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ABSTRACT

Diffusion-based generative models (DBGMs) perturb data to a target noise distri-
bution and reverse this process to generate samples. The choice of noising process,
or inference diffusion process, affects both likelihoods and sample quality. For ex-
ample, extending the inference process with auxiliary variables leads to improved
sample quality. While there are many such multivariate diffusions to explore,
each new one requires significant model-specific analysis, hindering rapid pro-
totyping and evaluation. In this work, we study Multivariate Diffusion Models
(MDMs). For any number of auxiliary variables, we provide a recipe for maximiz-
ing a lower-bound on the MDMs likelihood without requiring any model-specific
analysis. We then demonstrate how to parameterize the diffusion for a specified
target noise distribution; these two points together enable optimizing the infer-
ence diffusion process. Optimizing the diffusion expands easy experimentation
from just a few well-known processes to an automatic search over all linear dif-
fusions. To demonstrate these ideas, we introduce two new specific diffusions
as well as learn a diffusion process on the MNIST, CIFAR10, and IMAGENET32
datasets. We show learned MDMs match or surpass bits-per-dims (BPDs) relative
to fixed choices of diffusions for a given dataset and model architecture.

1 INTRODUCTION

Diffusion-based generative models (DBGMs) perturb data to a target noise distribution and reverse
this process to generate samples. They have achieved impressive performance in image generation,
editing, translation (Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Sasaki et al., 2021; Ho
et al., 2022), conditional text-to-image tasks (Nichol et al., 2021; Ramesh et al., 2022; Saharia et al.,
2022) and music and audio generation (Chen et al., 2020; Kong et al., 2020; Mittal et al., 2021).
They are often trained by maximizing a lower bound on the log likelihood, featuring an inference
process interpreted as gradually “noising” the data (Sohl-Dickstein et al., 2015; Ho et al., 2020).

The choice of this inference process affects both likelihoods and sample quality. On different
datasets and models, different inference processes work better; there is no universal best choice
of inference, and the choice matters (Song et al., 2020b).

While some work has improved performance by designing score model architectures (Ho et al.,
2020; Kingma et al., 2021; Dhariwal & Nichol, 2021), Dockhorn et al. (2021) instead introduce
the critically-damped langevin diffusion (CLD), showing that significant improvements in sample
generation can be gained by carefully designing new processes. CLD pairs each data dimension with
an auxiliary “velocity” variable and diffuses them jointly using second-order Langevin dynamics.

A natural question: if introducing new diffusions results in dramatic performance gains, why are
there only a handful of diffusions (variance-preserving stochastic differential equation (VPSDE),
variance exploding (VE), CLD, sub-VPSDE) used in DBGMs? For instance, are there other auxiliary
variable diffusions that would lead to improvements like CLD? This avenue seems promising as
auxiliary variables have improved other generative models and inferences, such as normalizing flows
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(Huang et al., 2020), neural ordinary differential equations (ODEs) (Dupont et al., 2019), hierarchical
variational models (Ranganath et al., 2016), ladder variational autoencoder (Sgnderby et al., 2016),
among others.

Despite its success, CLD also provides evidence that each new process requires significant model-
specific analysis. Deriving the evidence lower bound (ELBO) and training algorithm for diffusions
is challenging (Huang et al., 2021; Kingma et al., 2021; Song et al., 2021) and is carried out in
a case-by-case manner for new diffusions (Campbell et al., 2022). Auxiliary variables seemingly
complicate this process further; computing conditionals of the inference process necessitates solving
matrix Lyupanov equations (section 3.3). Deriving the inference stationary distribution—which
helps the model and inference match—can be intractable. These challenges limit rapid prototyping
and evaluation of new inference processes.

Concretely, training a diffusion model requires:

(R1): Selecting an inference and model process pair such that the inference process converges to
the model prior

(R2): Deriving the ELBO for this pair

(R3): Estimating the ELBO and its gradients by deriving and computing the inference process’
transition kernel

In this work, we introduce Multivariate Diffusion Models (MDMs) and a method for training and
evaluating them. MDMs are diffusion-based generative models trained with auxiliary variables. We
provide a recipe for training MDMs beyond specific instantiations—like VPSDE and CLD—to all linear
inference processes that have a stationary distribution, with any number of auxiliary variables.

First, we bring results from gradient-based MCMC (Ma et al., 2015) to diffusion modeling to con-
struct MDMs that converge to a chosen model prior (R1); this tightens the ELBO. Secondly, for any
number of auxiliary variables, we derive the MDM ELBO (R2). Finally, we show that the transition
kernel of linear MDMs, necessary for the ELBO, can be computed automatically and generically, for
higher-dimensional auxiliary systems (R3).

With these tools, we explore a variety of new inference processes for diffusion-based generative
models. We then note that the automatic transitions and fixed stationary distributions facilitate di-
rectly learning the inference to maximize the MDM ELBO. Learning turns diffusion model training
into a search not only over score models but also inference processes, at no extra derivational cost.

Methodological Contributions. In summary, our methodological contributions are:

1. Deriving ELBOs for training and evaluating multivariate diffusion models (MDMs) with
auxiliary variables.

2. Showing that the diffusion transition covariance does not need to be manually derived for
each new diffusion. We instead demonstrate that a matrix factorization technique, previ-
ously unused in diffusion models, can automatically compute the covariance analytically
for any linear MDM.

3. Using results from gradient-based Markov chain Monte Carlo (MCMC) to construct MDMSs
with a complete parameterization of inference processes whose stationary distribution
matches the model prior.

4. Combining the above into an algorithm called Automatic Multivariate Diffusion Training
(AMDT) that enables training without diffusion-specific derivations. AMDT enables training
score models for any linear diffusion, including optimizing the diffusion and score jointly.

To demonstrate these ideas, we develop MDMs with two specific diffusions as well as learned mul-
tivariate diffusions. The specific diffusions are accelerated Langevin diffusion (ALDA) (introduced
in Mou et al. (2019) as a higher-order scheme for gradient-based MCMC) and an alteration, mod-
ified accelerated Langevin diffusion (MALDA). Previously, using these diffusions for generative
modeling would require significant model-specific analysis. Instead, AMDT for these diffusions is
derivation-free.
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Empirical contributions. We train MDMs on the MNIST, IMAGENET32 and CIFAR-10 datasets. In
the experiments, we show that:

1. Training new and existing fixed diffusions, such as ALDA and MALDA, is easy with the
proposed algorithm AMDT.

2. Using AMDT to learn the choice of diffusion for the MDM matches or surpasses the perfor-
mance of fixed choices of diffusion process; sometimes the learned diffusion and VPSDE
do best; other times the learned diffusion and CLD do best.

3. There are new and existing MDMs, trained and evaluated with the MDM ELBO, that account
for as much performance improvement over VPSDE as a three-fold increase in score model
size for a fixed univariate diffusion.

These findings affirm that the choice of diffusion affects the optimization problem, and that learning
the choice bypasses the process of choosing diffusions for each new dataset and score architecture.
We additionally show the utility of the MDM ELBO by showing on a dataset that CLD achieves better
bits-per-dims (BPDs) than previously reported with the probability flow ODE (Dockhorn et al., 2021).

2 SETUP

We present diffusions by starting with the generative model and then describing its likelihood lower
bound (Sohl-Dickstein et al., 2015; Huang et al., 2021; Kingma et al., 2021). Diffusions sample
from a model prior zg ~ 7 and then evolve a continuous-time stochastic process z;, € R%:

dz = hg(z,t)dt + Bp(t)dB;, te€[0,T] (1)

where B, is a d-dimensionsal Brownian motion. The model is trained so that z7 approximates the
data X ~ gga.! Maximum likelihood training of diffusion models is intractable (Huang et al., 2021;
Song et al., 2021; Kingma et al., 2021). Instead, they are trained using a variational lower bound on
log pg(z7 = z). The bound requires an inference process g, (y,|x = x):?

dy = fs(y, s)ds + gs(s)dBs, s € [0,T] )

where ﬁs is another Brownian motion independent of B;. The inference process is usually taken
to be specified rather than learned, and chosen to be i.i.d. for each y;; conditional on each x;. This
leads to the interpretation of the y;; as noisy versions of features z; (Ho et al., 2020). While the
diffusion ELBO is challenging to derive in general, Huang et al. (2021); Song et al. (2021) show that
when the model process takes the form:

dz = [g3(T — t)sg(z,T — t) — fo(z,T —t)] dt + go(T — t)dBy, (3)

the ELBO is:
T
. 1
logpe(7) > L (2) = Eg, (y|a) [logﬂe(YT) +/ _5“59”% -V (95589 = fo)ds|, 4
0

where f,, g, so are evaluated at (y,, s), |[x||[A = x"Ax and g = gg'. Equation (4) features
the Implicit Score Matching (1SM) loss (Song et al., 2020a), and can be re-written as an ELBO £%™
featuring Denoising Score Matching (DSM) (Vincent, 2011; Song et al., 2020b), see appendix F.1.

