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Abstract

Two central problems in Stochastic Optimization

are MIN SUM SET COVER and PANDORA’S BOX.

In PANDORA’S BOX, we are presented with n
boxes, each containing an unknown value and the

goal is to open the boxes in some order to min-

imize the sum of the search cost and the small-

est value found. Given a distribution of value

vectors, we are asked to identify a near-optimal

search order. MIN SUM SET COVER corresponds

to the case where values are either 0 or infin-

ity. In this work, we study the case where the

value vectors are not drawn from a distribution

but are presented to a learner in an online fashion.

We present a computationally efficient algorithm

that is constant-competitive against the cost of

the optimal search order. We extend our results

to a bandit setting where only the values of the

boxes opened are revealed to the learner after ev-

ery round. We also generalize our results to other

commonly studied variants of PANDORA’S BOX

and MIN SUM SET COVER that involve select-

ing more than a single value subject to a matroid

constraint.

1. Introduction

One of the fundamental problems in stochastic optimization

is PANDORA’S BOX problem, first introduced by Weitzman

in (Weitzman, 1979). The problem asks to select among

n alternatives, called boxes, one with a low value. In the

stochastic version of the problem, it is assumed that values

in the boxes are drawn from a known distribution and the

actual realization of any box can be revealed at a cost after

inspection.

The goal is to design an algorithm that efficiently searches
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among the n alternatives to find a low value while also

paying a low inspection cost. We thus aim to minimize the

sum of the search costs the algorithm pays and the value

of the alternative(s) it chooses in the end. In the standard

version of PANDORA’S BOX a single value must be chosen,

but we also consider common generalizations that require k
distinct alternatives to be chosen, or alternatives that form a

matroid basis.

While most of the literature has focused on the stochastic

case, where there is a known distribution of values given in

advance, we instead consider an online version of the prob-

lem played over T rounds, where in each round a different

realization of values in the boxes is adversarially chosen.

The goal of the learner is to pick a good strategy of opening

boxes in every round that guarantees low regret compared

to choosing in hindsight the optimal policy for the T rounds

from a restricted family of policies.

In this work, we mainly consider policies that fix the order

in which boxes are explored but have free arbitrary stopping

rules. Such policies are called partially-adaptive and are

known to be optimal in many cases, most notably in the

stochastic version where the values of the boxes are drawn

independently. Such policies are also optimal in the special

case of the PANDORA’S BOX problem where the values in

the boxes are either 0 or∞. This case is known as the MIN

SUM SET COVER problem (MSSC) and is a commonly

studied problem in the area of approximation algorithms.

1.1. Our Results

Our work presents a simple but powerful framework for

designing online learning algorithms for PANDORA’S BOX,

MSSC and other related problems. Our framework yields

approximately low-regret algorithms for these problems

through a three step process:

1. We first obtain convex relaxations of the instances of

every round.

2. We then apply online-convex optimization to obtain

good fractional solutions to the relaxed instances

achieving low regret.

3. We finally round the fractional solutions to integral

solutions for the original instances at a small multi-
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plicative loss.

Through this framework, we obtain a

• 9.22-approximate no-regret algorithm for the problem

of selecting 1 box.

• O(1)-approximate no-regret algorithm for the problem

of selecting k boxes.

• O(log k)-approximate no-regret algorithm for the prob-

lem of selecting a rank k matroid basis.

We start by presenting these results in the full information

setting (section 3) where the values of all boxes are revealed

after each round, once the algorithm has made its choices.

A key contribution of our work is to further extend these

results to a more-realistic bandit setting (section 4). In this

setting, the algorithm only observes the values for the boxes

it explored in each round and can only use this information

to update its strategy for future rounds. In each round there

is also the option of obtaining the full information by paying

a price. We show that even under this more pessimistic

setting we can obtain approximately no-regret algorithm

with the same approximation guarantees as above.

We also provide stronger regret guarantees against more

restricted classes of algorithms for the PANDORA’S BOX

and MSSC problems that are non-adaptive (section 5).

All the algorithms we develop in this paper are computation-

ally efficient. As such, the approximation guarantees given

above are approximately tight since it is NP-hard to improve

on these beyond small constants even when competing with

the simpler non-adaptive benchmark. In particular, it was

shown in (Feige et al., 2004) that even the special case of

MSSC is APX-hard and cannot be approximated within

a smaller factor than 4. It is an interesting open question

to what extent these bounds can be improved with unlim-

ited computational power. While in the stochastic version,

this would trivialize the problem, in the online setting the

obtained approximation factors may still be necessary infor-

mation theoretically.

1.2. Comparison with Previous Work

Our work is closely related to the work of (Chawla et al.,

2020). In that work, the authors study a stochastic version of

PANDORA’S BOX with an arbitrarily correlated distribution

and aim to approximate the optimal partially adaptive strate-

gies. We directly extend all the results of (Chawla et al.,

2020) in the online non-stochastic setting, where we are

required at each round to solve an instance of the problem.

Another very related paper is the work of (Fotakis et al.,

2020) that also studies the online learning problem but fo-

cuses specifically on the MIN SUM SET COVER problem

and its generalization (GMSSC) that asks to select k alterna-

tives instead of one. Our work significantly improves their

results in several ways.

• We provide a simpler algorithm based on online convex

optimization that does not rely on calculating gradi-

ents. We immediately obtain all our results through the

powerful framework that we develop.

• This allows us to study more complex constraints like

matroid rank constraints as well as study the more

general PANDORA’S BOX. It is challenging to extend

the results of (Fotakis et al., 2020) to such settings

while keeping the required gradient computation task

computationally tractable.

• Finally, we extend their results to a more natural bandit

setting, where after each round we only have informa-

tion about the alternatives that we explored rather than

the whole instance.

In another recent work similar to ours, Esfandiari et al. (Es-

fandiari et al., 2019) consider a Multi-armed bandit version

of PANDORA’S BOX problem which however greatly differs

with ours in the following ways.

• In their setting each box has a type, and the algorithm

is required to pick one box per type, while in our case

the game is independent in each round.

• Their benchmark is a “prophet” who can choose the

maximum reward per type of box, at the end of T
rounds.

• The decision to pick a box is irrevocable1 and they

only consider threshold policies, as they relate the prob-

lem to prophet inequalities (see surveys (Hill & Kertz,

1992; Lucier, 2017; Correa et al., 2018) for more de-

tails on prophet inequalities).

1.3. Related Work

We model our search problem using PANDORA’S BOX,

which was first introduced by Weitzman in the Economics

literature (Weitzman, 1979). Since then, there has been a

long line of research studying PANDORA’S BOX and its

variants e.g. where boxes can be selected without inspec-

tion (Doval, 2018; Beyhaghi & Kleinberg, 2019), there is

correlation between the boxes (Chawla et al., 2020), the

boxes have to be inspected in a specific order (Boodaghi-

ans et al., 2020) or boxes are inspected in an online man-

ner (Esfandiari et al., 2019). Some work is also done in the

generalized setting where more information can be obtained

1The algorithm decides when seeing a box whether to select it
or not, and cannot “go back” and select the maximum value seen.
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for a price (Charikar et al., 2000; Gupta & Kumar, 2001;

Chen et al., 2015b;a). Finally a long line of research con-

siders more complex combinatorial constraints like budget

constraints (Goel et al., 2006), packing constraints (Gupta

& Nagarajan, 2013), matroid constraints (Adamczyk et al.,

2016), maximizing a submodular function (Gupta et al.,

2016; 2017), an approach via Markov chains (Gupta et al.,

2019) and various packing and covering constraints for both

minimization and maximization problems (Singla, 2018).

In the special case of MSSC, the line of work was initiated

by (Feige et al., 2004), and continued with improvements

and generalizations to more complex constraints (Azar et al.,

2009; Munagala et al., 2005; Bansal et al., 2010; Skutella &

Williamson, 2011).

On the other hand, our work advances a recent line of re-

search on the foundations of data-driven algorithm design,

started by Gupta and Roughgarden (Gupta & Roughgar-

den, 2017), and continued by (Balcan et al., 2017; 2018a;b;

Kleinberg et al., 2017; Weisz et al., 2018; Alabi et al., 2019),

where they study parameterized families of algorithms in

order to learn parameters to optimize the expected runtime

or performance of the algorithm with respect to the under-

lying distribution. Similar work was done before (Gupta &

Roughgarden, 2017) on self-improving algorithms (Ailon

et al., 2006; Clarkson et al., 2010).

