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We develop ensemble neural networks (ENN) that serve as computationally fast surrogate models of Stockmayer fluid 
(SF) molecular dynamics (MD) simulations for determining the dielectric constants of polar solvents and NaCl 
solutions. The ENNs are trained using 50-times less data than is used to calculate the dielectric constants from MD 
simulations. The predictions of ENNs trained on this small amount of data and using batch normalization (BN) or 
bagging are in relatively good agreement with the full MD results. These ENN methods are thus able to extract reliable 
values from statistically noisy data. 
 
 
INTRODUCTION 
The discovery and invention of novel materials are ever-
growing interests in materials science research, and an 
in-depth understanding of the atomistic or molecular 
mechanisms of chemical and physical properties is often 
required when fabricating and controlling 
electrochemical devices. From this perspective, the 
computational modeling of materials is an essential 
methodology for addressing these objectives and 
bypassing undesired processes before performing 
experiments. Specifically, the use of neural network 
(NN) techniques enables the construction of surrogate 
models that capture highly nonlinear features that are 
dependent on a number of model parameters, which 
used to be a challenging task when performed using 
traditional optimization algorithms. 
 
Of particular importance in materials science is that 
NNs can considerably reduce the required 
computational expense and burden when applied to 
molecular dynamics (MD) simulations, as largely 
reviewed in Ref. [1]. Recent examples of the application 
of NNs in MD simulations include NNs trained to 
calculate the free energy of coarse-grained molecules 
[2], NNs trained on quantum molecular dynamics 
configurations to obtain the dielectric constant of water 
[3], machine-learning (ML) potentials obtained from 
NNs for the structure and permeability of water [4], NNs 
used to produce a Hamiltonian for an electronic 
structure [5], and an NN-assisted MD method to reduce 
the computations required when conducting open-
boundary simulations [6]. 

 
Ensembles of NNs are straightforward methods for 
enhancing the versatility of NNs [7] and for improving 
the accuracy of the resulting models when combined 
with the optimal linear combination of trained NNs [8]. 
Typically, an ensemble of NNs reduces the variance of 
prediction errors made by constituent models and 
enhances model capability (generalization) to adapt to 
previously unseen data. The effectiveness of ensemble 
NNs (ENNs) in various systems has been explored for a 
few decades, but the applications involving MD 
simulations are still limited. These examples include 
ENNs for determining the potential energy surface of a 
bimolecular reaction [9], a combination of different ML 
models for studying the dynamics of water droplets 
[10], and the analysis of the potential energy surfaces of 
various Lennard–Jones fluids with two types of ENNs 
[11]. Nevertheless, the study of ENNs combined with 
MD simulations remains significantly limited, 
particularly with respect to the dielectric properties of 
materials [3]. 
 
The parametrization of simulation models and the 
statistical convergence of noisy simulation data are 
common challenges in computational material studies 
and designs. The former issue is generic in most MD 
simulations, as seen when determining the parameters 
of interaction potentials. Statistically noisy simulations 
often require large numbers of samples to achieve good 
statistical convergence. These two issues together are 
particularly challenging. Often, long MD simulations 
must be run iteratively to determine optimal model 
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parameters. The computational expense of performing 
many long simulations can make such 
parameterizations intractable. In particular, MD 
simulations involving electrostatic interactions tend to 
be computationally expensive because of the long-range 
nature of the electrostatic interactions. Accurate 
simulations require algorithms such as the particle mesh 
Ewald summation that scale as O(𝑁 log 𝑁 ) with the 
number of particles 𝑁, respectively. This computational 
expense can be substantially mitigated by reducing the 
number 𝑁  of particles by using coarse-grained 
simulations instead of atomistic simulations. For ion-
containing organic solvents, we recently showed that 
Stockmayer fluid (SF) simulation methods that model 
polar molecules as dipolar spheres agree with the 
experimental values of the solvation energies of various 
ions [12] and thus serve as computationally efficient 
alternatives to fully atomistic simulations. Nevertheless, 
the brute-force search process used to determine the 
model parameters, such as the interaction parameter and 
particle size, is a daunting task, particularly when we 
aim to simultaneously determine the molecular 
parameters for various solvents. Here we are interested 
in obtaining accurate values of the dielectric constant. 
Calculation of the dielectric constant from MD 
simulations is statistically noisy because the thermal 
fluctuations of solvent dipoles are large. 
 
