

Diffusion of knots in nanochannel-confined DNA molecules

Runfang Mao and Kevin D. Dorfman*

*Corresponding author. Email: dorfman@umn.edu

4 Department of Chemical Engineering and Materials Science, University of Minnesota - Twin
5 Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States

6 Abstract

We used Langevin dynamics simulations without hydrodynamic interactions to probe knot diffusion mechanisms and the time scales governing the evolution and the spontaneous untying of trefoil knots in nanochannel-confined DNA molecules in the extended de Gennes regime. Knot untying follows an “opening up process”, wherein the initially tight knot continues growing and fluctuating in size as it moves towards the end of the DNA molecule before its annihilation at the chain end. The mean knot size increases significantly and sub-linearly with the increasing chain contour length. The knot diffusion in nanochannel-confined DNA molecules is subdiffusive, with the unknotting time scaling with chain contour length with an exponent of 2.64 ± 0.23 to within 95% confidence interval. The scaling exponent for the mean unknotting time versus chain contour length, along with visual inspection of the knot conformations, suggests that the knot diffusion mechanism is a combination of self-reptation and knot region breathing for the simulated parameters.

24

25

26

27 **1. Introduction**

28 Knotting of DNA is a fundamental phenomenon, playing a key role in topological problems,
29 polymer physics and biology.¹⁻⁴ For instance, the dynamics of knots within crowded
30 environments *in vivo* is important for DNA replication,^{5,6} cell survival⁷ and cellular
31 malfunction.⁸ The presence of DNA knots also has a deleterious effect on the accuracy of
32 genomics technologies, such as genome mapping in nanochannels and nanopore
33 sequencing.^{9,10} For example, in linear DNA, where only pseudo knots are possible, the knot
34 diffusion time controls the rate of knot destruction and impacts the aforementioned genomic
35 methods. Thus, it is important to understand how knots diffuse along the DNA contour.
36 However, it is challenging to study DNA knot dynamics in free solution. It is both difficult to
37 produce large numbers of knots and then detect and track knot motion along randomly-coiled
38 single molecules in three dimensions. DNA knots can be efficiently generated using optical
39 tweezers or an extensional flow field instead,¹¹⁻¹⁶ and these methods effectively reduce the
40 knot tracking problem from a three-dimensional scenario to a quasi-one dimensional one.
41 However, such technologies require stretching the DNA molecules by applying an external
42 tension, which may confound the overall dynamics of knots when compared to the free solution
43 case.

44 Nanochannel confinement provides an alternate way to study the dynamics of knotted
45 DNA molecules.¹⁷⁻²⁰ Confinement has a unique advantage compared to optical tweezers or
46 extensional flow since it generates knots by compression, leading to relaxed knotted DNA
47 molecules that should be more similar to those formed in free polymers. Remarkably, even the

48 basic mechanism of knotted DNA in confinement remains a relatively open question. One
49 possible diffusion mechanism is self-reptation, where the polymer contour follows a snake-like
50 motion through the knot. Self-reptation is anticipated to be a subdiffusive process,^{21,22} owing
51 to the analogy with polymer translocation through a nanopore, and theory predicts that the
52 diffusion time for self-reptation of a knot scales with contour length L as $\tau_D \sim L^3$ in the limit
53 where the amount of polymer in the knot is a small fraction of the contour length.²³ Another
54 possible diffusion mechanism is knot region breathing. In this case, the knotted region within
55 the DNA molecule locally exchanges positions with its neighbors. Knot region breathing is
56 anticipated to produce regular diffusion, and the diffusion time of knot region breathing gives
57 a scaling $\tau_D \sim L^2$, again in the large L limit.²³

58 To distinguish between these two possible mechanisms, Ma and Dorfman examined the
59 diffusion of knots along relaxed DNA in nanochannels using a nanofluidic “knot factory”
60 technique¹⁸ to efficiently generate the knots in their experiments. The resulting measurement
61 of the knot mean-squared-displacements indicated that the knot diffusion mechanism is likely
62 to be self-reptation owing to the subdiffusive behavior.¹⁷ However, their experiments do not
63 constitute a direct test of the scaling theories for these two mechanisms. A more direct way to
64 distinguish between the two diffusion mechanisms is to measure knot diffusion as a function
65 of the degree of polymerization to identify the scaling exponent, or to directly compare the
66 self-diffusion time with existing theories.²³ While it is challenging to adopt this approach
67 experimentally due to the wide range of DNA molecular weights that are needed, it is relatively
68 straightforward to vary L in simulations. Yet, simulation and experimental works on
69 nanochannel-confined knots that have been performed mainly focus on establishing
70 equilibrium properties, such as the knot formation probability and knot complexity.^{18,24–30}
71 Little work has been done focusing on the dynamic aspects of knot diffusion in

72 confinement.^{31,32}

73 Here, we use molecular dynamics (MD) simulations of a coarse-grained polymer model to
74 study the diffusion mechanism and the dynamics of 3_1 trefoil knots in nanochannel-confined
75 DNA molecules. We track the knot size and knot position along the DNA molecule as a
76 function of time. Additionally, we examine the impact of chain contour length L on both the
77 mean knot size, as well as two dynamic properties, the knot mean square displacement (MSD)
78 and the average unknotting time. Notably, the knot size increases with increasing L and the
79 knot motion is subdiffusive when it is confined in a nanochannel. By comparing the diffusion
80 dynamics and scaling exponent obtained from simulation and theories,²³ the simulations reveal
81 that the knot diffusion is a combination of both self-reptation and knot region breathing
82 mechanisms.

83

84 **2. Methods**

85 2.1 Pair potential models

86 The pairwise interaction between beads is modeled by purely repulsive Weeks-
87 Chandler-Andersen (WCA) potential³³

$$88 U_{\text{WCA}} = \begin{cases} 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right] + \epsilon, & r \leq 2^{\frac{1}{6}}\sigma \\ 0, & r > 2^{\frac{1}{6}}\sigma \end{cases} \quad (1)$$

89 where $\epsilon = k_B T$. The bond interaction between adjacent beads is modeled by finite extensible
90 nonlinear elastic (FENE) potential³⁴

$$91 U_{\text{FENE}} = -0.5k_{\text{bond}}R_0^2 \ln \left[1 - \left(\frac{r_{ij}}{R_0} \right)^2 \right], \quad r_{ij} \leq R_0 \quad (2)$$

92 where the maximum bond length is $R_0 = 1.5\sigma$ and the bond stiffness is $k_{\text{bond}} = 30 k_B T$. Chain

93 stiffness is implemented by a bond angle potential

94
$$U_{\text{angle}} = 0.5\kappa(\theta_i - \pi)^2 \quad (3)$$

95 where the bending penalty $\kappa = 5 k_B T$ is obtained by mapping to the persistence length l_p of

96 DNA¹⁹ through the relation with $l_p = 60$ nm and the bead diameter $w = \sigma = 12$ nm,

97
$$\frac{l_p}{w} = \frac{\kappa}{\kappa - \kappa \coth(\kappa) + 1} \quad (4)$$

98 The polymer chain is confined in nanochannel along the y - and z -axis with a wall potential

99 described by WCA potential

100
$$U_{\text{wall}} = \begin{cases} 4\epsilon \left[\left(\frac{\sigma}{d_i} \right)^{12} - \left(\frac{\sigma}{d_i} \right)^6 \right] + \epsilon, & d_i \leq 2^{\frac{1}{6}}\sigma \\ 0, & d_i > 2^{\frac{1}{6}}\sigma \end{cases} \quad (5)$$

101 where d_i is the orthogonal distance between bead i and wall.