3 A RECIPE FOR MULTIVARIATE DIFFUSION MODELS

As has been shown in prior work (Song et al., 2021; Dockhorn et al., 2021), the choice of diffusion
matters. Drawing on principles from previous generative models (section 6), we can consider a wide
class of diffusion inference processes by constructing them using auxiliary variables.

Following Huang et al. (2021); Dockhorn et al. (2021) we integrate all processes in forward time 0 to T". It
may be helpful to think of an additional variable X £ z71_: so that Xo approximates X ~ qqata-
>We use y as the inference variable over the same space as the model’s z.
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At first glance, training such diffusions can seem challenging. First, one needs an ELBO that includes
auxiliary variables. This ELBO will require sampling from the transition kernel, and setting the
model prior to the specified inference stationary distribution. But doing such diffusion-specific
analysis manually is challenging and hinders rapid prototyping.

In this section we show how to address these challenges and introduce an algorithm, AMDT, to
simplify and automate modeling with MDMs. AMDT can be used to train new and existing diffu-
sions, including those with auxiliary variables, and including those that learn the inference process.
In appendix A we discuss how the presented methods can also be used to automate and improve
simplified score matching and noise prediction objectives used to train diffusion models.

3.1 MULTIVARIATE MODEL AND INFERENCE

For the j*" data coordinate at each time ¢, MDMs pair z; ; € R with a vector of auxiliary variables
Vi € R~ into a joint vector u; and diffuse in the extended space:

ug ~ 7o, du = h.g(ut = |:‘Z,i:| ,t)dt + ﬁe(t)dBt (5)

MDMs model the data x with z, a coordinate in uy ~ pg. For the ;i feature Xj, each uy; € RE
consists of a “data” dimension uj; and auxiliary variable u;;. Therefore u € R, We extend the

drift coefficient hy from a function in R? x R, — R? to the extended space RY¥ x R, — R,
We likewise extend the diffusion coefficient to a matrix [y acting on Brownian motion B; € R4K,

Because the MDM model is over the extended space, the inference distribution y must be too. We
then set ¢(y§|y§ = ) to any chosen initial distribution, e.g. A(0,I) and discuss this choice in
section 4. Then y, evolves according to the auxiliary variable inference process:

dy = fo(y,s)ds + go(s)dBs, (6)
where the inference drift and diffusion coefficients fg, g4 are now over the extended space y =

[y*,y"]. The function f, lets the z and v coordinates of ¥; interact in the inference process.

ASSUMPTIONS

This work demonstrates how to parameterize time-varying Itd processes, used for diffusion mod-
eling, to have a stationary distribution that matches the given model prior. To take advantage of
the automatic transition kernels also presented, the inferences considered for modeling are linear
time-varying processes and take the form:

dy = Ay(s)yds + gy(s)dBs

where Ay(s) : Ry — dK x dK and gy (s) : Ry — dK x dK are matrix-valued functions.

3.2 ELBO FOR MDMs

We now show how to train MDMs to optimize a lower bound on the log likelihood of the data. Like
in the univariate case, we use the parameterization in eq. (3) to obtain a tractable ELBO.

Theorem 1. The MDM log marginal likelihood of the data is lower-bounded by:

T
1 v mism
o8P ) 2 Boy i g molyr) — [ ool + V- (a0 — fodds — lowanlyile) | (£7)
—— 0 @ —
Lr Eq
T
1 1 masm
= Eq,(yla) | b7 +/O 5\\%”32 —5llse = 8¢||§; + (V- fo)ds — gq‘| (Lmem.

(N

where divergences and gradients are taken with respect to y ; and sg = Vy _log qg(y ;| ).
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Proof. The proof for the MDM ISM ELBO £™™ is in appendix F. In short, we introduce auxiliary
variables, apply Theorem 1 of Huang et al. (2021) (equivalently, Theorem 3 of Song et al. (2021)
or appendix E of Kingma et al. (2021)) to the joint space, and then apply an additional variational
bound to vo. The MDM DSM ELBO L£™®™ is likewise derived in appendix F, similarly to Huang et al.
(2021); Song et al. (2021), but extended to multivariate diffusions. O

We train MDM’s by estimating the gradients of £™%™, as estimates of £™™ can be computationally
prohibitive. For numerical stability, the integral in eq. (7) is computed on [e, T rather than [0, T7].
One can regard this as a bound for a variable u.. To maintain a proper likelihood bound for the data,
one can choose a likelihood up|u, and compose bounds as we demonstrate in appendix I. We report
the ELBO with this likelihood term, which plays the same role as the discretized Gaussian in Nichol
& Dhariwal (2021) and Tweedie’s formula in Song et al. (2021).

3.3 INGREDIENT 1: COMPUTING THE TRANSITION ¢4 (y,|x)

To estimate eq. (7) and its gradients, we need samples from ¢(y,|z) and to compute V log ¢(y ,|x).
While an intractable problem for MDMs in general, we provide two ingredients for tightening and
optimizing these bounds in a generic fashion for linear inference MDMs.

We first show how to automate computation of ¢(y,|y,) and then ¢(y,|x). For linear MDMs of the
form:
dy = A(s)yds + g(s)dB;,

the transition kernel ¢(y,|y,) is Gaussian (Sdrkkd & Solin, 2019). Let f(y, s) = A(s)y. Then, the
mean and covariance are solutions to the following ODEs:

dms|0/d5 = A(s)ms|0

dS0/ds = A(s)Sy0 + BspA " (5) + g2(s). (8)
The mean can be solved analytically:

m,|p = exp {/ A(I/)dl/] vo =exp(sA)y, . 9)
0 —_—
no integration if A (v) = A
The covariance equation does not have as simple a solution because eq. (9) as the unknown matrix
30 is being multiplied both from the left and the right.

Instead of solving eq. (8) for a specific diffusion manually, as done in previous work (e.g. pages 50-
54 of Dockhorn et al. (2021)), we show that a matrix factorization technique (Sarkké & Solin (2019),
sec. 6.3) previously unused in diffusion-based generative models can automatically compute 3o
generically for any linear MDM. Define C,, H, that evolve according to:

dC,/ds\ _ (A(s)  ¢%(s) \ (Cs 0)
dH,/ds) —\ 0 —AT(s)) \H,)’ (
then 3,)g = C,H, 'forCy=3pand Hy = I (Appendix D). These equations can be solved in

closed-form,
C; Al 2 by A g by
()= | (% R0 (F) = [ (6 2)] (3) o

no integration if A(v) = A, g(v) =g

where [A]; = [ A(v)dv. To condition on y, = (z,v), we set 3y = 0.

Computing g4 (y,|z). For the covariance X, to condition on x instead of y, we set Xg to

0 0
o = <0 zvo>’

To compute the mean, it is the same expression as for ¢(y |y, ), but with a different initial condition:

m,|, = exp [/OSA(u)du] (Eq[;gm]) (12)

See appendix D for more details.
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Algorithm 1 Automatic Multivariate Diffusion Training

Input: Data {x;}, inference process matrices Q, D4, model prior 7y, initial distribution g (y§ |
x), and score model architecture sg
Returns: Trained score model sg
while sy not converged do
Sample x ~ Zz 1 N0z V0 ~ qp(¥0 | )
Sample s ~ f\]and Vs, YT ~ ¢s(ys | ©) using algorithm 2
Estimate the stochastlc gradient of the MDM ELBO, VyL(0, ¢), using eq. (7)
0+ 0+ aVoL(0,).
if learning inference then
p<— od+aVyL(8,¢)
end if
end while
QOutput sy

A fast and Simple algorithm. We show in algorithm 2 Table 1: Runtime Comparison; we
(appendix H) that computing the transition kernel only compare the run time of sampling from
requires knowing f, g and requires no diffusion-specific the cLD diffusion analytically versus
analysis. For K — 1 auxiliary variables, A, g are K x K. using the automated algorithm.