In this article, we show that ENNs serve as efficient 
surrogate models for SF MD simulations that provide 
the dielectric constants of polar solvents and NaCl 
solutions. This article aims to show how neural 
networks can help address the problem of calculating 
dielectric constants, including our general theoretical 
framework for reducing computational costs arising 
from the statistical ensemble of MD simulations. ENNs 
trained with low-sampling MD simulation datasets can 
provide predictions of the dielectric constants for 
various model parameters without running additional 
MD simulations. Advantages of the use of ENNs 
include the following objectives: (1) ENNs can provide 
the model parameters for multiple solvents and salt ions. 
(2) Unlike statistical averages calculated from 
ensembles of vast numbers of configurations, ENNs 
require relatively small amounts of simulation data for 
training. (3) Even if a single large neural network 
performed equivalent computations, training data might 
be too large for the memory. With ENNs, however, 
various batch and ensemble methods can be used to split 
the data into parts that can be more quickly processed. 
(4) Typically, the objective (loss) function of NNs has 
many local minima, and the backpropagation algorithm 
for the optimization of the objective function often 
results in a movement towards these minima (the so-
called “local minimum problem”). However, ENNs 

tend to prevent model training from getting stuck in 
these local minima.  
 
To boost and stabilize the training performance and to 
tame the large statistical noise, we also examine batch 
normalization (BN), a recently proposed method for the 
normalization of layer inputs in NNs [13], and bagging 
(or bootstrap aggregating) [14], a standard ML 
ensemble meta-algorithm. Furthermore, unlike the 
majority of NNs, our approach employs the sine 
function as an activation function, which is essential for 
capturing the nonmonotonic features of the training data 
in the present study. NNs with hidden layers consisting 
of sinusoidal activation functions have been largely 
ignored in the literature, partly because they are 
considered difficult to train, as recently pointed out in 
Ref. [15]. However, they can learn faster and better on 
specific tasks [15], and indeed, sinusoidal activation 
functions considerably enhance the performance of 
ENNs in the present study. 
 
 
COMPUTATIONAL METHOD 
MD Simulation 
We consider seven common polar solvents, water, 
methanol, ethanol, acetone, 1-propanol, dimethyl 
sulfoxide (DMSO), and dimethylfuran (DMF) as model 
systems. Our simulation strategy is to develop a coarse-
grained model that treats these charge-neutral polar 
molecules as spheres with diameters of 𝜎  and freely 
rotating permanent dipoles with dipole moments of 𝜇⃗. 
The hard-core nature of a dipolar sphere is given by the 
Weeks-Chandler-Anderson (WCA) potential, 
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where the LJ parameter 𝜖𝐿𝐽 and 𝑟 = |𝑟𝑖 − 𝑟𝑗| designate 
the well depth of the potential and the distance between 
particles 𝑖  and 𝑗 , respectively. The cutoff of 21/6𝜎 
ensures the presence of only a repulsive force and no 
attractive tail in the potential. We write the dipole–
dipole interaction between the ith and jth particles as 
 

 𝑈𝜇𝜇 =
(𝜇𝑖⃗⃗⃗⃗ ⋅ 𝜇𝑗⃗⃗ ⃗⃗ )

𝑟3
− (

3

𝑟5) (𝜇𝑖⃗⃗⃗⃗ ⋅ 𝑟⃑)(𝜇𝑗⃗⃗ ⃗⃗ ⋅ 𝑟⃗). Eq. 2 
 
For NaCl solutions, we also write the charge-dipole 
interaction between the ions and the solvent at a distance 
of 𝑟 as follows: 
 

 𝑈𝑞𝜇 =
𝑞(𝜇⃗ ⋅ 𝑟⃗)

𝑟3
, Eq. 3 
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where 𝑞  designates the ionic charge. The ion-ion 
interaction between charges 𝑞𝑖  and 𝑞𝑗  is given by the 
standard Coulombic form: 
 

 𝑈𝑞𝜇 =
𝑞𝑖𝑞𝑗

𝑟3
. Eq. 4 

 
Given that ϵLJ

(𝑖,𝑗)  and 𝜎(𝑖,𝑗)  designate ϵLJ  and 𝜎  in the 
WCA potential between the ith and jth particles, 
respectively, the geometric mixing rules for the 

interaction parameters, ϵLJ
(𝑖,𝑗)

= √ϵLJ
(𝑖,𝑖)

∙ ϵLJ
(𝑗,𝑗)  and 

𝜎(𝑖,𝑗) =  √𝜎(𝑖,𝑖) ∙ 𝜎(𝑗,𝑗) , are often assumed. We follow 

these rules for the solvents, but we independently 
change ϵLJ

(𝑖,𝑗) in the case of NaCl solutions to examine 
the effect of this parameter on the dielectric constant. 
 
