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Abstract 6 

We used Langevin dynamics simulations without hydrodynamic interactions to probe 7 

knot diffusion mechanisms and the time scales governing the evolution and the 8 

spontaneous untying of trefoil knots in nanochannel-confined DNA molecules in the 9 

extended de Gennes regime. Knot untying follows an “opening up process”, wherein the 10 

initially tight knot continues growing and fluctuating in size as it moves towards the end 11 

of the DNA molecule before its annihilation at the chain end. The mean knot size increases 12 

significantly and sub-linearly with the increasing chain contour length. The knot diffusion 13 

in nanochannel-confined DNA molecules is subdiffusive, with the unknotting time scaling 14 

with chain contour length with an exponent of 2.64 ± 0.23 to within 95% confidence 15 

interval. The scaling exponent for the mean unknotting time versus chain contour length, 16 

along with visual inspection of the knot conformations, suggests that the knot diffusion 17 

mechanism is a combination of self-reptation and knot region breathing for the simulated 18 

parameters.  19 
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1. Introduction  27 

Knotting of DNA is a fundamental phenomenon, playing a key role in topological problems, 28 

polymer physics and biology.1–4 For instance, the dynamics of knots within crowded 29 

environments in vivo is important for DNA replication,5,6 cell survival7 and cellular 30 

malfunction.8 The presence of DNA knots also has a deleterious effect on the accuracy of 31 

genomics technologies, such as genome mapping in nanochannels and nanopore 32 

sequencing.9,10 For example, in linear DNA, where only pseudo knots are possible, the knot 33 

diffusion time controls the rate of knot destruction and impacts the aforementioned genomic 34 

methods. Thus, it is important to understand how knots diffuse along the DNA contour. 35 

However, it is challenging to study DNA knot dynamics in free solution. It is both difficult to 36 

produce large numbers of knots and then detect and track knot motion along randomly-coiled 37 

single molecules in three dimensions. DNA knots can be efficiently generated using optical 38 

tweezers or an extensional flow field instead,11–16 and these methods effectively reduce the 39 

knot tracking problem from a three-dimensional scenario to a quasi-one dimensional one. 40 

However, such technologies require stretching the DNA molecules by applying an external 41 

tension, which may confound the overall dynamics of knots when compared to the free solution 42 

case.  43 

Nanochannel confinement provides an alternate way to study the dynamics of knotted 44 

DNA molecules.17–20 Confinement has a unique advantage compared to optical tweezers or 45 

extensional flow since it generates knots by compression, leading to relaxed knotted DNA 46 

molecules that should be more similar to those formed in free polymers. Remarkably, even the 47 
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basic mechanism of knotted DNA in confinement remains a relatively open question. One 48 

possible diffusion mechanism is self-reptation, where the polymer contour follows a snake-like 49 

motion through the knot. Self-reptation is anticipated to be a subdiffusive process,21,22 owing 50 

to the analogy with polymer translocation through a nanopore, and theory predicts that the 51 

diffusion time for self-reptation of a knot scales with contour length L as 𝜏D	∼	L3 in the limit 52 

where the amount of polymer in the knot is a small fraction of the contour length.23 Another 53 

possible diffusion mechanism is knot region breathing. In this case, the knotted region within 54 

the DNA molecule locally exchanges positions with its neighbors. Knot region breathing is 55 

anticipated to produce regular diffusion, and the diffusion time of knot region breathing gives 56 

a scaling 𝜏D	∼ L2, again in the large L limit.23  57 

To distinguish between these two possible mechanisms, Ma and Dorfman examined the 58 

diffusion of knots along relaxed DNA in nanochannels using a nanofluidic “knot factory” 59 

technique18 to efficiently generate the knots in their experiments. The resulting measurement 60 

of the knot mean-squared-displacements indicated that the knot diffusion mechanism is likely 61 

to be self-reptation owing to the subdiffusive behavior.17 However, their experiments do not 62 

constitute a direct test of the scaling theories for these two mechanisms. A more direct way to 63 

distinguish between the two diffusion mechanisms is to measure knot diffusion as a function 64 

of the degree of polymerization to identify the scaling exponent, or to directly compare the 65 

self-diffusion time with existing theories.23 While it is challenging to adopt this approach 66 

experimentally due to the wide range of DNA molecular weights that are needed, it is relatively 67 

straightforward to vary L in simulations. Yet, simulation and experimental works on 68 

nanochannel-confined knots that have been performed mainly focus on establishing 69 

equilibrium properties, such as the knot formation probability and knot complexity.18,24–30 70 