102 2.2 Initial configuration generation

103 The DNA molecule is modeled as a string of beads connected by the FENE bonds described

104 in section 2.1. To generate the initial configuration of the knotted DNA, the two parts of an

105 initial configuration were generated separately. The first part is the relaxed polymer chain. To

106 generate this part of the initial configuration, we used molecular dynamics (MD) simulations,

107 described in more detail in section 2.3, to equilibrate a DNA strand from an initially fully

108 stretched DNA state within the channel for a total 5×10^8 time steps for each different chain

109 contour length. About 1×10^8 time steps are required for DNA molecules to fully relax.

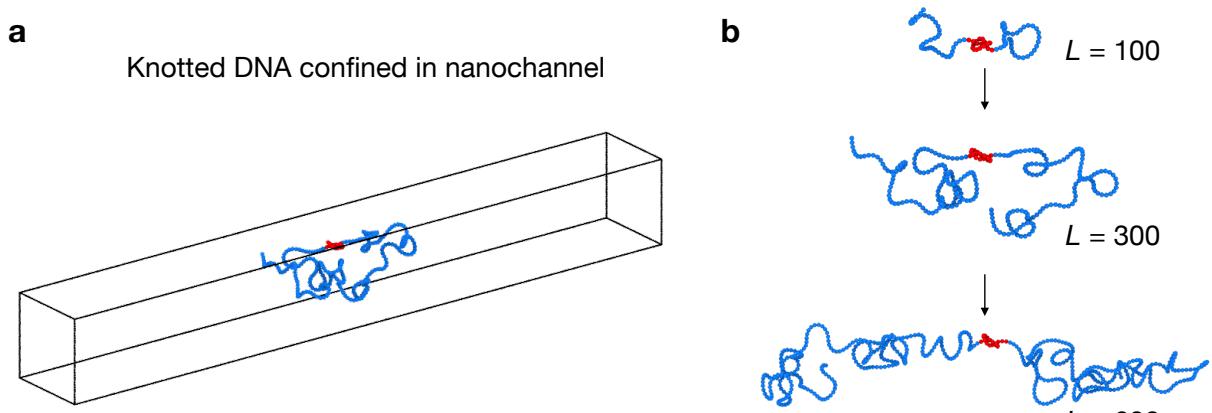
110 Uncorrelated configurations of DNA molecules were then selected from the remaining 4×10^8

111 time steps, with a sampling interval based on autocorrelation time (SI **Figure S1**). For the

112 longest chain $L = 600$, which shows slower correlation time, one additional parallel simulation

113 with a different random seed was performed to collect sufficient uncorrelated samples. The

114 second part of the initialization produces the relatively tight 3_1 trefoil knot configuration, which
 115 we set to contain 14 beads. The initial configuration of the trefoil knot was generated by
 116 Knotplot³⁵ with a bead diameter of σ . The 3_1 trefoil knot was then inserted into the middle of
 117 a relaxed DNA molecule sampled from the first protocol to generate one initial configuration;
 118 inserting this knot into each relaxed DNA sample generates an ensemble of initial conditions
 119 with different configurations of the unknotted portion of the DNA and identical knots. This
 120 procedure was used to generate initial conditions with the chain contour length $L = 100$ to 600
 121 in units of the equilibrium bond length. **Figure 1** shows three examples of initial configurations
 122 of trefoil knots in nanochannel-confined DNA molecules with different L . For each L , at least
 123 30 different initial configurations were generated. The topology of 3_1 knots was confirmed by
 124 calculating the Alexander polynomial³⁶ to avoid artifacts from bad initial configurations.



126 **Figure 1.** (a) Initial configurations of 3_1 trefoil knots in nanochannel-confined DNA molecules
 127 in the extended de Gennes regime. (b) Three knotted DNA molecules with different chain
 128 contour lengths by increasing the total number of beads $L = 100, 300$ and 600 . The trefoil knots
 129 identified by Kymoknot are highlighted as red while the unknotted polymer parts are colored
 130 blue.

131

132 2.3 Molecular dynamics simulations

133 To study the diffusion of DNA knots in confinement, molecular dynamics (MD)
 134 simulations were performed using LAMMPS³⁷ in the canonical ensemble (NVT) using a

135 Langevin thermostat with a damping coefficient $\tau = 2$. Note that the Langevin thermostat
136 models an implicit solvent, so there are no hydrodynamic interactions in this model. Relaxed
137 knotted DNA molecules were initially placed in the center of the simulation with a box size of
138 $L \times 25 \times 25$, where L is the chain contour length. The geometries of knotted DNA molecules
139 were subject to local energy minimization before being used for MD simulations. The periodic
140 boundary condition in x -dimension was applied while the wall potential on y - and z - dimensions
141 were applied to enforce confinement. The channel size $D = 25 \sigma$ is mapped to experiment from
142 Ma and Dorfman,^{17,19} corresponding to a channel size of 300 nm in the extended de Gennes
143 regime. Each simulation was conducted with total 1×10^8 time steps for production with step
144 size $\Delta t = 0.001 \tau_{\text{MD}}$, where $\tau_{\text{MD}} = \sigma(m/\varepsilon)^{1/2}$ is the Lennard-Jones (LJ) time based on the bead
145 mass m . The first 80% of the simulation data of the knot size versus the last 80% of simulation
146 data were compared to make sure no additional equilibrium time is required after local energy
147 minimization. Simulations were performed isothermally at reduced temperature $T^* = 1$. All
148 quantities are presented in LJ reduced units, and all particle beads have equal masses.
149 Simulation configurations were dumped every 1×10^4 time steps for further analysis.

150 2.4 Structural analysis

151 The knotted topology on DNA molecules was characterized by calculating the Alexander
152 polynomial of the knot using Kymoknot.³⁸ For linear chains, the knot topology can be
153 determined by bridging the two terminal ends of the DNA molecules. The knot topology from
154 a pseudo-closed ring, for which the topological state is well-defined, can thus be identified.
155 Several such closing techniques have been previously proposed.³⁸⁻⁴⁰ Here, we adopted a
156 bottom-up procedure that can identify the knot topology on a linear chain, where the knot is
157 searched starting from very short portions of the molecule and gradually considering longer
158 ones. The knot is localized until the subchain used for the knot calculation contains a physical

159 knot of the same type as the whole chain, and the remaining portions are physically unknotted.³⁸
160 The knot start and end bead indices can then be identified based on the bottom-up knot search
161 approach. The size of knotted DNA molecules was further quantified by the total number of
162 beads contained in the knot, N_{knot} , which was calculated as the difference between the identified
163 knot start and end bead indices.

164 2.5 Mean square displacement (MSD)

165 The locations of the edges of a knot were computed by using the Alexander polynomial
166 through the bottom-up approach discussed in Section 2.4. The center of mass of the DNA knot
167 was then calculated as

168
$$x_{\text{com}} = \frac{1}{M_{\text{knot}}} \sum_{i=1}^{N_{\text{knot}}} m x_i \quad (6)$$

169 where M_{knot} is the total mass of all beads contained within the knot and N_{knot} is the number of
170 beads contained within the knot. All beads that are contained in the knot have equal mass $m =$
171 1 and are located along the channel axis with coordinates x_i , $i = 1, \dots, n$.

172 The time evolution of the center of mass, x_{com} , was used to compute the ensemble-
173 averaged MSD

174
$$MSD(\delta t) = \langle [x_{\text{com}}(t) - x_{\text{com}}(t - \delta t)]^2 \rangle_{t,n} \quad (7)$$

175 where $\langle \dots \rangle_{t,n}$ denotes an average over all times t and the ensemble of n parallel simulation
176 trajectories, and δt is the time lag between the recorded simulation frames.

177 To analyze the diffusive behavior of knots, we computed the scaling exponent β of the
178 ensemble-averaged MSD by fitting the logarithm of the data with a linear function¹⁷

179
$$\log_{10} MSD(\delta t) = \beta \log_{10} \delta t + c \quad (8)$$

180 where β and c are both fitted constants. The choice of upper bound used for fitting was

181 determined by calculating the correlation coefficient, R^2 , of the linear fit with different choice
182 of upper bounds and a fixed lower bound at $\delta t = 10 \tau_{\text{MD}}$. The upper bound of time lag $50 \tau_{\text{MD}}$
183 was determined based on the highest R^2 value obtained from all fittings.

