Cleveland, USA

wxc326@case.edu

2nd Hao Qi
Department of Computer Science and Engineering

University of California Merced
Merced, USA

hqi6@ucmerced.edu

3rd Xiaoyi Lu
Department of Computer Science and Engineering

University of California Merced
Merced, USA

xiaoyi.lu@ucmerced.edu

4th Curtis Tatsuoka
Department of Medicine
University of Pittsburgh

Pittsburgh, USA
cut4@pitt.edu

Abstract—The COVID-19 pandemic underscored the necessity
for disease surveillance using group testing. Novel Bayesian meth-
ods using lattice models were proposed, which offer substantial
improvements in group testing efficiency by precisely quantifying
uncertainty in diagnoses, acknowledging varying individual risk
and dilution effects, and guiding optimally convergent sequential
pooled test selections using a Bayesian Halving Algorithm. Com-
putationally, however, Bayesian group testing poses considerable
challenges as computational complexity grows exponentially with
sample size. This can lead to shortcomings in reaching a desirable
scale without practical limitations. We propose a new framework
for scaling Bayesian group testing based on Spark: SBGT.
We show that SBGT is lightning fast and highly scalable. In
particular, SBGT is up to 376x, 1733x, and 1523x faster than
the state-of-the-art framework in manipulating lattice models,
performing test selections, and conducting statistical analyses,
respectively, while achieving up to 97.9% scaling efficiency up
to 4096 CPU cores. More importantly, SBGT fulfills our mission
towards reaching applicable scale for guiding pooling decisions
in wide-scale disease surveillance, and other large scale group
testing applications.

Index Terms—Group testing, Bayesian, Lattices, Spark,
COVID-19

I. INTRODUCTION

Since the outbreak of COVID-19, there has been a renewed
interest in group testing due to the dire need for widespread
testing [1]–[4]. Large-scale and repeated testing for COVID-
19 and future pandemics will play an essential role in disease
surveillance. Efficiencies of scale in testing are needed, and
group testing can provide massive gains.

The original group testing formulation was proposed by
Dorfman [5], who suggested to first group test all N subjects:
if the test result is negative, all subjects are classified as
negative; otherwise, each subject will be tested individually.
Dorfman showed that group testing could lead to considerable
savings in testing relative to individual testing. However, it

This work was supported in part by the NSF research grant DRL #1561716
and CCF #2132049.

should be noted that this approach does not consider testing
errors or prior risks in classification, which can lead to high
rates of false positives and false negatives [6]. Since the
outbreak of COVID-19, it has been of interest to develop
one-stage group testing methods [7], [8], for instance which
rely on erasure coding (EC). These group testing approaches
suggested for COVID-19 are only effective for the lower-risk
scenarios with meager prevalence rates (< 1.3%).

Recently, we proposed a Bayesian approach [6] with an as-
sociated high-performance Bayesian group testing framework
named HiBGT [9], aiming to address issues in previous group
testing designs. Our approach achieves accurate, flexible, and
efficient group testing by leveraging Bayesian classification
on lattice models [6], [10], where Bayesian methods and
lattice representations for classification seamlessly allow for
the incorporation of prior risk information and the updating
of classification uncertainty in light of testing error. As illus-
trated in Figure 1, the workflow of Bayesian group testing
is described as follows: the possible diagnostic outcomes of
subjects can be represented using a lattice model (see §III).
Acknowledging varying local prevalence and individual risk
levels are done in a Bayesian manner through prior probability
specifications. By iteratively performing test selection with
a rule that has attractive statistical properties, the Bayesian
Halving Algorithm (BHA) (see §IV), and updating posterior
probability distributions on a lattice model, short sequences
of pooled test selections can be generated, and tree-based
statistical analysis (see §V) of classification performance can
be conducted.

A. Motivation

Preliminary studies conducted by HiBGT have shown that
Bayesian group testing can achieve outstanding statistical per-
formance under varied individual risk levels while considering
testing errors, e.g., it constantly reaches over 99.5% correct-
ness in identifying positive subjects with less than 0.1% false

951

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00099

(a) Testing Sample (b) Lattice Model (c) Test Selection

ABC

AB BCAC

A CB

(d) Statistical Analysis

ABC

AB BCAC

A CB

AB C

ABC

AB AB AB

N P

N P N P

Fig. 1: Overview of Bayesian Group Testing Workflow

positive/negative across different prevalence and individual
risk levels. Importantly, results show that it can help save more
than 7x the number of expected tests compared to individual
testing when N = 20. However, as illustrated in Table I,
HiBGT suffers from significant computational and scaling
challenges, i.e., constructing lattice models, BHA, and tree-
based statistical analysis will grow exponentially in complexity
as the number of subjects (N) increases. When N = 30, which
is the arguable upper limit for practical COVID-19 group
testing application [1], [11] such that dilution effects are still
manageable relative to pooled test accuracy, a lattice model
will comprise 230 (over 1 billion) states, each corresponding
to a unique test selection. To select a next-stage test selection,
BHA iterates and computes through these states over 260

(1.15 × 1018) times. Moreover, a tree can potentially spawn
millions of lattice models and test selections along branches
when a statistical analysis is conducted.

TABLE I: Illustration of computational challenges in scaling
up test selections using HiBGT and comparison between our
proposed SBGT. Columns 2 and 3 are the number of states
in a lattice model and the number of computation operations
needed for a test selection. Columns 4 to 6 are time consump-
tion for performing one test selection. Cells highlighted in blue
are projected execution times using HiBGT.

N # States
Comp.

Ops
HiBGT

(1k Cores)
SBGT

(1k Cores)
SBGT

(4k Cores)
25 33M 1.1× 1015 4 Hours 9 sec 8 sec
26 67M 4.5× 1015 16 Hours 14 sec 12 sec
27 134M 1.8× 1016 64 Hours 42 sec 19 sec
28 268M 7.2× 1016 11 Days 3 min 49 sec
29 537M 2.9× 1017 44 Days 11 min 4 min
30 1.07B 1.1× 1018 6 Months 50 min 13 min

To alleviate high complexities, HiBGT proposed several
optimization algorithms from the biostatistical perspective,
such as shrinking the size of the lattice model when reaching
partial classification and reducing the complexity of statistical
analysis by sacrificing some accuracy or simplifying prior
assumptions. It also leverages parallel computing at multiple
levels, i.e., at BHA or statistical analysis. Despite spending
hours using nearly 1,000 CPU cores, these optimization efforts
only reach scales of N = 25 for a test selection or N = 20
for an edge-case/low-accuracy statistical analysis. Compared

to the target upper limit (N = 30), the current computation
scale falls short by over three magnitudes (210 based on the
asymptotic complexity of BHA, N = 25 versus N = 30).
Additionally, the need for rapid feedback of results from group
testing in dealing with infectious diseases necessitates short
computation times for finding test selections, ideally within
a few minutes. It thus raises tremendous challenges to push
Bayesian group testing to such an unprecedented scale.

B. Contribution

In this paper, we propose a Scalable Bayesian Group
Testing framework for disease surveillance, namely SBGT.
Importantly, SBGT carries our mission for pushing Bayesian
group testing to a broadly applicable scale, which drives us
to pursue innovative designs and implementations using state-
of-the-art HPC and big data technologies. We meticulously
explore the design spectrum of the three major components
in Bayesian group testing, including 1) modeling, i.e., how
to construct and manipulate the lattice model using high-
performance abstractions and operations; 2) test selection, i.e.,
how to optimize and parallelize BHA by acknowledging its
mathematical reasoning; and 3) tree-based statistical analysis,
i.e., how to design efficient parallel tree construction schemes
and exploit Bayesian probabilities for acceleration.

