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We develop ensemble neural networks (ENN) that serve as computationally fast surrogate models of Stockmayer fluid
(SF) molecular dynamics (MD) simulations for determining the dielectric constants of polar solvents and NaCl
solutions. The ENNs are trained using 50-times less data than is used to calculate the dielectric constants from MD
simulations. The predictions of ENNs trained on this small amount of data and using batch normalization (BN) or
bagging are in relatively good agreement with the full MD results. These ENN methods are thus able to extract reliable

values from statistically noisy data.

INTRODUCTION

The discovery and invention of novel materials are ever-
growing interests in materials science research, and an
in-depth understanding of the atomistic or molecular
mechanisms of chemical and physical properties is often
required when  fabricating and  controlling
electrochemical devices. From this perspective, the
computational modeling of materials is an essential
methodology for addressing these objectives and
bypassing undesired processes before performing
experiments. Specifically, the use of neural network
(NN) techniques enables the construction of surrogate
models that capture highly nonlinear features that are
dependent on a number of model parameters, which
used to be a challenging task when performed using
traditional optimization algorithms.

Of particular importance in materials science is that
NNs can considerably reduce the required
computational expense and burden when applied to
molecular dynamics (MD) simulations, as largely
reviewed in Ref. [1]. Recent examples of the application
of NNs in MD simulations include NNs trained to
calculate the free energy of coarse-grained molecules
[2], NNs trained on quantum molecular dynamics
configurations to obtain the dielectric constant of water
[3], machine-learning (ML) potentials obtained from
NNss for the structure and permeability of water [4], NNs
used to produce a Hamiltonian for an electronic
structure [5], and an NN-assisted MD method to reduce
the computations required when conducting open-
boundary simulations [6].

Ensembles of NNs are straightforward methods for
enhancing the versatility of NNs [7] and for improving
the accuracy of the resulting models when combined
with the optimal linear combination of trained NN [8].
Typically, an ensemble of NNs reduces the variance of
prediction errors made by constituent models and
enhances model capability (generalization) to adapt to
previously unseen data. The effectiveness of ensemble
NNs (ENNSs) in various systems has been explored for a
few decades, but the applications involving MD
simulations are still limited. These examples include
ENNSs for determining the potential energy surface of a
bimolecular reaction [9], a combination of different ML
models for studying the dynamics of water droplets
[10], and the analysis of the potential energy surfaces of
various Lennard—Jones fluids with two types of ENNs
[11]. Nevertheless, the study of ENNs combined with
MD  simulations remains significantly limited,
particularly with respect to the dielectric properties of
materials [3].

The parametrization of simulation models and the
statistical convergence of noisy simulation data are
common challenges in computational material studies
and designs. The former issue is generic in most MD
simulations, as seen when determining the parameters
of interaction potentials. Statistically noisy simulations
often require large numbers of samples to achieve good
statistical convergence. These two issues together are
particularly challenging. Often, long MD simulations
must be run iteratively to determine optimal model



parameters. The computational expense of performing
many long  simulations can make  such
parameterizations intractable. In particular, MD
simulations involving electrostatic interactions tend to
be computationally expensive because of the long-range
nature of the -electrostatic interactions. Accurate
simulations require algorithms such as the particle mesh
Ewald summation that scale as O(Nlog N) with the
number of particles N, respectively. This computational
expense can be substantially mitigated by reducing the
number N of particles by using coarse-grained
simulations instead of atomistic simulations. For ion-
containing organic solvents, we recently showed that
Stockmayer fluid (SF) simulation methods that model
polar molecules as dipolar spheres agree with the
experimental values of the solvation energies of various
ions [12] and thus serve as computationally efficient
alternatives to fully atomistic simulations. Nevertheless,
the brute-force search process used to determine the
model parameters, such as the interaction parameter and
particle size, is a daunting task, particularly when we
aim to simultaneously determine the molecular
parameters for various solvents. Here we are interested
in obtaining accurate values of the dielectric constant.
Calculation of the dielectric constant from MD
simulations is statistically noisy because the thermal
fluctuations of solvent dipoles are large.