Furthermore, our results directly simplify and generalize the

results of (Fotakis et al., 2020) in the case of partial feedback.

Related to the partial feedback setting, (Flaxman et al., 2005)

consider single bandit feedback and (Agarwal et al., 2010)

consider multi-point bandit feedback. Both these works

focus on finding good estimators for the gradient in order to

run a gradient descent-like algorithm. For more pointers to

the online convex optimization literature, we refer the reader

to the survey by Shalev-Shwartz (Shalev-Shwartz, 2012) and

the initial primal-dual analysis of the Follow the Regularized

Leader family of algorithms by (Shalev-Shwartz & Singer,

2007).

2. Preliminaries

We evaluate the performance of our algorithms using aver-

age regret. We define the average regret of an algorithm A
against a benchmark OPT, over a time horizon T as

RegretOPT(A, T ) =
1

T

T
∑

t=1

(A(t)− OPT(t)) (1)

where A(t) and OPT(t) is the cost at round t of A and

OPT respectively. We similarly define the average α-

approximate regret against a benchmark OPT as

α-RegretOPT(A, T ) =
1

T

T
∑

t=1

(A(t)− αOPT(t)) . (2)

We say that an algorithm A is no regret if

RegretOPT(A, T ) = o(1). Similarly, we say that A
is α-approximate no regret if α-RegretOPT(A, T ) = o(1).
Observe the we are always competing with an oblivious

adversary, that selects the one option that minimizes the

total loss over all rounds.

2.1. Problem Definitions

In PANDORA’S BOX we are given a set B of n boxes with

unknown costs and a set of possible scenarios that determine

these costs. In each round t ∈ [T ], an adversary chooses

the instantiation of the costs in the boxes, called a scenario.

Formally, a scenario at time t is a vector c(t) ∈ R
n for any

t ∈ [T ], where csi denotes the cost for box i when scenario s
is instantiated. Note that without loss of generality, we can

assume that ci ≤ n, since if some is more than n we can

ignore them, and if all are above n we automatically get a 2
approximation2.

The goal of the algorithm at every round is to choose a box of

small cost while spending as little time as possible gathering

information. The algorithm cannot directly observe the

instantiated scenario, however, it is allowed to “open” boxes

one at a time. When opening a box, the algorithm observes

the cost inside the box. In total, we want to minimize the

regret over T rounds, relative to the optimal algorithm.

Formally, let Pt and cti be the set of boxes opened and the

cost of the box selected respectively by the algorithm at

round t ∈ [T ]. The cost of the algorithm A at round t is

A(t) = mini∈Pt
cti+ |Pt| and the goal is to minimize regret

RegretOPT(A, T ).
Any algorithm can be described by a pair (σ, τ), where σ is

a permutation of the boxes representing the order in which

they are opened, and τ is a stopping rule – the time at which

the algorithm stops opening and returns the minimum cost

it has seen so far. Observe that in its full generality, an

algorithm may choose the next box to open and the stopping

time as a function of the identities and costs of the previous

opened boxes.

Different Benchmarks. As observed in (Chawla et al.,

2020), optimizing over the class of all such algorithms is

intractable, therefore simpler benchmarks are considered.

• The Non-adaptive Benchmark (NA): in this case the

adversary chooses all the T scenarios about to come,

and selects a fixed set of boxes to open, which is the

same in every round. In this case, the OPT(t) term in

the regret does not depend on t.

2Since opening all boxes to find the minimum value costs us at
most n+mini∈B ci, and the optimal also pays at least n
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• The Partially-adaptive Benchmark (PA): in this

case, the adversary can have a different set of boxes

to open in each round, which can depend on the algo-

rithm’s choices in rounds 1, . . . , t− 1.

An important special case. A special case of PAN-

DORA’S BOX is the MIN SUM SET COVER problem

(MSSC). In this problem, the costs inside the boxes are

either 0 or∞. We say a scenario is covered or satisfied if,

in our solution, we have opened a box that has value 0 for

this scenario.

General feasibility constraints. We also study two more

complex extensions of the problem. In the first one we are

required to select exactly k boxes for some k ≥ 1, and in the

second, the algorithm is required to select a basis of a given

matroid. We design partially-adaptive strategies that are

approximately no-regret, for the different constraints and

benchmarks described in this section.

2.2. Relaxations

2.2.1. SCENARIO - AWARE RELAXATION

Observe that the class of partially-adaptive strategies is still

too large and complex, since the stopping rule can arbitrarily

depend on the costs observed in boxes upon opening. One

of the main contributions of (Chawla et al., 2020), which we

are using in this work too, is that they showed it is enough

to design a strategy that chooses an ordering of the boxes

and performs well, assuming that we know when to stop.

This relaxation of partially-adaptive, called scenario-aware

partially-adaptive (SPA), greatly diminishes the space of

strategies to consider, and makes it possible to design com-

petitive algorithms, at the cost of an extra constant factor.

This is formally stated in the lemma below. The proof can

be found in (Chawla et al., 2020) and it is based on a gener-

alization of ski-rental (Karlin et al., 1990).

Lemma 2.1 (Simplification of Theorem 3.4 from (Chawla

et al., 2020)). For a polynomial, in the number of boxes,

α-approximate algorithm for scenario-aware partially adap-

tive strategies, there exists a polynomial time algorithm that

is a e
e−1

α-approximation partially-adaptive strategy.

2.2.2. FRACTIONAL RELAXATION AND ROUNDING

This first relaxation allows us to only focus on designing

efficient SPA strategies which only require optimizing over

the permutation of boxes. However both MSSC and PAN-

DORA’S BOX are non-convex problems. We tackle this issue

by using a convex relaxation of the problems, given by their

linear programming formulation.

Definition 1 (Convex Relaxation). Let Π be a minimization

problem over a domain X with g : X → R as its objective

function, we say that a function g : X → R is a convex

relaxation of g, if

1. The function g and its domain X are convex.

2. X ⊆ X and for any x ∈ X , g(x) ≤ g(x).

Using this definition, for our partially-adaptive benchmark

we relax the domain X = {x ∈ [0, 1]n×n :
∑

i xit =
1 and

∑

t xit = 1} to be the set of doubly stochastic n× n
matrices. We use a convex relaxation gs similar to the

one from the generalized min-sum set cover problem in

(Bansal et al., 2010) and (Skutella & Williamson, 2011), but

scenario dependent; for a given scenario s, the relaxation

gs changes. We denote by T the set of n time steps, by xit

the indicator variable for whether box i is opened at time

t, and by zsit the indicator of whether box i is selected for

scenario s at time t. We define the relaxation gs(x) as

minz≥0

∑

i∈B,t∈T
(t+ csi )z

s
it (Relaxation-SPA)

s.t.
∑

t∈T ,i∈B
zsit = 1,

zsit ≤ xit, i ∈ B, t ∈ T .
Similarly, we also relax the problem when we are required to

pick k boxes (Relaxation-SPA-k) and when we are required

to pick a matroid basis (Relaxation-SPA-matroid).

Leveraging the results of (Chawla et al., 2020), in sec-

tions C.1, C.2 and C.3 of the appendix, we show how to

use a rounding that does not depend on the scenario chosen

in order to get an approximately optimal integer solution,

given one for the relaxation. Specifically, we define the

notion of α-approximate rounding.

Definition 2 (α-approximate rounding). Let Π be a mini-

mization problem over a domain X with f : X → R as

its objective function and a convex relaxation f : X → R.

Let x ∈ X be a solution to Π with cost f(x). Then an

α-approximate rounding is a an algorithm that given x
produces a solution x ∈ X with cost

f(x) ≤ αf(x)

3. Full Information Setting

We begin by presenting a general technique for approach-

ing PANDORA’S BOX type of problems via Online Convex

Optimization (OCO). Initially we observe, in the following

theorem, that we can combine

1. a rounding algorithm with good approximation guaran-

tees,

2. an online minimization algorithm with good regret

guarantees
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to obtain an algorithm with good regret guarantee.

Theorem 3.1. Let Π be a minimization problem over a

domain X and Π be the convex relaxation of Π over convex

domain X ⊇ X .