184 2.6 Unknotting time

185 The unknotting time τ_u can be directly obtained from simulation, which is defined as the
186 time when an initially knotted DNA molecule reaches an unknotted state for the first time.
187 Since the unknotted chain can reform a knot through diffusion of the chain end, an unknotted
188 state is defined as the absence of a knotted configuration from 10 continuous recorded
189 simulation frames, i.e., over 10^5 time steps. To obtain insights into the knot diffusion
190 mechanism, we computed the scaling exponent β of the ensemble-averaged τ_u by fitting the
191 logarithm of the data with a linear function

192
$$\log_{10} \tau_u = \beta \log_{10} L_c + c \quad (9)$$

193 where β and c are both fitted constants.

194 Diffusion time models were proposed for both self-reptation and knot region breathing
195 mechanisms by Metzler et al.²³ in the limit where the knot comprises a small part of the overall
196 chain contour length. This theory will be compared with the results obtained from our MD
197 simulations, so it is useful to review the key results here. The diffusivity for knot region
198 breathing can be characterized by $D_{\text{KRB}} \simeq \alpha k_{\text{B}} T / \Delta$, where Δ is the length of the knot and α is
199 the inverse of the bead friction, which can be obtained from a free polymer simulation. The
200 knot diffusion time based on its initial location inside the chain (x_L) to one of the ends is given
201 by²³

202
$$\tau(x_L) = \int_0^{x_L} \frac{\frac{L_{\text{red}} - x'}{2}}{D(x')} dx' \quad (10)$$

203 where $L_{\text{red}} = L - \Delta$ is the reduced length of the two linear segments of the chain, L is the chain
 204 length and Δ is the knot length. To approximate the knot length, we used total number of beads
 205 contained in the knot, N_{knot} , which can be obtained from the simulation directly. The diffusion
 206 time for knot region breathing is given by²³

$$207 \quad \tau_{\text{KRB}}(x_L) = \frac{\Delta L_{\text{red}}^2}{2\alpha k_B T} \left[\left(\frac{x_L}{L_{\text{red}}} \right) - \left(\frac{x_L}{L_{\text{red}}} \right)^2 \right] \quad (11)$$

208 In the self-reptation mechanism, the diffusivity is characterized by²³

$$209 \quad D_{\text{SR}} \simeq \frac{\alpha k_B T (L + \Delta)}{(x_L + \Delta)(L - x_L)} \quad (12)$$

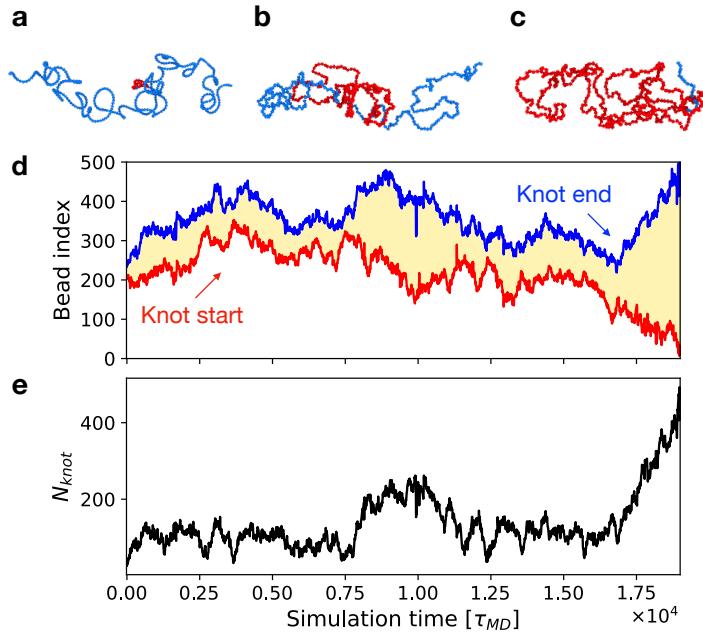
210 From Eq. (10), the diffusion time of self-reptation is given by²³

$$211 \quad \tau_{\text{SR}}(x_L) = \frac{1}{12\alpha k_B T (L + \Delta)} \left[x_L \{ 3LL_{\text{red}} - 4Lx_L - 2L_{\text{red}}x_L + 3x_L^2 \right. \\ 212 \quad \left. + \Delta(6L[L_{\text{red}} - x_L] + x_L[4x_L - 3L_{\text{red}}]) \} \right] \quad (13)$$

213 Note there was a typo “ $3x_L^3$ ” in Eq. (6) in Ref. 23, which has been corrected in our Eq. (13).

214

215 **3. Results**



216

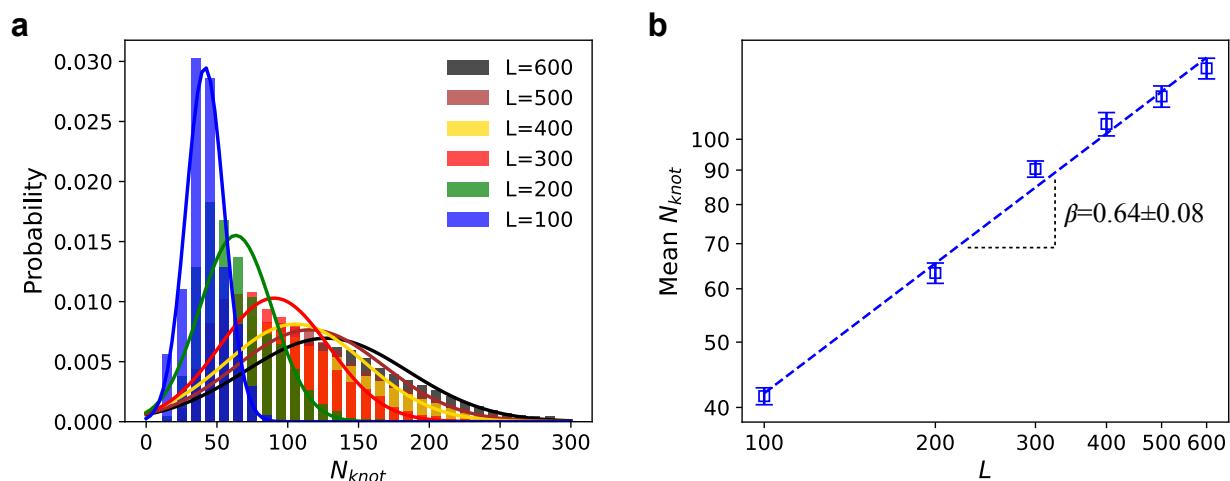
217 Figure 2. Snapshots for $L = 500$ at simulation time τ_{MD} of (a) 0, (b) 9.8×10^6 and (c) 1.9×10^7 .
218 The knotted region identified by Kymoknot is colored red while the unknotted polymer part is
219 colored blue. (d) The start (red line) and end (blue line) of the bead indices contained in a 3_1
220 trefoil knot along DNA chain for the trajectory used to generate the snapshots in panels (a,b,c).
221 (e) The number of beads in the knot, N_{knot} , as a function of simulation time calculated from (d).