In this article, we show that ENNs serve as efficient
surrogate models for SF MD simulations that provide
the dielectric constants of polar solvents and NaCl
solutions. This article aims to show how neural
networks can help address the problem of calculating
dielectric constants, including our general theoretical
framework for reducing computational costs arising
from the statistical ensemble of MD simulations. ENNs
trained with low-sampling MD simulation datasets can
provide predictions of the dielectric constants for
various model parameters without running additional
MD simulations. Advantages of the use of ENNs
include the following objectives: (1) ENNs can provide
the model parameters for multiple solvents and salt ions.
(2) Unlike statistical averages calculated from
ensembles of vast numbers of configurations, ENNs
require relatively small amounts of simulation data for
training. (3) Even if a single large neural network
performed equivalent computations, training data might
be too large for the memory. With ENNs, however,
various batch and ensemble methods can be used to split
the data into parts that can be more quickly processed.
(4) Typically, the objective (loss) function of NNs has
many local minima, and the backpropagation algorithm
for the optimization of the objective function often
results in a movement towards these minima (the so-
called “local minimum problem”). However, ENNs

tend to prevent model training from getting stuck in
these local minima.

To boost and stabilize the training performance and to
tame the large statistical noise, we also examine batch
normalization (BN), a recently proposed method for the
normalization of layer inputs in NNs [13], and bagging
(or bootstrap aggregating) [14], a standard ML
ensemble meta-algorithm. Furthermore, unlike the
majority of NNs, our approach employs the sine
function as an activation function, which is essential for
capturing the nonmonotonic features of the training data
in the present study. NNs with hidden layers consisting
of sinusoidal activation functions have been largely
ignored in the literature, partly because they are
considered difficult to train, as recently pointed out in
Ref. [15]. However, they can learn faster and better on
specific tasks [15], and indeed, sinusoidal activation
functions considerably enhance the performance of
ENNS in the present study.

COMPUTATIONAL METHOD

MD Simulation

We consider seven common polar solvents, water,
methanol, ethanol, acetone, 1-propanol, dimethyl
sulfoxide (DMSO), and dimethylfuran (DMF) as model
systems. Our simulation strategy is to develop a coarse-
grained model that treats these charge-neutral polar
molecules as spheres with diameters of ¢ and freely
rotating permanent dipoles with dipole moments of ji.
The hard-core nature of a dipolar sphere is given by the
Weeks-Chandler-Anderson (WCA) potential,
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Eq. 1

where the LJ parameter €,; and r = |ri - rj| designate
the well depth of the potential and the distance between
particles i and j, respectively. The cutoff of 2'/°c
ensures the presence of only a repulsive force and no
attractive tail in the potential. We write the dipole—
dipole interaction between the ith and jth particles as
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For NaCl solutions, we also write the charge-dipole
interaction between the ions and the solvent at a distance
of r as follows:

_aw-n Eq. 3
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Fig. 1 ENN structure for prediction of the dielectric constant. (a) A hybrid of sub-NNs: each neuron contains an activation function.
The sub-NNs are combined via the linear regression method. (b) The sub-NN structure for the salt-free solvents. The inputs are the
dipole moment y, the LJ parameter €| ; for the solvent-solvent interaction, the solvent diameter o, and the number density p. The
training data consist of the dielectric constants, calculated from the average of the total dipole moments over 10000 configurations.
(c) The sub-NN structure for NaCl-containing water. The inputs are the salt concentration ¢ and the LJ parameter ¢ y for the ion-
ion interaction. The training data consist of the dielectric constants, calculated independently from 40 configurations using Eq. 5.
(d) Schematic diagram of the input-output relationship for NaCl-containing water. The ENN prediction derived from the low-
sampling dataset is closer to the FSA than the average of the low-sampling dataset.

these rules for the solvents, but we independently

where q designates the ionic charge. The ion-ion change € in the case of NaCl solutions to examine

. . o L
interaction betwee.n charges q; and q; is given by the the effect of this parameter on the dielectric constant.
standard Coulombic form:

We perform MD simulations using LAMMPS [16].
. Eq. 4 Similarly to the simulation setup in Ref. [12], the
present simulations consist of boxes with side lengths of
21 A for water and 30 A for the other solvents. For the
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Given that eL.] and 0 designate €, and o 11.1 the WCA potential, we use eg’]) =31676 kJ/mol. The
WCA potential between the ith and jth particles, timestep is At = 1 fs. Simulations are equilibrated for

respectively, the geometric mixing rules for the 1-20 ns at room temperature (300 K). Production

interaction  parameters, el(j N _ ,EEi,i) . E](“j.j) and simulations are run to obtain IOOQO conﬁguratlpns for
J J the seven salt-free solvents at a given solvent diameter
o@D = Jg@d.50UN | are often assumed. We follow and LJ parameter and 2100 configurations for NaCl-



containing water at a given salt concentration and LJ
parameter by performing measurements every 5000
steps. Although the accuracy of the Ewald summation
method for electrostatic interactions is expected to be
107, in this study, we set the tolerance to 10™* for the
salt-doped liquid to speed up the process of obtaining
training samples. We calculate the dielectric constants
using

6y = 14 (M) = (M)?)
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where M = Y i, is the total dipole moment calculated
from the sum of the dipole moments i; of all solvent
particles. Here, note that Eq. 5 does not account for the
contribution from the collective translational dipole
moments of ionic charges [17]. However, this
contribution is significantly smaller than that from the
permanent dipole moments. Thus, we ignore such a
small effect in the training data. Further details of our
SF simulation methods with the collective dipole
moments will also be presented elsewhere.

ENNs

Although individual coarse-grained SF simulations can
be substantially faster than atomistic simulations [12],
we need to determine the appropriate parameters for the
coarse-grained models. Determining the optimal
molecular parameters for various liquids over vast
parameter spaces (e.g., the number of solvent and ion
types or molecular architecture) may easily become
impractical, especially for multicomponent liquid and
ion mixtures. Thus, developing a more computationally
fast surrogate model that captures the predictions of the
MD simulations is critical, specifically from the
following two perspectives. First, such a surrogate
model facilitates the identification of appropriate
molecular parameters for SFs in systems involving
various types of liquids and, if any, salt ions. Second,
the calculation of dielectric constants is often
statistically noisy due to the large thermal fluctuations
of the electric polarization; thus, these large statistical
fluctuations lead to very slow statistical convergence of
dielectric  constant calculations. The iterative
reparameterization of the model by repeatedly checking
the statistics of the target dielectric constant after
equilibration with a timescale of 1-20 ns is undoubtedly
a daunting task. In this regard, a surrogate model should
be constructed from a relatively small amount of
simulation data. Accordingly, we employ ENNs
because they were previously shown to efficiently
capture highly nonmonotonic features in stochastic
simulations of lithium dendrite growth in ionic liquids

that involved similar computational requirements as
needed here [18].

An ENN consists of multiple sub-NNs and each
sub-NN has its own structure [Fig. 1(a)]. The idea
of this method is to combine all predictions obtained
from the sub-NNs and provide a better prediction
than an individual output [7,8,19-21]. The outputs
produced from each sub-NN are combined using
linear regression: O = ¢y +¢,0, + c,0, +
c303 + -+, where 0,,(n =1,2,3...) is the output
from the nth sub-NN, Oy is the output of the ENN,
and c¢,(n=0,1,2...) is the weight of the
corresponding sub-NN. The weights cg, ¢y, ..., Cp
are determined by minimizing the sum of the
squared estimates of the errors between the training
data and the predictions Oy from the ENN. The
linear regression process yields a low value of |c,|
when a sub-NN is poorly trained, whereas the |c,|
for a well-trained sub-NN is larger. Thus, the
predictions of well-trained sub-NNs are weighed
more heavily than those of poorly trained sub-NNs.

ENN for Salt-Free Solvents

We use the dipole moment y, the solvent diameter o,
the LJ parameter €;;, and the number density p as the
input descriptors, whereas the output is the dielectric
constant &, of each solvent. We consider an ensemble of
3 sub-NNs for the prediction of the dielectric constants
of salt-free solvents. The network topology of each sub-
NN is represented by 4 inputs, 11 hidden layers with 30
neurons per hidden layer, and 1 output (i.e., the layer
structure is 4-30-30-30-30-30-30-30-30-30-30-30-1), as
illustrated in Fig. 1(b). The neurons between the
neighboring layers are fully connected, and all
connections have weights between the nodes [22]. The
weights of all sub-NNs are randomly initialized and are
optimized by minimizing the loss function. That is, we
train the model by minimizing the mean squared error
(MSE) between the predicted value (¥) and the target
value (y) (the loss function) as follows:

n
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In addition, the MSE indicates the standard error for the
evaluation of NN performance. However, we also
provide the mean absolute percentage error (MAPE)
100% x |y —P1/ly)/n , which serves as an
alternative performance analysis measure. For the
activation functions, we employ rectified linear unit
(ReLU), Gaussian, and sine functions. Specifically, we
note that the use of a sandwich structure such as “X-
sine-X” or “X-Gaussian-X” (in the caption of Table 1a)



with X=ReLU is critical for enhancing the performance
of the sub-NNs and accordingly that of the ENN. To
reduce the overfitting of the models, we also stop
training early with a patience setting of 30 epochs (the
number of passes of the entire training dataset). That is,
the training process is terminated when no improvement
in the loss function accuracy occurs within 30 epochs.

We produce 76 samples for the set of polar solvent by
changing the dipole moment i, the solvent diameters o,
the LJ parameters €;, and the number density p and
calculating the dielectric constant &, for each sample
from the average of 10000 MD configurations
(Supplementary Information). We thus train the ENN
with 76 averaged values using the Keras API [23]. To
enhance the model accuracy, we duplicate these 76
samples five times to employ 76X5 samples and divide
all data into two parts, training and validation datasets.
Normally, data samples are classified into training,
validation, and test datasets. However, we only split
them into training and validation datasets to maximally
utilize the limited number of samples that are available
for training. After training all sub-NNss, their outputs are
combined to yield the output of the ENN via linear
regression. For other combination methods with sub-
NN, interested readers can refer to the Supplementary
Information.

ENN for NaCl Solutions

We also simulate NaCl ions in water with " =
0.758 kcal/mol and eg'ﬂ = eE]_'_) = eiL‘}n. We run MD
simulations to obtain 2100 configurations at a given salt
concentration and LJ parameter. Here, an MD parameter
set consists of a salt concentration and LJ parameter
pair. The equilibration process requires a little longer
than 1 ns when the salt concentration becomes very
high. To examine the robustness and efficacy of the
ENN method, we intentionally enhance the statistical
noise in the training data via the MD simulations, in
which we terminate the equilibration runs for all salt
concentrations at 1 ns and begin sampling. For the
training data (Supplementary Information), we
randomly select 40 configurations from the 2100
configurations for each MD parameter set. Thus, the
total numbers of simulation data and training data
amount to 2100X N, and 40X N, respectively, where
Ny, designates the number of MD parameter sets. Here,
we characterize the latter dataset as a low-sampling
dataset. In the present systems, the autocorrelation
functions (&,(0)e,(t)) and (M(0)M(t)) typically
approach plateaus around 20 ps. Accordingly, the
randomly selected 40 configurations for each MD
parameter set are likely to be uncorrelated.

The dielectric constants calculated from the averages of

the total dipole moments M over 2100 configurations
for each MD parameter set using Eq. 5 serve as full-
simulation averages (FSAs) for examining the efficacy
of our ensemble networks with BN and bagging,
particularly when we substantially reduce the amount of
training data. We employ a dipole moment of 1.73 D
throughout all these simulations because this dipole
moment provides a dielectric constant of 80 for water,
the experimental value.

We construct an ENN [Fig. 1 (a) and (¢)] for NaCl-
containing water, examining the efficacy of our method
based on low-sampling datasets [18]. The ENN consists
of 5 identical sub-NNs, each with a network topology of
2-50-50-50-50-1 (2 inputs, 4 hidden layers with 50
neurons per hidden layer, and 1 output). The input
descriptors are the salt concentration c¢g and the LJ
parameter €15, and the output is the dielectric constant
& of NaCl-containing water. The architecture of the
sub-NNs is shown in the caption of Table 1b. To
increase the diversity of the sub-NNs, we combine them
with different patience and batch size parameters in the
ranges of 15 to 30 and 20 to 30, respectively. To reduce
the probability of getting stuck in the local minima of
the loss function while training and accelerate the
training speed, we use BN before each ReLU activation
function. We also empirically find from the calculation
of the MSE that a sub-NN with 50 neurons per hidden
layer serves as a good architecture.