Little work has been done focusing on the dynamic aspects of knot diffusion in 71 
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confinement.31,32  72 

Here, we use molecular dynamics (MD) simulations of a coarse-grained polymer model to 73 

study the diffusion mechanism and the dynamics of 31 trefoil knots in nanochannel-confined 74 

DNA molecules. We track the knot size and knot position along the DNA molecule as a 75 

function of time. Additionally, we examine the impact of chain contour length L on both the 76 

mean knot size, as well as two dynamic properties, the knot mean square displacement (MSD) 77 

and the average unknotting time. Notably, the knot size increases with increasing L and the 78 

knot motion is subdiffusive when it is confined in a nanochannel. By comparing the diffusion 79 

dynamics and scaling exponent obtained from simulation and theories,23 the simulations reveal 80 

that the knot diffusion is a combination of both self-reptation and knot region breathing 81 

mechanisms. 82 

 83 

2. Methods 84 

2.1 Pair potential models 85 

The pairwise interaction between beads is modeled by purely repulsive Weeks-86 

Chandler-Andersen (WCA) potential33  87 

𝑈!"# = &
4ε )* $

%!"
+
&'
− * $

%!"
+
(
-

0, 𝑟	 > 	2
#
$𝜎

+ 	𝜀	, 𝑟	 ≤ 	2
#
$𝜎                            (1) 88 

where 𝜀 = kBT. The bond interaction between adjacent beads is modeled by finite extensible 89 

nonlinear elastic (FENE) potential34 90 
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where the maximum bond length is R0 = 1.5𝜎 and the bond stiffness is kbond = 30 kBT. Chain 92 
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stiffness is implemented by a bond angle potential 93 

𝑈4.567 = 0.5𝜅(𝜃2 	− 	𝜋)'																																																			(3) 94 

where the bending penalty 𝜅	 = 5 kBT is obtained by mapping to the persistence length lp of 95 

DNA19 through the relation with lp = 60 nm and the bead diameter w =  𝜎 = 12 nm,  96 
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The polymer chain is confined in nanochannel along the y- and z-axis with a wall potential 98 

described by WCA potential  99 
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where di is the orthogonal distance between bead i and wall. 101 

2.2 Initial configuration generation 102 

The DNA molecule is modeled as a string of beads connected by the FENE bonds described 103 

in section 2.1. To generate the initial configuration of the knotted DNA, the two parts of an 104 

initial configuration were generated separately. The first part is the relaxed polymer chain. To 105 

generate this part of the initial configuration, we used molecular dynamics (MD) simulations, 106 

described in more detail in section 2.3, to equilibrate a DNA strand from an initially fully 107 

stretched DNA state within the channel for a total 5×108 time steps for each different chain 108 

contour length. About 	1×108 time steps are required for DNA molecules to fully relax. 109 

Uncorrelated configurations of DNA molecules were then selected from the remaining 4×108 110 

time steps, with a sampling interval based on autocorrelation time (SI Figure S1). For the 111 

longest chain L = 600, which shows slower correlation time, one additional parallel simulation 112 

with a different random seed was performed to collect sufficient uncorrelated samples. The 113 
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second part of the initialization produces the relatively tight 31 trefoil knot configuration, which 114 

we set to contain 14 beads. The initial configuration of the trefoil knot was generated by 115 

Knotplot35 with a bead diameter of 𝜎. The 31 trefoil knot was then inserted into the middle of 116 

a relaxed DNA molecule sampled from the first protocol to generate one initial configuration; 117 

inserting this knot into each relaxed DNA sample generates an ensemble of initial conditions 118 

with different configurations of the unknotted portion of the DNA and identical knots. This 119 

procedure was used to generate initial conditions with the chain contour length L = 100 to 600 120 

in units of the equilibrium bond length. Figure 1 shows three examples of initial configurations 121 

of trefoil knots in nanochannel-confined DNA molecules with different L. For each L, at least 122 