222

223 To elucidate the dynamics of spontaneous knot untying of linear DNA molecules in
224 confinement, we monitored both the knot position and the knot size, characterized by the
225 number of beads in the knot, N_{knot} , during the simulations. **Figure 2** shows the swelling of a
226 trefoil knot as a function of time. The trefoil knot diffuses away from its original central
227 position, fluctuating along the entire DNA molecule. During the simulation, the initially tight
228 knot continues growing and fluctuating in size as it moves towards the end of the DNA. The
229 knot is destroyed upon reaching the terminus of the DNA molecule. The phenomenology in
230 **Figure 2** was observed across many simulations with this parameter set; corresponding results
231 for different initial configurations are provided in SI **Figures S2 and S3**. In general, we found
232 that knots open up, although the value of N_{knot} fluctuates between different simulations.
233 Notably, we also found that the maximum N_{knot} is restricted by the total size of the chain and
234 below the trivial limit of $N_{knot} = L$. As shown in **Figure S4**, N_{knot} reaches a maximum size of

235 around 150 at $L = 300$. Instead, at $L = 500$ (**Figure 2**), N_{knot} can reach a maximum of around
 236 400. These observations suggest that the knot untying follows an “opening up process”, and
 237 the fraction of the chain that participates in the opening up process is related to L .

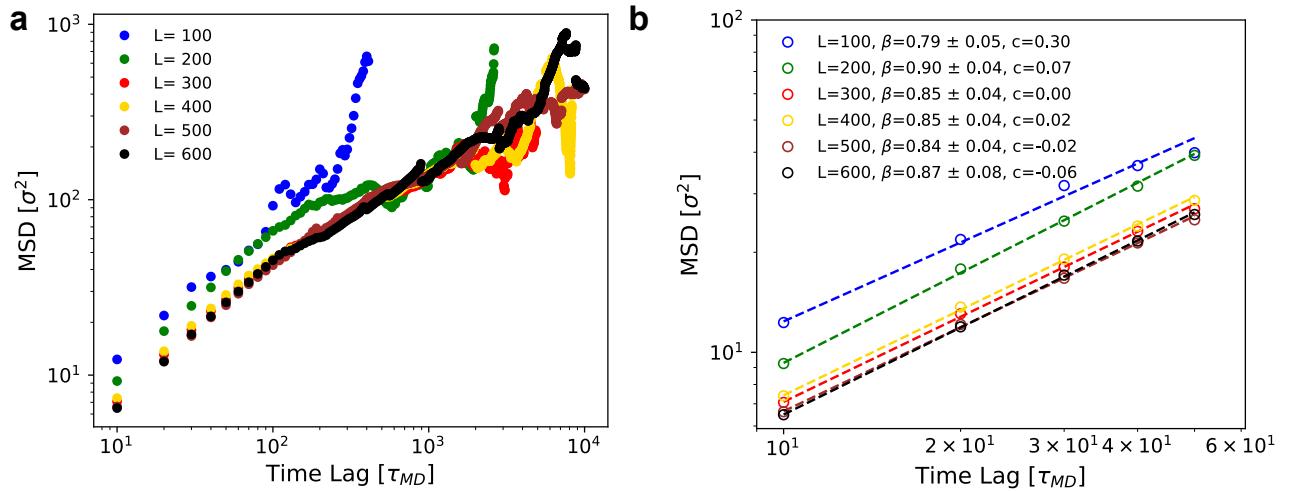
238 This knot opening up process agrees qualitatively with previous single-molecule
 239 experiments,¹⁶ wherein knot swelling was reported in linearly extended DNA molecules during
 240 relaxation, although the actual knot topology in experiments may be more complicated than
 241 the simple 3_1 trefoil knot studied here. The behavior in **Figure 2** also agrees with Monte Carlo
 242 simulations of long flexible linear polymers, suggesting a growth of average knot length on the
 243 total chain length.⁴¹



244
 245 Figure 3. (a) Histogram of N_{knot} as a function of chain contour length L . (b) Mean N_{knot} as a
 246 function of L . The intercept c from fitting to a power law is 0.34. The error is estimated using
 247 a 95% confidence interval.

248
 249 To elucidate the mechanism behind knot untying, it proves useful to quantify the knot size
 250 with respect to L . **Figure 3** shows the number of beads contained within the knot, N_{knot} , with
 251 respect to L . Since the unknotting dynamic is not an equilibrium process, N_{knot} is collected from
 252 the start of the simulation until the knot is fully untangled in all parallel simulations. The
 253 probability distributions of $N_{\text{knot}}(L)$ in **Figure 3a** can be well-fitted to a normal Gaussian

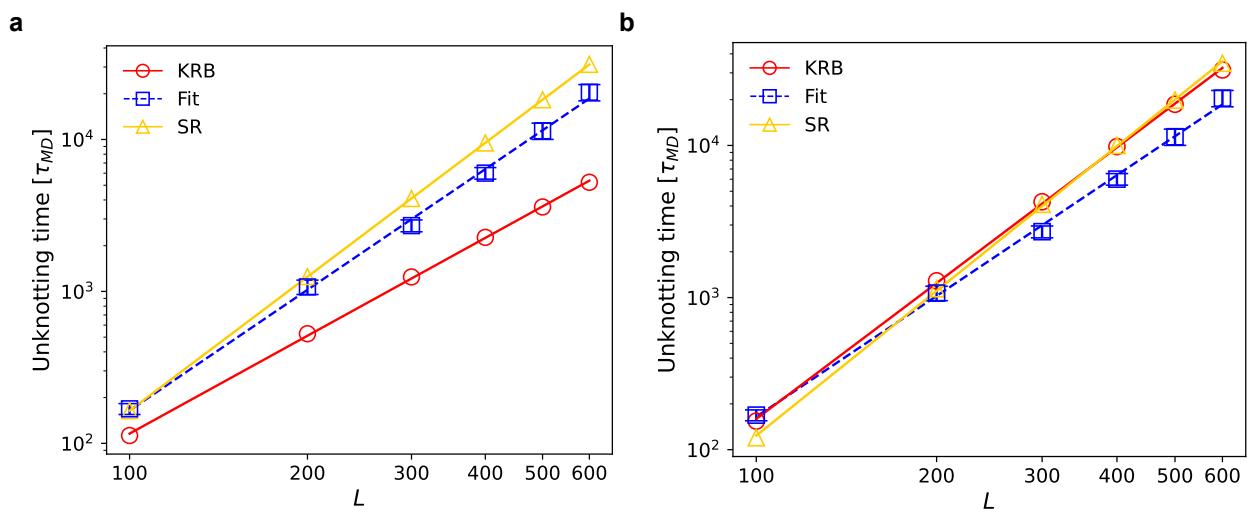
254 distribution. Aside from this phenomenological observation, two insights into the dependence
 255 of N_{knot} on L emerge by examining the probability distribution. First, the length-dependent
 256 increase in N_{knot} is clearly illustrated by the location of the peaks of the distributions. Secondly,
 257 the spread of the probability distribution also increases linearly with increasing N_{knot} , indicating
 258 the distributions are self-similar as shown in **Figure S5**. The sizable number of knot
 259 configurations during a simulation allows us to further compute the mean value and the
 260 statistical error of observables. **Figure 3b** shows the log-log plot of the calculated mean N_{knot} ,
 261 where the true statistical error on the correlated data was computed from the block averaging
 262 method.⁴² The length-dependent increase of N_{knot} fits a power law with exponent $\beta = 0.64 \pm$
 263 0.08, where error refers to a 95% confidence interval from the linear regression.



264
 265 Figure 4. (a) Ensemble-averaged mean square displacements as a function of time lag for
 266 different L . The time-averaged MSDs for calculating ensemble-averaged MSD from each
 267 trajectory is provided in **Figure S6**. (b) Linear fit to the logarithm of ensemble-averaged MSD
 268 and time lag window between 10 to 50 τ_{MD} . The choice of time lag window is discussed in
 269 Section 2.5.