Note that unlike in the case involving the salt-free
solvents, the training data consist of the values of &,
obtained before taking the average and thus include
large statistical fluctuations. Accordingly, the training
and validation errors appear to be large (Supplementary
Information), and therefore the error values are not
informative. To conduct a more meaningful
comparison, we compare our ENN prediction with the
FSA to evaluate the model performance. For clarity, we
illustrate the input-output relationship in Fig. 1 (d). This
noisy-data method was developed to reduce the
simulation runs needed to train ENNs on cellular
automata simulations of lithium dendrite formation
[17]. The statistical fluctuations of the present
simulation data are substantially larger. Thus, we
examine whether the noisy-data method can still be
employed as a general strategy, specifically with BN or
bagging. Here, three types of electrostatic interactions
(the ion-ion, ion-dipole, and dipole-dipole interactions)
in NaCl solutions tend to increase the statistical
fluctuations of the dielectric constant calculations.
Thus, we directly deal with the simulation data for the
test of the noisy-data method.



Stochastic gradient descent, an iterative method that feedforward NNs. However, the gradient is often
optimizes a loss function via updates of the NNs' vanishingly small, and therefore the NNs train slowly,
weights and biases, is often invoked for training specifically when the input values of the layers are large.

Table 1 MSEs (MAPEs) from the training of salt-free solvents and NaCl-containing water.

Salt-free solvents
(a) Training and validation errors (MSEs) of ENNI1 and its three constituent sub-NNs for salt-free solvents. The MAPEs are
shown in parentheses. The network topology of each sub-NN is 4-30-30-30-30-30-30-30-30-30-30-30-1, and the sequence of
the activation functions consists of X-Y-X-Z-X-Y-X-Z-X-Y-X-X, where X=ReLU, Y=sine, and Z=Gaussian.

Salt-Free Solvents Training Error Validation Error
ENNI 11.7 (6.3%) 7.9 (8.3%)
Sub-NN1 29.1 (17.2%) 25.5 (15.7%)
Sub-NN2 21.1 (20.3%) 18.1 (19.0%)
Sub-NN3 11.8 (7.2%) 82 (7.0%)

NaCl-containing water

(b) MSEs (MAPE:s in parentheses) of the predictions yielded by the ENNs for
NaCl-containing water with and without BN relative to the average of the
dielectric constants calculated from the low-sampling datasets and the FSA.
These results are calculated from Fig. 3(a-d). The network topology of each
sub-NN with BN is (BN-ReLU)-Gaussian-(BN-ReLU)-(BN-ReLU)-ReLU.

(c) MAPEs of the predictions of the ENNs
for NaCl-containing water with and without
BN under bagging relative to the dielectric
constants calculated from the low-sampling
datasets and the FSA. These results are
calculated from Fig. 3(e-g).

€ kcal/mol Low-sampling datasets FSA Low-sampling datasets FSA
0.01 No BN 78.2 (15.7%) 65.1 (13.0%) 14.7% 10.2%
BN 99.0 (16.4%) 25.4 (8.8%) 18.1% 14.1%
0.10 No BN 88.7 (15.1%) 130.1 (18.8%) 18.3% 16.4%
BN 186.1 (18.6%) 37.0 (9.8%) 20.9% 13.6%
0.50 No BN 28.4 (11.1%) 79.8 (19.9%) 16.1% 6.9%
BN 155.9 (20.9%) 54.5 (10.9%) 28.7% 20.5%
To circumvent this problem, we employ BN, a weighted more significantly than sub-NNs with

normalization scheme recently proposed by Ioffe and
Szegedy, to accelerate the training of the NNs [13]. BN
tends to reduce the dependence of the gradient on the
scales of the parameters or their initial values via a
normalization step that fixes the means and variances of
each layer’s inputs or the output of the activation
function from the prior layer. For example, BN in Keras
applies a transformation that maintains the mean output
close to 0 and the output standard deviation close to 1,
mitigating the internal covariate shift problem [23].