30 different initial configurations were generated. The topology of 31 knots was confirmed by 123 

calculating the Alexander polynomial36 to avoid artifacts from bad initial configurations.  124 

 125 

Figure 1. (a) Initial configurations of 31 trefoil knots in nanochannel-confined DNA molecules 126 
in the extended de Gennes regime. (b) Three knotted DNA molecules with different chain 127 
contour lengths by increasing the total number of beads L = 100, 300 and 600. The trefoil knots 128 
identified by Kymoknot are highlighted as red while the unknotted polymer parts are colored 129 
blue.  130 

 131 

2.3 Molecular dynamics simulations 132 

To study the diffusion of DNA knots in confinement, molecular dynamics (MD) 133 

simulations were performed using LAMMPS37 in the canonical ensemble (NVT) using a 134 

L = 100

L = 300

L = 600

a b
Knotted DNA confined in nanochannel
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Langevin thermostat with a damping coefficient 𝜏	= 2. Note that the Langevin thermostat 135 

models an implicit solvent, so there are no hydrodynamic interactions in this model. Relaxed 136 

knotted DNA molecules were initially placed in the center of the simulation with a box size of 137 

L×25×25, where L is the chain contour length. The geometries of knotted DNA molecules 138 

were subject to local energy minimization before being used for MD simulations. The periodic 139 

boundary condition in x-dimension was applied while the wall potential on y- and z- dimensions 140 

were applied to enforce confinement. The channel size D = 25 𝜎 is mapped to experiment from 141 

Ma and Dorfman,17,19 corresponding to a channel size of 300 nm in the extended de Gennes 142 

regime. Each simulation was conducted with total 1×108 time steps for production with step 143 

size Δt = 0.001	𝜏MD, where 𝜏MD	= σ(m/ε)1/2 is the Lennard-Jones (LJ) time based on the bead 144 

mass m. The first 80% of the simulation data of the knot size versus the last 80% of simulation 145 

data were compared to make sure no additional equilibrium time is required after local energy 146 

minimization. Simulations were performed isothermally at reduced temperature T* = 1. All 147 

quantities are presented in LJ reduced units, and all particle beads have equal masses. 148 

Simulation configurations were dumped every 1×104 time steps for further analysis.  149 

2.4 Structural analysis 150 

The knotted topology on DNA molecules was characterized by calculating the Alexander 151 

polynomial of the knot using Kymoknot.38 For linear chains, the knot topology can be 152 

determined by bridging the two terminal ends of the DNA molecules. The knot topology from 153 

a pseudo-closed ring, for which the topological state is well-defined, can thus be identified. 154 

Several such closing techniques have been previously proposed.38–40 Here, we adopted a 155 

bottom-up procedure that can identify the knot topology on a linear chain, where the knot is 156 

searched staring from very short portions of the molecule and gradually considering longer 157 

ones. The knot is localized until the subchain used for the knot calculation contains a physical 158 
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knot of the same type as the whole chain, and the remaining portions are physically unknotted.38 159 

The knot start and end bead indices can then be identified based on the bottom-up knot search 160 

approach. The size of knotted DNA molecules was further quantified by the total number of 161 

beads contained in the knot, Nknot, which was calculated as the difference between the identified 162 

knot start and end bead indices.  163 

2.5 Mean square displacement (MSD) 164 

The locations of the edges of a knot were computed by using the Alexander polynomial 165 

through the bottom-up approach discussed in Section 2.4. The center of mass of the DNA knot 166 

was then calculated as 167 

𝑥<-D =	 &
E'()*

∑ 𝑚𝑥2
F'()*
2G&                                                         (6) 168 

where Mknot is the total mass of all beads contained within the knot and Nknot is the number of 169 

beads contained within the knot. All beads that are contained in the knot have equal mass m = 170 

1 and are located along the channel axis with coordinates xi, i = 1, …, n. 171 

      The time evolution of the center of mass, 𝑥<-D, was used to compute the ensemble-172 

averaged MSD 173 

𝑀𝑆𝐷(𝛿𝑡) = 〈[𝑥<-D(𝑡) − 𝑥<-D(𝑡 − 𝛿𝑡)]'〉=,.                                    (7) 174 

where 〈⋯ 〉I,J denotes an average over all times t and the ensemble of n parallel simulation 175 

trajectories, and 𝛿𝑡 is the time lag between the recorded simulation frames.  176 