In SBGT, we thoroughly redesign each major component
of Bayesian group testing compared to HiBGT: 1) we pro-
pose an innovative bit-based abstraction for the lattice model
to improve its performance dramatically; 2) we propose an
optimized Bayesian Halving Algorithm (Op-BHA) by lever-
aging elegant order-theoretic properties [10] to significantly
reduces its computational complexity; 3) we propose two
unique parallel tree-construction schemes on top of the ex-
isting scheme through detailed performance profiling, which
significantly streamline the statistical analysis process; and 4)
we implement various data parallelization techniques and load
balance optimizations in Spark runtime to improve SBGT’s
performance and scalability.

We systematically evaluate our artifacts on two HPC clusters
(i.e., SDSC Expanse and TACC Stampede2) with up to 4096
CPU cores. Based on the evaluation, we show that SBGT is
up to 376x, 1733x, and 1523x faster than HiBGT in lattice
models, test selections, and statistical analyses, respectively

952

(SBGT can be even faster at a larger scale, but the existing
work has failed to scale due to slowness). As shown in Table I,
SBGT is also fast enough to guide test selections at the
full applicable scale for Bayesian group testing (N = 30),
averaging only 13 minutes across various individual risk levels.
Last but not least, SBGT is near-linearly scalable; we achieve
up to 97.9% scaling efficiency up to 4096 CPU cores. To the
best of our knowledge, this paper is the first work to push
Bayesian group testing to this unprecedented scale.

II. OVERVIEW OF SBGT
As illustrated in Figure 2, the architecture of SBGT is

arranged as a top-down layout with three layers. Each layer
contains some modules (large boxes), and each module is
labeled by its designs and implementations as feature boxes
(small colored boxes). Note that features colored in red are
proposed in this paper, and features colored in blue are adopted
from HiBGT
Top layer, the top layer of SBGT consists of two modules:
the lattice model (§III) and BHA (§IV). The lattice model
is essential in providing micro-functionalities for Bayesian
group testing tasks. The current implementation of the lattice
model uses hashmap as the core abstraction. In SBGT, we
propose bit-based lattice model. It leverages an innovative
binary-encoded abstraction (§III-A) to formulate the lattice
model into a self-indexed array and allows for efficient con-
struction/manipulation using bitwise operations (§III-B). The
test selection functionality is established by performing BHA
over the lattice model. In SBGT, we propose optimizing BHA,
named Op-BHA (IV-A), which significantly reduces BHA’s
computational complexity.
Middle Layer, the middle layer of SBGT is tree-based
statistical analysis (§V). It relies on the intricate interplay
between the top-layer modules, i.e., lattice model and BHA,
to construct trees. HiBGT proposed the multi-tree scheme
(§V-A) with several complexity reduction techniques based on
the statistical reasoning of Bayesian group testing, i.e., lattice
shrinking, the symmetry approach, and the accuracy trade-off
approach. We gain insights from these designs and propose
two new schemes named the single-tree scheme (§V-B) and
the fusion-tree scheme (§V-C), which are proven significantly
more performant in large-scale statistical analyses.
Bottom layer, the bottom layer of SBGT includes our specifi-
cally designed data parallelisms and load-balancing techniques
that are deeply integrated with Spark’s runtime environment.
These features allow top- and middle-layer modules to be
parallelized efficiently in Spark. In addition to the existing
data parallelization technique offered by HiBGT, i.e., inter-tree
parallelism (§V-A), we propose two new parallelisms: intra-
lattice parallelism (§IV-B) and inter-lattice parallelism (§V-B),
to effectively accommodate other new features in SBGT. We
further propose workload alignment and multi-threading on
Spark to improve each parallelism’s load balance.

SBGT is recognized as a high-performance and scalable
framework that realizes the workflow of Bayesian group test-
ing using Spark while offering coherent end-to-end designs,

Hashmap-based
Lattice Model

Bit-based
Lattice Model

Lattice Model

Tree-based Statistical Analysis
Single-treeMulti-tree Fusion-tree

BHA
BHA Op-BHA

Spark Runtime
Data

Parallelism
Inter-tree Inter-lattice Intra-lattice

Load
Balance

Fine-grained
Scheduling

Workload
Alignment

Multi-threading
on Spark

Lattice
Shrinking

Complexity
Reduction

Symmetry Accuracy
Trade-off

Construction
Schemes

Fig. 2: Architecture overview of SBGT. Features colored in
red are proposed in this paper, and features colored in blue
are adopted from HiBGT.

implementations, and optimizations throughout its offered
feature.

III. BIT-BASED LATTICE MODEL

Figure 1b presents the Hasse diagram of a lattice model
with 3 subjects: A, B, and C. In Bayesian group testing,
the classification objective is to identify the ”true” profile that
characterizes positive and negative disease status among the
individuals being considered for pooling. Given N subjects,
there are 2N possible profiles of individual-level negative and
positive diagnoses. A natural partial ordering arises among the
states through inclusion, with states representing the subset of
negative subjects. For example, the top element (state ABC)
reflects that all subjects are negative, and the bottom element
(state 0̂) is the state that all subjects are positive. Other
states represent a mix of negatives and positives. Lattices are
partially ordered sets that further assume for any two elements,
and there is a unique greatest lower bound and unique least
upper bound. This structure is key to understanding how
statistical discrimination between states can occur in Bayesian
group testing. More details on the lattice model are provided
in [6], [10], [12]–[14].

In the Bayesian framework, for a given profile of the
N subjects in terms of their disease status, to obtain its
prior probability, we compute the product of the respective
individual prior probabilities of their statuses in the profile.
These values form a prior probability distribution across the
possible states in the lattice model. After a test response is
observed, e.g., we pool subjects A and C, and the returned test
response is positive, state-level test response probability values
for that observation are used in the Bayes rule to update prior
probabilities to posterior ones. Response distributions depend
on pool size and how many subjects in the pool are positive,
given a state profile (the dilution effect). States with relatively
high probabilities for the observed response will increase their
posterior probability values. These posterior probability values

953

thus embody the combined empirical and prior evidence as to
which state in the classification model is true.

A. Binary-encoded Abstraction

In HiBGT, we proposed using HashMap and key-value
pairs <state:String, prob:Double>, e.g., <"AC",
0.05> as the core abstraction of lattice models. This design
is natural as each state in a lattice model is associated with
a prior/posterior probability and requires frequent access and
modification. However, when a lattice model could comprise
over 1 billion states (N = 30), this design becomes mediocre
due to the innate deficiency of hashmap, such as memory
overhead, slowness in computing hash functions, and per-
formance instability due to hash collisions. Considering our
mission is to improve the performance of Bayesian group
testing by over three magnitudes, and the lattice model plays
an essential role that every other component relies on, we
conclude that optimizing HiBGT’s hashmap-based design is
unlikely to achieve our goal.

While exploring the lattice model’s design space, we made
tryouts in multiple data structures, such as Trie, segment
tree, and directed acyclic graph (DAG). However, each has
had its known limitation, and none could capture a natural
abstraction for the lattice model. Therefore, our tryouts only
led to either slight improvement or even worse performance
than the hashmap-based design in the current study.