We perform MD simulations using LAMMPS [16]. 
Similarly to the simulation setup in Ref. [12], the 
present simulations consist of boxes with side lengths of 
21 Å for water and 30 Å for the other solvents. For the 
WCA potential, we use ϵLJ

(𝑖,𝑗)
= 3.1676   kJ/mol. The 

timestep is ∆𝑡 = 1 fs. Simulations are equilibrated for 
1–20 ns at room temperature ( 300 K). Production 
simulations are run to obtain 10000 configurations for 
the seven salt-free solvents at a given solvent diameter 
and LJ parameter and 2100 configurations for NaCl-

Fig. 1 ENN structure for prediction of the dielectric constant. (a) A hybrid of sub-NNs: each neuron contains an activation function. 
The sub-NNs are combined via the linear regression method. (b) The sub-NN structure for the salt-free solvents. The inputs are the 
dipole moment 𝜇, the LJ parameter ϵLJ for the solvent-solvent interaction, the solvent diameter 𝜎, and the number density 𝜌. The 
training data consist of the dielectric constants, calculated from the average of the total dipole moments over 10000 configurations. 
(c) The sub-NN structure for NaCl-containing water. The inputs are the salt concentration 𝑐𝑠 and the LJ parameter ϵLJ for the ion-
ion interaction. The training data consist of the dielectric constants, calculated independently from 40 configurations using Eq. 5. 
(d) Schematic diagram of the input-output relationship for NaCl-containing water. The ENN prediction derived from the low-
sampling dataset is closer to the FSA than the average of the low-sampling dataset. 
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containing water at a given salt concentration and LJ 
parameter by performing measurements every 5000 
steps.  Although the accuracy of the Ewald summation 
method for electrostatic interactions is expected to be 
10-5, in this study, we set the tolerance to 10-4 for the 
salt-doped liquid to speed up the process of obtaining 
training samples. We calculate the dielectric constants 
using 
 

 〈𝜀𝑟〉 = 1 +
(〈𝑀⃗⃗⃗2〉 − 〈𝑀⃗⃗⃗〉2)

3𝑉𝑘𝐵𝑇𝜀0

, Eq. 5 
 
where 𝑀⃗⃗⃗ = ∑ 𝜇⃗𝑖 𝑖

 is the total dipole moment calculated 
from the sum of the dipole moments 𝜇⃗𝑖  of all solvent 
particles. Here, note that Eq. 5 does not account for the 
contribution from the collective translational dipole 
moments of ionic charges [17]. However, this 
contribution is significantly smaller than that from the 
permanent dipole moments. Thus, we ignore such a 
small effect in the training data. Further details of our 
SF simulation methods with the collective dipole 
moments will also be presented elsewhere. 
 
ENNs 
Although individual coarse-grained SF simulations can 
be substantially faster than atomistic simulations [12], 
we need to determine the appropriate parameters for the 
coarse-grained models. Determining the optimal 
molecular parameters for various liquids over vast 
parameter spaces (e.g., the number of solvent and ion 
types or molecular architecture) may easily become 
impractical, especially for multicomponent liquid and 
ion mixtures. Thus, developing a more computationally 
fast surrogate model that captures the predictions of the 
MD simulations is critical, specifically from the 
following two perspectives. First, such a surrogate 
model facilitates the identification of appropriate 
molecular parameters for SFs in systems involving 
various types of liquids and, if any, salt ions. Second, 
the calculation of dielectric constants is often 
statistically noisy due to the large thermal fluctuations 
of the electric polarization; thus, these large statistical 
fluctuations lead to very slow statistical convergence of 
dielectric constant calculations. The iterative 
reparameterization of the model by repeatedly checking 
the statistics of the target dielectric constant after 
equilibration with a timescale of 1-20 ns is undoubtedly 
a daunting task. In this regard, a surrogate model should 
be constructed from a relatively small amount of 
simulation data. Accordingly, we employ ENNs 
because they were previously shown to efficiently 
capture highly nonmonotonic features in stochastic 
simulations of lithium dendrite growth in ionic liquids 

that involved similar computational requirements as 
needed here [18]. 
 