To analyze the diffusive behavior of knots, we computed the scaling exponent 𝛽 of the 177 

ensemble-averaged MSD by fitting the logarithm of the data with a linear function17 178 

log&0𝑀𝑆𝐷 (𝛿𝑡) = 𝛽 log&0 𝛿𝑡 + 𝑐                                          (8) 179 

where 𝛽 and c are both fitted constants. The choice of upper bound used for fitting was 180 
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determined by calculating the correlation coefficient, R2, of the linear fit with different choice 181 

of upper bounds and a fixed lower bound at 𝛿t = 10 𝜏MD. The upper bound of time lag 50	𝜏MD 182 

was determined based on the highest R2 value obtained from all fittings.  183 

2.6 Unknotting time 184 

      The unknotting time 𝜏u	can be directly obtained from simulation, which is defined as the 185 

time when an initially knotted DNA molecule reaches an unknotted state for the first time. 186 

Since the unknotted chain can reform a knot through diffusion of the chain end, an unknotted 187 

state is defined as the absence of a knotted configuration from 10 continuous recorded 188 

simulation frames, i.e., over 105 time steps. To obtain insights into the knot diffusion 189 

mechanism, we computed the scaling exponent 𝛽 of the ensemble-averaged 𝜏u by fitting the 190 

logarithm of the data with a linear function 191 

log&0 τK = 𝛽 log&0 𝐿L + 𝑐                                                 (9) 192 

where 𝛽 and c are both fitted constants. 193 

      Diffusion time models were proposed for both self-reptation and knot region breathing 194 

mechanisms by Metzler et al.23 in the limit where the knot comprises a small part of the overall 195 

chain contour length. This theory will be compared with the results obtained from our MD 196 

simulations, so it is useful to review the key results here. The diffusivity for knot region 197 

breathing can be characterized by DKRB ≃	𝛼kBT/Δ, where Δ is the length of the knot and 𝛼 is 198 

the inverse of the bead friction, which can be obtained from a free polymer simulation. The 199 

knot diffusion time based on its initial location inside the chain (xL) to one of the ends is given 200 

by23  201 

𝜏(𝑥M) = ∫
+,-.
/ ;N0

O(N0)
N+
0 𝑑𝑥P                                                   (10) 202 
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where Lred = L - Δ is the reduced length of the two linear segments of the chain, L is the chain 203 

length and Δ is the knot length. To approximate the knot length, we used total number of beads 204 

contained in the knot, Nknot, which can be obtained from the simulation directly. The diffusion 205 

time for knot region breathing is given by23  206 

𝜏QRS(𝑥M) =
∆M123

/

'UV4W
[? N+
M123

@ − ? N+
M123

@
'
]                                        (11) 207 

In the self-reptation mechanism, the diffusivity is characterized by23 208 

𝐷X1 ≃
UV4W(MA∆)
(N+A∆)(M;N+)

                                                        (12) 209 

From Eq. (10), the diffusion time of self-reptation is given by23 210 

𝜏YR(𝑥M) =
1

12𝛼𝑘Z𝑇(𝐿 + ∆)
[𝑥M{3𝐿𝐿[7/ − 4𝐿𝑥M − 2𝐿[7/𝑥M + 3𝑥M') 211 

+∆(6𝐿[𝐿[7/ − 𝑥M] + 𝑥M[4𝑥M − 3𝐿[7/])}]                                                   (13) 212 

Note there was a typo “3xL3” in Eq. (6) in Ref. 23, which has been corrected in our Eq. (13). 213 

 214 

3. Results 215 
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 216 

Figure 2. Snapshots for L = 500 at simulation time 𝜏EO of (a) 0, (b) 9.8 × 106 and (c) 1.9 ×	107. 217 
The knotted region identified by Kymoknot is colored red while the unknotted polymer part is 218 
colored blue. (d) The start (red line) and end (blue line) of the bead indices contained in a 31 219 
trefoil knot along DNA chain for the trajectory used to generate the snapshots in panels (a,b,c). 220 
(e) The number of beads in the knot, Nknot, as a function of simulation time calculated from (d).  221 