Motivated by the similar partially ordered structure between
a lattice model and a power set, we propose a binary-encoded
abstraction for representing lattice models. This abstraction
inherently formulates a bijection between the set of states and
a power set, allowing efficient self-indexing of each state for
accessing its associated prior/posterior probability using binary
numbers. The following example describes this process:

Ex III.1. Recall the lattice model from Figure 1b.
The encoding function uses 1 bit to acknowledge
the presence of each subject such that each state
is encoded into a binary number with 3 bits, e.g.,
AB → {110}, BC → {011}. All states hence are
subsequently mapped into the power set of 2{111} =
{{000}, {001}, {010}, {011}, {100}, {101}, {110}, {111}},
formulating a bijection with the lattice model. As visualized
in Figure 3, by constructing an array of size 2N , N = 3, we
can store and access the corresponding posterior probability
of each state by translating its binary encoding to decimal,
e.g., AC is encoded as {101} and translated to decimal
number 5 (incidentally, this translation is only necessary by
human, but not for a computer, which makes the binary-
encoded abstraction even more appealing), its prior/posterior
probability is hence stored and can be accessed at index 5 of
the array.

B. Bitwise Operations

The binary-indexed abstraction of lattice models promotes
high-performance and concise bitwise operations to manipu-

ABC

1 1 1
C B ABC AC AB ABCPosterior Probability Array

Index[0] [1] [2] [3] [4] [5] [6] [7]

000 001 010 011 100 101 110 111 Bit Presentation

Fig. 3: Illustration of the bijection between a lattice model
and a power set through binary-encoding abstraction, allowing
states to be self-indexed in an array.

late lattice models. For better illustration, we first define a key
concept from order theory named up-setas follows:

Definition III.1 (Up-set of a state in a lattice). For a state s
in the lattice, the up-set

!s is the subset of states within the
lattice that is at least as great as (i.e., contain)s.

The computation of up-set is critical in conducting test se-
lections using BHA, which will be discussed in more detail in
§IV. In the hashmap-based abstraction, determine if states1 is
an up-set of state s2 requires calling s1.containsAll(s2),
which takes O(deg(s2) · deg(s2)). Whereas in the binary-
indexed abstraction, since each state is self-indexed, a simple
bitwise AND: s1 & s2 == s2, will suffice the checking,
which is theoretically faster than arithmetic addition.

Another benefit of using bitwise operations on binary-
indexed abstraction is that it allows for more logically elegant
algorithms for many performance-critical tasks. We illustrate
one such task in Example III.2. Its usage will be further
described in §IV-A.

Ex III.2. Suppose we want to find
!C, C is 001 (decimal: 1) in

binary-indexed abstraction. The absent subjects areA (binary:
100) and B (binary: 010). This can be achieved by actively
generating the power sets of both absent subjects in binary,
which are 2{{100},{010}} = {{000}, {100}, {010}, {110}},
respectively. Summed by the binary encoding ofC ({{001}),
we get {{001}, {101}, {011}, {111}}, which is equivalent to
{C,AC,BC,ABC}, or

!C.
Subroutine up_set() in Algorithm 1 depicts the algorith-

mic procedure of this task, where the binary encoding of each
element in

!s is generated in line 35. The complexity of this
subroutine is n · 2n for s, where n =N − cardinality(s).
This subroutine generally has a much lower complexity than
the exhaustive traversal approach used in HiBGT, which takes
O(2N).

We summarize the binary-encoded abstraction and bitwise
operations as the bit-based lattice model. Note that due to
its higher abstraction in biostatistical reasoning and lower
perceptibility from complex bitwise operations, the bit-based
lattice model is much less intuitive, which burdens program-
ming efforts. We also face significant challenges in seamlessly
integrating the bit-based lattice model into other new and
existing designs. For example, HiBGT proposes the lattice
shrinking technique that can sequentially eliminate any classi-
fied subjects from the lattice model after updating its posterior
probability distribution, drastically reducing model complex-
ity, e.g., each classified subject help reduce the complexity of

954

the lattice model by half. However, using the binary-indexed
abstraction becomes troublesome, as it does not “localize” a
state naturally. To illustrate, ABC is represented as {111}.
If B is eliminated from the lattice model, then AC becomes
binary {11}, and it is now impossible to identify if {11} rep-
resents AB or BC or AC in different contexts. To address this
issue, an integer is used as a state locality look-up flag: e.g.,
when B is classified, we change the flag from 0 to 2, indicating
binary {010} (or B) is classified, which helps identify {11}
as AC. Despite higher design complexity, the bit-based lattice
model significantly improves the all-around performance for
Bayesian group testing. At N = 25, we see up to 376x faster
manipulation speed and 96.2% less memory overhead by using
the bit-based lattice model than the HiBGT’s hashmap-based
lattice model. A detailed performance evaluation comparing
the two is depicted in §VI-A.

IV. OPTIMIZING BAYESIAN HALVING ALGORITHM

BHA is the optimal strategy for guiding test selections
using lattice models. To understand BHA, recall Defini-
tion III.1, a practical interpretation of an up-set in a lattice
model under group testing is as follows:

!ABC is all the
states for which a pool of A, B, and C would contain
only negative subjects,

!A is all the states such that A is
negative, etc. Conversely, the complement of the up-set of!ABCc = {AB,AC,BC,A,B,C, 0̂} represents states for
which a pooled test ABC would contain at least one positive
sample. Similarly,

!Ac = {BC,B,C, 0̂} is comprised of the
states for which an individual test of a sample from subject
A is likely to be positive, etc. Therefore, the up-set of a state
and its complement generate a partition of the classification
states based on whether the corresponding pooled test would
contain all negatives or some positives.

The key objective of BHA is to systematically partition
the lattice model based on the current posterior probability
distribution on the lattice. By partitioning as close to half as
possible, the sum of posterior probabilities, known as posterior
probability mass (or m(s) for a state s), will increase in one
of the two partitions and decrease in the other. This property
systematically implies that the posterior probability mass will
quickly accumulate to a single state. The following lemma
gives the correctness and optimality of BHA.

Lemma 1 (Correctness and optimality of BHA). BHA attains
the optimal rates of convergence of the Bayesian posterior
probability for correctly classifying the true state to 1 almost
surely, regardless of the true state, and even under strong
dilution effects.

Proof. BHA’s correctness and optimality are given in [6]. !

Example IV.1 below depicts the process of BHA on a lattice
model.

Ex IV.1. Figure 1c visualizes a partition through state A
on a 3-subject lattice model. Green states represent

!A and
red states represent

!Ac. If m(A) (the sum of posterior

probabilities of green states) is the closest to 0.5 among any
other states, then A is the desired test selection.

BHA finds the desired test selection by traversing and
partitioning across all states. Depending on how m(s) is
calculated, i.e., exhaustive traversal used in HiBGT or our pro-
posed active generation discussed in Example III.2, the overall
complexity of BHA can reach O(22N) or

∑N
n=0

(N
n

)
· n ·2n.

Quantitatively, for N = 30, BHA needs to iterate and compute
through over 1 billion states (230) for over 1.15× 1018 (260)
times using exhaustive traversal, or 3.7 × 1015 times using
active generation. The high complexity and the tremendous
computations for large N motivate us to further explore the
design spectrum of BHA beyond mathematical reasoning.

A. Op-BHA Algorithm
We give the definition of down-set to assist the illustration

of our proposed Op-BHA algorithm.

Definition IV.1 (Down-set of a state in a lattice). For a state
s in the lattice, the down-set

&s is the subset of states within
the lattice that is at most as great as (i.e., are contained by)s.

A critical observation between up-set/down-set and posterior
probability mass is summarized as the following theorem.