270
 271 The evolution of the center-of-mass of knots in time further allows us to calculate the knot
 272 mean-square displacement. **Figure 4** shows the ensemble-averaged MSD as a function of time
 273 lag for different chain contour lengths. The knot diffusive behavior is further quantified by

274 fitting the logarithm of ensemble-averaged MSD and the time lag window between 10^4 to
 275 5×10^4 , which avoids the localization error (at short time lags) and the sampling error (at long
 276 time lags). The range of scaling exponent extracted from fitting in **Figure 4** is [0.79,0.90]
 277 despite the difference in L . Notably, there is no apparent correlation between the scaling
 278 exponent and chain contour length. One possible reason for not seeing correlation between the
 279 scaling exponent and L can be large statistical uncertainty due to the small dataset of knotted
 280 state. In any event, all calculated scaling exponents indicate subdiffusive motion of knots along
 281 DNA molecules confined in nanochannel at short times.



282
 283 Figure 5. (a,b) Mean unknotting time (blue squares) obtained from the MD simulations and
 284 theories for knot region breathing (red circles) and self-reptation (gold triangles) as a function
 285 of L using (a) $N_{knot} = 14$ and (b) $N_{knot} = 2.19L^{0.64}$. The blue dashed line is the best fit to the
 286 logarithm of the mean unknotting time and chain contour length obtained from the MD
 287 simulations. The red and gold lines are the unknotting time predicted from the knot region
 288 breathing model and the self-reptation model, respectively.²³ (a) Using $N_{knot} = 14$, the slope
 289 and intercept predicted from the knot region breathing model are 2.14 and -2.22, respectively,
 290 while the slope and intercept predicted from the self-reptation model are 2.93 and -3.64,
 291 respectively. (b) Using $N_{knot} = 2.19L^{0.64}$, the slope and intercept predicted from the knot region
 292 breathing model are 2.96 and -3.73, respectively, while the slope and intercept predicted from
 293 the self-reptation model are 3.16 and -4.23, respectively. The error bars are the standard error
 294 of the mean.

295
 296 The mean time required to spontaneously untie the trefoil knot is shown as blue squares in
 297 **Figure 5**. The mean unknotting time grows appreciably with L . These values can be well-fitted

298 to a power law with an exponent of 2.64 ± 0.23 , where the error refers to a 95% confidence
299 interval from the linear regression. Similar observations have been reported for knots on
300 tension-free, open linear chains, where knots exhibit larger size and survival time for longer
301 chains despite the difference in model and simulation setup.⁴³ The magnitude of unknotting
302 time also agrees with the reported Brownian simulations of semiflexible open chains confined
303 in nanochannel (see supplementary material).⁴⁴

304 The scaling exponent can be further compared with the existing theories proposed by
305 Meltzer et al., namely the self-reptation (SR) and knot region breathing (KRB) mechanisms.²³
306 However, this comparison is not as straightforward as one might initially expect, since the
307 theory assumes that the knot is small compared to the total length of the chain, but **Figure 3**
308 shows that the knots are a significant fraction of their total chain contour and can grow
309 significantly (e.g., **Figure 2**), especially towards the end of the untying process.

310 Let us first consider the naïve case where we assume that $\Delta = N_{\text{knot}}$ is small compared to L
311 by fixing the knot size to that of the initial tight trefoil knot, $N_{\text{knot}} = 14$. **Figure 5a** compares
312 the predictions of Eqs. (11) and (13) using $N_{\text{knot}} = 14$ to the simulation data. The apparent
313 scaling exponents from fitting the theory predictions over this limited range in L are 2.93 for
314 SR and 2.14 for KRB. For this choice of a small N_{knot} , the quantitative agreement between the
315 prediction of SR in Eq. (13) and the simulation is very good; this agreement is possible despite
316 the disagreement in scaling exponents because our simulations span less than one decade in L .
317 If we instead probe out to very large L for the theory (**Figure S7**), the simulation data are
318 approaching the predictions of the self-reptation model, suggesting that the difference in slope
319 would be rectified for sufficiently large L . Hence, if we take as an assumption that $N_{\text{knot}} \ll L$,
320 the simulations support the self-reptation model.

321 However, the quantitative agreement between the simulation data and self-reptation in

322 **Figure 5a**, as well as the disagreement with knot region breathing, is an artifact of assuming a
323 small knot. In the MD simulations, we found that the knot size is not much smaller than the
324 total contour length, as suggested by the theory of Meltzer et al., but rather is a significant
325 fraction of the total chain length (**Figure 3a**). Thus, we repeated the analysis of Melzer et al.,
326 replacing $N_{\text{knot}} = 14$ with the empirical results $N_{\text{knot}} = 2.19L^{0.64}$ regressed from **Figure 3b**. As
327 shown in **Figure 5b**, the apparent diffusion time now scales as 3.16 for the self-reptation and
328 2.96 for the knot region breathing mechanism respectively. When taking into account that
329 N_{knot}/L is not small (*i.e.*, sensible N_{knot}/L limit), it is no longer possible to distinguish between
330 the different diffusion mechanisms and the simulation data; for the sensible N_{knot}/L limit, the
331 scaling exponent 2.64 ± 0.23 extracted from the simulation does not agree perfectly well with
332 the prediction either from KRB or SR theory. When taking in conjunction with our
333 observations of the knot dynamics, the results suggest that knot diffusion is a combination of
334 both mechanisms.

335

336 **4. Discussion**

337 The most straightforward method to characterize the unknotting mechanism is to analyze
338 the nature of the diffusion itself. Anomalous subdiffusive dynamics are considered in many
339 publications to be an indicator for the self-reptation mechanism, while the regular diffusive
340 behavior is suggested for knot region breathing in the large L limit.²³ A previous study by Klotz
341 et al. noted the anomalous diffusive behavior of knots in DNA molecules under an elongational
342 field in microfluidic devices, where the knot motion is mediated by self-reptation.¹⁵
343 Additionally, computational work by Matthews et al. reported a subdiffusive motion of knots
344 along stretched polymers at short times, again illustrating that the knots diffuse through a
345 mechanism similar to reptation.⁴⁵ In addition to these studies of the dynamics of knots under

346 external tensions, Ma and Dorfman¹⁷ observed the subdiffusive motion of knots under
347 nanochannel confinement, which again suggested a self-reptation mechanism. Our MSD
348 results for different values of L (**Figure 4b**) clearly demonstrate that the knot motion is
349 anomalous, with subdiffusive scaling exponents at short times under nanochannel confinement,
350 consistent with all of the aforementioned studies.^{15,17,23,45} However, our analysis suggests that
351 even if the knot MSD shows a subdiffusive scaling, that does not imply strictly self-reptation
352 behavior for the reasons noted in the discussion of **Figure 5**. This result suggests caution when
353 inferring the knot diffusion mechanism solely from the MSD data.

354 There are several salient features of the knot dynamics that appear to arise due to
355 confinement, in contrast to the previous literature on stretched polymers where the knots
356 exhibit self-reptation along the entire molecule.^{15,45} When the polymer is stretched, the knot
357 remains localized and tight during its motion, only losing its tightness when it is destroyed
358 when it diffuses to the end of molecule.^{46,47} Furthermore, knots on tense chains can remain
359 jammed with a fairly constant and tight knot size in a relatively long time period, and the knot
360 diffusivity decreases exponentially with increasing tension.⁴⁷ Several qualitative differences
361 were observed in knot dynamics between knots that are under tension and those under
362 confinement. Firstly, in our MD simulations, we observed that the knot size fluctuates
363 substantially during the entire process. Secondly, the knot sizes and knot positions change
364 simultaneously and fluctuate frequently along the DNA molecules. As depicted in **Figure 2**
365 and SI **Figures S2-4**, we found no sign of a jammed state in our simulations, i.e., where the
366 knot remained stagnant with a relatively constant size over time. Finally, the knots follow an
367 opening-up processes, with knots typically growing in size via power laws that depend on L at
368 the short chain length limit between $L = 100$ to 600 . There are thus several qualitative signatures
369 that distinguish diffusion of confined knots and knots on stretched chains.