An ENN consists of multiple sub-NNs and each 
sub-NN has its own structure [Fig. 1(a)]. The idea 
of this method is to combine all predictions obtained 
from the sub-NNs and provide a better prediction 
than an individual output [7,8,19-21]. The outputs 
produced from each sub-NN are combined using 
linear regression: 𝑂𝐸 =  𝑐0 + 𝑐1𝑂1 + 𝑐2𝑂2 +
𝑐3𝑂3 + ⋯ , where 𝑂𝑛(𝑛 = 1,2,3 … ) is the output 
from the nth sub-NN, 𝑂𝐸  is the output of the ENN, 
and 𝑐𝑛(𝑛 = 0,1,2 … )  is the weight of the 
corresponding sub-NN. The weights 𝑐0, 𝑐1, … , 𝑐𝑛 
are determined by minimizing the sum of the 
squared estimates of the errors between the training 
data and the predictions 𝑂𝐸  from the ENN. The 
linear regression process yields a low value of |𝑐𝑛| 
when a sub-NN is poorly trained, whereas the |𝑐𝑛| 
for a well-trained sub-NN is larger. Thus, the 
predictions of well-trained sub-NNs are weighed 
more heavily than those of poorly trained sub-NNs. 
 
ENN for Salt-Free Solvents 
We use the dipole moment 𝜇, the solvent diameter 𝜎, 
the LJ parameter ϵLJ, and the number density 𝜌 as the 
input descriptors, whereas the output is the dielectric 
constant 𝜀𝑟  of each solvent. We consider an ensemble of 
3 sub-NNs for the prediction of the dielectric constants 
of salt-free solvents. The network topology of each sub-
NN is represented by 4 inputs, 11 hidden layers with 30 
neurons per hidden layer, and 1 output (i.e., the layer 
structure is 4-30-30-30-30-30-30-30-30-30-30-30-1), as 
illustrated in Fig. 1(b). The neurons between the 
neighboring layers are fully connected, and all 
connections have weights between the nodes [22]. The 
weights of all sub-NNs are randomly initialized and are 
optimized by minimizing the loss function. That is, we 
train the model by minimizing the mean squared error 
(MSE) between the predicted value (𝑦̂) and the target 
value (𝑦) (the loss function) as follows: 
 

 MSE =  
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 Eq. 6 

 
In addition, the MSE indicates the standard error for the 
evaluation of NN performance. However, we also 
provide the mean absolute percentage error (MAPE) 
100% × (∑|𝑦 − 𝑦̂|/|𝑦|)/𝑛 , which serves as an 
alternative performance analysis measure. For the 
activation functions, we employ rectified linear unit 
(ReLU), Gaussian, and sine functions. Specifically, we 
note that the use of a sandwich structure such as “X-
sine-X” or “X-Gaussian-X” (in the caption of Table 1a) 
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with X=ReLU is critical for enhancing the performance 
of the sub-NNs and accordingly that of the ENN. To 
reduce the overfitting of the models, we also stop 
training early with a patience setting of 30 epochs (the 
number of passes of the entire training dataset). That is, 
the training process is terminated when no improvement 
in the loss function accuracy occurs within 30 epochs. 
 
We produce 76 samples for the set of polar solvent by 
changing the dipole moment 𝜇⃗, the solvent diameters 𝜎, 
the LJ parameters ϵLJ , and the number density 𝜌  and 
calculating the dielectric constant 𝜀𝑟  for each sample 
from the average of 10000 MD configurations 
(Supplementary Information). We thus train the ENN 
with 76 averaged values using the Keras API [23]. To 
enhance the model accuracy, we duplicate these 76 
samples five times to employ 76×5 samples and divide 
all data into two parts, training and validation datasets. 
Normally, data samples are classified into training, 
validation, and test datasets. However, we only split 
them into training and validation datasets to maximally 
utilize the limited number of samples that are available 
for training. After training all sub-NNs, their outputs are 
combined to yield the output of the ENN via linear 
regression. For other combination methods with sub-
NNs, interested readers can refer to the Supplementary 
Information. 
 