Theorem 1 (Partial ordering of posterior probability masses in
a lattice). For states a and b in a lattice model, m(a) < m(b)
if a ∈ (

!b \ b), and m(a) > m(b) if a ∈ (
&b \ b). m(a)and

m(b) are the posterior probability masses of a and b.

Proof. Suppose a ∈ (
!b\b) and let {a1, a2, . . . , an} =

!a. By
Definition III.1, ∀ai, i = 1 . . . n, ai is at least as great asa.
Since a is also at least as great as b and a &= b, a is greater than
b. It then follows

!a ⊂
!b. Since Bayesian probabilities are

always positive, we have m(a) < m(b). The other direction,
i.e., m(a) < m(b) does not necessarily mean a ∈ (

!b \ b), is
proved by a counterexample using the 3-subject lattice model
shown in Figure 1b: let subject A’s prior probability be 0.1
and B’s prior probability be 0.05, then initially, m(A) = 0.9
and m(B) = 0.95. m(A) < m(B) but A /∈

!B. The proof
for the down-set follows similarly and is omitted. !

Theorem 1 reveals the opportunity of reducing the number
of states necessitated by BHA. Specifically, when traversing
each state s in a lattice model, if m(s) < 0.5, it is safe to
skip calculating posterior masses for all elements in

!s; and
if m(s) > 0.5, we can otherwise skip calculating posterior
masses for all elements in

&s. This concludes the key idea of
Op-BHA, and we prove its correctness below.

Theorem 2 (Correctness of Op-BHA). Op-BHA is equivalent
to BHA and attains the optimal correctness rates.

Proof. The proof is obtained by contradiction. Suppose BHA
finds the correct test selection sc for a lattice model of
size N , it follows that min{|m(s1) − 0.5|, . . . , |m(sc) −
0.5|, . . . , |m(s2N) − 0.5|} = |m(sc) − 0.5|. Assuming Op-
BHA finds a different test selection se, such that se &=sc.
It implies that sc is skipped by Op-BHA. If m(sc) <0.5,

955

then by Op-BHA, m(se) < 0.5 and sc ∈
!se. Combined

with Theorem 1, we have m(sc) < m(sd) < 0.5 and hence
|m(se) − 0.5| < |m(sc) − 0.5|, which suggests se is the
correct test selection, contradicting the fact. The proof for
m(sc) > 0.5 is similar and is omitted. It then follows by
Lemma 1 and proves the theorem. !

An example of potential computation savings of Op-BHA is
illustrated as follows.

Ex IV.2. Let N = 30 and every subject has a prior risk level
of 0.02. Suppose Op-BHA first partitions through the topmost
state t (the state that identifies all subjects are negative). Since
m(t) ≈ 0.545 > 0.5, it will skip evaluating

&t \ t, which
comprises all remaining states in the lattice model. We thus
find the correct test selection by evaluating only one state.

Algorithm 1 describes the three-phase process for per-
forming a test selection using Op-BHA over a bit-based
lattice model. Phase 1 is the one-time prerequisite procedure
of constructing a lattice model, and Phase 3 is the recur-
ring postrequisite procedure of updating the lattice model’s
posterior probability distribution before performing the next
Op-BHA. Lines 10 and 13 - 16 comprise BHA’s primary
computational tasks and are shared by Op-BHA. The rest
of Phase 2 represents exclusive algorithmic designs for Op-
BHA, and here we focus on them in detail. 1) In line 7,
we construct a checklist for tracking each state’s traversal
status, i.e., skippable or unevaluated. The list is implemented
using BitSet, which internally uses an Int64 array, where
each integer can store statuses for 64 states. We choose over
a Boolean array as it only consumes 1/8 the memory. 2)
In line 10, we propose a fixed traversal strategy aiming to
maximize the number of skippable states. Specifically, the
traversal starts from the topmost and bottommost states in
the lattice model as they can potentially skip all remaining
states, and gradually traverse to the middle states, i.e., states
with cardinalities N/2 assuming N is even, as each middle
state can only reduce up to 2N/2 states. 3) In line 20, the
implementation of down_set() subroutine follows similarly
with up_set() subroutine with minor changes and is hence
omitted. Its algorithmic complexity shares the same formula
as up_set() discussed in Example III.2 but differs in that
n = cardinality(s). 4) To better illustrate Op-BHA(), each
subroutine depicted in Phase 2 uses O(2n) extra space for
storing the up-set/down-set, which is eliminated in the real
implementation as each generated state can be consumed
immediately. The implementation also adopts various opti-
mizations to facilitate performance, such as reordering nested
loops to alleviate I/O bottlenecks and reusing hot data to
improve cache hits.
Complexity analysis, Op-BHA() in Algorithm 1 clearly
illustrates the dynamic computational complexity at each loop,
i.e., O(0), O(n·2n) or O(n·2n+(N − n)·2N−n). Besides
N , the aggregated complexity also depends on the posterior
probability distribution, which is determined by multiple fac-
tors, such as the prior probability information, the ground

Algorithm 1: Test Selection Using Op-BHA
Input: prior prob[N]
Output: selection

1 prob dist[2N] ! probability distribution

Phase 1 - Construct Lattice Model

2 Procedure BUILD MODEL(prior prob, prob dist)
3 for i=0; i < 2N ; ++i do
4 for j=0; j < N ; ++j do
5 i & 1 << j == 0 ?

prob dist[i]∗ = prior prob[j] :
prob dist[i]∗ = 1− prior prob[j]

Phase 2 - Op-BHA

6 Procedure Op-BHA(prob dist)
7 chklist[2N] ! track skippable states
8 min←∞ ! track prob mass closest to 0.5
9 n← N − cardinality(s)

10 for state s from topmost & bottommost to middle do
11 if chklist.get(s) then
12 continue ! state evaluated / skipped
13 mass = calc mass(s, prob dist) ! O(n·2n)
14 if |mass− 0.5| < min then
15 min← mass
16 selection← i

17 if mass < 0.5 then
18 chklist.set(up set(s)) ! O(n·2n)
19 else if mass > 0.5 then
20 chklist.set(down set(i)) ! O((N -n)·2N−n)

21 return selection

22 Subroutine calc state mass(s, prob dist)
23 mass← 0, n← N − cardinality(s)
24 for i = 0; i < 2n; ++i do
25 mass += prob dist[up set[i]]

26 return mass

27 Subroutine up set(s)
28 n← N − cardinality(s), up set[2n]
29 absent subj[n] ! correct values filled
30 for i = 0; i < 2n; ++i do
31 ind← s
32 for j = 0; j < n; ++j do
33 if i & (1 << j) then
34 ind += absent subj[j]

35 up set[i] = prob dist[ind] ! ind ∈
!s

36 return up set

Phase 3 - Update & Shrink Lattice Model

37 Procedure UPDATE SHRINK MODEL(selection, response,
prob dist)

38 for i=0; i < 2N ; ++i do
39 if response == negative then
40 prob dist[i] *=

dilution(i, selection, response)
41 else if response == positive then
42 prob dist[i] *=

1− dilution(i, selection, response)

43 normalize(prob dist[i]) ! normalize distribution
44 shrink(prob dist[i]) ! if subject(s) is classified

956

truth (true state of subjects), test responses, and dilution
effects. The enormous degrees of freedom in estimating the
posterior probability distribution have prohibited a general-
case complexity of Op-BHA from being deduced. However,
Op-BHA’s complexity is at most as complex as BHA, i.e.,∑N

n=0

(N
n

)
· n · 2n ≈ O(22N), which only occurs in extremely

rare cases where almost every state has to be evaluated. On
the other hand, from Example IV.2, which demonstrates the
maximum possible state reduction, we can see Op-BHA’s
complexity is bounded below by Ω(2N).