Like for scalar diffusions, these parameters are shared

across data coordinates. This means matrix exponentials ~ Method CIFAR-10 MNIST
and inverses are done on / x K matrices, where K isonly ~ Analytical  0.027 0.0062
2 or 3 in our experiments. In table 1, we compare the time  Automated 0.029 0.007

to sample a batch of size 256 from the transition kernel for

CIFAR10 and MNIST. The table shows the extra computa-

tional cost of the automated algorithm is negligible. This automation likewise applies to simplified
score matching and noise prediction objectives, since all rely on g4 (y,|z) (appendix A).

3.4 INGREDIENT 2: MDM PARAMETERIZATION

The MDM ELBO (eq. (7)) is tighter when the inference y tends toward the model’s prior my. Here
we construct inference processes with the model prior 7y as a specified stationary distribution ...

Ma et al. (2015) provide a complete recipe for constructing gradient-based MCMC samplers; the
recipe constructs non-linear time-homogeneous Itd processes with a given stationary distribution,
and show that the parameterization spans all such Itd processes with that stationary distribution.

Diffusion models usually have time-varying drift and diffusion coefficients (e.g. use of the 3(t)
function). To build diffusion models that match the model prior, we first extend Theorem 1 from
Ma et al. (2015) to construct non-linear It6 processes with time-varying drift and diffusion coef-
ficients with a given stationary distribution (Appendix C). Then, to keep transitions tractable (per
Section 3.3), we specialize this result to linear It6 diffusions.

We directly state the result for linear time-varying diffusions with stationary distributions. The pa-
rameterization requires a skew-symmetric matrix —Q(s) = Q(s) ", a positive semi-definite matrix
D(s), and a function VH (y) such that the desired stationary distribution ¢, is proportional to
exp[—H (y)]. Linear It6 diffusions have Gaussian stationary distributions (Sirkkid & Solin, 2019)
meaning that V H is linear and can be expressed as Sy for some matrix S. For a matrix A, let VA
refer to the matrix square root defined by a = VA <= A = aa'. Then, the Ito diffusion:

dy = _[Q(S) +D(s)}5yds+ /2D(s) dB,, (13)
f(y,s) s(e)

has Gaussian stationary distribution A'(0,S™") where Q(s),D(s) and S are parameters. For a
discussion of convergence to the stationary distribution, as well as skew-symmetric and positive
semi-definite parameterizations, see appendix C, where we also show that existing diffusion pro-
cesses such as VPSDE and CLD are included in Q/D parameterization. We display the ELBO in
terms of Q/D in appendix G and an algorithm in appendix H.
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For score matching and noise prediction losses and a given ¢4, achieving a minimizing value with
respect to sp does not imply that the generative model score will match the inference score. Model-
ing the data also requires the marginal distribution of g4 7 to approximate 7. When ¢ is constant, it
is important to confirm the stationary distribution is appropriately set, and the tools used here for the
ELBO can be used to satisfy this requirement for score matching and noise prediction (appendix A).

3.5 LEARNING THE INFERENCE PROCESS

The choice of diffusion matters, and the ELBOs in eq. (7) have no requirement for fixed g4. We
therefore learn the inference process jointly with sg. Under linear transitions (ingredient 1), no
algorithmic details change as the diffusion changes during training. Under stationary parameteriza-
tion (ingredient 2), we can learn without the stationary distribution going awry. In the experiments,
learning matches or surpasses BPDs of fixed diffusions for a given dataset and score architecture.

In £LMEM or £MSM g may be set to equal 7p, but itis y7 ~ gy  for the chosen T that is featured
in the ELBO. Learning ¢4 can choose y to reduce the cross-entropy:

_qus(yT\w)[lOg mo(yr)]- (14)

Minimizing eq. (14) will tighten the ELBO for any sg. Next, g is featured in the remaining terms
that feature sg; optimizing for g4 will tighten and improve the ELBO alongside s¢. Finally, g is
featured in the expectations and the — log g4 term:

log po(uf = z) 2= Ky, (ys=u|s) [(ﬁdsm or L") —log g4 (y§ = vlﬂf)} (15)
_/_/

The ¢, (y§|z) terms impose an optimality condition that pg(u¥|uz) = ¢4(y§ly§) (appendix E),
When it is satisfied, no looseness in the ELBO is due to the initial time zero auxiliary variables.

To learn, Q,D need to be specified with parameters ¢ that enable gradients. We keep S fixed
at inverse covariance of mg. The transition kernel g4 (y,|z) depends on Q,D through its mean
and covariance. Gaussian distributions permit gradient estimation with reparameterization or score-
function gradients (Kingma & Welling, 2013; Ranganath et al., 2014; Rezende & Mohamed, 2015;
Titsias & Lazaro-Gredilla, 2014). Reparameterization is accomplished via:

Ys = Myg)o + Ls|06 (16)
where ¢ ~ N (0, I;x) and Lo satisfies LS‘OL;O = 3,0, derived using coordinate-wise Cholesky
decomposition. Gradients flow through eq. (16) from y, to m,|o and 3o to Q, D to parameters ¢.

Algorithm 1 displays Automatic Multivariate Diffusion Training (AMDT). AMDT provides a training
method for diffusion-based generative models for either fixed Q,D matrices or for learning the
Q¢, Dy matrices, without requiring any diffusion-specific analysis.

Learning in other diffusion objectives. Like in the ELBO, learning in score matching or noise
prediction objectives can improve the match between the inference process and implied generative
model (appendix A).

4 INSIGHTS INTO MULTIVARIATE DIFFUSIONS

Scalar versus Multivariate Processes. Equation (13) clarifies what can change while preserving
(oo- Recall that Q and D are K x K for K — 1 auxiliary variables. Because 0 is the only 1 x 1
skew-symmetric matrix, scalar processes must set Q = 0. With g4 - = N(0,I), the process is:

dy = —D(s)yds + v/2D(s)dBs. (17)

What is left is the VPSDE process used widely in diffusion models where D(s) = 3/(s) is 1 x
1 (Song et al., 2020b). This reveals that the VPSDE process is the only scalar diffusion with a
stationary distribution.® This also clarifies the role of Q: it accounts for mixing between dimensions

in multivariate processes, as do non-diagonal entries in D for K > 1.

3There are processes such as sub-VPSDE (Song et al., 2020b) which are covered in the sense that they tend
to members of this parameterization as 1" grows: sub-VP converges to VPSDE.



Published as a conference paper at ICLR 2023

CLD optimizes a log-likelihood lower bound. Differentiating £™%™ (eq. (7)) with respect to the
score model parameters, we show that the objective for CLD (Dockhorn et al., 2021) maximizes a
lower bound on log pg (), not just log ps (1), without appealing to the probability flow ODE.

Does my model use auxiliary variables? An example initial distribution is q(y§|z) = M (0,I).
It is also common to set my = N(0, I). Because the optimum for diffusions is pg = ¢, the optimal
model has main and auxiliary dimensions independent at endpoints 0 and 7". Does this mean that
the model does not use auxiliary variables? In appendix B, we show that in this case the model can
still use auxiliary variables at intermediate times. A sufficient condition is non-diagonal Q + D.

5 EXPERIMENTS

We test the MDM framework with handcrafted and learned diffusions. The handcrafted diffusions
are (a) ALDA, used in (Mou et al., 2019) for accelerated gradient-based MCMC sampling (eq. (32))
and (b) MALDA: a modified version of ALDA (eq. (33)). Both have two auxiliary variables. We also
learn diffusions with 1 and 2 auxiliary variables. We compare with VPSDE and ELBO-trained CLD.

Table 2: BPD upper-bounds on image generation for a fixed architecture. CIFAR-10: learning
outperforms CLD, and both outperform the standard choice of VPSDE. MNIST: learning matches
VPSDE while the fixed auxiliary diffusions are worse. IMAGENET32: all perform similarly. Learning
matches or surpasses the best fixed diffusion, while bypassing the need to choose a diffusion.