ENN for NaCl Solutions 
We also simulate NaCl ions in water with ϵLJ

water =

0.758 kcal/mol and ϵLJ
(+,+)

= ϵLJ
(−,−)

≡ ϵLJ
ion. We run MD 

simulations to obtain 2100 configurations at a given salt 
concentration and LJ parameter. Here, an MD parameter 
set consists of a salt concentration and LJ parameter 
pair. The equilibration process requires a little longer 
than 1 ns when the salt concentration becomes very 
high. To examine the robustness and efficacy of the 
ENN method, we intentionally enhance the statistical 
noise in the training data via the MD simulations, in 
which we terminate the equilibration runs for all salt 
concentrations at 1 ns and begin sampling. For the 
training data (Supplementary Information), we 
randomly select 40 configurations from the 2100 
configurations for each MD parameter set. Thus, the 
total numbers of simulation data and training data 
amount to 2100× 𝑁𝑝 and 40× 𝑁𝑝, respectively, where 
𝑁𝑝 designates the number of MD parameter sets. Here, 
we characterize the latter dataset as a low-sampling 
dataset. In the present systems, the autocorrelation 
functions 〈𝜀𝑟(0)𝜀𝑟(𝑡)〉  and 〈𝑀⃗⃗⃗(0)𝑀⃗⃗⃗(𝑡)〉 typically 
approach plateaus around 20 ps. Accordingly, the 
randomly selected 40 configurations for each MD 
parameter set are likely to be uncorrelated.    
 

The dielectric constants calculated from the averages of 
the total dipole moments 𝑀⃗⃗⃗ over 2100 configurations 

for each MD parameter set using Eq. 5 serve as full-

simulation averages (FSAs) for examining the efficacy 
of our ensemble networks with BN and bagging, 
particularly when we substantially reduce the amount of 
training data. We employ a dipole moment of 1.73 D 
throughout all these simulations because this dipole 
moment provides a dielectric constant of 80 for water, 
the experimental value. 
 
We construct an ENN [Fig. 1 (a) and (c)] for NaCl-
containing water, examining the efficacy of our method 
based on low-sampling datasets [18]. The ENN consists 
of 5 identical sub-NNs, each with a network topology of 
2-50-50-50-50-1 (2 inputs, 4 hidden layers with 50 
neurons per hidden layer, and 1 output). The input 
descriptors are the salt concentration 𝑐𝑠  and the LJ 
parameter 𝜖LJ, and the output is the dielectric constant 
𝜀𝑟  of NaCl-containing water. The architecture of the 
sub-NNs is shown in the caption of Table 1b. To 
increase the diversity of the sub-NNs, we combine them 
with different patience and batch size parameters in the 
ranges of 15 to 30 and 20 to 30, respectively. To reduce 
the probability of getting stuck in the local minima of 
the loss function while training and accelerate the 
training speed, we use BN before each ReLU activation 
function. We also empirically find from the calculation 
of the MSE that a sub-NN with 50 neurons per hidden 
layer serves as a good architecture. 
 
Note that unlike in the case involving the salt-free 
solvents, the training data consist of the values of 𝜀𝑟  
obtained before taking the average and thus include 
large statistical fluctuations. Accordingly, the training 
and validation errors appear to be large (Supplementary 
Information), and therefore the error values are not 
informative. To conduct a more meaningful 
comparison, we compare our ENN prediction with the 
FSA to evaluate the model performance. For clarity, we 
illustrate the input-output relationship in Fig. 1 (d). This 
noisy-data method was developed to reduce the 
simulation runs needed to train ENNs on cellular 
automata simulations of lithium dendrite formation 
[17]. The statistical fluctuations of the present 
simulation data are substantially larger. Thus, we 
examine whether the noisy-data method can still be 
employed as a general strategy, specifically with BN or 
bagging. Here, three types of electrostatic interactions 
(the ion-ion, ion-dipole, and dipole-dipole interactions) 
in NaCl solutions tend to increase the statistical 
fluctuations of the dielectric constant calculations. 
Thus, we directly deal with the simulation data for the 
test of the noisy-data method. 
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Stochastic gradient descent, an iterative method that 
optimizes a loss function via updates of the NNs' 
weights and biases, is often invoked for training 

feedforward NNs. However, the gradient is often 
vanishingly small, and therefore the NNs train slowly, 
specifically when the input values of the layers are large. 