B. Parallelzing Op-BHA

Besides reducing algorithmic complexity, parallelizing Op-
BHA provides another promising passage toward speeding
up test selections. We propose parallelizing Op-BHA using a
multi-staged MapReduce programming model based on Spark,
namely intra-lattice parallelism. Note that the design of intra-
lattice parallelism is not limited to a data parallelism model as
we use. It can be easily ported to other parallel programming
models, such as message passing (MPI) or partitioned global
address space (PGAS). Figure 4 describes the multi-staged
MapReduce model: the master first broadcasts the posterior
probability distribution of the lattice model to workers. Next,
based on the existing checklist, it generates a list of yet-to-
be-evaluated states, known as candidate states. The master
then dispatches a chunk of candidate states to workers using
map() so that each worker can perform lines 11-20 of
Algorithm 1 on given candidate states. Note that when each
worker finishes computation, not only does it return to the
master a temporarily desired test selection, but also an updated
checklist indicating which states can be further omitted. These
returned results are then processed using reduce(), i.e., the
returned test selections are reduced by examining lines 14-16
of Algorithm 1, and the checklist is reduced by bitwise OR.
This concludes the MapReduce stage. If the master detects
more candidate states, i.e., the checklist’s cardinality does not
equal 2N , it starts another stage of the procedure until no
candidate states are available.

Differed from the serial algorithm described in Procedure
Op-BHA() of Algorithm 1, where the checklist is updated
on the fly in a shared memory view, the checklist in intra-
lattice parallelism is only updated after evaluating multiple
states’ posterior probability masses after each stage, meaning
duplicated computation is inevitable. Therefore, the chunk
size C will play an essential role in the overall performance
of intra-lattice parallelism, where a smaller C can result
in faster evaluation and more effective state reduction per
stage. However, it will potentially increase the number of
total stages, hence suffering from more scheduling and data
overheads. On the other hand, a larger C may reduce savings
from fewer skipped states and a more severe load imbalance
because executors can skip different amounts of candidate
states. Therefore, there is no one-size-fits-all choice for C as
there is no fixed optimal design for varied posterior probability
distributions. Our implementation uses C = 2

N
2 +8 based on

heuristics to reach a “sweet point” between balancing loads

and alleviating various overheads while achieving significant
workload reduction for Op-BHA.

F T F T T F......

0 2 2N-1......

[0] [1] [2] [2N-1]……

Chunk_1

Map()

Reduce()

Worker 1

MasterChunk of states

Remove checked (T)

Select a chunk (maxing savings)

Chunk_2 Chunk_3

Op-BHA Op-BHA Op-BHA

Chunk

Test Selection Candidate StatesChecklist

Worker 2 Worker 3

Fig. 4: Intra-lattice parallelism using multi-staged Map-
Reduce. The master dispatches tasks at each execution stage
as a chunk of candidate states to executors after collecting and
processing the checklist returned from the last stage.

Multithreading on Spark, we propose shared memory inside
each worker to improve the load balance of intra-lattice
parallelism. We use a customized fork-join pool to leverage the
famous work-stealing algorithm [15]. This algorithm allows a
thread to “steal” unfinished tasks from other threads, which
is ideal for executing algorithms with dynamic workloads like
Op-BHA. Additionally, multithreading on Spark also reduces
the number of concurrent tasks while maintaining high degrees
of parallelism. It also effectively decreases data communica-
tion overheads to improve the scaling efficiency for performing
test selections that guide optimal pooling strategies.
Complexity analysis, suppose p processes are used for intra-
lattice parallelism, the complexity of intra-lattice parallelism
is bounded above by O(22N/p), as it assumes almost no
states are reduced. the lower bound of intra-lattice parallelism
remains at Ω(2N), which reflects the scenario illustrated in
Example IV.2, there is only one process which holds the
topmost state is performing effective state reduction, while
the rest p − 1 processes are in fact performing duplicated
computation.

V. PARALLEL TREE-BASED STATISTICALANALYSIS

The theoretical efficiency and effectiveness of BHA over
lattice models are evidenced by statistical analyses under
varied prevalence and individual risk levels. Statistical analysis
is conducted by exhaustively constructing all possible test
sequences in a tree style up to a certain depth (referred to as
the number of stages) based on generating test selections using
BHA and updating the posterior probability distributions along
branches. Classification performance statistics for Bayesian-
based group testing methods can be evaluated on this tree,
including the rate of decisive classification, as reflected by
stringent posterior error threshold(s) being satisfied, false
positives/negative rates, and the expected number of tests.

957

The procedure of constructing a tree is described as follows:
BHA selects one test at the first stage, which can return two
possible results: negative or positive. For the negative branch,
after the root lattice model updates its posterior probability
distribution based on the negative response, a second-stage
BHA can be performed. This holds similarly for the positive
branch at the first stage. Therefore, this tree can be spawned
like a fully-grown binary tree, and each branch formulates a
test sequence. A typical statistical analysis can reach 24 stages
comprising up to 224 (over 16 million) branches.

A. Existing Approach: The Multi-tree Scheme
HiBGT proposed a tree construction approach named the

multi-tree scheme, which divides the big tree into multiple
small trees that each correspond to one true state. The sta-
tistical reasoning behind this scheme is that for a given true
state, most of the branches in the tree are statistically non-
significant and can hence be pruned; we name this technique as
branch pruning. For example, the branch {<ABC, Positive>,
<A, Positive>, <C, Positive>, <B, Positive>} is practically
impossible given the true state ABC (subject A, B, and C
are all negative), whereas it is statistically sound if the true
state is 0̂ (subjects A, B, and C are all positive). Therefore,
each tree will be drastically smaller.

The benefit of the multi-tree scheme is the easiness of
parallel construction. Figure 5a depicts the parallel architecture
for the multi-tree scheme with four nodes (one master and
three workers). It uses inter-tree parallelism, where each
worker can independently perform tree constructions. Since
each tree can expand differently, this technique also adopts a
fine-grained task scheduling protocol to achieve load balance,
leading to a claimed scaling efficiency of up to 99.5% using
up to 896 cores.

Despite being easy to parallelize, we find three drawbacks in
the multi-tree schemes compared to constructing only one big
tree. First, the multi-tree scheme has a much higher asymptotic
complexity because the number of required trees will grow
exponentially as N increases, whereas the size of the single
tree is bounded and independent of N , e.g., a 24-stage tree
contains up to 224 branches no matter the N . Second, the
multi-tree scheme is inefficient, as trees can share the same
partial branches that resort to duplicated computation. Third,
the multi-tree scheme does not unleash the full optimization
potential of the lattice shrinking technique (see §III-B). The
multi-tree scheme has to start each tree from the initial, full-
size lattice model. As a comparison, the initial lattice model
is only constructed once in the big tree and will be quickly
shrunk along branches. Therefore, the big tree typically com-
prises fewer full-size and large-size lattice models.

To alleviate the first drawback, we proposed two math-
ematical optimizations in HiBGT to reduce the number of
constructed trees: 1) the symmetry property of the lattice
model can reduce the number of required trees from 2N to
N + 1 if individual risk levels are homogeneous, namely the
symmetry approach; and 2) by discarding true states with low
prior probabilities up to certain percentage, e.g., 0.1% total, the

multi-tree scheme can retain 99.9% statistical accuracy while
significantly reduce the number of true states that requires
evaluation, namely the accuracy trade-off approach. Regard-
less, these two approaches trade off generality or accuracy
vs. performance, which are not ideal for accuracy-critical
scenarios. We identified the second and third drawbacks as
the innate deficiency of the multi-tree scheme, hence not
addressing them in HiBGT.