Model K CIFAR-10 IMAGENET32 MNIST

VPSDE 1 3.20 3.70 1.26
Learned 2 3.07 3.71 1.28
Learned 3 3.08 3.72 1.33
CLD 2 311 3.70 1.35
MALDA 3 3.13 3.72 1.65
ALDA 3 29.43 33.08 124.60

Table 3: Parameter Efficiency. The first two rows display diffusions from previous work: VPSDE
and CLD, both using score models with 108 million parameters on CIFAR-10. We train the rest
using a score model with 35.7 million parameters. The learned diffusion matches the performance
of VPSDE-large; changes in the inference can account for as much improvement as a 3x increase in
score parameters. BPDs are upper-bounds.

Model K Parameters CIFAR-10
VPSDE-large (Song et al., 2021) 1 108M 3.08
CLD-large (Dockhorn et al., 2021) 2 108M 3.31
Learned 2 35.7M 3.07
CLD 2 35.7M 3.11
VPSDE 1 35.7M 3.20

Following prior work, we train DBGMs for image generation. We use the U-Net from Ho et al.
(2020). We input the auxiliary variables as extra channels, which only increases the score model
parameters in the input and output convolutions (CLD and Learned 2 have 7,000 more parameters
than VPSDE on CIFAR-10 and IMAGENET32 and only 865 more for MNIST). We use simple uniform
dequantization. We report estimates of £™4™ (which reduces to the standard £%™ for K = 1). We
sample times using the importance sampling distribution from Song et al. (2021) with truncation set
to € = 1073, To ensure the truncated bound is proper, we use a likelihood described in appendix I.

Results. Table 2 shows that the inference process matters and displays. It displays DBGMs that we
train and evaluate on CIFAR-10, IMAGENET32 and MNIST. This includes the existing VPSDE and
CLD, the new MALDA and ALDA, and the new learned inference processes. All are trained with the
35.7M parameter architecture. For CIFAR-10, learning outperforms CLD, and both outperform the
standard choice of VPSDE. For MNIST, learned diffusions match VPSDE while the three fixed aux-
iliary diffusions are worse. On IMAGENET32, all perform similarly. The take-away is that learning
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matches or surpasses the best fixed diffusion performance and bypasses the choice of diffusion for
each new dataset or score architecture. In Figure 1 we plot the generated samples from CIFAR10.

Table 3’s first two rows display diffusion models from previous work: VPSDE (Song et al., 2021) and
CLD (Dockhorn et al., 2021) both with the 108 million score model from Song et al. (2021) (labeled
“large”). The rest are DBGMs that we train using the U-Net with 35.7 million parameters for CIFAR-
10 and IMAGENET32 and 1.1 million for MNIST. Despite using significantly fewer parameters,
the learned diffusion achieves similar BPD compared to the larger models, showing that changes
in inference can account for as much improvement as a three-fold increase in parameters. While
the larger architecture requires two GPUs for batch size 128 on CIFAR-10 on A100s, the smaller
one only requires one; exploring inference processes can make diffusions more computationally
accessible. Table 3 also demonstrates a tighter bound for CLD trained and evaluated with the MDM
ELBO (< 3.11) relative to existing probability flow-based evaluations (3.31).

Figure 1: CIFAR10 samples generated from the “learned 2”” and MALDA generative models.

6 RELATED WORK

Evidence Lower Bounds. Song et al. (2021); Huang et al. (2021) derive the 1SM and DSM lower-
bounds on the model log likelihood. Our work extends their analysis to the multivariate diffusion
setting to derive lower bounds on the log marginal of the data in the presence of auxiliary variables.

Auxiliary variables. Dupont et al. (2019) shows that augmented neural ODEs model a richer set
of functions and Huang et al. (2020) uses this principle for normalizing flows. Hierarchical vari-
ational models and auto-encoders marginalize auxiliary variables to build expressive distributions
(Ranganath et al., 2016; Sgnderby et al., 2016; Maalge et al., 2019; Vahdat & Kautz, 2020; Child,
2020). We apply this principle to DBGMS, including and extending CLD (Dockhorn et al., 2021).

Learning inference. Learning g4 with py is motivated in previous work (Kingma & Welling,
2013; Sohl-Dickstein et al., 2015; Kingma et al., 2021). Kingma et al. (2021) learn the noise sched-
ule for VPSDE. For MDMs, there are parameters to learn beyond the noise schedule; Q can be
non-zero, D can diagonal or full, give Q and D different time-varying functions, and learn VH.

7  DISCUSSION

We present an algorithm for training multivariate diffusions with linear time-varying inference pro-
cesses with a specified stationary distribution and any number of auxiliary variables. This includes
automating transition kernel computation and providing a parameterization of diffusions that have
a specified stationary distribution, which facilitate working with new diffusion processes, includ-
ing learning the diffusion. The experiments show that learning matches or surpasses the best fixed
diffusion performance, bypassing the need to choose a diffusion. MDMs achieve BPDs similar to
univariate diffusions, with as many as three times more score parameters. The proposed MDM ELBO
reports a tighter bound for the existing CLD relative to existing probability flow-based evaluations.
This work enables future directions including interactions across data coordinates and using new
stationary distributions.
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A  AUTOMATED SCORE MATCHING WITH LEARNED INFERENCE

Like for the MDM ELBO, the methods in this work apply to training with the score matching loss:

Lsm(w,0,0) = TE; 0,11 Eq, (y|2) [A(t) lso(y¢,t) — Vy, log g (y: | I)H;} ,

where A : [0,7] — Ry is a weighing function. The score-matching loss is often optimized in its
simplified noise prediction form:

Lyp(7,0,0) = TEy(0,1Eq, (v]2) {||€9(Yt7t) - €||3}

where sg = —L; Tep and y+ = p+ + Lie and € is the noise used in sampling y,. We describe
here how the improvements to the ELBO studied in this work carry over to Lgy and Lyp. In the
following let o be the data distribution, let p(g, ¢ o be the model’s distribution of the data, and recall
that the model is defined by (sg, f4, g¢) and prior 7 via a continuous-time stochastic process with
drift coefficient 93)89 — f and and diffusion coefficient g4.

First, minimizing Lsm or Lnp so that Vy log qg(y,) = se(y;,t) does not alone imply that p(g,¢).0
will equal go; it must also be that g, 7 ~ m. Foregoing this requirement means 7 will produce
samples that the generative model may not be able to push onto the path the model was trained
on (formally, the score of the generative model would not equal the time-reversal of the forward
score even if s¢ equals the forward score). This condition can be satisfied if g4 can be chosen with
stationary distribution 7. Section 3.4 describes how to accomplish this.

Next, for any fixed g4, automatic transitions from section 3.3 streamline the computation of the score
matching loss, allowing for simple score computation for a wide class of diffusions beyond VP.

Finally, for a fixed g4 with ¢4 7 ~ 7 and a score architecture sg, minimizing Ly or Lxp W.r.t 0
may be suboptimal. Optimization, like for the elbo, carries over to score matching and can close this
gap; learning w.r.t. both 0, ¢ increases the ability to successfully minimize the loss at each ¢ (section
3.5). In other words, since the generative model is defined by (sg, fs, g), learning g, means the
loss trains all three components of the generative model rather than just one. In summary, score
matching is automatic and can learn over the space of linear diffusions that tend to the model prior.

B DOES MY MODEL USE AUXILIARY VARIABLES?

In section 3 we gave the example choice of ¢(y§|z) = N (0, I) coordinate-wise. It is also a common
choice to set mg = N(0,I). Because the optimum in diffusion models is pg = ¢ for all ¢, we see a
peculiar phenomenon under this choice: the model has main and auxiliary dimensions independent
at both endpoints 0 and 7T'. Does this mean that the model does not use auxiliary variables? We show
that even when ¢, (y,) and 7y have main and auxiliary variables independent, the model can use the
auxiliary variables. A sufficient condition is Q + D is non-diagonal.