Table 1 MSEs (MAPEs) from the training of salt-free solvents and NaCl-containing water. 

Salt-free solvents 
(a) Training and validation errors (MSEs) of ENN1 and its three constituent sub-NNs for salt-free solvents. The MAPEs are 
shown in parentheses. The network topology of each sub-NN is 4-30-30-30-30-30-30-30-30-30-30-30-1, and the sequence of 
the activation functions consists of X-Y-X-Z-X-Y-X-Z-X-Y-X-X, where X=ReLU, Y=sine, and Z=Gaussian. 

Salt-Free Solvents Training Error Validation Error 

ENN1 11.7 (6.3%) 7.9 (8.3%) 

Sub-NN1 29.1 (17.2%) 25.5 (15.7%) 

Sub-NN2 21.1 (20.3%) 18.1 (19.0%) 

Sub-NN3 11.8 (7.2%) 8.2 (7.0%) 

NaCl-containing water 

(b) MSEs (MAPEs in parentheses) of the predictions yielded by the ENNs for 

NaCl-containing water with and without BN relative to the average of the 

dielectric constants calculated from the low-sampling datasets and the FSA. 

These results are calculated from Fig. 3(a-d). The network topology of each 

sub-NN with BN is (BN-ReLU)-Gaussian-(BN-ReLU)-(BN-ReLU)-ReLU. 

(c) MAPEs of the predictions of the ENNs 

for NaCl-containing water with and without 

BN under bagging relative to the dielectric 

constants calculated from the low-sampling 

datasets and the FSA. These results are 

calculated from Fig. 3(e-g). 

ϵLJ kcal/mol  Low-sampling datasets FSA Low-sampling datasets FSA 
0.01 

 

No BN 78.2 (15.7%) 65.1 (13.0%) 14.7% 10.2% 
BN 99.0 (16.4%) 25.4 (8.8%) 18.1% 14.1% 

0.10 

 

No BN 88.7 (15.1%) 130.1 (18.8%) 18.3% 16.4% 
BN 186.1 (18.6%) 37.0 (9.8%) 20.9% 13.6% 

0.50 

 

No BN 28.4 (11.1%) 79.8 (19.9%) 16.1% 6.9% 
BN 155.9 (20.9%) 54.5 (10.9%) 28.7% 20.5% 

To circumvent this problem, we employ BN, a 
normalization scheme recently proposed by Ioffe and 
Szegedy, to accelerate the training of the NNs [13]. BN 
tends to reduce the dependence of the gradient on the 
scales of the parameters or their initial values via a 
normalization step that fixes the means and variances of 
each layer’s inputs or the output of the activation 
function from the prior layer. For example, BN in Keras 
applies a transformation that maintains the mean output 
close to 0 and the output standard deviation close to 1, 
mitigating the internal covariate shift problem [23]. 
 
 
RESULTS 
Salt-Free Solvents 
Table 1a shows the training and validation errors of 
ENN1, which consists of three sub-NNs. Here, we 
employ three sub-NNs because the addition of more 
sub-NNs does not substantially improve the ENN. Sub-
NN1 and sub-NN2 have relatively high training and 
validation errors while sub-NN3 has low errors. ENN1 
outperforms all the sub-NNs or remains comparable to 
sub-NN3. Unlike the sub-NNs, the errors of ENN1 are 
not substantially changed by the initial model 
parameters. The robustness of the training performance 
to the combination of sub-NNs arises mainly from the 
fact that in linear regression, well-trained sub-NNs are 

weighted more significantly than sub-NNs with 
relatively poor performance. In the Supplementary 
Information, we also show that an ENN (ENN3) 
consisting of a hybrid of three poorly trained sub-NNs 
(sub-NN1, sub-NN2, and sub-NN4 in Table S1) can 
outperform all the sub-NNs and compare favorably with 
ENN1 (Table S2). Thus, the use of ENNs increases the 
likelihood of finding a global minimum among the sub-
NNs, without having one large NN that can encompass 
all the data and find the global minimum. 
 