 222 

      To elucidate the dynamics of spontaneous knot untying of linear DNA molecules in 223 

confinement, we monitored both the knot position and the knot size, characterized by the 224 

number of beads in the knot, Nknot, during the simulations. Figure 2 shows the swelling of a 225 

trefoil knot as a function of time. The trefoil knot diffuses away from its original central 226 

position, fluctuating along the entire DNA molecule. During the simulation, the initially tight 227 

knot continues growing and fluctuating in size as it moves towards the end of the DNA. The 228 

knot is destroyed upon reaching the terminus of the DNA molecule. The phenomenology in 229 

Figure 2 was observed across many simulations with this parameter set; corresponding results 230 

for different initial configurations are provided in SI Figures S2 and S3. In general, we found 231 

that knots open up, although the value of Nknot fluctuates between different simulations. 232 

Notably, we also found that the maximum Nknot is restricted by the total size of the chain and 233 

below the trivial limit of Nknot = L. As shown in Figure S4, Nknot reaches a maximum size of 234 

Knot start

Knot end

a b c

d

e
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around 150 at L = 300. Instead, at L = 500 (Figure 2), Nknot can reach a maximum of around 235 

400. These observations suggest that the knot untying follows an “opening up process”, and 236 

the fraction of the chain that participates in the opening up process is related to L.  237 

      This knot opening up process agrees qualitatively with previous single-molecule 238 

experiments,16 wherein knot swelling was reported in linearly extended DNA molecules during 239 

relaxation, although the actual knot topology in experiments may be more complicated than 240 

the simple 31 trefoil knot studied here. The behavior in Figure 2 also agrees with Monte Carlo 241 

simulations of long flexible linear polymers, suggesting a growth of average knot length on the 242 

total chain length.41  243 

 244 

Figure 3. (a) Histogram of Nknot as a function of chain contour length L. (b) Mean Nknot as a 245 
function of L. The intercept c from fitting to a power law is 0.34. The error is estimated using 246 
a 95% confidence interval. 247 

 248 

       To elucidate the mechanism behind knot untying, it proves useful to quantify the knot size 249 

with respect to L. Figure 3 shows the number of beads contained within the knot, Nknot, with 250 

respect to L. Since the unknotting dynamic is not an equilibrium process, Nknot is collected from 251 

the start of the simulation until the knot is fully untangled in all parallel simulations. The 252 

probability distributions of Nknot(L) in Figure 3a can be well-fitted to a normal Gaussian 253 

a b
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distribution. Aside from this phenomenological observation, two insights into the dependence 254 

of Nknot on L emerge by examining the probability distribution. First, the length-dependent 255 

increase in Nknot is clearly illustrated by the location of the peaks of the distributions. Secondly, 256 

the spread of the probability distribution also increases linearly with increasing Nknot, indicating 257 

the distributions are self-similar as shown in Figure S5. The sizable number of knot 258 

configurations during a simulation allows us to further compute the mean value and the 259 

statistical error of observables. Figure 3b shows the log-log plot of the calculated mean Nknot , 260 

where the true statistical error on the correlated data was computed from the block averaging 261 

method.42 The length-dependent increase of Nknot fits a power law with exponent 𝛽 = 0.64 ± 262 

0.08, where error refers to a 95% confidence interval from the linear regression.  263 

 264 

Figure 4. (a) Ensemble-averaged mean square displacements as a function of time lag for 265 
different L. The time-averaged MSDs for calculating ensemble-averaged MSD from each 266 
trajectory is provided in Figure S6. (b) Linear fit to the logarithm of ensemble-averaged MSD 267 
and time lag window between 10 to 50	𝜏MD. The choice of time lag window is discussed in 268 
Section 2.5.  269 

 270 

      The evolution of the center-of-mass of knots in time further allows us to calculate the knot 271 

mean-square displacement. Figure 4 shows the ensemble-averaged MSD as a function of time 272 

lag for different chain contour lengths. The knot diffusive behavior is further quantified by 273 

a b
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fitting the logarithm of ensemble-averaged MSD and the time lag window between 104 to 274 