B. The Single-tree Scheme

Established on the multi-tree scheme’s drawbacks, we pro-
pose constructing the big tree in parallel, namely the single-
tree scheme. Figure 5b depicts the single-tree scheme’s parallel
architecture using four nodes. Unlike the multi-tree scheme,
which uses depth-first construction for each tree, the single-
tree scheme adopts a breadth-first approach to construct the big
tree stage by stage. This allows each worker to perform the
test selections (Line 6 to 29 of Algorithm 1) for a portion of
lattice models at the current stage by map() all lattice models
as a resilient distributed dataset (RDD), namely inter-lattice
parallelism. After test selections are complete, the master use
collect() call to gather every updated lattice model and
append it to the corresponding location of the tree. The master
then schedules tasks for the next-stage tree construction until
reaching the maximum stage.

The issue with exclusively using inter-lattice parallelism for
the single-tree scheme is that it leads to insufficient degrees of
parallelism during the beginning stages, e.g., even the seventh
stage only contains up to 128 lattice models. We propose two
solutions to solve this issue: 1) we use intra-lattice parallelism
(see §IV-B) to achieve full resource utilization; and 2) we
adopt multithreading on Spark into inter-lattice parallelism,
such that each worker node computes Algorithm 1 instead
of Spark’s default one CPU core per lattice model. Another
issue with inter-lattice parallelism is that when cooperated with
lattice shrinking, it can lead to a skewed computation workload
because lattice models can vary in size. We hence propose
task alignment, which organizes the group of lattice models
by size and divides it into subgroups; then, each subgroup
is sequentially dispatched by the master as a standalone task
to ensure load balance. When the number of lattice models
in a subgroup does not suffice the degrees of parallelism
(usually full-sized or large-sized lattice models), SBGT uses
intra-lattice parallelism for this sub-task.

Our evaluation (see §VI-C) shows that the single-tree
scheme is up to 515x faster than HiBGT’s multi-tree scheme
for a medium-scale Bayesian group testing (N = 17). Even
applying the symmetry approach or the 99.9% approach, the
single-tree scheme still outperforms the multi-tree scheme by
up to 1.7x and 54.4x, respectively.

C. The Fusion-tree Scheme

Summarized from the above two tree construction schemes,
we raise the question: Can we leverage each scheme’s advan-
tages and alleviate its drawbacks by creating a deep fusion
of the two? The answer is yes. We propose a scheme named

958

Worker 2Worker 1

Master

Worker 3

Statistics Statistics Statistics

True
State 1

True
State 2

True
State 3

Statistical Analyzer

To Slaves To Master

Pruned BranchesPruned Leaves

(a) HiBGT’s multi-tree scheme

Master

Statistical Analyzer

Worker 2Worker 1 Worker 3

Statistics Statistics Statistics

Leaves at current stage

Leaves at next stage

To Slaves

To Master

Master

(b) The single-tree scheme

Leaves at current stage

Leaves at next stage

To Slaves

To Master

Master

Statistical Analyzer

Worker 2Worker 1 Worker 3

Statistics Statistics Statistics

Master

Branch
Pruning

Branch
Pruning

Branch
Pruning

Pr
un
ed
!

(c) The fusion-tree scheme

Fig. 5: Parallel Tree Construction Schemes

the fusion-tree scheme. The key idea is that after the single-
tree scheme finishes constructing every big tree stage, we
perform the identical branch pruning process in the multi-tree
scheme. As demonstrated in Figure 5c, the branch in Worker
3 is pruned, which reduces future computation workload and
data communication overhead to the fusion-tree scheme. The
statistical reasoning behind branch pruning in constructing a
single tree is that some low-probability branches, such as {<A,
Positive>, <A, Negative>, <A, Positive>, <A, Negative>,
· · · } are statistically meaningless to any true states, hence
should be pruned immediately. From the computational per-
spective, pruning low-statistics lattice models at an early
stage prevent lower-statistics lattice models from spawning
in later stages, reducing the computation workload in the
long run. Also, the lattice shrinking technique usually works
poorly along such branches, which leads to computation on
unnecessary large-sized or even full-sized lattice models. Last
but not least, extending branches is computationally costly,
which necessitates the construction of new lattice models
and computations of test selections, while branch pruning
is computationally efficient and as easy to parallelize as the
multi-tree scheme.

Our evaluation (see §VI-C) shows that the fusion-tree
scheme successfully improves statistical analysis speed on
large-scale Bayesian group testing (N = 25) over the single-
tree scheme by up to 7.7x, as it leverages advantages and
avoids disadvantages from both the multi-tree scheme and the
single-tree scheme. It also offers the best architectural opti-
mization to computational efficiencies and memory footprint in
our implementations, promoting SBGT to push the efficiency
and performance of statistical analyses to the edge.

VI. EVALUATION

We systematically evaluate the performance and scalability
of SBGT and compare it with the state-of-the-art Bayesian
group testing framework, i.e., HiBGT. The goal is to measure
the performance benefits of the different techniques proposed
in SBGT. In addition, we investigate whether we can achieve
our mission of guiding real-world test selections for large-scale

group testing (N = 30) in a rapid-testing scenario (within a
few minutes) by leveraging state-of-the-art HPC technologies.
Experimental setup, Table II details the clusters used for
evaluating SBGT.

TABLE II: Specification of Two HPC Clusters

Cluster SDSC Expanse TACC Stampede2
Processor AMD EPYC 7742 Intel Xeon Phi 7250
Clock Speed 2.25 GHz 1.4 GHz
No. of Cores 128 64
RAM (DDR) 256 GB 64 GB
Interconnect InfiniBand-EDR (100 Gbps) 100 Gbps Omni-Path
Storage NVMe PCIe SSD (1TB) SATA-SSD (500GB)
Spark Spark-3.2.1 Spark-3.2.1
Scale 32 nodes (4096 cores) 8 nodes (512 cores)

Prior risk scenarios, to systematically evaluate the per-
formance of our proposed designs and implementations for
SBGT, e.g., Op-BHA, different parallelisms, and parallel sta-
tistical analysis schemes, we propose a set of group testing
scenarios to comprehensively imitate real-world group testing
scenarios. As shown in Table III, we first define three individ-
ual risk levels: lower risk, medium risk, and higher risk, each
with two different risk patterns, which reflect typical COVID-
19 prevalence rates.

TABLE III: Specification for Prior Risk Scenarios

Name Risk Pattern Risk Level
0.02 All 0.02 Lower
0.1 All 0.1 Medium
0.15 All 0.15 Higher
0.2 All 0.2 Higher
1-mix 1 × 0.2, rest are 0.02 Lower
2-mix 2 × 0.2, rest are 0.02 Medium

A. Lattice Model
This experiment evaluates the performance of SBGT’s bit-

base lattice model and compares it with HiBGT’s hashmap-
based lattice model in three categories: construction speed,
posterior probability distribution update speed, and lattice
model memory footprint. Note that these performance statistics
are independent of the prior probability distribution of the

959

pooled subjects. We hence fix the risk pattern to 0.02. Each
category is evaluated with an increasing lattice size ranging
from N = 17 to N = 25, with step size 2.