If there exists an α-approximate rounding algorithm A :
X → X for any feasible solution x ∈ X to a feasible

solution x ∈ X then, any online minimization algorithm for

Π that achieves regret Regret(T ) against a benchmark OPT,

gives α-approximate regret αRegret(T ) for Π.

Proof of Theorem 3.1. Let f1, ..., fT be the online sequence

of functions presented in problem Π, in each round t ∈ [T ],
and let f1, ..., fT be their convex relaxations in Π.

Let xt ∈ X be the solution the online convex optimization

algorithm gives at each round t ∈ [T ] for problem Π. Calcu-

lating the total expected cost of Π, for all time steps t ∈ [T ]
we have that

E

[

T
∑

t=1

ft
(

A(xt)
)

]

≤ α

T
∑

t=1

f t(xt)

≤ α

(

Regret(T ) + min
x∈X

T
∑

t=1

f t(x)

)

≤ α

(

Regret(T ) + min
x∈X

T
∑

t=1

ft(x)

)

.

By rearranging the terms, we get the theorem.

Given this theorem, in the following sections we show (1)

how to design an algorithm with a low regret guarantee

for PANDORA’S BOX (Theorem 3.3) and (2) how to obtain

rounding algorithms with good approximation guarantees,

using the results of (Chawla et al., 2020).

3.1. Applications to PANDORA’S BOX and MSSC

Applying Theorem 3.1 to our problems, in their initial non-

convex form, we are required to pick an integer permutation

of boxes. The relaxations, for the different benchmarks and

constraints, are shown in Relaxation-SPA, Relaxation-SPA-

k and Relaxation-SPA-matroid.

We denote by gs(x) the objective function of the scenario

aware relaxation of the setting we are trying to solve e.g for

selecting 1 box we have Relaxation-SPA. Denote by X =
[0, 1]n×n the solution space. We can view this problem as

an online convex optimization one as follows.

1. At every time step t we pick a vector xt ∈ X , where

X is a convex set.

2. The adversary picks a scenario s ∈ S and therefore a

function fs : X → R where fs = gs and we incur

Algorithm 1: AlgorithmA for the full information case.

Input: Π = (F ,OPT) : the problem to solve, AΠ : the

rounding algorithm for Π
1 Denote by fs(x) = fractional objective function

2 Select regularizer U(x) according to Theorem 3.3

3 X = space of fractional solutions

4 for Each round t ∈ [T ] do

5 Set xt = min
x∈X

∑t−1

τ=1 f
sτ (x) + U(x)

6 Round xt to x
int
t according to AΠ

7 Receive loss fs(xint
t )

8 end

loss fs(xt) = gs(xt). Note that fs is convex in all

cases (Relaxation-SPA, Relaxation-SPA-k, Relaxation-

SPA-matroid).

3. We observe the function fs for all points x ∈ X .

A family of algorithms that can be applied to solve this

problem is called Follow The Regularized Leader (FTRL).

These algorithms work by picking, at every step, the solution

that would have performed best so far while also adding a

regularization term for stability. For the FTRL family of

algorithms we have the following guarantees.

Theorem 3.2 (Theorem 2.11 from (Shalev-Shwartz, 2012)).

Let f1, . . . , fT be a sequence of convex functions such that

each ft is L-Lipschitz with respect to some norm. As-

sume that FTRL is run on the sequence with a regulariza-

tion function U which is η-strongly-convex with respect

to the same norm. Then, for all u ∈ C we have that

Regret(FTRL, T ) · T ≤ Umax − Umin + TL2η

Our algorithm works similarly to FTRL, while additionally

rounding the fractional solution, in each step, to an integer

one. The algorithm is formally described in Algorithm 1,

and we show how to choose the regularizer U(x) in

Theorem 3.3.

We show the guarantees of our algorithm above using The-

orem 3.2 which provides regret guarantees for FTRL. The

proof of Theorem 3.3 is deferred to section A of the ap-

pendix.

Theorem 3.3. The average regret of Algorithm 1 is

RegretPA(A, T ) ≤ 2n

√

log n

T

achieved by setting U(x) = (
∑n

i=1

∑n
t=1 xit log xit) /η as

the regularization function, and η =
√

logn
T .

Finally, using Theorem 3.1 we get Corollary 3.3.1 for com-

peting with the partially-adaptive benchmark for all different
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feasibility constraints (choose 1, choose k or choose a ma-

troid basis), where we use the results of Corollary C.0.1, to

obtain the guarantees for the rounding algorithms.

Corollary 3.3.1 (Competing against PA, full information).

In the full information setting, Algorithm 1 is

• 9.22-approximate no regret for choosing 1 box

• O(1)-approximate no regret for choosing k boxes

• O(log k)-approximate no regret for choosing a ma-

troid basis

Remark 3.3.1. In the special case of MSSC, our approach

obtains the tight 4-approximation of the offline case (Feige

et al., 2004). The details of this are deferred to section C.1 of

the Appendix. This result improves on the previous work (Fo-

takis et al., 2020) who obtain a 11.713-approximation.

4. Bandit Setting

Moving on to a bandit setting for our problem, where we do

not observe the whole function after each step. Specifically,

after choosing xt ∈ X in each round t, we only observe

a loss fs(xt) at the point xt we chose to play and not for

every x ∈ X . This difference prevents us from directly

using any online convex optimization algorithm, as in the

full information setting of section 3. However, observe

that if we decide to open all n boxes, this is equivalent to

observing the function fs for all x ∈ X , since we learn the

cost of all permutations.

We exploit this similarity by randomizing between running

FTRL and paying n to open all boxes. Specifically we

split [T ] into T/k intervals and choose a time, uniformly at

random in each one, when we are going to open all boxes

n and thus observe the function on all inputs. This process

is formally described in Algorithm 2, and we show the

following guarantees.

Theorem 4.1. The average regret for Algorithm 2, for

k =
(

n
2L+

√
logn

)2/3

T 1/3 and loss functions that are L-

Lipschitz is

E [RegretPA(APA, T )] ≤ 2 (2L log n+ n)
2/3·n1/3·T−1/3.

To analyze the regret of Algorithm 2 and prove Theorem 4.1,

we consider the regret of two related settings.

1. In the first setting, we consider a full-information on-

line learner that observes at each round t a single func-

tion sampled uniformly among the k functions of the

corresponding interval It. We call this setting random

costs.

Algorithm 2: APA minimizing regret against PA

1 Get parameter k from Theorem 4.1

2 Select regularizer U(x) according to Theorem 4.1

3 Split the times [T ] into T/k intervals I1 . . . , IT/k

4 R ← ∅ // Random times for each Ii
5 for Every interval Ii do

6 Pick a tp uniformly in Ii
7 for All times t ∈ Ii do

8 if t = tp then

9 R ← R∪ {tp}
10 Open all boxes

11 Get feedback fstp

12 else

13 xt ← argmin
x∈X

∑

τ∈R fsτ (x) + U(x)
14 end

15 end

16 end

2. In the second setting, we again consider a full-

information online learner that observes at each round

t a single function which is the average of the k func-

tions in the corresponding interval It. We call this

setting average costs.

The following lemma, shows that any online algorithm for

the random cost setting yields low regret even for the aver-

age costs setting.

Lemma 4.2. Any online strategy for the random costs set-

ting with expected average regret R(T ) gives expected av-

erage regret at most R(T ) + n/
√
kT for the equivalent

average costs setting.

Proof of Lemma 4.2. Denote by f t =
1
k

∑k
i=1 fti the cost

function corresponding to the average costs setting and

by fr
t = fti where i ∼ U ([k]) the corresponding

cost function for the random costs setting. Let x∗ =

argmin
x∈X

∑T/k
t=1 f t(x) be the minimizer of the f t over

the T/k rounds.

We also use Xt = f t(xt)−fr
t (xt), to denote the difference

in costs between the two settings for each interval (where

xt is the action taken at each interval t by the random costs

strategy). Observe that this is a random variable depending

on the random choice of time in each interval. We have that

E





T/k
∑

t=1

|Xt|



 ≤






E











T/k
∑

t=1

Xt





2












1/2

=



E





T/k
∑

t=1

X2
t









1/2
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≤ n

√

T

k
.

The two inequalities follow by Jensen’s inequality and

the fact that Xt’s are bounded by n. The equality is

because the random variables Xt are martingales, i.e.

E [Xt|X1, ..., Xt−1] = 0, as the choice of the function at

time t is independent of the chosen point xt.