To make this precise, we recall that we model with pg(u? = z). To show the model is using auxil-
iary variables, we just need to show that u%. (main coordinate at T") depends on uy (aux. coordinate
at t) for T > t. At optimum, pg(u%,uf) = g(y§, yr_;). Therefore it is sufficient to show that
for some time s, ¢y (y?|y§) # ¢o(y:). Because y§, is determined by = we need to show that
46(¥¥|x) # q4(y?). To do that, we first derive ¢(y|z) and then marginalize to get ¢(y?|x) from it.
Since the former is 2D Gaussian, the latter is available in terms of the former’s mean and covariance.

Suppose E[yy] = 0, Q = [[0, —1],[1,0]] and D = [[1, 0], [0, 1]] and we have s = .1 We have:

s —exp @ +m)] (3) e [ ] (5) - () o

Regardless of the covariance any 1D of this 2D gaussian will have mean that is a function of z,
meaning that ¢(y?|z) does not equal ¢(y?) (which is also a Gaussian but with mean depending
on x’s mean rather than z itself. Therefore, even under the setup with independent endpoints, the
optimal model makes use of the intermediate auxiliary variables in its final modeling distribution
po(ui = x).

Are there choices of Q and D that lead to learning models that don’t make use of the extra dimen-
sions? As mentioned, in the inference process, Q is responsible for mixing information among the
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coordinates, and is the only source of this when D is diagonal Then if Q = 0 and D is diago-
nal, none of the coordinates for a given feature x; (including uj;, uj}, ’K ') interact for any ¢.
Then, since pg = ¢ at optimum, independence of the coodlnates at afl t in q 1mply the same in pg and
the model will not make use of any auxiliary variables when modeling the marginal log pg(u% = x).

C STATIONARY PARAMETERIZATION

The non-linear time-homogeneous Itd process family is:

dy = f(y)dt + g(y)Bx. (19

This family can be restricted to those with stationary distributions. Ma et al. (2015) show a complete
recipe to span the subset of this family with a desired stationary distribution. Let Q be skew-

symmetric (—Q = Q") and D s positive semi-definite. Suppose the desired stationary distribution
is oo (y). For a matrix A, let v/A refer to the matrix square root defined by a = VA «— A =
a'. Then, Ma et al. (2015) show that, setting H(y) = —log ¢ (y), 9(y) = 1/2D(y), and

d
1) = ~ID) + QEIVHE) + T Tiy) =3 5 (Do) + Q) €0

yields a process y, with stationary distribution ¢~,. We extend it to time-varying (time in-
homogeneous) processes.

Theorem 2. q..(y) o exp[—H (y)] is a stationary distribution of

dy = <— [D(y,t) + Qy, )] VH(y) + I'(y, t >dt+ V2D(y, t)By, 1)
for

d
0
Zaj i (¥, ) + Qy;(yt))- (22)

Proof. The Fokker Planck equation is:

Aha(y,t Z By [fz y,t)a(y,t } +Z ay Jy. { iy t)a(y,t) (23)
Yy

A stationary distribution is one where the Fokker-Planck right hand side is equal to 0. To show
that the stationary characterization also holds of time-inhomogenous processes with D(y,¢) and
Q(y, t), we take two steps, closely following Yin & Ao (2006); Shi et al. (2012); Ma et al. (2015),
but noting that there is no requirement for Q, D to be free of ¢. First, we show that the Fokker-Plack
equation can be re-written as:

drg(y,t) = V- ([D(% 0+ Q. 0] [ay, HVH() + Valy, t)}) 4

Second, because the whole expression is set to 0 when the inside expression equals 0
q(y,t)VH(y) + Vq(y,t) =0, (25)

we just need to show that this holds when ¢(y, t) = exp[—H (y)]/Z. The second step is concluded
because

~ [P HWIVH) + Vespl-H(y)]] =0

where Z is the normalization constant of exp(—H (y)).

q(y, ) VH(y) + Vq(y,t)] _
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It only remains to show that Fokker-Plack can be re-written in divergence form with tlme dependent
Q, D. In the following let Q;;; denote Q;;(y,t) and likewise for D; ;. Let 0; denote 5 - - and let it

denote dd
y

for scalar functions. We will use [Az]; = 3 A;;x;.

i

due =V - ([D(y7 )+ Qy.D][gVH + V)
=3 0([Pt0) + Q- 0llavH + Vil )
- Z d; Z ijt + Qe [V H + Vgl
= iai i[Dijt + Qi;i][q0; H + 05q]
- iai i“’”‘t + Qigllad; H) + 320 Y _[Dige + Qusel[95d]

= Z i Z[Dijt + Qijt)[q0; H] + Z i Z D;j[0;q] + Z o Z Qijt[054]

We re-write the 2nd and 3rd term. Holding ¢ fixed and noting ¢ is scalar, we get the product rule
> Dije(95q9) = >_, 0;[Dijeq] — q>_; 95Dt for each 4, and likewise for g:

Zaz zgt+ngt an+Za ZDUt jq +282th ]q
—28 Z zgt+Q2]t an Za Za zgtq ZaDUt
+Za Za [Qijea] — qzani]’t
J
Because Q(y, t) is skew-symmetrlc, we have that ), 0; 3, 0;(Qij¢q] = 0, leaving
= Zaz Z[ ijt +ngt a H

+Zai [Z 0i[Dijiq] — Za Dyji — Zanijt‘|
i J J
+ Za [Za Dijrq) — qzaj(Dijt + Qijt)‘|
L J j
I 2
:Zaz (Z[ ’L]t+QZ]t 8H Za ’th+Q’L]t) +ZZ 0 1jtq

L yzg

Orqy = Z 0; Z[Dijt + Qijtl[q0; H]

L J

Recalling that f;(y,?) = (— [D+ Q]VH+F) _and again that [Az]; = >, A;;x;, we have equality
with the original Fokker-Planck '

_Zal(z Dije + Que) 0, H] - Za (Diji + Qup) g
:72 {fzy, }+Z [my, Daly.1)|

= 625Q(Y7 )

+Z

zgtq

Yz_]

O

We have shown exp[—H (y)]/Z is a stationary distribution of the time-varying non-linear It pro-
cess:

dy = (—[D(y7t)+Q(y,t>]VH( )+ T(y,t )dt+\/TBt (26)
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However, for some choices of Q, D, exp[—H (y)]/Z is not necessarily the unique stationary distri-
bution. One problematic case can occur as follows. Suppose that row ¢ of (Q + D) is all-zero; in
this case, dy; = 0 which implies that (y;); = (y;)o for all ¢ > 0. Then, the initial distribution is
also a stationary distribution. To rule out such pathological diffusions, we make the assumption that
Q + D is full rank. Then, for uniqueness, recall that stationary distributions are the zeros of

drg(y,t) = V- ( [D.0)+ Q. 1) [aly. ) V() + Va(y. t)])
where the expression is of the form Av for A = D(y,t) + Q(y, t) and

v = [q(y, t)VH(y) + Vq(y, t)]

Under the assumption that Q + D is full rank, the expression can only be zero when v is zero. To
show uniqueness under the full rank assumption, one must then show that

Va(y,t) = —q(y,t)VH(y).

holds only if ¢(y,t) = exp[—H(y)]/Z. Even if exp|—H (y)]/Z is the unique stationary distribu-
tion, convergence to that distribution is a question. See Zhang & Chen (2013) for more details.

Learning Q,,, D in the MDM ELBO helps push y - to the model prior 7y and avoid issues like those
discussed.

C.1 LINEAR PROCESSES

Next, we specialize this general family to linear Itd processes to maintain tractable transition distri-
butions. A linear process is one where the drift f(y,t) and diffusion g(y,t) are linear functions of
y. We express the drift function of a non-linear time-varying I[td process with stationary distribution
proportional to exp[—H (y)] as

—(Q(y,t) + D(y,t))VH(y) + I'(y, ).