(a) Construct (b) Update (c) Memory

Fig. 6: Evaluation of SBGT’s bit-based lattice models vs.
HiBGT’s hashmap-based lattice models. The execution time
for constructing and updating a bit-based lattice model at
N = 25 is 32x and 376x faster than a hashmap-based lattice
model while using 96.2% less memory.

Construction, Figure 6a presents the comparison of the con-
struction performance between the bit-based lattice model and
the hashmap-based lattice model. The execution time for the
bit-based lattice model are 0.006s, 0.025s, 0.096s, 0.425s,
and 1.553s, for N = 17, 19, 21, 23, and 25, respectively.
The execution time for the hashmap-based lattice models are
0.067s, 0.473s, 2.117s, 10.159s, and 49.804s, respectively. The
bit-based lattice model is 11x to 32x faster than the hashmap-
based lattice model in construction.
Update, Figure 6b presents the comparison of the update
performance between the bit-based lattice model and the
hashmap-based lattice model. The execution time for the bit-
based lattice model are 0.006s, 0.019s, 0.049s, 0.166s, and
0.663s, for N = 17, 19, 21, 23, and 25, respectively. The
execution time for the hashmap-based lattice model are 0.098s,
0.873s, 7.243s, 48.238s, and 248.955s, respectively. The bit-
based lattice model is 5x to 376x faster than the hashmap-
based lattice model in updating the probability distribution.
Memory, Figure 6c presents the comparison of memory foot-
prints between the bit-based lattice model and the hashmap-
based lattice model. We measure the memory footprint using
SizeEstimator API provided by Spark. Note that the
output reflects object sizes before serialization and is corrected
to megabytes. A bit-based lattice model consumes 1MB, 4MB,
16MB, 64MB, and 256MB memory, for N = 17, 19, 21, 23,
and 25, respectively, whereas a hashmap-based lattice model
consumes 29MB, 102MB, 444MB, 1955MB, and 6318MB
memory, respectively. The bit-based lattice model reduces
memory overheads by 95.9% to 96.7%.

Overall, SBGT’s bit-based lattice model dominates Hi-
BGT’s hashmap-based lattice model in both performance
and memory efficiency. Notably, we see more pronounced
disparities in both categories as N increases. As the funda-
mental component of Bayesian group testing, our innovative

design and implementation of the lattice model establish a
solid foundation in fulfilling our mission of large-scale test
selections and statistical analyses.

B. Test Selection

This experiment evaluates the performance of SBGT’s test
selection designs and implementations, i.e., Op-BHA and
intra-lattice parallelism, in both the single-thread and parallel
environment. For the single-thread sub-experiment, we evalu-
ate three incremental optimization designs labeled Baseline,
OP1, and OP2, where Baseline is HiBGT, i.e., BHA on
hashmap-based lattice models, OP1 is BHA on bit-based lat-
tice models, and OP2 is Op-BHA on bit-based lattice models.
For the parallel sub-experiment, we evaluate four incremental
optimization designs labeled Baseline, OP1, OP2, and OP3,
where Baseline, OP1, and OP2 share identical optimization
designs with the single-thread sub-experiment, except that
BHA/Op-BHA now runs in parallel. OP3 is parallel Op-
BHA on bit-based lattice models plus using multi-threading on
Spark. We use N ranges from 15 to 20 in the single-thread sub-
experiment and 20 to 25 in the parallel sub-experiment. We use
TACC Stampede2 Cluster with 512 CPU cores for evaluations.
Note that for the performance statistics are assessed by the
average execution time across six prior risk patterns at each
N .

(a) Single Thread (b) Parallel

Fig. 7: Evaluation of SBGT’s designs and implementations
for test selections. (a) is single-thread, and (b) is using
Spark. Baseline is HiBGT, i.e., BHA on hashmap-based lattice
models, OP1 is BHA on bit-based lattice models, OP2 is Op-
BHA on bit-based lattice models, and OP3 is implementing
multi-threading on Spark on top of OP2. In (a), at N = 20,
OP2 is 1023x faster than Baseline (SBGT vs. HiBGT both in
serial computing). In (b), at N = 25, OP3 is 1733x faster than
Baseline (SBGT vs. HiBGT both in parallel computing).

Single-thread, Figure 7a illustrates the test selection evalua-
tion in a single-thread environment. Similar to the experiment
with lattice models, we observe increasingly better perfor-
mance in our proposed designs than in existing ones. We hence
only report evaluation results at the largest N . At N = 20, the
execution time for Baseline through OP2 are 20983s, 55.9s,
and 20.5s, which can be translated to gradual speedups of 375x
(bit-based lattice model vs. hashmap-based lattice model) and
2.7x (Op-BHA vs. BHA). Overall, OP2 is 1023x faster than
Baseline (SBGT vs. HiBGT)

960

Parallel, Figure 7b illustrates the test selection evaluation in
a parallel computing environment, i.e., Spark. At N = 25, the
execution time from Baseline to OP3 are 78843s, 619s, 79.7s,
and 45.5s, respectively, indicating gradual speedups of 127x
(bit-based lattice model vs. hashmap-based lattice model),
7.8x (Op-BHA v.s BHA), and 1.7x (using multi-threading on
Spark). Overall, OP3 is 1733x faster than Baseline (SBGT vs.
HiBGT).

C. Tree Construction Schemes for Statistical Analysis

This experiment evaluates the performance of SBGT’s par-
allel tree construction schemes, i.e., the single-tree and the
fusion-tree schemes, with HiBGT’s multi-tree schemes and
its two optimization techniques, i.e., the symmetry approach
and the accuracy trade-off approach. To ensure fairness, all
schemes use full designs and implementations for lattice mod-
els and test selections, i.e., Op-BHA + intra-lattice parallelism
+ multi-threading on Spark over bit-based lattice models. We
use SDSC Expanse Cluster with 512 CPU cores for this
experiment. Note that due to slowness in existing schemes, we
only perform the experiment using the 0.2 risk pattern, as it
will result in constructing more complex trees than lower risk
levels. We also use smaller N for existing schemes, ranging
from 10 to 17. For our proposed schemes, we start with
N = 10 and end with N = 25.
Existing multi-tree-based schemes, first, we evaluate per-
formance statistics for the multi-tree scheme and its two
optimization techniques. Note that for the accuracy trade-off
approach, we choose to lose up to 0.1% accuracy; hence we
denote it as the 99.9% accuracy approach. As shown in Figure
8, the multi-tree scheme is inefficient as the execution time
increases 7x as N increases (85s, 513s, 3470s, and 22846s for
N = 14− 17). On the other hand, its optimization techniques
effectively reduce computation workload. Using the symmetry
approach, the execution time at N = 17 is 75s, as it reduces
the number of true states from 217 to 18. Using the 99.9%
approach, the execution time at N = 17 is 2350s, reducing
the number of true states to 2045.
The single-tree scheme and the fusion-tree scheme, next,
we evaluate performance statistics for the single-tree and the
fusion-tree schemes. As shown in Figure 8, at N = 17, the
execution time of the single-tree scheme is 44s, whereas the
fusion-tree scheme is 15s. Compared to the multi-tree scheme
at the same scale, the single-tree scheme is 519x, and the
fusion-tree scheme is 1523x faster. At N = 25, the execution
time of the single-tree scheme is 4672s, whereas the fusion-
tree scheme is 609s, which is 7.67x faster than the single-tree
scheme. The single-tree scheme generates an average of 68462
classified and 52743 unclassified branches, while the fusion-
tree scheme keeps 545 classified and only one unclassified
branch by leveraging branch pruning (>99.5% pruning rate).
The tree also stops expanding early at stage 23.