We plot the dielectric constants of seven solvents with 
different LJ parameters in Fig. 2, in which we compare 
the predictions of ENN1 with the FSAs from MD 
simulations. For clarity, the experimental values of 
dielectric constants of the seven solvents [24] are shown 
below each solvent’s name in Fig. 2. We focus on the 
solvent diameter and the LJ parameter because the 
Onsager equation (the standard mean-field theory for 
the dielectric constant) cannot predict changes in the 
dielectric constant with respect to the two [25]. Here, 
the total number of training data is limited to 76 samples 
(i.e., 𝑁𝑝 =76) for all the solvents (Supplementary 
Information), and Fig. 2 includes 65 samples to 
illustrate the overall trend of the dielectric constants. 
Each data point (symbol) designates the dielectric 
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constant calculated from the configurations, and we 
employ the samples to individually train the sub-NNs. 
Here, we note that conventional NNs consisting of only 
ReLU and sigmoid functions are unlikely to capture the 
observed variations in the dielectric constants, such as 
the nonmonotonicity between the solvent diameter 𝜎 
and the LJ parameter ϵLJ . To address this 
nonmonotonicity, we find that the average of the total 
dipole moment over 10000 inclusion of a sine function 
sandwiched by ReLUs considerably improves the 
training efficiency, and a Gaussian function sandwiched 
by ReLUs further improves the results. As discussed 
before, however, the combination of these sub-NNs is 
the essence of the substantial improvement and 
robustness of the model accuracy, mitigating the local 
minimum issue and providing the model robustness 
against poorly trained sub-NNs. Concomitantly, we test 
BN in one or more layers and find that BN makes the 
prediction results worse. The reason for this could be 
due to the insufficient amount of training data. 
Nevertheless, in the case of salt-doped solvents, we 
show that BN averages the results and improves the 
performance of ENNs when the training data are 
statistically noisy.  

 
NaCl Solutions 
We examine the noisy-data method with an ENN 
(ENNc1) consisting of five sub-NNs with the following 
sequence of activation functions: (BN-ReLU)-
Gaussian-(BN-ReLU)-(BN-ReLU)-ReLU (see Tables 
S3 and S4 for the details of training and validation 
errors). Fig. 3(a) shows the FSAs and the predictions of 
the ENN with BN, in which the salt concentrations 𝑐𝑠 
and the LJ parameters ϵLJ for the ion-ion and ion-water 
interactions are varied. The number of MD parameter 
sets is 𝑁𝑝 = 33. For regularization to force the 
predictions to fit the dielectric constants of pure water 
(i.e., 𝑐𝑠 = 0 M), each of the dielectric constant averages 
at 𝑐𝑠 = 0  M is copied 267 times repeatedly in the 
training data to include about 800 additional samples for 
the three LJ parameters. Note that the training data at a 
given salt concentration and LJ parameter (i.e., an MD 
parameter set) consist of only 40 configurations; 
however, we used more data to produce the FSAs. Thus, 
the training data may be disparate from the FSAs, yet 
the predictions compare favorably with the FSAs. 
 

Fig. 2 Dielectric constants vs. solvent diameters predicted by ENN1 (Table 1a) for different solvents. The solid lines indicate the 
predictions from the ENN, whereas the symbols indicate the full simulation averages (FSAs). The solvents are (a) water, (b) MeOH, 
(c) EtOH, (d) acetone, (e) 1-propanol, (f) DMSO, and (g) DMF.  The values in the brackets indicate the experimental values of 
their dielectric constants. 



 8 

Table 1b shows the differences between the dielectric 
constants predicted from the low-sampling datasets and 
the averages calculated from the low-sampling datasets 
or the FSAs. Note that the predictions obtained with BN 
are worse than those without BN when compared with 
the average calculated from the low-sampling datasets. 
In contrast, the performance of BN becomes better when 
compared with the FSAs, as highlighted in bold. This 
difference indicates that BN drives the predictions 
derived from the low-sampling datasets to approach the 
FSAs.  
 
To explain the role of BN, Fig. 3(b)-(d) show the 
dielectric constants calculated from individual 
configurations without taking the average in Eq. 5 (i.e., 
the low-sampling dataset) and the predictions from the 
ENN. The unaveraged dielectric constants are widely 
distributed around their mean values. Note that the 

averages (reduced-set averages) calculated from the 
low-sampling datasets may not be close to the FSAs; 
thus, they can be highly inaccurate values. The 
predictions obtained without BN tend to be close to the 
reduced-set averages. However, when we employ BN, 
the predictions derived from the low-sampling datasets 
do not trace the reduced-set averages and instead tend to 
approach the FSAs. For example, this is especially clear 
at the result for ϵLJ = 0.1 kcal/mol and 𝑐𝑠 = 3.407 M 
and at nearly all results for ϵLJ = 0.5 kcal/mol. Thus, 
BN-combined ENNs appear to be robust against 
significant reductions in the number of training data and 
therefore can considerably speed up the parameter 
adjustment process and the exploration of new features 
in noisy data over a vast parameter space. It is probable 
that this enhanced training performance occurs partly 
due to the normalization process of BN reducing the 