We now look at the average regret of the strategy xt for the

average cost setting. We have that

1

T
E

[

∑

t

f t(xt)

]

−R(T )− n√
kT

≤ 1

T
E

[

∑

t

fr
t (xt)

]

−R(T )

≤ 1

T
E

[

min
x

∑

t

fr
t (x)

]

≤ 1

T
E

[

∑

t

fr
t (x

∗)

]

=
∑

t

f t(x
∗)

which implies the required regret bound.

Given this lemma, we are now ready to show Theorem 4.1.

Proof of Theorem 4.1. To establish the result, we note that

the regret of our algorithm is equal to the regret achievable

in the average cost setting multiplied by k plus nT/k since

we pay n for opening all boxes once in each of the T/k
intervals. Using Lemma 4.2, it suffices to bound the regret

in the random costs setting. Let U(x) : [0, 1]n×n → R be

an η/n-strongly convex regularizer used in the FTRL algo-

rithm. We are using U(x) = (
∑n

i=1

∑n
t=1 xit log xit) /η,

which is η/n-strongly convex from Lemma A.1 and is at

most (n log n)/η as we observed in corollary 3.3.1. Then

from Theorem 3.2, we get that the average regret for the

corresponding random costs setting is 2L
√

logn
kT .

Using Lemma 4.2, we get that the total average regret R(T )
of our algorithm is

R(T ) ≤ k · 2L
√

log n

kT
+ k · n/

√
kT +

n

k
.

Setting k =
(

n
2L logn+n

)2/3

T 1/3 the theorem follows.

Finally, using Theorem 4.1 we can get the same guarantees

as the full-information setting, using the α-approximate

rounding for each case (Corollary C.0.1).

Corollary 4.2.1 (Competing against PA, bandit). In the

bandit setting, Algorithm 2 is

• 9.22-approximate no regret for choosing 1 box

• O(1)-approximate no regret for choosing k boxes

• O(log k)-approximate no regret for choosing a ma-

troid basis

5. Competing with the Non-adaptive

We switch gears towards a different benchmark, that of the

non-adaptive strategies. Similarly to the partially adaptive

benchmark, here we we first present the linear programming

for the non-adaptive benchmark as a function f : [0, 1]n →
R with f(x) equal to

minz≥0

∑

i∈B
xi +

1

|S|
∑

i∈B,s∈S
csi z

s
i (LP-NA)

s.t.
∑

i∈B
zsi = 1, ∀s ∈ S

zsi ≤ xi ∀i ∈ B, s ∈ S
where xi is an indicator variable for whether box i is opened

and zsi indicates whether box i is assigned to scenario s.

Note that the algorithms we provided for the partially-

adaptive case cannot be directly applied since the objective

functions of LP-NA, LP-NA-k and LP-NA-matroid are not

n-Lipschitz. To achieve good regret bounds in this case, we

design an algorithm that randomizes over an “explore” and

an “exploit” step, similarly to (Alabi et al., 2019), while re-

membering the LP structure of the problem given constraints

F . Observe that there is a “global” optimal linear program

(which is either LP-NA, LP-NA-k or LP-NA-matroid de-

pending on the constraints F) defined over all rounds T .

Getting a new instance in each round is equivalent to receiv-

ing a new (hidden) set of constraints. We first describe two

functions utilised by the algorithm in order to find a feasible

fractional solution to the LP and to round it.

1. Ellipsoid(k,LP): finds and returns a feasible solution

to LP of cost at most k. By starting from a low k
value and doubling at each step, lines 10-13 result in

us finding a fractional solution within 2 every time.

2. Round(St,F): rounds the fractional feasible solution

St using the algorithm corresponding to F . The round-

ing algorithms are presented in section D of the ap-

pendix. For selecting 1 box we have Algorithm 7,

for selecting k boxes Algorithm 8 and for selecting a

matroid basis Algorithm 9.

The algorithm works in two steps; in the “explore” step

(line 7) opening all boxes results in us exactly learning
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Algorithm 3: Algorithm AF for minimizing regret vs

NA

1 Input: set of constraints F
2 LP ← LP-NA or LP-NA-k or LP-NA-matroid

(according to F)

3 C1 ← ∅ // Constraints of LP

4 for round t ∈ [T ] do

5 draw c ∈ U [0, 1]
6 if c > pt then

7 Open all n boxes, inducing new constraint cnew

8 Ct+1 ← Ct ∪ {cnew}
9 k ← 1

10 repeat

11 (x, z)← Ellipsoid (k, LP)

12 k ← 2k

13 until (x, z) is feasible;

14 else

15 St ← St−1

16 π ←Round(St,F)

17 Open boxes according to order π

18 end

19 end

the hidden constraint of the current round, by paying n.

The “exploit” step uses the information learned from the

previous rounds to open boxes and choose one.

Observe that the cost of Algorithm 3 comes from three

different cases, depending on what the result of the flip of

the coin c is in each round.

1. If c > pt, we and pay n for opening all boxes.

2. If c < pt and we pay cost proportional to the LP (we

have a feasible solution).

3. If c < pt and we pay cost proportional to n (we did

not have a feasible solution).

We bound term 3 using mistake bound, and then continue

by bounding terms 1 and 2 to get the bound on total regret.

5.1. Bounding the mistakes

We start by formally defining what is mistake bound of an

algorithm.

Definition 3 (Mistake Bound of AlgorithmA). LetA be an

algorithm that solves problem Π and runs in t ∈ [T ] rounds

with input xt in each one. Then we defineA’s mistake bound

as

M(A, T ) = E

[

T
∑

t=1

1{xt not feasible for Π}
]

where the expectation is taken over the algorithm’s choices.

The main contribution in this section is the following lemma,

that bounds the number of mistakes.

Lemma 5.1. Algorithm 3 has mistake bound

M(AF , T ) ≤ O(n2
√
T ).

The mistake bound applies to all the different constraints

F we consider. To achieve this, we leverage the fact that

the ellipsoid algorithm, running on the optimal LP corre-

sponding to the constraints F , needs polynomial in n time

to find a solution. The proof works by showing that every

time, with probability pt, we make progress towards the

solution, and since the ellipsoid in total makes polynomial

in n steps we also cannot make too many mistakes. The

proof of Lemma 5.1 is deferred to section B of the appendix.

5.2. Regret for different constraints

Moving on to show regret guarantees of Algorithm 3 for the

different types of constraints. We start off with the special

case where we are required to pick one box, but all the costs

inside the boxes are either 0 or∞, and then generalize this

to arbitrary costs and more complex constraints.

Theorem 5.2 (Regret for 0/∞). Algorithm 3, with pt =
1/
√
T has the following average regret, when F =

{Select 1 box} and ci ∈ {0,∞}.

E [RegretNA(AF , T )] ≤ OPT +O

(

n2

√
T

)

.

Proof of Theorem 5.2. Denote by M the mistake bound

term, bounded above in Lemma 5.1. We calculate the total

average regret

E[RegretNA(AF , T )] + OPT =
1

T

(

M +

T
∑

t=1

E [|St|]
)

=
1

T

(

M +

T
∑

t=1

ptn+ (1− pt)E [|St|]
)

≤ 1

T

(

M +

T
∑

t=1

ptn+ 2OPT

)

≤M + 2OPT + n

T
∑

t=1

pt

≤ 2OPT +O

(

n2

√
T

)
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where initially we summed up the total regret of Algorithm 3

where the first term is the mistake bound from Lemma 5.1.

Then we used the fact that OPTt ≤ OPT and the solution

found by the ellipsoid is within 2, and in the last line we used

Since
∑T

t=1 pt ≤
√
T from (Alabi et al., 2019). Finally,

subtracting OPT from both sides we get the theorem.

Generalizing this to arbitrary values ci ∈ R, we show that

when we are given a β approximation algorithm we get

the following guarantees, depending on the approximation

factor.

Theorem 5.3. If there exists a partially adaptive algorithm

AF that is β-competitive against the non-adaptive optimal,

for the problem with constraints F , then Algorithm 3, with

pt = 1/
√
T has the following regret.

E [RegretNA(AF , T )] ≤ 2βOPT +O

(

n2

√
T

)

.

The proof follows similarly to the 0/∞ case, and is de-

ferred to section B of the appendix. Combining the different

guarantees against the non-adaptive benchmark with Theo-

rem 5.3 we get the following corollary.