D. Scaling Test Selections

Compared to statistical analyses, which are usually con-
ducted offline to provide insights into how efficient and

Fig. 8: Evaluation of SBGT’s parallel tree construction
schemes for statistical analysis. In (a), at N = 17, HiBGT’s
multi-tree scheme takes 22846s, while its symmetry and 99.9%
accuracy techniques can reduce the execution time to 75s and
2350s, respectively. In (b), at N = 17, SBGT’s fusion-tree
scheme (15s) is 1523x faster than HiBGT’s multi-tree scheme.
At N = 25, the fusion-tree scheme (609s) is 7.7x faster than
the single-tree scheme (4672s).

effective the Bayesian group testing can address real-world
group testing scenarios, a test selection offers more practical
usage in guiding a pooling decision and should be considered
an online operation. Therefore, in this experiment, we evaluate
the scalability of SBGT’s test selections with our ultimate goal:
N = 30, which represents a lattice model containing over 1
billion states. We use full designs and implementations for
lattice models and test selections, i.e., Op-BHA + intra-lattice
parallelism + multi-threading on Spark operating on bit-based
lattice models. Test selections are performed across all six risk
patterns to show systematic performance statistics. We conduct
these experiments using SDSC Expanse with up to 4096 CPU
cores, where we collect the average execution time at 512,
1024, 2048, and 4096 CPU cores. As illustrated in Figure 9,
the scaling efficiencies at 4096 cores are 76.4%, 97.9%, 93%,
85.1%, 86.3%, and 69.3%, for risk pattern 0.02, 0.1, 0.15, 0.2,
1-mix, and 2-mix, respectively. The average scaling efficiency
is 84.7%, and the average execution time for Op-BHA at
this scale is only 13 minutes, which clearly demonstrates the
capability of SBGT to guide pooling decisions for real-world,
large-scale disease surveillance in a rapid testing fashion.

VII. CONCLUSION AND FUTURE WORK

Bayesian group testing is appealing as it can recognize vari-
able levels of individual risk and is accurate and efficient even
when accounting for dilution effects. However, the required
level of precision in modeling is computationally challeng-
ing, which impedes implementing Bayesian group testing at
larger scales. We propose scaling Bayesian group testing for
disease surveillance, namely SBGT, which allows for high-
performance and scalable test selections and statistical analy-
ses using the lattice model and with the statistically optimal
Bayesian Halving Algorithm. Through systematic evaluations
of various designs, implementations, and optimizations, we
show that SBGT can speed up test selections and statistical
analyses by up to 1733x and 1523x compared to HiBGT while

961

Fig. 9: Evaluation of SBGT’s test selections scalability and
capability for large-scale group testing, i.e., N = 30. The
lowest and highest scaling efficiency at 4096 CPU cores
are 69.3% and 97.9%. The average scaling efficiency and
execution time is 84.7% and 13 minutes across six prior risk
settings.

achieving strong scaling efficiency of up to 97.9% at 4096
CPU cores. In the future, we plan to further optimize SBGT
with different HPC technologies (such as CUDA and MPI) for
next-generation disease surveillance.

REFERENCES

[1] S. Lohse, T. Pfuhl, B. Berkó-Göttel, J. Rissland, T. Geißler, B. Gärtner,
S. L. Becker, S. Schneitler, and S. Smola, “Pooling of Samples for Test-
ing for SARS-CoV-2 in Asymptomatic People,” The Lancet Infectious
Diseases, vol. 20, no. 11, pp. 1231–1232, 2020.

[2] F. Majid, S. B. Omer, and A. I. Khwaja, “Optimising SARS-CoV-2
Pooled Testing for Low-resource Settings,” The Lancet Microbe, vol. 1,
no. 3, 2020.

[3] C. A. Hogan, M. K. Sahoo, and B. A. Pinsky, “Sample Pooling as a
Strategy to Detect Community Transmission of SARS-CoV-2,” Jama,
vol. 323, no. 19, p. 1967, 2020.

[4] D. Donoho, M. Lofti, and B. Ozturkler. (2020) The
Mathematics of Mass Testing for COVID-19. [On-
line]. Available: https://sinews.siam.org/Details-Page/the-mathematics-
of-mass-testing-for-covid-19

[5] R. Dorfman, “The Detection of Defective Members of Large
Populations,” The Annals of Mathematical Statistics, vol. 14, no. 4, pp.
436–440, 1943. [Online]. Available: http://www.jstor.org/stable/2235930

[6] C. Tatsuoka, W. Chen, and X. Lu, “Bayesian Group Testing with
Dilution Effects,” Biostatistics, p. kxac004, Apr. 2022. [Online].
Available: https://doi.org/10.1093/biostatistics/kxac004

[7] N. Shental, S. Levy, V. Wuvshet, S. Skorniakov, B. Shalem, A. Ot-
tolenghi, Y. Greenshpan, R. Steinberg, A. Edri, R. Gillis, M. Goldhirsh,
K. Moscovici, S. Sachren, L. M. Friedman, L. Nesher, Y. Shemer-Avni,
A. Porgador, and T. Hertz, “Efficient High-throughput SARS-CoV-2
Testing to Detect Asymptomatic Carriers,” Science Advances, vol. 6,
no. 37, 2020.

[8] S. Ghosh, A. Rajwade, S. Krishna, N. Gopalkrishnan, T. E. Schaus,
A. Chakravarthy, S. Varahan, V. Appu, R. Ramakrishnan, S. Ch,
M. Jindal, V. Bhupathi, A. Gupta, A. Jain, R. Agarwal, S. Pathak,
M. A. Rehan, S. Consul, Y. Gupta, N. Gupta, P. Agarwal, R. Goyal,
V. Sagar, U. Ramakrishnan, S. Krishna, P. Yin, D. Palakodeti, and
M. Gopalkrishnan, “Tapestry: A Single-Round Smart Pooling Technique
for COVID-19 Testing,” medRxiv, 2020.

[9] W. Chen, X. Lu, and C. Tatsuoka, “HiBGT: High-Performance Bayesian
Group Testing for COVID-19,” in 29th IEEE International Conference
on High Performance Computing, Data, and Analytics, vol. 1, no. 1.
IEEE, 2022, pp. 176–185.

[10] C. Tatsuoka and T. Ferguson, “Sequential Classification on Partially Or-
dered Sets,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 65, no. 1, p. 143–157, 2003.

[11] J. Yu, Y. Huang, and Z.-J. Shen, “Optimizing and Evaluating PCR-based
Pooled Screening During COVID-19 Pandemics,” Scientific reports,
vol. 11, no. 1, pp. 1–14, 2021.

[12] T. S. Ferguson and C. Tatsuoka, “An Optimal Strategy for Sequential
Classification on Partially Ordered Sets,” Statistics Probability Letters,
vol. 68, no. 2, p. 161–168, 2004.

[13] C. Tatsuoka, “Optimal Sequencing of Experiments in Bayesian Group
Testing,” Journal of Statistical Planning and Inference, vol. 133, no. 2,
pp. 479 – 488, 2005.

[14] ——, “Sequential Classification on Lattices with Experiment-Specific
Response Distributions,” Sequential Analysis, vol. 33, no. 3, p. 400–420,
2014.

[15] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded
Computations by Work Stealing,” J. ACM, vol. 46, no. 5, p. 720–748,
sep 1999. [Online]. Available: https://doi.org/10.1145/324133.324234

962