RESULTS

Salt-Free Solvents

Table la shows the training and validation errors of
ENNI1, which consists of three sub-NNs. Here, we
employ three sub-NNs because the addition of more
sub-NNs does not substantially improve the ENN. Sub-
NNI1 and sub-NN2 have relatively high training and
validation errors while sub-NN3 has low errors. ENN1
outperforms all the sub-NNs or remains comparable to
sub-NN3. Unlike the sub-NNs, the errors of ENN1 are
not substantially changed by the initial model
parameters. The robustness of the training performance
to the combination of sub-NNs arises mainly from the
fact that in linear regression, well-trained sub-NNs are

relatively poor performance. In the Supplementary
Information, we also show that an ENN (ENN3)
consisting of a hybrid of three poorly trained sub-NNs
(sub-NN1, sub-NN2, and sub-NN4 in Table S1) can
outperform all the sub-NNs and compare favorably with
ENNI1 (Table S2). Thus, the use of ENNs increases the
likelihood of finding a global minimum among the sub-
NN, without having one large NN that can encompass
all the data and find the global minimum.

We plot the dielectric constants of seven solvents with
different LJ parameters in Fig. 2, in which we compare
the predictions of ENN1 with the FSAs from MD
simulations. For clarity, the experimental values of
dielectric constants of the seven solvents [24] are shown
below each solvent’s name in Fig. 2. We focus on the
solvent diameter and the LJ parameter because the
Onsager equation (the standard mean-field theory for
the dielectric constant) cannot predict changes in the
dielectric constant with respect to the two [25]. Here,
the total number of training data is limited to 76 samples
(i.e., N, =76) for all the solvents (Supplementary
Information), and Fig. 2 includes 65 samples to
illustrate the overall trend of the dielectric constants.
Each data point (symbol) designates the dielectric
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Fig. 2 Dielectric constants vs. solvent diameters predicted by ENN1 (Table 1a) for different solvents. The solid lines indicate the
predictions from the ENN, whereas the symbols indicate the full simulation averages (FSAs). The solvents are (a) water, (b) MeOH,
(c) EtOH, (d) acetone, (e) 1-propanol, (f) DMSO, and (g) DMF. The values in the brackets indicate the experimental values of

their dielectric constants.

constant calculated from the configurations, and we
employ the samples to individually train the sub-NNs.
Here, we note that conventional NNs consisting of only
ReLU and sigmoid functions are unlikely to capture the
observed variations in the dielectric constants, such as
the nonmonotonicity between the solvent diameter o
and the LJ parameter €; . To address this
nonmonotonicity, we find that the average of the total
dipole moment over 10000 inclusion of a sine function
sandwiched by ReLUs considerably improves the
training efficiency, and a Gaussian function sandwiched
by ReLUs further improves the results. As discussed
before, however, the combination of these sub-NNs is
the essence of the substantial improvement and
robustness of the model accuracy, mitigating the local
minimum issue and providing the model robustness
against poorly trained sub-NNs. Concomitantly, we test
BN in one or more layers and find that BN makes the
prediction results worse. The reason for this could be
due to the insufficient amount of training data.
Nevertheless, in the case of salt-doped solvents, we
show that BN averages the results and improves the
performance of ENNs when the training data are
statistically noisy.

NaCl Solutions

We examine the noisy-data method with an ENN
(ENNcl) consisting of five sub-NNs with the following
sequence of activation functions: (BN-ReLU)-
Gaussian-(BN-ReLU)-(BN-ReLU)-ReLU (see Tables
S3 and S4 for the details of training and validation
errors). Fig. 3(a) shows the FSAs and the predictions of
the ENN with BN, in which the salt concentrations cg
and the LJ parameters € for the ion-ion and ion-water
interactions are varied. The number of MD parameter
sets is N, = 33. For regularization to force the
predictions to fit the dielectric constants of pure water
(i.e., ¢ = 0 M), each of the dielectric constant averages
at ¢, = 0 M is copied 267 times repeatedly in the
training data to include about 800 additional samples for
the three LJ parameters. Note that the training data at a
given salt concentration and LJ parameter (i.e., an MD
parameter set) consist of only 40 configurations;
however, we used more data to produce the FSAs. Thus,
the training data may be disparate from the FSAs, yet
the predictions compare favorably with the FSAs.
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Fig. 3 (a) Comparison between the full-simulation averages (FSAs) and the ENN predictions for the dielectric constants of NaCl
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indicate the FSAs (the average over 2100 configurations for each MD parameter set). (b)-(d) Efficacy of BN with (b) €; = 0.01
kcal/mol, (c) €; = 0.10 kcal/mol, and (d) €; = 0.50 kcal/mol. The solid and dashed lines indicate the ENN predictions with and
without BN, respectively. The grey symbols indicate the average over 40 configurations for each MD parameter set, and the
standard deviations are represented by error bars. (¢)-(g) BN + bagging (dashed line) and bagging only (solid line) with (¢) €5 =