Fig. 3 (a) Comparison between the full-simulation averages (FSAs) and the ENN predictions for the dielectric constants of NaCl 
solutions. Only BN was used. The solid lines indicate the ENN predictions for different salt concentrations 𝑐𝑠 and different LJ 
parameters between the ions. ϵLJ designates ϵLJ

(ion, ion), where ϵLJ
(ion, ion) = ϵLJ

(+,+)
= ϵLJ

(+,−)
= ϵLJ

(−,−)
= ϵLJ

(water,+)
= ϵLJ

(water,−). The symbols 
indicate the FSAs (the average over 2100 configurations for each MD parameter set). (b)-(d) Efficacy of BN with (b) ϵLJ = 0.01 
kcal/mol, (c) ϵLJ = 0.10 kcal/mol, and (d) ϵLJ = 0.50 kcal/mol. The solid and dashed lines indicate the ENN predictions with and 
without BN, respectively. The grey symbols indicate the average over 40 configurations for each MD parameter set, and the 
standard deviations are represented by error bars. (e)-(g) BN + bagging (dashed line) and bagging only (solid line) with (e) ϵLJ = 
0.01 kcal/mol, (f) ϵLJ = 0.10 kcal/mol, and (g) ϵLJ = 0.50 kcal/mol. The symbols indicate the FSAs.  
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large fluctuation of the training data and mixing 
information about data distributions at different MD 
parameter sets. 
 
Finally, we also employ bagging, a treatment for 
decreasing variance to prevent overfitting. By randomly 
grouping the training data, we obtain 5 different training 
datasets and then feed these training data into 5 different 
sub-NNs. Our results show that bagging can outperform 
BN, but a hybrid of BN and bagging makes the 
prediction results less accurate, as highlighted by the 
bold figures in Table 1c. In Fig. 3(e)-(g), the results 
obtained from the bagging-only method can more 
accurately capture the nonmonotonicity of r at low salt 
concentrations with all LJ parameters and the 
nonmonotonicity of r at high concentrations in the case 
where ϵLJ = 0.5  kcal/mol. The optimization of the 
bagging size (the number of training data in the bags 
selected from the original training data to create diverse 
samples) is crucial for outperforming BN, which is 
typically encountered in ML when tuning model 
hyperparameters. However, this optimization may not 
always be guaranteed or may require further 
computational effort because the training performance 
depends on various hyperparameters. 
 
 
CONCLUSION 
We constructed ensemble neural networks for the 
calculation of the dielectric constants of polar solvents 
and NaCl solutions. For the training data, we used 
Stockmayer fluid MD simulation methods that 
accounted for the dielectric responses of dipolar fluids. 
We showed that our ensemble neural networks with 
activation layers containing sine and Gaussian functions 
captured the trends of the dielectric constants of seven 
polar solvents. Sinusoidal activation functions often 
yield large numbers of shallow local minima [15], but 
our ensemble neural networks appeared to mitigate this 
issue. For NaCl solutions, we trained the ensemble 
neural networks with low-sampling datasets that were 
insufficient to produce the full-simulation averages. 
Moreover, the training data were widely distributed 
around the mean values for each MD parameter set. In 
this case, with highly noisy data, batch normalization or 
bagging enabled the predictions of ensemble neural 
networks to compare favorably with the full-simulation 

averages when employed independently. In other 
words, batch normalization and bagging can make the 
predictions of ensemble neural networks trace the 
optimal values derived from noisy datasets. Thus, we 
suggest that ensemble neural networks with batch 
normalization or bagging serve as efficient tools to 
substantially reduce the number of simulation runs and 
thus save computational effort. For example, the 
ensemble neural networks trained with a small number 
of possible input parameters can be used to choose 
values of the model parameters that best match target 
experiments, without having to run more MD 
simulations. The present methods would also be useful 
to simultaneously determine a number of model 
parameters for multicomponent systems. 
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