Next, linear It processes have Gaussian stationary distributions (Sirkkd & Solin, 2019) so H (y)
must be quadratic and V H (y) is linear, and neither are constant in y. Because VH (y) is linear, it
can be expressed as Sy for some matrix S where S is the inverse of the covariance matrix. Because
V H is multiplied by Q, D, this means that Q, D must be free of y. Recalling that I" is expressed
as a sum of derivatives w.r.t y of Q + D, this means that I" must satisfy I' = 0. Next, because of
the stationary requirement that g(¢t) = /2D(y,t), we can also conclude by the restriction on D
that the diffusion coefficient function must be independent of the state y. Our final form for linear
time-varying processes with stationary distributions A/(0, ™) is:

dy = — [Q(t) + D(t)} Sy dt + \/2D(t) dB, 27)
f(y.t) 9

C.2 PARAMETERIZING Q(b

Suppose b, (s) is a positive scalar function defined on the time domain with known integral. Suppose

~ . . ~ ~T . . A ~
Q, is any matrix. Then Q, — Q, is skew-symmetric with Q,, ;,; = —Q, ;. We can set Q,, to

~ ~T
Qu(s) = by(s)- [Qy — Q| (28)
This is a general parameterization of time-independent skew-symmetric matrices, which have num-

ber of degrees of freedom equal to the number of entries in one of the triangles of the matrix,
excluding the diagonal.

C.3 PARAMETERIZING Dy

Suppose by(s) is a positive scalar function defined on the time domain with known integral. Suppose

= . . ~ =T . ... . . . . ..
Dy is any matrix. Then DD, is positive semi-definite and spans all time-independent positive
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semi-definite matrices. We can set D to
= T
Dy (s) = ba(s) [D¢D¢} (29)

- T
To show DD  spans all positive semi-definite matrices: suppose M is positive semi-definite. Then
it is square. Then it can be eigen-decomposed into M = VXV ' The degrees of freedom in vV’

are just R = V/X since VEV' =RR' and the square root is taken element-wise because X is
diagonal and is real because each X;; > 0, which is true because M is positive semi-definite. Take
D=R.

In our experiments we parameterize D as a diagonal-only matrix.

C.4 INTEGRALS

The known integral requirement comes from the integrals required in the transition kernel, and can
be relaxed two possible ways:

* numerical integration of function with unknown integral. This is expected to have low error
given that the function is scalar-in scalar-out.

* Directly parameterize the integral and use auto-grad when needing the functions not-
integrated.

We stick with the known integrals. In conclusion, the underlying parameters are positive scalar
functions by, (s), bg(s) defined on the time domain and with known integral, and general matrices

C.5 INSTANCES

VPSDE. VPSDE has K = 1. Consequently, Q,D are K x K. The only 1 x 1 skew-symmetric

matrix is 0, so Q = 0. Setting D(t) = 3/3(t) recovers VPSDE:

t
dy = f?ydt +/B{HdB, (30)
VH(y) =y so H(y) = 1|y||3. The stationary distribution is (0, I).

CLD. The CLD process (eq 5 in Dockhorn et al. (2021)) is defined as

B
(i) ==y B)wer (o o) o

In Q/D parameterization, we have

1 2 1 2 z
H) =l + gy VI Vuti) = (£

_ (0 -3 (0 0
o= (3 V) 20 )
The stationary distribution of this process is:

4g,00 < exp(—H(y)) = N (2;0, 15)N (v; 0, M 1,) 3D

ALDA. Mou et al. (2019) define a third-order diffusion process for the purpose of gradient-based
McMC sampling. The ALDA diffusion process can be specified as

0 —3I 0 00 0
Q= %[ 0 —~I], D=(0 0 0 ]. (32)
0 I 0 00 &1

Note that Q is skew-symmetric and D is positive semi-definite, therefore we have that ¢;(u) —
G¢,00- In this case,
1

1
0p,00 = N(2;0,I9)N (v1;0, ZId)N(V% 0, ZId>
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MALDA. Similar to ALDA, we specify a diffusion process we term MALDA which we specify as

0 —1ly -1 0 0 0
Q=(+r 0 —I|, D=|0 I 0 |. (33)
141 0 0 0 +I

Note that Q is skew-symmetric and D is positive semi-definite. In this case this is

1 1
*Id)N(VQ; 0, *Id)

dp00 = N (2;0,15)N (v1;0, 7 7

D TRANSITIONS FOR LINEAR PROCESSES

For time variable s and Brownian motion I§S driving diffusions of the form

dy = f(y,s)ds + g(s)dBs, (34)

when fy(y,, s), g (s) are linear, the transition kernel ¢,4(y,|y,) is always normal (Sarkkd & Solin,
2019). Therefore, we just find the mean myy and covariance 3, of ¢(y,|y,). Let f(y,s) =

A(s)y. The un-conditional time s mean and covariance are solutions to
dmg/ds = A(s)m, 35)
d¥,/ds = A(s)Zs + Z,AT (5) + ¢%(s)

By (6.6) in Sérkkd & Solin (2019), for computing conditionals ¢(y,|y,), we can take the marginal
distribution ODEs and compute conditionals by simply setting the time 0 mean and covariance initial
conditions to the conditioning value and to O respectively. We take (6.36-6.39) and set mg = ug
and Xy = 0 to condition. Let [A], = [; A(v)dv. The mean is

m,|p = exp {/OS A(V)dv} Yo = exp ([A} s) =exp(sA)y, (36)

no integration if A (v) = A

where exp denotes matrix exponential. (6.36-6.39) state the covariance ¢(y,|y,) as a matrix factor-
ization, for which a derivation is provided below ¥, = CS(HS)’1 for C,, H; being the solutions

of:
() = (%7 5%0) (&) -

To condition and get 3| from X, we set 3y = 0, and initialize C, Hy; by Cy = 0 and Hy = L.

(&)= [(5 K@) [ G D) o

no integration if A (v) = A, g(v) =g

Finally, 2,0 = C,(H,) L.

D.1 DERIVATION OF THE COVARIANCE MATRIX SOLUTION

Equation (35) gives an expression for dX/ds. To derive the matrix factorization technique used in
eq. (37), we use eq. (35) and the desired condition X, = CSHS_1 to derive expressions for dCy/ds
and dH /ds and suitable intial conditions so that the factorization also starts at the desired X. Let
Y= CSHgl, then note that C,, H, satisfies

d d
—3,=—C,H!
ds ™ ° dsCS s
d d
=C,—H! —C, |H!
ds ® +(ds ) s
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And using the fact that

d
—HH_'=0
ds s
d d
H,—H '+ —H,( H. ) =0
ds ° +ds ( s )
d 1 d

-1 _ 314 -1
—H'=-H_H (H")

we get that

14

H '!=-C,H;
CS) 8 C.H, ds

—1 -1 d -1
C,-H '+ < H, (H;') + (dscs) H,
—csﬂgliHS (H') + (

Sl Bl

y Cs> H;! = A(s)C,H; ' + C,H; LA T (5) + ¢%(s)
S

= A(s)C,H; ' + C,H'A T (s)H,H, ! 4 ¢%(s)HH !

d d
(—Csﬂglst + dCS> H,;' = (A(s)C,s + C;H;'A " (s)H, + ¢°(s)H,) H, !
S S
d d
—CSHs_ld—HS + 7-Co = A(s)Cs + C.H_'AT(s)H, + ¢°(s)H,
S S

C.H! Id]Ti<gz>_[CsHs 1 IdJT<A<s>_<§+(S;2}<IsS)Hs)

Now, we note C,, H; satisfy the following

Ty, - —AT(s)H,

% s
110, = A@)C, + P (s)H,
S

which implies that

i CS — A(S) 92(3) CS (39)
ds Hs 0 —AT(S) Hs
with Cy = X and Hy = I, as CoH, ' = 3.

D.2 HYBRID SCORE MATCHING

Instead of computing ¢(y,|y,), we can apply the hybrid score matching principle (Dockhorn et al.,
2021) to reduce variance by compute objectives using ¢(y,|x) instead of ¢(y|y,), which amounts
to integrating out v. To accomplish this, following Sirkkd & Solin (2019), we simply replace y
with [z, E[v(]] in the expression for m,, i.e. replace the conditioning value of vy with the mean

of its chosen initial distribution:
/ ’ Aw)dv| (i (40)
0 E[VO]

For the convariance, instead of using Cy = ¥, = 0, we use a block matrix to condition on x but
not vg. We decompose X into its blocks 3¢ 2, 20,40 ,250,2v- As before, to condition on x we set
3,22 = 0. Because ¢(vo) is set to be independent of x, 2 ,,, is also set to 0. Finally, instead of 0,
to marginalize out v, X, is set to the covariance of the chosen initial time zero distribution for
vo. E.g. if v ; ~ N(0,) for each dimension, then 3¢ ,,, = N(0,~I).