Corollary 5.3.1 (Competing against NA, bandit setting). In

the bandit setting, when competing with the non-adaptive

benchmark, Algorithm 3 is

• 3.16-approximate no regret for choosing 1 box (using

Theorem D.1)

• 12.64-approximate no regret for choosing k boxes (us-

ing Theorem D.3)

• O(log k)-approximate no regret for choosing a ma-

troid basis (using Theorem D.5)
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A. Proofs from section 3

The following lemma shows the strong convexity of the regularizer used in our FTRL algorithms.

Lemma A.1 (Convexity of Regularizer). The following function is 1/n-strongly convex with respect to the `1-norm.

U(x) =

n
∑

i=1

n
∑

t=1

xit log xit

for a doubly-stochastic matrix x ∈ [0, 1]n×n

Proof. Since U(x) is twice continuously differentiable we calculate∇2U(x), which is a n× n diagonal matrix since

ϑU(x)

ϑxktϑxij
=

{

1/xij If i = k and j = t

0 Else

We show that z∇2U(x)z ≥ ||z||21 for all x ∈ R
n2

. We make the following mapping of the variables for each xij we map it

to pk where k = (i− 1)n+ j. We have that

z∇2U(x)z =

n2

∑

i=1

(zi)
2

pi

=
1

n





n2

∑

i=1

pi





n2

∑

i=1

(zi)
2

pi

≥ 1

n





n2

∑

i=1

√
pi
|zi|√
pi





2

=
1

n
||z||21.

where in the second line we used that xij’s are a doubly stochastic matrix, and then Cauchy-Schwartz inequality.

Theorem 3.3. The average regret of Algorithm 1 is

RegretPA(A, T ) ≤ 2n

√

log n

T

achieved by setting U(x) = (
∑n

i=1

∑n
t=1 xit log xit) /η as the regularization function, and η =

√

logn
T .

Proof. Initially observe that by setting xij = 1/n we get Umax − Umin = (n log n)/η, since we get the maximum entropy

when the values are all equal. Additionally, from Lemma A.1 we have that U(x) is η/n-strongly convex. Observing also

that the functions in all cases are n-Lipschitz and using Theorem 3.2 we obtain the guarantee of the theorem, by setting

η =
√
logn√
T

.

B. Proofs from section 5

Before moving to the formal proof of Lemma 5.1, we recall the following lemma about the ellipsoid algorithm, bounding

the number of steps it takes to find a feasible solution.

Lemma B.1 (Lemma 3.1.36 from (Grötschel et al., 1988)). Given a full dimensional polytope P = {x : Cx ≤ d},
for x ∈ R

n, and let 〈C, d〉 be the encoding length of C and d. If the initial ellipsoid is E0 = E(R2I, 0)3 where

R =
√
n2〈C,d〉−n2

the ellipsoid algorithm finds a feasible solution after O(n2〈C, d〉) steps.

3E(R,Z) indicates a ball of radius R and center Z.
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Using the lemma above, we can now prove Lemma 5.1, which we also restate below.

Lemma 5.1. Algorithm 3 has mistake bound

M(AF , T ) ≤ O(n2
√
T ).

Proof. Our analysis follows similarly to Theorem 3.2 of (Alabi et al., 2019). Initially observe that the only time we make a

mistake is in the case with probability (1− pt) if the LP solution is not feasible. Denote by C∗ the set of the constraints of

LP as defined in Algorithm 3, and by C1 ⊆ C2 ⊆ . . . ⊆ Ct the constraint set for every round of the algorithm, for all t ∈ [T ].
We also denote by NT (c) the number of times a constraint c was not in Ct for some time t but was part of LP . Formally

NT (c) = |{c ∈ C∗, c 6∈ Ct, }| for a constraint c ∈ C∗ and any t ∈ [T ]. We can bound the mistake bound of Algorithm 3 as

follows

M(A, T ) ≤
∑

c∈C∗

E [NT (c)] .

Let tc ∈ [T ] be the round that constraint c is added to the algorithm’s constraint set for the first time, and let Sc be the set of

` rounds in which we made a mistake because of this constraint. Observe that {S1, S2, . . . S`} = Sc ⊆ {C1, C2, . . . Ctc}.
We calculate the probability that NT (c) is incremented on round k of S

Pr [NT (c) incremented on round k] =
k
∏

i=1

(1− pi) ≤ (1− p)k,

since in order to make a mistake, we ended up on line 14 of the algorithm. Therefore

E [NT (c)] ≤
T
∑

i=1

(1− p)i =
(1− p)(1− (1− p))T

p
.

However in our case, every time a constraint is added to Ct, one step of the ellipsoid algorithm is run, for the LP . Using

Lemma B.1 and observing that in our case 〈C, d〉 = O(1) the total times this step can happen is at most O(n2), giving us

the result of the lemma by setting p = 1/
√
T .

Theorem 5.3. If there exists a partially adaptive algorithm AF that is β-competitive against the non-adaptive optimal, for

the problem with constraints F , then Algorithm 3, with pt = 1/
√
T has the following regret.

E [RegretNA(AF , T )] ≤ 2βOPT +O

(

n2

√
T

)

.

Proof of Theorem 5.3. Denote by M be the mistake bound term, bounded in Lemma 5.1. Calculating the total average

regret we get

E [RegretNA(AF , T )] + OPT =
1

T

(

M +

T
∑

t=1

E [St]

)

Definition

=
1

T

(

M +

T
∑

t=1

pt(n+min
i∈F

ci) + (1− pt)E [St]

)

Algorithm 3

≤ 1

T

(

M +

T
∑

t=1

ptn+ pt min
i∈F

ci + 2βOPTt

)

AF , and ellipsoid’s loss

≤ (2β + 1)OPT +
1

T

(

M + n

T
∑

t=1

pt

)

min
i∈F

ci ≤ OPTt ≤ OPT

≤ (2β + 1)OPT +
n√
T

T
∑

t=1

pt ≤
√
T from (Alabi et al., 2019)

≤ (2β + 1)OPT +O

(

n2

√
T

)

From Lemma 5.1.

Therefore, subtracting OPT from both sides we get the theorem.
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C. Rounding against Partially-adaptive

In this section we show how using the rounding algorithms presented in (Chawla et al., 2020), we obtain α-approximate

rounding for our convex relaxations. We emphasize the fact that these algorithms convert a fractional solution of the relaxed

problem, to an integer solution of comparable cost, without needing to know the scenario. Formally we show the following

guarantees.

Corollary C.0.1 (Rounding against PA). Given a fractional solution x of cost f(x) there exists an α-approximate rounding

where

• Selecting 1 box: α = 9.22 (Using Lemma C.1)

• Selecting k boxes: α = O(1) (Using Lemma C.2)

• Selecting a matroid basis: α = O(log k) (Using Lemma C.4)

In order to obtain the results of this corollary, we combine the ski-rental Lemma 2.1 with Lemmas C.1, C.2 and C.4, for each

different case of constraints. Observe that, as we show in the following sections, the part where the fractional solution given

is rounded to an integer permutation does not depend on the scenario realized. Summarizing the rounding framework of

the algorithms is as follows.

1. Receive fractional solution x, z.

2. Use rounding 4, 5, 6, depending on the constraints, to obtain an (integer) permutation π of the boxes.

3. Start opening boxes in the order of π.

4. Use ski-rental to decide the stopping time.

C.1. Rounding against Partially-adaptive for Choosing 1 Box

The convex relaxation for this case (Relaxation-SPA) is also given in section 2.2.2, but we repeat it here for convenience.

minz≥0

∑

i∈B,t∈T
(t+ csi )z

s
it (Relaxation-SPA)

s.t.
∑

t∈T ,i∈B
zsit = 1,

zsit ≤ xit, i ∈ B, t ∈ T .

Our main lemma in this case, shows how to obtain a constant competitive partially adaptive strategy, when given a

scenario-aware solution.

Lemma C.1. Given a scenario-aware fractional solution x of cost f(x) there exists an efficient partially-adaptive strategy

x with cost at most 9.22f(x).