5×104, which avoids the localization error (at short time lags) and the sampling error (at long 275 

time lags). The range of scaling exponent extracted from fitting in Figure 4 is [0.79,0.90] 276 

despite the difference in L. Notably, there is no apparent correlation between the scaling 277 

exponent and chain contour length. One possible reason for not seeing correlation between the 278 

scaling exponent and L can be large statistical uncertainty due to the small dataset of knotted 279 

state. In any event, all calculated scaling exponents indicate subdiffusive motion of knots along 280 

DNA molecules confined in nanochannel at short times. 281 

 282 

Figure 5. (a,b) Mean unknotting time (blue squares) obtained from the MD simulations and 283 
theories for knot region breathing (red circles) and self-reptation (gold triangles) as a function 284 
of L using (a) Nknot = 14 and (b) Nknot = 2.19L0.64. The blue dashed line is the best fit to the 285 
logarithm of the mean unknotting time and chain contour length obtained from the MD 286 
simulations. The red and gold lines are the unknotting time predicted from the knot region 287 
breathing model and the self-reptation model, respectively.23 (a) Using Nknot = 14, the slope 288 
and intercept predicted from the knot region breathing model are 2.14 and -2.22, respectively, 289 
while the slope and intercept predicted from the self-reptation model are 2.93 and -3.64, 290 
respectively. (b) Using Nknot = 2.19L0.64, the slope and intercept predicted from the knot region 291 
breathing model are 2.96 and -3.73, respectively, while the slope and intercept predicted from 292 
the self-reptation model are 3.16 and -4.23, respectively. The error bars are the standard error 293 
of the mean. 294 

 295 

      The mean time required to spontaneously untie the trefoil knot is shown as blue squares in 296 

Figure 5. The mean unknotting time grows appreciably with L. These values can be well-fitted 297 

a b
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to a power law with an exponent of 2.64 ± 0.23, where the error refers to a 95% confidence 298 

interval from the linear regression. Similar observations have been reported for knots on 299 

tension-free, open linear chains, where knots exhibit larger size and survival time for longer 300 

chains despite the difference in model and simulation setup.43 The magnitude of unknotting 301 

time also agrees with the reported Brownian simulations of semiflexible open chains confined 302 

in nanochannel (see supplementary material).44 303 

    The scaling exponent can be further compared with the existing theories proposed by 304 

Meltzer et al., namely the self-reptation (SR) and knot region breathing (KRB) mechanisms.23 305 

However, this comparison is not as straightforward as one might initially expect, since the 306 

theory assumes that the knot is small compared to the total length of the chain, but Figure 3 307 

shows that the knots are a significant fraction of their total chain contour and can grow 308 

significantly (e.g., Figure 2), especially towards the end of the untying process. 309 

Let us first consider the naïve case where we assume that D = Nknot is small compared to L 310 

by fixing the knot size to that of the initial tight trefoil knot, Nknot = 14.  Figure 5a compares 311 

the predictions of Eqs. (11) and (13) using Nknot = 14 to the simulation data. The apparent 312 

scaling exponents from fitting the theory predictions over this limited range in L are 2.93 for 313 

SR and 2.14 for KRB. For this choice of a small Nknot, the quantitative agreement between the 314 

prediction of SR in Eq. (13) and the simulation is very good; this agreement is possible despite 315 

the disagreement in scaling exponents because our simulations span less than one decade in L. 316 

If we instead probe out to very large L for the theory (Figure S7), the simulation data are 317 

approaching the predictions of the self-reptation model, suggesting that the difference in slope 318 

would be rectified for sufficiently large L. Hence, if we take as an assumption that 𝑁\.-= ≪ 𝐿, 319 

the simulations support the self-reptation model. 320 

      However, the quantitative agreement between the simulation data and self-reptation in 321 



 
16 

Figure 5a, as well as the disagreement with knot region breathing, is an artifact of assuming a 322 

small knot. In the MD simulations, we found that the knot size is not much smaller than the 323 

total contour length, as suggested by the theory of Meltzer et al., but rather is a significant 324 

fraction of the total chain length (Figure 3a). Thus, we repeated the analysis of Melzer et al., 325 

replacing Nknot = 14 with the empirical results Nknot = 2.19L0.64 regressed from Figure 3b. As 326 

shown in Figure 5b, the apparent diffusion time now scales as 3.16 for the self-reptation and 327 

2.96 for the knot region breathing mechanism respectively. When taking into account that 328 