370 The direct observation of knot dynamics and comparison of the scaling exponent of knot
371 diffusion time vs L with the existing theories²³ illustrates that both SR and KRB mechanisms
372 contribute to knot diffusion at the sensible N_{knot}/L limit for nanochannel confinement. The
373 significant difference in the prediction of apparent scaling exponents in the KRB at different
374 N_{knot}/L limit also indicate that the knot size plays an important role in governing the diffusion
375 time. Both mechanisms appear to be active on our simulations, and the results do not
376 correspond directly to the limiting cases in the theory of Meltzer et al.²³ When the chain
377 becomes longer (or confinement becomes stronger), the knot size should become increasingly
378 small when compared to the total chain length, and it would be interesting to see if the results
379 indeed approach the predictions of Meltzer et al.²³ However, longer chains and increased
380 confinement may impact the geometry and size of the knot differently, leading to different
381 scaling exponents and diffusion times. This is a promising direction for future work to develop
382 a complete understanding of the diffusion of knots along DNA molecules.

383

384 **5. Conclusions**

385 In the present contribution, we explored the diffusion mechanism of trefoil knots with different
386 chain contour lengths in confined systems using coarse-grained molecular dynamics
387 simulations. The knot was observed to swell and continuously fluctuate in size during the
388 simulation, in contrast to the self-reptation behavior that is reported for tight knots diffusing on
389 stretched polymers. We observed subdiffusive motion of the knot, in agreement with the
390 anomalous subdiffusive dynamics for the self-reptation mechanism. However, our
391 observations of the knot structure indicate that, even if the knot MSD shows subdiffusive
392 scaling, this does not strictly imply self-reptation behavior. Rather, the knot diffusion is a
393 combination of both self-reptation and knot region breathing.

394

395 **Supplementary Material**

396 Supplementary information is available in the online version of the paper. Autocorrelation
397 function of radius of gyration for different chain contour length L ; Additional quantification
398 of knotted DNA trajectories at $L=300,500$; The standard deviation in N_{knot} as a function of
399 N_{knot} ; details for calculating ensemble-averaged MSD from time-averaged MSD; Additional
400 prediction of unknotting time vs. L .

401

402 **Acknowledgements**

403 This work was supported by National Science Foundation through award CBET-2016879.
404 Computational resources were provided by the Minnesota Supercomputing Institute.

405

406 **Author Declarations**

407 **Conflicts of interest**

408 The authors have no conflicts to disclose.

409

410 **Author Contributions**

411 **Runfang Mao:** Data curation (lead); Investigation (lead); Methodology (lead); Formal analysis
412 (equal); Software (lead); Validation (equal); Visualization (lead); Writing – original draft
413 (lead). **Kevin D. Dorfman:** Conceptualization (lead); Formal analysis (equal); Validation
414 (equal); Funding acquisition (lead); Project administration (lead); Resources (lead);

415 Supervision (lead); Writing – review & editing (lead).

416

417 **Data Availability**

418 The data that support the findings of this study are available from the corresponding author
419 upon reasonable request.

420

421

422 **References**

423 ¹ D. Meluzzi, D.E. Smith, and G. Arya, *Annu. Rev. Biophys.* **39**, 349 (2010).

424 ² L.F. Liu, L. Perkocha, R. Calendar, and J.C. Wang, *Proc. Natl. Acad. Sci.* **78**, 5498 (1981).

425 ³ W.R. Taylor and K. Lin, *Nature* **421**, 25 (2003).

426 ⁴ E. Orlandini, *J. Phys. A Math. Theor.* **51**, 53001 (2017).

427 ⁵ D. O'Donnol, A. Stasiak, and D. Buck, *Nucleic Acids Res.* **46**, 9181 (2018).

428 ⁶ L. Olavarrieta, M.L. Martínez-Robles, P. Hernandez, D.B. Krimer, and J.B. Schwartzman,
429 *Mol. Microbiol.* **46**, 699 (2002).

430 ⁷ S.H. Chen, N.-L. Chan, and T. Hsieh, *Annu. Rev. Biochem.* **82**, 139 (2013).

431 ⁸ K. Hevener, T.A. Verstak, K.E. Lutat, D.L. Riggsbee, and J.W. Mooney, *Acta Pharm. Sin. B* **8**, 844 (2018).

433 ⁹ E.T. Lam, A. Hastie, C. Lin, D. Ehrlich, S.K. Das, M.D. Austin, P. Deshpande, H. Cao, N. Nagarajan, M. Xiao, and others, *Nat. Biotechnol.* **30**, 771 (2012).

435 ¹⁰ M. Jain, H.E. Olsen, B. Paten, and M. Akeson, *Genome Biol.* **17**, 1 (2016).

436 ¹¹ X.R. Bao, H.J. Lee, and S.R. Quake, *Phys. Rev. Lett.* **91**, 265506 (2003).

437 ¹² B.W. Soh, A.R. Klotz, and P.S. Doyle, *Macromolecules* **51**, 9562 (2018).

438 ¹³ B.W. Soh, V. Narsimhan, A.R. Klotz, and P.S. Doyle, *Soft Matter* **14**, 1689 (2018).

439 ¹⁴ V. Narsimhan, A.R. Klotz, and P.S. Doyle, *ACS Macro Lett.* **6**, 1285 (2017).

440 ¹⁵ A.R. Klotz, B.W. Soh, and P.S. Doyle, *Phys. Rev. Lett.* **120**, 188003 (2018).

441 ¹⁶ A.R. Klotz, V. Narsimhan, B.W. Soh, and P.S. Doyle, *Macromolecules* **50**, 4074 (2017).

442 ¹⁷ Z. Ma and K.D. Dorfman, *Macromolecules* **53**, 6461 (2020).

443 ¹⁸ S. Amin, A. Khorshid, L. Zeng, P. Zimny, and W. Reisner, *Nat. Commun.* **9**, 1 (2018).

444 ¹⁹ Z. Ma and K.D. Dorfman, *J. Chem. Phys.* **155**, 154901 (2021).

445 ²⁰ Z. Ma and K.D. Dorfman, *Macromolecules* **54**, 4211 (2021).

446 ²¹ P.G. Dommersnes, Y. Kantor, and M. Kardar, *Phys. Rev. E* **66**, 31802 (2002).

447 ²² A.Y. Grosberg and Y. Rabin, *Phys. Rev. Lett.* **99**, 217801 (2007).

448 ²³ R. Metzler, W. Reisner, R. Riehn, R. Austin, J.O. Tegenfeldt, and I.M. Sokolov, *EPL* **76**, 696 (2006).

450 ²⁴ L. Dai and P.S. Doyle, *Macromolecules* **51**, 6327 (2018).

451 ²⁵ L. Dai, J.R.C. van der Maarel, and P.S. Doyle, *ACS Macro Lett.* **1**, 732 (2012).

452 ²⁶ C. Micheletti and E. Orlandini, *Macromolecules* **45**, 2113 (2012).

453 ²⁷ A. Jain and K.D. Dorfman, *Biomicrofluidics* **11**, 24117 (2017).

454 ²⁸ C. Micheletti and E. Orlandini, *Soft Matter* **8**, 10959 (2012).

455 ²⁹ E. Orlandini and C. Micheletti, *J. Biol. Phys.* **39**, 267 (2013).

456 ³⁰ C. Plesa, D. Verschueren, S. Pud, J. Van Der Torre, J.W. Ruitenberg, M.J. Witteveen, M.P.

457 Jonsson, A.Y. Grosberg, Y. Rabin, and C. Dekker, *Nat. Nanotechnol.* **11**, 1093 (2016).

458 ³¹ A. Suma, E. Orlandini, and C. Micheletti, in *APS March Meet. Abstr.* (2017), pp. M1--262.

459 ³² A. Suma, E. Orlandini, and C. Micheletti, *J. Phys. Condens. Matter* **27**, 354102 (2015).