Proof. We explicitly describe the rounding procedure, in order to highlight its independence of the scenario realized. For

the rest of the proof we fix an (unknown) realized scenario s. Starting from our (fractional) solution x of cost f
s
= f

s

o + f
s

c,

where f
s

o and f
s

c are the opening and values4 cost respectively, we use the reduction in Theorem 5.2 in (Chawla et al., 2020)

to obtain a transformed fractional solution x
′ of cost f ′s = f ′s

o + f ′s
c. For this transformed solution, (Chawla et al., 2020)

in Lemma 5.1 showed that

f ′s
o ≤

(

α

α− 1

)2

f
s

o (3)

for the opening cost and

f ′s
c ≤ αf

s

c (4)

4Cost incurred by the value found inside the box.



Online Learning for Min Sum Set Cover and Pandora’s Box

for the cost incured by the value inside the box chosen. To achieve this, the initial variables xit are scaled by a factor

depending on α to obtain x′
it. For the remainder of the proof, we assume this scaling happened at the beginning, and abusing

notation we denote by x the scaled variables. This is without loss of generality since, at the end of the proof, we are taking

into account the loss in cost incurred by the scaling (Inequalities 3 and 4). The rounding process is shown in Algorithm 4.

Algorithm 4: Scenario aware, α-approximate rounding for 1 box

Data: Fractional solution x with cost f , set α = 3 + 2
√
2

/* Part 1: Scenario-independent rounding */

1 σ := for every t = 1, . . . , n, repeat twice: open each box i w.p. qit =
∑

t′≤t xit′

t .

2

/* Part 2: Scenario-dependent stopping time */

3 Given scenario s, calculate z
s and f

s

c

4 τs := If box i is opened and has value csi ≤ αf
s

c then select it.

The ratio of the opening cost of the integer to the fractional solution is bounded by

fs
o

f ′s
o

≤
2
∑∞

t=1

∏t−1

k=1

(

1−
∑

i∈A,t′≤k zs
it′

k

)2

∑

i t · zsit
Since zsit ≤ xit

≤
2
∑∞

t=1 exp
(

−2∑t−1

k=1

∑
t′≤k zs

it′

k

)

∑

i t · zsit
Using that 1 + x ≤ ex

Observe that h(z) = log
fs
o

f ′s

o

= log fs
o − log f

s

o is a convex function since the first part is LogSumExp, and log f
s

o is the

negation of a concave function. That means h(z) obtains the maximum value in the boundary of the domain, therefore at

the integer points where zsit = 1 iff t = ` for some ` ∈ [n], otherwise zsit = 0. Using this fact we obtain

fs
o

f ′s
o

≤
2`+ 2

∑∞
t=`+1 exp

(

−2∑t−1

k=`
1
k

)

`
Using that zsit = 1 iff t = `

=
2`+ 2

∑∞
t=`+1 exp (Ht−1 −H`−1)

`
Ht is the t’th harmonic number

≤
2`+ 2

∑∞
t=`+1

(

`
t

)2

`
Since Ht−1 −H`−1 ≥

∫ t

`

1

x
dx = log t− log `

≤ 2`+ 2`2
∫∞
`

1
t2 dt

`
Since t−2 ≤ x−2 for x ∈ [t− 1, t]

= 4.

Combining with equation 3, we get that fs
o ≤ 4

(

α
α−1

)2

f
s

o. Recall that for the values cost, inequality (4) holds, therefore

requiring that 4
(

α
α−1

)2

= α, we have the lemma for α = 3 + 2
√
2.

Corollary C.1.1. For the case of MSSC, when the costs inside the boxes are either 0 or∞, the rounding of Lemma C.1

obtains a 4-approximation, improving the 11.473 of (Fotakis et al., 2020).

C.2. Rounding against Partially-adaptive for Choosing k Boxes

In this case we are required to pick k boxes instead of one. Similarly to the one box case, we relax the domain X = {x ∈
[0, 1]n×n :

∑

i xit = 1 and
∑

t xit = 1}, to be the set of doubly stochastic matrices. We define the relaxation gs(x) as

miny≥0,z≥0

∑

t∈T
(1− yst ) +

∑

i∈B,t∈T
csi z

s
it (Relaxation-SPA-k)
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subject to zsit ≤ xit, ∀i ∈ B, t ∈ T
∑

t′≤t,i 6∈A

zsit′ ≥ (k − |A|)yst , ∀A ⊆ B, t ∈ T (5)

Our main lemma in this case, shows how to obtain a constant competitive partially adaptive strategy, when given a

scenario-aware solution, in the case we are required to select k items.

Lemma C.2. Given a scenario-aware fractional solution zs, x of cost gs(x) there exists an efficient partially-adaptive

strategy x with cost at most O(1)gs(x).

Proof. We follow exactly the steps of the proof of Theorem 6.2 from (Chawla et al., 2020), but here we highlight two

important properties of it.

• The rounding part that decides the permutation (Algorithm 5) does not depend on the scenario realised, despite the

algorithm being scenario-aware.

• The proof does not use the fact that the initial solution is an optimal LP solution. Therefore, the guarantee is given

against any feasible fractional solution.

The rounding process is shown in Algorithm 5.

Algorithm 5: Scenario aware, α-approximate rounding for k-coverage from (Chawla et al., 2020)

Data: Solution x to Relaxation-SPA-k. Set α = 8
/* Part 1: Scenario-independent rounding */

1 σ := For each phase ` = 1, 2, . . ., open each box i independently with probability qi` = min
(

α
∑

t≤2` xit, 1
)

.

2

/* Part 2: Scenario-dependent stopping time */

3 τs :=
4 Given scenario s, calculate y

s, zs

5 Define t∗s = max{t : yst ≤ 1/2}.
6 if 2` ≥ t∗s then

7 For each opened box i, select it with probability min
(

α
∑

t≤2`
zs
it

qi`
, 1
)

.

8 Stop when we have selected k boxes in total.

9 end

Assume that we are given a fractional solution (x,ys, zs), where xit is the fraction that box i is opened at time t, zsit is the

fraction box i is chosen for scenario s at time t, and yst is the fraction scenario s is ”covered“ at time t, where covered means

that there are k boxes selected for this scenario5. Denote by f
s

o (fs
o ) and f

s

c (fs
c ) the fractional (rounded) costs for scenario s

due to opening and selecting boxes respectively. Denote also by t∗s the last time step that yst ≤ 1/2 and observe that

f
s

o ≥
t∗s
2
. (6)

Fix a realized scenario s and denote by `0 = dlog t∗se. Using that for each box i the probability that it is selected in phase

` ≥ `0 is min(1, 8
∑

t′≤2` z
s
it′), we use the following lemma from (Bansal et al., 2010) that still holds in our case ; the proof

of the lemma only uses constraint 5 and a Chernoff bound.

Lemma C.3 (Lemma 5.1 in (Bansal et al., 2010)). If each box i is selected w.p. at least min(1, 8
∑

t′≤t z
s
it′) for t ≥ t∗s ,

then with probability at least 1− e−9/8, at least k different boxes are selected.

5We use the variables ys
t for convenience, they are not required since ys

t =
∑

t′<t,i∈B
zsit.
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Similarly to (Chawla et al., 2020), let γ = e−9/8 and Bj be the set of boxes selected at phase j. Since the number of boxes

opened in a phase is independent of the event that the algorithm reaches that phase prior to covering scenario s the expected

inspection cost is

E [fs
o after phase `0] =

∞
∑

`=`0

E [fs
o in phase `] · Pr [reach phase `]

≤
∞
∑

`=`0

∑

i∈B
α
∑

t′≤2`

xit′ ·
`−1
∏

j=`0

Pr [|Bj | ≤ k]

≤
∞
∑

`=`0

2`α · γ`−`0 Lemma C.3, xit doubly stochastic

=
2`0α

1− 2γ
<

2t∗sα

1− 2γ
≤ 4αf

s

o

1− 2γ
. `0 = dlog t∗se and ineq. (6)

Observe that the expected opening cost at each phase ` is at most α2`, therefore the expected opening cost before phase `0 is

at most
∑

`<`0
α2` < 2`0α < 2t∗sα ≤ 4αf

s

o. Putting it all together, the total expected opening cost of the algorithm for

scenario s is

fs
o ≤ 4αf

s

o +
4αf

s

o

1− 2γ
< 123.25f

s

o.

To bound the cost of our algorithm, we find the expected total value of any phase `, conditioned on selecting at least k
distinct boxes in this phase.