Nknot/L is not small (i.e., sensible Nknot/L limit), it is no longer possible to distinguish between 329 

the different diffusion mechanisms and the simulation data; for the sensible Nknot/L limit, the 330 

scaling exponent 2.64 ± 0.23 extracted from the simulation does not agree perfectly well with 331 

the prediction either from KRB or SR theory.  When taking in conjunction with our 332 

observations of the knot dynamics, the results suggest that knot diffusion is a combination of 333 

both mechanisms.  334 

 335 

4. Discussion 336 

      The most straightforward method to characterize the unknotting mechanism is to analyze 337 

the nature of the diffusion itself. Anomalous subdiffusive dynamics are considered in many 338 

publications to be an indicator for the self-reptation mechanism, while the regular diffusive 339 

behavior is suggested for knot region breathing in the large L limit.23 A previous study by Klotz 340 

et al. noted the anomalous diffusive behavior of knots in DNA molecules under an elongational 341 

field in microfluidic devices, where the knot motion is mediated by self-reptation.15 342 

Additionally, computational work by Matthews et al. reported a subdiffusive motion of knots 343 

along stretched polymers at short times, again illustrating that the knots diffuse through a 344 

mechanism similar to reptation.45 In addition to these studies of the dynamics of knots under 345 



 
17 

external tensions, Ma and Dorfman17 observed the subdiffusive motion of knots under 346 

nanochannel confinement, which again suggested a self-reptation mechanism. Our MSD 347 

results for different values of L (Figure 4b) clearly demonstrate that the knot motion is 348 

anomalous, with subdiffusive scaling exponents at short times under nanochannel confinement, 349 

consistent with all of the aforementioned studies.15,17,23,45 However, our analysis suggests that 350 

even if the knot MSD shows a subdiffusive scaling, that does not imply strictly self-reptation 351 

behavior for the reasons noted in the discussion of Figure 5. This result suggests caution when 352 

inferring the knot diffusion mechanism solely from the MSD data. 353 

There are several salient features of the knot dynamics that appear to arise due to 354 

confinement, in contrast to the previous literature on stretched polymers where the knots 355 

exhibit self-reptation along the entire molecule.15,45 When the polymer is stretched, the knot 356 

remains localized and tight during its motion, only losing its tightness when it is destroyed 357 

when it diffuses to the end of molecule.46,47 Furthermore, knots on tense chains can remain 358 

jammed with a fairly constant and tight knot size in a relatively long time period, and the knot 359 

diffusivity decreases exponentially with increasing tension.47 Several qualitative differences 360 

were observed in knot dynamics between knots that are under tension and those under 361 

confinement. Firstly, in our MD simulations, we observed that the knot size fluctuates 362 

substantially during the entire process. Secondly, the knot sizes and knot positions change 363 

simultaneously and fluctuate frequently along the DNA molecules. As depicted in Figure 2 364 

and SI Figures S2-4, we found no sign of a jammed state in our simulations, i.e., where the 365 

knot remained stagnant with a relatively constant size over time. Finally, the knots follow an 366 

opening-up processes, with knots typically growing in size via power laws that depend on L at 367 

the short chain length limit between L = 100 to 600. There are thus several qualitative signatures 368 

that distinguish diffusion of confined knots and knots on stretched chains. 369 
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      The direct observation of knot dynamics and comparison of the scaling exponent of knot 370 

diffusion time vs L with the existing theories23 illustrates that both SR and KRB mechanisms 371 

contribute to knot diffusion at the sensible Nknot/L limit for nanochannel confinement. The 372 

significant difference in the prediction of apparent scaling exponents in the KRB at different 373 

Nknot/L limit also indicate that the knot size plays an important role in governing the diffusion 374 

time. Both mechanisms appear to be active on our simulations, and the results do not 375 

correspond directly to the limiting cases in the theory of Meltzer et al.23 When the chain 376 

becomes longer (or confinement becomes stronger), the knot size should become increasingly 377 

small when compared to the total chain length, and it would be interesting to see if the results 378 

indeed approach the predictions of Meltzer et al.23 However, longer chains and increased 379 

confinement may impact the geometry and size of the knot differently, leading to different 380 

scaling exponents and diffusion times. This is a promising direction for future work to develop 381 