460 ³³ J.D. Weeks, D. Chandler, and H.C. Andersen, *J. Chem. Phys.* (1971).

461 ³⁴ G.S. Grest and K. Kremer, *Phys. Rev. A* **33**, 3628 (1986).

462 ³⁵ R. Scharein, *Progr. Draw. Vis. Manip. Energy Minimizing Knots*. See [Http://Www.
Knotplot. Com](http://www.knotplot.com) (1998).

464 ³⁶ J.W. Alexander, *Trans. Am. Math. Soc.* **30**, 275 (1928).

465 ³⁷ A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier,
466 P.J. in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J.
467 Tranchida, C. Trott, and S.J. Plimpton, *Comp. Phys. Comm.* **271**, 108171 (2022).

468 ³⁸ L. Tubiana, G. Polles, E. Orlandini, and C. Micheletti, *Eur. Phys. J. E* **41**, 1 (2018).

469 ³⁹ L. Tubiana, E. Orlandini, and C. Micheletti, *Prog. Theor. Phys. Suppl.* **191**, 192 (2011).

470 ⁴⁰ L. Tubiana, E. Orlandini, and C. Micheletti, *Phys. Rev. Lett.* **107**, 188302 (2011).

471 ⁴¹ L. Tubiana, A. Rosa, F. Fragiacomo, and C. Micheletti, *Macromolecules* **46**, 3669 (2013).

472 ⁴² H. Flyvbjerg and H.G. Petersen, *J. Chem. Phys.* **91**, 461 (1989).

473 ⁴³ M. Caraglio, F. Baldovin, B. Marcone, E. Orlandini, and A.L. Stella, *ACS Macro Lett.* **8**,
474 576 (2019).

475 ⁴⁴ C. Micheletti and E. Orlandini, *ACS Macro Lett.* **3**, 876 (2014).

476 ⁴⁵ R. Matthews, A.A. Louis, and J.M. Yeomans, *EPL* **89**, 20001 (2010).

477 ⁴⁶ L. Huang and D.E. Makarov, *J. Phys. Chem. A* **111**, 10338 (2007).

478 ⁴⁷ V. Narsimhan, C.B. Renner, and P.S. Doyle, ACS Macro Lett. **5**, 123 (2016).

479

Supplementary Information for “Diffusion of knots in nanochannel-confined DNA molecules”

Runfang Mao and Kevin D. Dorfman

Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States

1. Supplementary Figures

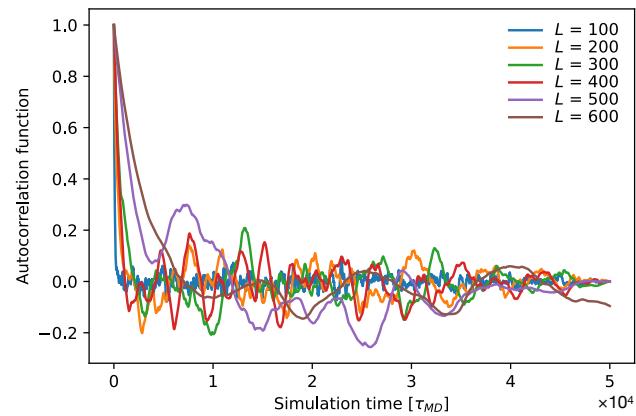


Figure S1. Autocorrelation function of radius of gyration for different chain length L . The autocorrelation time is 1×10^3 , 1×10^3 , 2×10^3 , 5×10^3 , 1×10^4 , 2×10^4 τ_{MD} for $L = 100$, 200, 300, 400, 500 and 600, respectively.

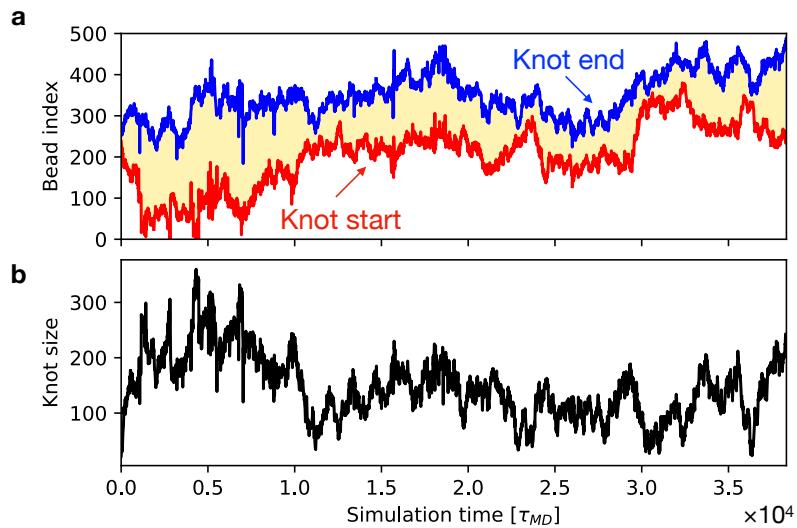


Figure S2. (a) The start (red line) and end (blue line) position of 3_1 trefoil knot along DNA chain in a MD simulation with different initial configuration at $L = 500$. (b) Knot size (i.e., the number of beads in the trefoil 3_1 knot core) as a function of simulation time calculated from upper panel.

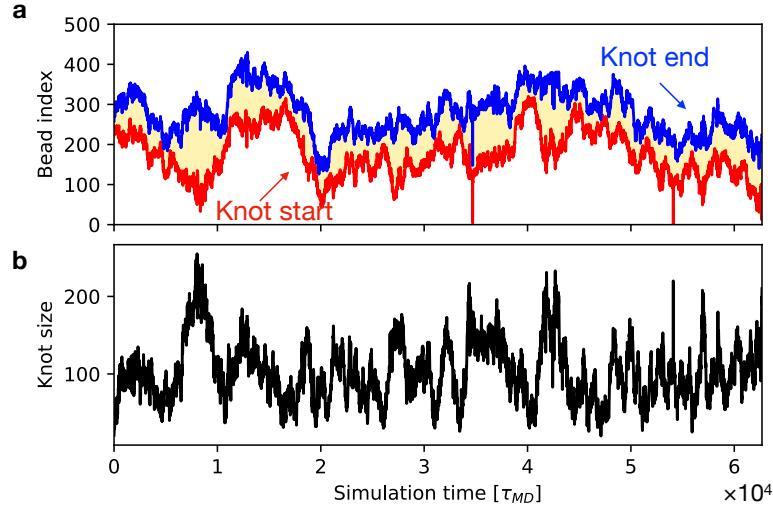


Figure S3. (a) The start (red line) and end (blue line) position of 3_1 trefoil knot along DNA chain in a MD simulation with different initial configuration at $L = 500$. (b) Knot size (i.e., the number of beads in the trefoil 3_1 knot core) as a function of simulation time calculated from upper panel.

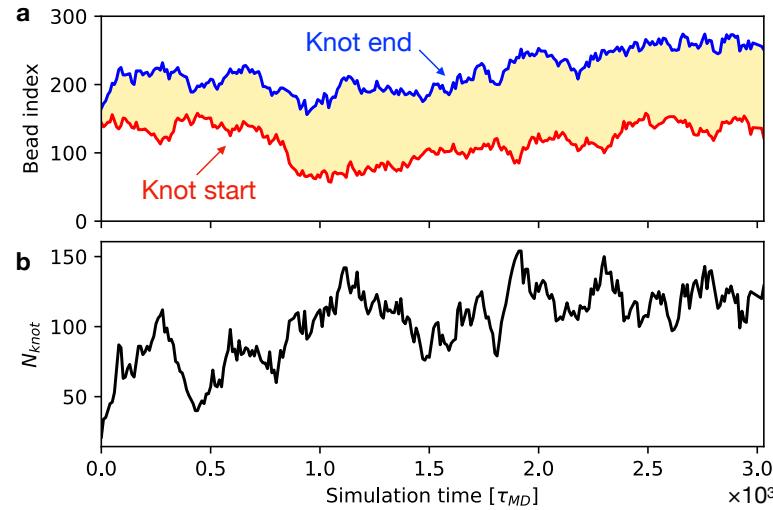


Figure S4. (a) The start (red line) and end (blue line) position of 3_1 trefoil knot along DNA chain in a MD simulation with total bead number $L = 300$. (b) The total bead number contained in the knot N_{knot} as a function of simulation time calculated from upper panel.