Elyla] = exp

We operationalize this in a simple piece of code, which makes the ELBO tractable and easy, i.e. skips
both analytic derivations and numerical forward integration during training.
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D.3 TRANSITIONS IN STATIONARY PARAMETERIZATION

In terms of Q, D, the transitions ¢(y,|y) for time s are normal with mean m,| and X, equal to:
Cs *[Q + D]e [2D]9 0
o =om (< [00] Jvo () = | (%™ (2m,) |
41

where Es|0 = CS(HS)’l. For the time invariant case, this simplifies to

m,|o = exp[—s(Q + D)]y,, (ﬁ) = exp [S (—(Q0+ D) Q iDD)Tﬂ (2) 42)

E GENERIC CHANGE OF MEASURE AND JENSEN’S FOR APPROXIMATE
MARGINALIZATION

Suppose u = [z, v] and we have an expression for p(u = [z,v]) = p(z = z,v = v). By marginal-
ization, we can get p(z = z), and we can introduce another distribution ¢ to pick a sampling distri-
bution of our choice:

(43)

We often work with these expressions in log space, and need to pull the expectation outside to use
Monte Carlo. Jensen’s bound allows this:

p(z v =
logp(z = z) = log Ey(v=y|z=2) [q((V:|Z:))}
p(z=2z,v=u)
>
Botv=le=2) {log q(v=vlz = z)}

The following shows that the bound is tight when ¢(v = v|z = z) = p(v = v|z = 2):

=z,v="1)

p(z p(z=2,v="1)
]Eq(v=1)|z=z) IOg m} assume IEp(v:v|z=z) |:1Og —i|

p(v =fz =)

= Ep(v=v|z==2) [log (m Pz = Z)ﬂ (44)

= Ep(v:v\z:z) [logp(z = Z)j|
— logp(z = 2)
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F ELBO FOR MDMs

log po () :log/ Po(xo,vo)dvg (45)
= log/ po(up = [z, v0)]) (46)
— log /UO ZEZZ:i;pg(uo = [z, v0)) @7)
po(uo = [z, v0))
—1logE Po\tio = 1%, Vo)) 48
0g q(volz) [ q('UO|-'17) ‘| ( )
2 Eq(vo|a) llogpe(uo = [z,vo]) — log Q(U0|33)] (49)

T
> Eq(yla) [logﬂe(y:r) +/ —[IsallZe — V- (9*s9 — f)ds —log q(yg|x) (50)
0

The first inequality holds due to Jensen’s inequality and the second due to an application of Theorem
1 from Huang et al. (2021) or Theorem 3 from Song et al. (2021) applied to the joint variable uy.

F.1 ISM t0o DSM
F.1.1 LEMMA: EXPECTATION BY PARTS

We will need a form of multivariate integration by parts which gives us for some f and some ¢(z),
Eq(w) [vz ' f(l’)] = 7Eq(x) [f(x)—rvz log q(x)}

Eq(w)[vﬂc : fl(x)] =

/ 4(2)V . fi(2)dridr_,

@) [ Vosiwin]” - [Vuato | vmim)dm]dx_i

— /qu(x)fl(x)d%] dx_;

- / q(x)V, log q(w)fi(x)dmi] dr_;

d

=3 [ [aveona e,

= Ed: —Eq() [vzi log q(x)fz(x)}
i=1

= —Eyw[f(z)" V. logg(z)]

This equality also follows directly from the Stein operator using the generator method to the
Langevin diffusion (Barbour, 1988).
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F.1.2 DSMELBO

Using the “expectation by parts”, we have:

Eq(u,|z) [V, - 92(t)39(ut7 t)] = _Eq(utlm)[(g2(t)50(“ta t))Tvuf, log q(uy|x)]

Also we have, for sg evaluated at (u¢, t), by completing the square,

1 1
= 5llsellgze) + 56 9° () V log g(ur|w) = =2 [|se — Viogg(ue|2)[[gz) + 5|V log a(ue|)[[3 )

The two together give us:

T i
log p(x) > Eq(up|e) | logm +/ Eq(ule) | — V- 9750 — .5H59||32(t) +V. f] dt]
o ]

T -
= ]Eq(uTlaf) log’/T + A Eq(utlw) _(gzsg)Tvut log Q(ut‘x) - 5”‘99”32(15) +V. f} dt‘|

=E

T _
1
q(urlz) | log ™ +/O Eq(ulay | = 550 = Vlog q(u|z)| |22

+ .5/ V1og q(us|)|[52 ) + Vu, - f]] dt
(51
F.2 NOISE PREDICTION

We have that for normal NV (y; mgo, X)), we can sample y, with normal noise € ~ N(0, I) and
ys = myo + Le where L is the cholesky decomposition of 35 Then, the score is

Vy. logq(y,lyo)

yo=m,|o+Le
=35 (v - m)

= —Es_lé([msm + Le} - ms\o)
=25 (Le)

- ()10

- _(LT>71L_1L€
= —(LT>_16 = —(L_l)Te =-L" e
Parameterize sg(y ., s) as so(y,,s) = —L' " eg(y, s). This gives
%H ~L" ey, s) — _LT7_16||-?J3»(3>
- %HLT—% — L'y 95

a
1.+ _ _ ~
=2<LT’ e — LT 169(%8)) 93(s) <LT’ ‘e — LD 1€a(y,8)>

-
<LT*1 [e —eoly, S)D 95(s) <LT’1 [6 —eo(y, S)D
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We can also use this insight to analytically compute the quadratic score term (following is computed
per data-dimension, so must be multiplied by D when computing the ELBO):

.
=Ey,Ey .y, (Vys logqqs(ys\yo)) 9@(5)(Vy5 1ogq¢(ys|yo))]

1
IEyoEysly0 ) ||Vys log Q¢(ys |YO) Hii(s)

=Ey Ey_ Iy, ( - LT’71€> Tg;(s)( — LT’IE)]

=Ey,Ey |y, eT(—Ll)gi(s)(—LT’l)el

_ T,—
=Ey Ey_ |y, eT(L 1g;(s)L 1>€‘|

= Ey E. le—r (L_lgi(s)LT’_l) e]
=E, le—r (L_lg;(s)LT’_l>e]
= Trace (L_lgi(s)LT’_1>

G ELBOS IN STATIONARY PARAMETERIZATION

We use the stationary parmeterization described in appendix C. We now specialize the ELBO to the
linear stationary parameterization.

Recall fy(y,s) = —[Qy(5) + Dy(s)]y. Recall g4(s) = /2Dy (s) We have g7 (s) = 2Dy(s). We
can write the MDM ISM ELBO as

Emism = EUNqa, Es~Unif(O,T) |:€‘(ngm):| + U+ éq (52)
where
ty, = -2 2
so = 7§||59(y578)”2D¢(s)
——
i
lavies = Vy, - | =[Qu(5) + Do(s)ly, — 2D (s) s0(y.5)
——
fo 93
ism (53)
63 = Eq(bﬁs’(m’v) |:£se + édiv—fgs:|
—_——
depends on Q,D
fr = Egor, (z,0) {log M(YT)}
depends on Q,D
Ly = —log g, (v|x)
For the DSM form,
Lmdsm Eyng, [ESNUnif(O’T) [fgdsm)} +lr + 4, (54)
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where
lavt = Vy, - —[Qu(s) +Dy(s)]y,
fo

1
Liwd-score = 5 H Vys log q¢(y3|YO) H%D¢(S)

depends on Q,D %
9%

1
gnegfscorediff = 75”‘99 (YSﬂ 5) - vys IOg q¢ (y5|y0) ”%D(b(s)
depends on Q,D

95

Egdsm) = Eq¢,s,(m,v) |%neg—scorediff + Efwd—score + Ediv—f

depends on Q,D
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H ALGORITHMS

H.1 GENERIC TRANSITION KERNEL

Algorithm 2 Get transition distribution y |z

Input: data x. time s. A, g.
compute: A (s )and g( )
compute: M f 0 t)dt (integrated drift)

compute: N, = f t)dt (integrated diffusions squared)

compute: v, = exp ( S) (mean coefficient)

set: yo = [2,01,...,0k_1], X0 ., = 0, and X ., X . to chosen initial distribution
compute: m,o = 7,0y, (nean)

compute:
M, N, . .
(I(;S) = exp l < 0‘ —MT> ] (X;O) (ingredients for cov.) (55

compute: X, = C,(H,)™' (cov.)
Output: N (m,), X;0)

H.2 TRANSITIONS WITH @, D

Current param matrices Q & D, and along with fixed time-in scalar-out functions b, (s), bs(s) and
their known integrals B (s), B4(s). ¢(vo|zo = x) taken to be parameterless so that vg ~ N (0, I).
Model params are sy fixed my.