E[cost in phase `|at least k boxes are selected in phase `]

≤ E [cost in phase `]

Pr [at least k boxes are selected in phase `]

≤ 1

1− γ
E [cost in phase `]

≤ 1

1− γ

∑

i∈B
α
∑

t≤2`

zsitc
s
i =

1

1− γ
αf

s

c < 11.85f
s

c.

The third line follows by Lemma C.3 and the last line by the definition of f
s

c. Notice that the upper bound does not depend

on the phase `, so the same upper bound holds for fs
c . Thus the total cost contributed from scenario s in our algorithm is

fs = fs
o + fs

c < 123.25f
s

o + 11.85f
s

c ≤ 123.25f
s
,

which gives us the lemma.

C.3. Rounding against Partially-adaptive for Choosing a Matroid Basis

Similarly to the k boxes case, we relax the domain X = {x ∈ [0, 1]n×n :
∑

i xit = 1 and
∑

t xit = 1}, to be the set of

doubly stochastic matrices. Let r(A) for any set A ⊆ B denote the rank of this set. We define gs(x) as

miny≥0,z≥0

∑

t∈T
(1− yst ) +

∑

i∈B,t∈T
csi z

s
it (Relaxation-SPA-matroid)

subject to
∑

t∈T ,i∈A

zsit ≤ r(A), ∀A ⊆ B (7)

zsit ≤ xit, ∀i ∈ B, t ∈ T
∑

i 6∈A

∑

t′≤t

zsit′ ≥ (r([n])− r(A))yst , ∀A ⊆ B, t ∈ T (8)
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Our main lemma in this case, shows how to obtain a constant log k-competitive partially adaptive strategy, when given a

scenario-aware solution, in the case we are required to select a matroid basis.

Lemma C.4. Given a scenario-aware fractional solution zs, x of cost gs(x) there exists an efficient partially-adaptive

strategy zs with cost at most O(log k)gs(x).

Proof of Lemma C.4. We follow exactly the steps of the proof of Lemma 6.4 from (Chawla et al., 2020), but similarly to the

k items case we highlight the same important properties; (1) the rounding that decides the permutation does not depend on

the scenario (2) the proof does not use the fact that the initial solution given is optimal in any way. The rounding process is

shown in Algorithm 6.

Algorithm 6: Scenario aware, O(log n)-approximate rounding, matroids from (Chawla et al., 2020)

Data: Fractional solution x,y, z for scenario s, α = 64.

/* Part 1: Scenario-independent rounding */

1 σ := for every t = 1, . . . , n, open each box i independently with probability qit = min
{

α ln k
∑

t′≤t xit′

t , 1
}

.

2

/* Part 2: Scenario-dependent stopping time. */

3 τs :=
4 Given scenario s, calculate y, z
5 Let t∗s = min{t : yst ≤ 1/2}.
6 if t > t∗s then

7 For each opened box i, select it with probability min
{

α ln k
∑

t′≤t z
s
it′

tqit
, 1
}

.

8 Stop when we find a base of the matroid.

9 end

Denote by (x,ys, zs) the fractional scenario-aware solution given to us, where xit is the fraction that box i is opened at

time t, zsit is the fraction box i is chosen for scenario s at time t, and yst is the fraction scenario s is ”covered“ at time

t, where covered means that there is a matroid basis selected for this scenario. Denote also by f
s

o (fs
o ), f

s

c (f
s
c ) and the

fractional costs for scenario s due to opening and selecting boxes for the fractional (integral) solution respectively.

In scenario s, let phase ` be when t ∈ (2`−1t∗s, 2
`t∗s]. We divide the time after t∗s into exponentially increasing phases, while

in each phase we prove that our success probability is a constant. The following lemma gives an upper bound for the opening

cost needed in each phase to get a full rank base of the matroid, and still holds in our case, since only uses the constraints of

a feasible solution.

Lemma C.5 (Lemma 6.6 from (Chawla et al., 2020)). In phase `, the expected number of steps needed to select a set of full

rank is at most (4 + 2`+2/α)t∗s .

Define X to be the random variable indicating number of steps needed to build a full rank subset. The probability that we

build a full rank basis within some phase ` ≥ 6 is

Pr
[

X ≤ 2`−1t∗s
]

≥ 1− E [X ]
2`−1t∗s

≥ 1− 1

2`−1t∗s
(4 + 2`+2/α)t∗s = 1− 23−` − 8

α
≥ 3

4
, (9)

where we used Markov’s inequality for the first inequality and Lemma C.5 for the second inequality. To calculate the total

inspection cost, we sum up the contribution of all phases.

E [fs
o after phase 6] =

∞
∑

`=6

E [fs
o at phase `] · Pr [ALG reaches phase `]

≤
∞
∑

`=6

2`t∗s
∑

t=2`−1t∗s+1

∑

i∈B
α ln k ·

∑

t′≤t xit′

t

(

1

4

)`−6

Algorithm 6
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≤
∞
∑

`=6

2`−1t∗sα ln k ·
(

1

4

)`−6

xit doubly stochastic

=
128α ln kt∗s

3
≤ 256c ln kf

s

o

3
. Since t∗s ≤ 2f

s

o

Since the expected opening cost at each step is α ln k and there are 25t∗s ≤ 64f
s

o steps before phase 6, we have

fs
o ≤ α ln k · 64fs

o +
256α ln kf

s

o

3
= O(log k)f

s

o.

Similarly to the k-coverage case, to bound the cost of our algorithm, we find the expected total cost of any phase ` ≥ 6,

conditioned on boxes forming a full rank base are selected in this phase.

E[fs
c in phase `|full rank base selected in phase `]

≤ E [fs
c in phase `]

Pr [full rank base selected in phase `]

≤ 1

3/4
E [fs

c in phase `]

≤ 1

3/4

∑

i∈B

2`t∗s
∑

t=2`−1t∗s+1

α ln k

∑

t′≤t z
s
it′c

s
i

t

≤ 1

3/4

2`t∗s
∑

t=2`−1t∗s+1

α ln k
∑

i∈B

∑

t′∈T zsit′c
s
i

2`−1t∗s

=
1

3/4
α ln kf

s

c = O(log k)f
s

c.

Such upper bound of conditional expectation does not depend on `, thus also gives the same upper bound for fs
c . Therefore

fs = fs
o + fs

c ≤ O(log k)(f
s

o + f
s

c) = O(log k)f
s
.

D. Linear Programs & Roundings against NA

D.1. Competing with the non-adaptive for choosing 1 box

The linear program for this case (LP-NA) is already given in the preliminaries section. The result in this case is a e/(e− 1)-
approximate partially adaptive strategy, given in (Chawla et al., 2020) is formally restated below, and the rounding algorithm

is presented in Algorithm 7.

Theorem D.1 (Theorem 4.2 from (Chawla et al., 2020)). There exists an efficient partially adaptive algorithm with cost at

most e/(e− 1) times the total cost of the optimal non-adaptive strategy.

Algorithm 7: SPA vs NA from(Chawla et al., 2020)

Input: Solution x, z to program (LP-NA); scenario s
1 σ := For t ≥ 1, select and open box i with probability xi∑

i∈B xi
.

2 τs := If box i is opened at step t, select the box and stop with probability
zs
i

xi
.

D.2. Competing with the non-adaptive benchmark for choosing k boxes

We move on to consider the case where we are required to pick k distinct boxes at every round. Similarly to the one box

case, we define the optimal non-adaptive strategy that can be expressed by a linear program. We start by showing how to

perform the rounding step of line 16 of Algorithm 3 in the case we have to select k boxes. The guarantees are given in
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Theorem D.3 and the rounding is presented in Algorithm 8. This extends the results of (Chawla et al., 2020) for the case of

selecting k items against the non-adaptive.

Lemma D.2. There exists a scenario-aware partially adaptive 4-competitive algorithm to the optimal non-adaptive

algorithm for picking k boxes.

Combining this lemma with Theorem 3.4 from (Chawla et al., 2020) we get Theorem D.3.

Theorem D.3. We can efficiently find a partially-adaptive strategy for optimal search with k options that is 4e/(e − 1)-
competitive against the optimal non-adaptive strategy.