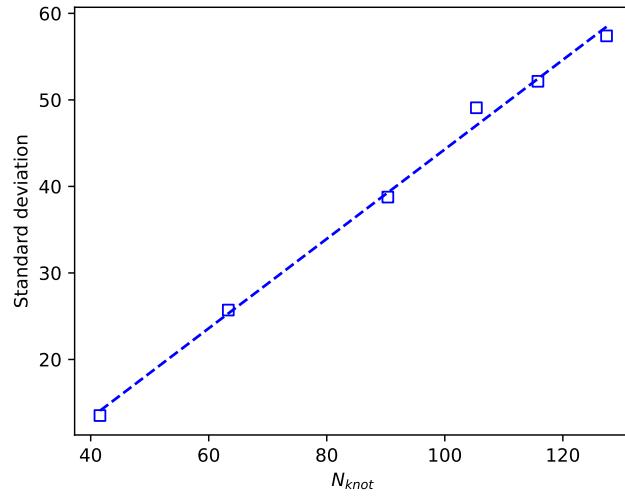


Figure S5. The standard deviation in N_{knot} as a function of N_{knot} .

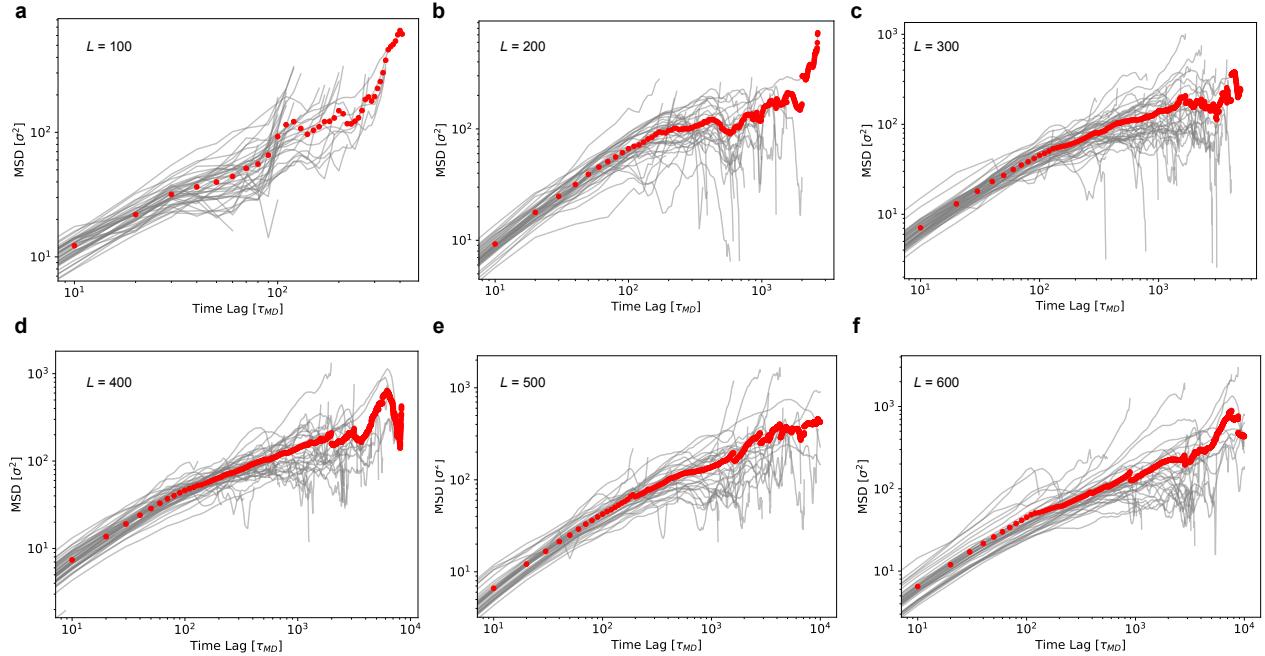


Figure S6. (a-f) The time-averaged MSDs (gray) for calculating ensemble-averaged MSD (red) from all simulation trajectories at $L = 100, 200, 300, 400, 500$, and 600 , respectively.

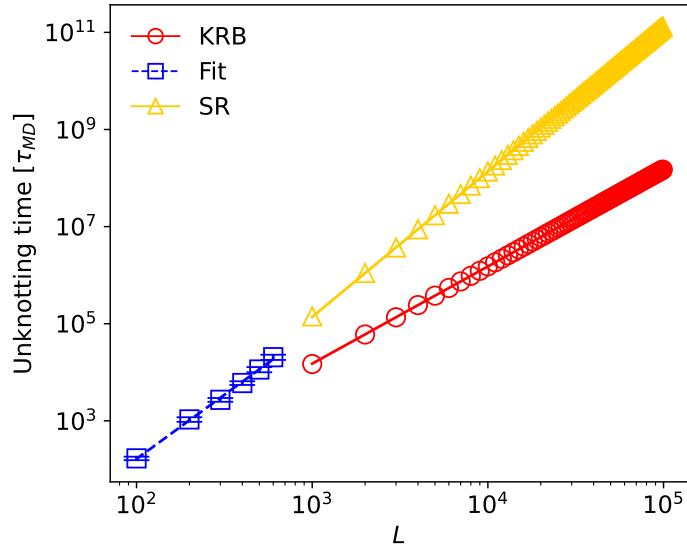


Figure S7. Unknotting time vs. L for varied chain length $L = 1000$ to 100000 with knot size $\Delta = 14$. The predicted unknotting time for the knot region breathing (KRB) and the self-reptation (SR) is $\tau_{\text{KRB}} = 10^{-1.83}L^{2.0}$ and $\tau_{\text{SR}} = 10^{-3.85}L^{3.0}$.

2. Supplementary text

S1. Comparison of unknotting dynamics

As mentioned in the main text, we compared the unknotting dynamics with the reported knotting-unknotting dynamics of linear chain in nanochannel confinement.¹ In the compared reference paper, the chain contour length was reported as $L_c = 3.6 \mu\text{m}$, which corresponds to $L = 300$ with a bead diameter of $\sigma = 12 \text{ nm}$ in our simulation. Using the same assumption with Ref. 1, the characteristic simulation time $\tau_{\text{MD}} = \sigma(m/k_{\text{B}}T)^{1/2} = 6\pi\eta_{\text{sol}}\sigma^3/\epsilon = 6\pi\eta_{\text{sol}}\sigma^3/(k_{\text{B}}T)$, where $\eta_{\text{sol}} = 1 \text{ cP}$ is the nominal water viscosity. At $T = 300 \text{ K}$ and $\sigma = 12 \text{ nm}$, we obtained $\tau_{\text{MD}} = 8223 \text{ ns}$. Thus, the unknotting time in our simulation is about $3 \times 10^3 \tau_{\text{MD}} = 24 \text{ ms}$ at $L = 300$ as shown in Figure 5. The reported value of the mean knot duration is around 5 ms for a similar channel size at $D = 300 \text{ nm}$ in Ref. 1. Considering the differences in the model and simulation setup, we can conclude that the unknotting time reported in our simulation is within the same order of magnitude compared to the results in Ref. 1.

References:

[1] Micheletti, C, and E Orlandini, ACS Macro Lett. **9**, 876 (2014).