Algorithm 3 Get Q, D and their integrated terms M, N

Input: time 5 and current params 10)
compute: [by], = [ by(v)dv using known integral By (s) — Bq(0)

compute: =/ bd )dv using known integral B,(s) — B4(0).

[
compute: [Q¢}S = [by]s {Qqﬁ - Q«b} for current params Q¢.
[

compute: [D ]5 = [bals - []3¢]~)ﬂ for current params D.
compute: —([Qyls + [Dy]s) (M just a variable name)
compute: = [2D¢} =2 [Dyls (N just a variable name)

compute: a(s) - [D¢D¢} (not integrated)

compute: —[Q, + D] (drift coef.)
compute: g2 = 2D (diffusion coef. squared)
Output: A, g2, M,, N,

M,
N,
~ T )
compute: Q, = b,(s) - {Q — Q¢] (not integrated)
D,=b
A

H.3 ELBO ALGORITHMS
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Algorithm 4 Get transition distributions

Input: Sample y, = (z,v) and time s. Current params ¢
set: A, g2, M, N, « algorithm 3

compute: m,y = exp (Ms>y0 (transition mean)
compute: ingredients for transition cov. matrix:

(i) :eXpKl\gs M7 )] ) (56)

compute: X, = C,(H,) ! (transition cov).
instantiate: gy ;) = ¢5(¥.|yo) = N(my, Xg0)-
Output: de,s,(z,v) As; gg

Algorithm 5 Compute ELBO with ism or dsm

input: Data point x and current params 6, ¢, y

draw: an aux. sample v ~ ¢, (v|z)

draw: a sample s ~ Unif(0,7")

set: y, = (z,v)

set: g 5.y, As, g2 < algorithm 4 called on yy, s, ¢

draw: y, ~ gy sy,

compute: /, with dsm(s) (algorithm 6) or ism(s) (algorithm 7) on'y,, 0, As, g2, q¢ 5.y,
set: ¢4, 1.y, — - < algorithm 4 called on y,, T', ¢

draw: y ~ q¢ 1y,

output: ¢, + log mg(y ;) — log ¢, (v)

Algorithm 6 Compute dsm(s)

input: y_, 0, As, 92, 4.5y,

compute: fwd-score = Vy_log q4(y,|yo)

compute: model-score = sy(y, $)

compute: fwd-score-term = 3 (fwd-score) " g2 (fwd-score)
compute: score-diff = model-score — fwd-score
compute: diff-term = —%score—diff—r g2score-diff
compute: div-f =V, - Ay,

output: dsm(s) = fwd-score-term + diff-term + div-f

Algorithm 7 Compute ism(s)

input: y_, 0, As, 92, 4.5y,

compute: model-score = sy(y, $)

compute: score-term = —%model—seoreT g2model-score
compute: div-gs = V- ¢2s9(y,, s)

compute: div-f = Vy - Ay,

compute: div-term = —div-gs + div-f

output: ism(s) = score-term + div-term

I VALID ELBO WITH TRUNCATION

The integrand in the ELBO and its gradients is not bounded at time 0. Therefore, following Sohl-
Dickstein et al. (2015) and Song et al. (2021) the integrand in eq. (7) is integrated from [e, T, rather
than [0, T']. However, that integral is not a valid lower bound on log py (). Instead, it can be viewed
as a proper lower bound on the prior for a latent variable y .. Therefore, to provide a bound for the
data, one can introduce a likelihood and substitute the prior lower bound into a standard variational
bound that integrates out the latent.
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To provide a valid lower bound for multivariate diffusions, we extend theorem 6 in Song et al. (2021)
from univariate to multivariate diffusions.

Theorem 3. For transition kernel q4(ys | yo), we can compute upper bound the model likelihood
at time O as follows, for any € > 0

po(yo | ye)

+me €5 € _10 v T , (57)
46(¥e | ¥0) an(Ye; €) —108.45(yy | )]

logpo(z) > Eq, (y212)Eqs(yelyo) [log

where Loyam(Ye, €) is defined as

T
1 2 1 2
Linam(Yer €) = Bgy(y-elye) [10.%770()@) —/ 3 Isallg, =5 Iso = soll,, + V- f¢] :

Proof. For transition kernel g4 (ys | yo), we can compute upper bound the model likelihood at time
0 following an application of the variational bound

log ps(z) = log / po(yo = [z, vo])dvo

Vo

= lOg/ Do (YO, ye)dUOdYG
V0,Ye

q(vo | =) po(yo,¥e)
= log / 46(¥e | ¥o) dvody .
vorye a(vo | ) ag(ye | y0)
VU X € €
N AT Lo e AT A
v0,¥e q(vo | ) qp(ye | yo)
po(yo | ye)
> By (vol2) g0 (v log ——— —log qy(yy x+10gpeye]
q(volz)ge (y |y0>[ 4o (ve | 0) s(yo | ©) (ye)

A lower bound for log pg(y.) can be derived in a similar manner to eq. (7), such that

T
1 2 1 2
logpo(ye) 2 Limam(Yes €) = Eqy(y-.ly.) [IOgM(YT) - / 2 Isellg, - 2 llso = ssll, +V - fo

The choice of pg(yo | ye) is arbitrary, however following Sohl-Dickstein et al. (2015); Song et al.
(2021) we let pg(yo | ye) be Gaussian with mean g,  and covariance X, .. Suppose ¢g(ye |
vo) = N(ye | Ayo, X), then we select the following mean /i, . and covariance X, . for pg(yo |

Ye)
Hpg,e = AilESe(yEv 6) + Ailye
Yppe = ATIDATT

where [, ¢, 2p, . are derived using Tweedie’s formula (Efron, 2011) by setting 1 = Elyo | y]
and X, = Var (yo | y)- O

We next derive this choice as an approximation of the optimal Gaussian likelihood.

I.1 LIKELIHOOD DERIVATION

Suppose yo ~ qo(yo) and y. ~ N (ye | Ayo, ). Here, A, Y are the mean coefficient and covari-
ance derived from the transition kernel at time e. We use Tweedie’s formula to get the mean and
covariance of y, given y_ under ¢. This mean and covariance feature the true score Vy_logq(y.).
We replace the score with the score model sy and then set pg(y,|y,.) to have the resulting approx-
imate mean and covariance. We make this choice because the optimal py(y,|y.) equals the true
q(yoly.) as discussed throughout the work.

Here yo = [Xo, Vo] where Xo ~ qqata-

Let 7 be the natural parameter for the multivariate Gaussian likelihood M (y. | Ayo, ). Then,
Tweedie’s formula (Efron, 2011) states that:

E[ﬁ | ue] = vysl(}’e) - Vyelo(}’e)
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* U(ye) =logq(ye)
* 59(y.,€) is taken to be the true score Vy,_log q(y.) so that Vy I(yc) = so(ye,€)
* [y is the log of the base distribution defined in the exponential family parameterization.

The base distribution is a multivariate Gaussian with mean 0 and covariance X, therefore
V)’elo(yE) = 7271},6’
E[U | ys} = 59(3’65 6) + Eilye-

However, Tweedie’s formula is not directly applicable since our y. is not directly normal with mean
yo- Instead, to derive the conditional mean of yq given y., we use the relation n = Y"1 Ayq and
the linearity of conditional expectation to get

Elyo | y<] = E[A™"Enly]
= AT'SE[n |y
=A7'S (so(ye, ) + 7 ye)
= A 'Ssp(ye,€) + Ay,

For the variance, we use the following relation y. = Ay, + v/3e, which implies that
Yo = A71y€ — Ail\/ie
Var (yo | yo) = A7'2AT,
Therefore, for the model posterior distribution py(yo | y.) we choose a Normal with mean and

covariance

Hpg,e = A_1259(yev 6) + A_1YG
Yppe=ATIEATT
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