a complete understanding of the diffusion of knots along DNA molecules. 382 

 383 

5. Conclusions 384 

In the present contribution, we explored the diffusion mechanism of trefoil knots with different 385 

chain contour lengths in confined systems using coarse-grained molecular dynamics 386 

simulations. The knot was observed to swell and continuously fluctuate in size during the 387 

simulation, in contrast to the self-reptation behavior that is reported for tight knots diffusing on 388 

stretched polymers. We observed subdiffusive motion of the knot, in agreement with the 389 

anomalous subdiffusive dynamics for the self-reptation mechanism. However, our 390 

observations of the knot structure indicate that, even if the knot MSD shows subdiffusive 391 

scaling, this does not strictly imply self-reptation behavior. Rather, the knot diffusion is a 392 

combination of both self-reptation and knot region breathing. 393 
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 394 

Supplementary Material 395 

Supplementary information is available in the online version of the paper. Autocorrelation 396 

function of radius of gyration for different chain contour length L; Additional quantification 397 

of knotted DNA trajectories at L=300,500; The standard deviation in Nknot as a function of 398 

Nknot; details for calculating ensemble-averaged MSD from time-averaged MSD; Additional 399 

prediction of unknotting time vs. L.  400 
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Supplementary Information for “Diffusion of knots in nanochannel-confined DNA 
molecules” 
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1. Supplementary Figures 

 
Figure S1. Autocorrelation function of radius of gyration for different chain length L. The 
autocorrelation time is 1×103, 1×103, 2×103, 5×103, 1×104, 2×104 𝜏MD	for L = 100, 200, 300, 
400, 500 and 600, respectively.  

 

 
Figure S2. (a) The start (red line) and end (blue line) position of 31 trefoil knot along DNA 
chain in a MD simulation with different initial configuration at L = 500. (b) Knot size (i.e., the 
number of beads in the trefoil 31 knot core) as a function of simulation time calculated from 
upper panel. 
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Figure S3. (a) The start (red line) and end (blue line) position of 31 trefoil knot along DNA 
chain in a MD simulation with different initial configuration at L = 500. (b) Knot size (i.e., the 
number of beads in the trefoil 31 knot core) as a function of simulation time calculated from 
upper panel. 

 

 
Figure S4. (a) The start (red line) and end (blue line) position of 31 trefoil knot along DNA 
chain in a MD simulation with total bead number L = 300. (b) The total bead number contained 
in the knot Nknot as a function of simulation time calculated from upper panel. 
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Figure S5. The standard deviation in Nknot as a function of Nknot. 

 

 
Figure S6. (a-f) The time-averaged MSDs (gray) for calculating ensemble-averaged MSD (red) 
from all simulation trajectories at L = 100, 200, 300, 400, 500, and 600, respectively. 
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Figure S7. Unknotting time vs. L for varied chain length L = 1000 to 100000 with knot size ∆ 
= 14. The predicted unknotting time for the knot region breathing (KRB) and the self-reptation 
(SR) is τKRB = 10-1.83L2.0 and τSR = 10-3.85L3.0. 

 

2. Supplementary text 

S1. Comparison of unknotting dynamics 

 As mentioned in the main text, we compared the unknotting dynamics with the reported 
knotting-unknotting dynamics of linear chain in nanochannel confinement.1 In the compared 
reference paper, the chain contour length was reported as Lc = 3.6 µm, which corresponds to 
L = 300 with a bead diameter of 𝜎 = 12 nm in our simulation. Using the same assumption with 
Ref. 1, the characteristic simulation time 𝜏MD = 𝜎(m/kBT)1/2 = 6𝜋𝜂sol𝜎3/𝜀 = 6𝜋𝜂sol𝜎3/(kBT), 
where 𝜂sol = 1 cP is the nominal water viscosity. At T = 300 K and 𝜎 = 12 nm, we obtained 𝜏MD 
= 8223 ns. Thus, the unknotting time in our simulation is about 3x103 𝜏MD = 24 ms at L = 300 
as shown in Figure 5. The reported value of the mean knot duration is around 5 ms for a similar 
channel size at D = 300 nm in Ref. 1. Considering the differences in the model and simulation 
setup, we can conclude that the unknotting time reported in our simulation is within the same 
order of magnitude compared to the results in Ref. 1. 
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