Before presenting the proof for Lemma D.2, we formulate our problem as a linear program as follows. The formulation is

the same as LP-NA, we introduce constraints 10, since we need to pick k boxes instead of 1.

minimize
∑

i∈B
xi +

1

|S|
∑

i∈B,s∈S
csi z

s
i (LP-NA-k)

subject to
∑

i∈B
zsi = k, ∀s ∈ S (10)

zsi ≤ xi, ∀i ∈ B, s ∈ S
xi, z

s
i ∈ [0, 1] ∀i ∈ B, s ∈ S

Denote by OPTp =
∑

i∈B xi and OPTc = 1/|S|∑i∈B,s∈S csi z
s
i to be the optimal opening cost and selected boxes’ costs,

and respectively ALGp and ALGc the algorithm’s costs.

Algorithm 8: SPA vs NA, k-coverage

Input: Solution x, z to above LP-NA-k, scenario s. We set β = 1/100, α = 1/4950
1 Denote by Xlow = {i : xi < 1/β} and X =

∑

i∈Xlow
xi

2 σ := open all boxes that xi ≥ 1/β, from Xlow select each box i w.p. xi

X
3

4 Denote by k′ and OPT′
c the values of OPTc and k restricted in the set Xlow

5 τs := select all boxes that zsi ≥ 1/β
6 Discard all boxes i that ci > αOPT′

c/k
′

7 From the rest select box i with probability xi

X
8 Stop when we have selected k boxes in total.

Proof of Lemma D.2. Let (x, z) be the solution to (LP-NA-k), for some scenario s ∈ S. We round this solution through

the following steps, bounding the extra cost occurred at every step. Let β > 1 be a constant to be set later.

• Step 1: open all boxes i with xi ≥ 1/β, select all that zsi ≥ 1/β. This step only incurs at most β(OPTp + OPTc) cost.

The algorithm’s value cost is ALGc =
∑

i:zs
i≥1/β ci while OPTc =

∑

i z
s
i ci ≥

∑

i:zs
i≥1/β ciz

s
i ≥ 1/β

∑

i:zs
i≥1/β ci =

1/βALGc. A similar argument holds for the opening cost.

• Step 2: let Xlow = {i : xi < 1/β}, and denote by OPT′
c and k′ the new values for OPTc and k restricted on the set

Xlow and by X =
∑

i∈Xlow
xi.

– Step 2a: convert values to either 0 or∞ by setting ci =∞ for every box i such that ci > αOPT′
c/k

′ and denote

by Ls = {i : ci ≤ αOPT′
c/k

′}.
– Step 2b: select every box with probability xi

X , choose a box only if it is in Xlow. Observe that the probability of

choosing the j’th box from Ls given that we already have chosen j − 1 is

Pr [choose j’th|have chosen j − 1] ≥
∑

i∈Ls
xi − j/β

X
Since xi ≤ 1/β for all xi ∈ Xlow

≥
∑

i∈Ls
zsi − j/β

X
From LP constraint
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≥ (1− 1/α)k′ − j/β

OPT′
p

From Markov’s Inequality

≥ (1− 1/α)k′ − k′/β

OPT′
p

Since j ≤ k′

≥ (αβ − β − α)k′

αβOPT′
p

Therefore the expected time until we choose k′ boxes is

E [ALGp] =

k′

∑

j=1

1

Pr [choose j’th|have chosen j − 1]

≤
k′

∑

j=1

αβ
OPT′

p

(αβ − α− β)k′

= αβ
OPT′

p

αβ − α− β

Observe also that since all values selected are are ci ≤ αOPT′
c/k

′, we incur value cost ALGc ≤ αOPT′
c.

Putting all the steps together, we get ALG ≤
(

β + αβ
αβ−α−β

)

OPTp+(β+α)OPTc ≤ 4OPT, when setting a = 2β/(β−1)

and β = 1/100

D.3. Competing with the non-adaptive benchmark for choosing a matroid basis

In this section F requires us to select a basis of a given matroid. More specifically, assuming that boxes have an underlying

matroid structure we seek to find a basis of size k with the minimum cost and the minimum query time. Let r(A) denote the

rank of the set A ⊆ B. Using the linear program of the k-items case, we replace the constraints to ensure that ensure that we

select at most r(A) number of elements for every set and that whatever set A of boxes is already chosen, there still enough

elements to cover the rank constraint. The guarantees for this case are given in Theorem D.5 and the rounding presented in

Algorithm 9. This case also extends the results of (Chawla et al., 2020).

Lemma D.4. There exists a scenario-aware partially-adaptive O(log k)-approximate algorithm to the optimal non-adaptive

algorithm for picking a matroid basis of rank k.

Combining this lemma with Theorem 3.4 from (Chawla et al., 2020) we get Theorem D.5.

Theorem D.5. We can efficiently find a partially-adaptive strategy for optimal search over a matroid of rank k that is

O(logk)-competitive against the optimal non-adaptive strategy.

In order to present the proof for Lemma D.4, we are using the LP formulation of the problem with a matroid constraint, as

shown below. Let r(A) denote the rank of the set A ⊆ B. The difference with LP-NA-k is that we replace constraint 10

with constraint11 which ensures we select at most r(A) number of elements for every set and constraint (12) ensures that

whatever set A of boxes is already chosen, there still enough elements to cover the rank constraint.

minimize
∑

i∈B
xi +

1

|S|
∑

i∈B,s∈S
csi z

s
i (LP-NA-matroid)

subject to
∑

i∈B
zsi ≤ r(A), ∀s ∈ S, A ⊆ B (11)

∑

i∈A

zsi ≥ r([n])− r(A) ∀A ⊆ B, ∀s ∈ S (12)

zsi ≤ xi, ∀i ∈ B, s ∈ S (13)

xi, z
s
i ∈ [0, 1] ∀i ∈ B, s ∈ S
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Similarly to the case for k items, denote by OPTp =
∑

i∈B xi and OPTc = 1/|S|∑i∈B,s∈S csi z
s
i , and ALGp,ALGc the

respective algorithm’s costs.

Algorithm 9: SPA vs NA, matroid

Input: Solution x, z to above LP-NA-matroid, scenario s. We set β = 1/100, α = 1/4950
1 Denote by Xlow = {i : xi < 1/β} and X =

∑

i∈Xlow
xi

2 σ := open all boxes that xi ≥ 1/β, from Xlow select each box i w.p. xi

X
3

4 Denote by kj and OPTj
c the values of OPTc and k restricted in the set Xlow when j boxes are selected.

5 τs := select all boxes that zsi ≥ 1/β

6 Discard all boxes i that ci > αOPTj
c/k

j

7 From the rest select box i with probability xi

X
8 Stop when we have selected k boxes in total.

Proof of Lemma D.4. Similarly to Lemma D.2, let (x, z) be the solution to LP-NA-matroid, for some scenario s ∈ S . We

round this solution through the following process. Let β > 1 be a constant to be set later.

• Step 1: open all boxes i with xi ≥ 1/β, select all that zsi ≥ 1/β. This step only incurs at most β(OPTp + OPTc) cost.

• Step 2: let Xlow = {i : xi < 1/β}. Denote by OPT′
c and k′ the new values of OPTc and k restricted on Xlow. At every

step, after having selected j boxes, we restrict our search to the set of low cost boxes Lj
s = {i : vi ≤ αOPTj

c/k
j}

where OPTj
c and kj are the new values for OPTc and k after having selected kj = j boxes.

– Step 2a: Convert values to either 0 or∞ by setting vi =∞ for every box i such that vi > αOPTj
c/k

j .

– Step 2b: Select every box with probability xi

X , choose a box only if it is in Xlow. Observe that the probability of

choosing the j’th box from Ls given that we already have chosen j − 1 is

Pr [choose j’th|have chosen j − 1] ≥
∑

i∈Lj−1

s
xi

X

≥
∑

i∈Lj−1

s
zsi

X
From LP constraint (13)

≥ k − (k − j)

X
From LP constraint (12)

=
j

OPT′
p

Therefore the expected time until we choose k′ boxes is

E [ALGc] =

k′

∑

j=1

1

Pr [choose j’th|have chosen j − 1]

≤ OPT′
p

k′

∑

j=1

1

j

≤ log k · OPTp

Observe also that every time we choose a value from the set Lj
s, therefore the total cost incurred by the selected values

is

ALGv ≤
k′

∑

i=1

α
OPTi

c

ki
≤

k′

∑

i=1

OPTc

i
≤ α log k · OPTc

Putting all the steps together, we get ALG ≤ O(log k)OPT