0.01 kcal/mol, (f) €,; = 0.10 kcal/mol, and (g) €; = 0.50 kcal/mol. The symbols indicate the FSAs.

Table 1b shows the differences between the dielectric
constants predicted from the low-sampling datasets and
the averages calculated from the low-sampling datasets
or the FSAs. Note that the predictions obtained with BN
are worse than those without BN when compared with
the average calculated from the low-sampling datasets.
In contrast, the performance of BN becomes better when
compared with the FSAs, as highlighted in bold. This
difference indicates that BN drives the predictions
derived from the low-sampling datasets to approach the
FSAs.

To explain the role of BN, Fig. 3(b)-(d) show the
dielectric constants calculated from individual
configurations without taking the average in Eq. 5 (i.e.,
the low-sampling dataset) and the predictions from the
ENN. The unaveraged dielectric constants are widely
distributed around their mean values. Note that the

averages (reduced-set averages) calculated from the
low-sampling datasets may not be close to the FSAs;
thus, they can be highly inaccurate values. The
predictions obtained without BN tend to be close to the
reduced-set averages. However, when we employ BN,
the predictions derived from the low-sampling datasets
do not trace the reduced-set averages and instead tend to
approach the FSAs. For example, this is especially clear
at the result for €; = 0.1 kcal/mol and ¢; = 3.407 M
and at nearly all results for €;; = 0.5 kcal/mol. Thus,
BN-combined ENNs appear to be robust against
significant reductions in the number of training data and
therefore can considerably speed up the parameter
adjustment process and the exploration of new features
in noisy data over a vast parameter space. It is probable
that this enhanced training performance occurs partly
due to the normalization process of BN reducing the



large fluctuation of the training data and mixing
information about data distributions at different MD
parameter sets.

Finally, we also employ bagging, a treatment for
decreasing variance to prevent overfitting. By randomly
grouping the training data, we obtain 5 different training
datasets and then feed these training data into 5 different
sub-NNs. Our results show that bagging can outperform
BN, but a hybrid of BN and bagging makes the
prediction results less accurate, as highlighted by the
bold figures in Table lc. In Fig. 3(e)-(g), the results
obtained from the bagging-only method can more
accurately capture the nonmonotonicity of €, at low salt
concentrations with all LJ parameters and the
nonmonotonicity of € at high concentrations in the case
where €; = 0.5 kcal/mol. The optimization of the
bagging size (the number of training data in the bags
selected from the original training data to create diverse
samples) is crucial for outperforming BN, which is
typically encountered in ML when tuning model
hyperparameters. However, this optimization may not
always be guaranteed or may require further
computational effort because the training performance
depends on various hyperparameters.

CONCLUSION

We constructed ensemble neural networks for the
calculation of the dielectric constants of polar solvents
and NaCl solutions. For the training data, we used
Stockmayer fluid MD simulation methods that
accounted for the dielectric responses of dipolar fluids.
We showed that our ensemble neural networks with
activation layers containing sine and Gaussian functions
captured the trends of the dielectric constants of seven
polar solvents. Sinusoidal activation functions often
yield large numbers of shallow local minima [15], but
our ensemble neural networks appeared to mitigate this
issue. For NaCl solutions, we trained the ensemble
neural networks with low-sampling datasets that were
insufficient to produce the full-simulation averages.
Moreover, the training data were widely distributed
around the mean values for each MD parameter set. In
this case, with highly noisy data, batch normalization or
bagging enabled the predictions of ensemble neural
networks to compare favorably with the full-simulation
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