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6  Abstract
7 We used Langevin dynamics simulations without hydrodynamic interactions to probe
8 knot diffusion mechanisms and the time scales governing the evolution and the
9 spontaneous untying of trefoil knots in nanochannel-confined DNA molecules in the
10 extended de Gennes regime. Knot untying follows an “opening up process”, wherein the
11 initially tight knot continues growing and fluctuating in size as it moves towards the end
12 of the DNA molecule before its annihilation at the chain end. The mean knot size increases
13 significantly and sub-linearly with the increasing chain contour length. The knot diffusion
14 in nanochannel-confined DNA molecules is subdiffusive, with the unknotting time scaling
15 with chain contour length with an exponent of 2.64 + 0.23 to within 95% confidence
16 interval. The scaling exponent for the mean unknotting time versus chain contour length,
17 along with visual inspection of the knot conformations, suggests that the knot diffusion
18 mechanism is a combination of self-reptation and knot region breathing for the simulated
19 parameters.
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1. Introduction

Knotting of DNA is a fundamental phenomenon, playing a key role in topological problems,
polymer physics and biology.!™* For instance, the dynamics of knots within crowded

6 cell survival’” and cellular

environments in vivo is important for DNA replication,>
malfunction.® The presence of DNA knots also has a deleterious effect on the accuracy of
genomics technologies, such as genome mapping in nanochannels and nanopore
sequencing.”!? For example, in linear DNA, where only pseudo knots are possible, the knot
diffusion time controls the rate of knot destruction and impacts the aforementioned genomic
methods. Thus, it is important to understand how knots diffuse along the DNA contour.
However, it is challenging to study DNA knot dynamics in free solution. It is both difficult to
produce large numbers of knots and then detect and track knot motion along randomly-coiled
single molecules in three dimensions. DNA knots can be efficiently generated using optical
tweezers or an extensional flow field instead,!'~!'¢ and these methods effectively reduce the
knot tracking problem from a three-dimensional scenario to a quasi-one dimensional one.
However, such technologies require stretching the DNA molecules by applying an external

tension, which may confound the overall dynamics of knots when compared to the free solution

casc.

Nanochannel confinement provides an alternate way to study the dynamics of knotted
DNA molecules.!”2° Confinement has a unique advantage compared to optical tweezers or
extensional flow since it generates knots by compression, leading to relaxed knotted DNA

molecules that should be more similar to those formed in free polymers. Remarkably, even the
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basic mechanism of knotted DNA in confinement remains a relatively open question. One
possible diffusion mechanism is self-reptation, where the polymer contour follows a snake-like

motion through the knot. Self-reptation is anticipated to be a subdiffusive process,?!??

owing
to the analogy with polymer translocation through a nanopore, and theory predicts that the
diffusion time for self-reptation of a knot scales with contour length L as tp ~ L? in the limit
where the amount of polymer in the knot is a small fraction of the contour length.?3 Another
possible diffusion mechanism is knot region breathing. In this case, the knotted region within
the DNA molecule locally exchanges positions with its neighbors. Knot region breathing is

anticipated to produce regular diffusion, and the diffusion time of knot region breathing gives

a scaling Tp~ L?, again in the large L limit.??

To distinguish between these two possible mechanisms, Ma and Dorfman examined the
diffusion of knots along relaxed DNA in nanochannels using a nanofluidic “knot factory”
technique'® to efficiently generate the knots in their experiments. The resulting measurement
of the knot mean-squared-displacements indicated that the knot diffusion mechanism is likely
to be self-reptation owing to the subdiffusive behavior.!” However, their experiments do not
constitute a direct test of the scaling theories for these two mechanisms. A more direct way to
distinguish between the two diffusion mechanisms is to measure knot diffusion as a function
of the degree of polymerization to identify the scaling exponent, or to directly compare the
self-diffusion time with existing theories.”> While it is challenging to adopt this approach
experimentally due to the wide range of DNA molecular weights that are needed, it is relatively
straightforward to vary L in simulations. Yet, simulation and experimental works on
nanochannel-confined knots that have been performed mainly focus on establishing
equilibrium properties, such as the knot formation probability and knot complexity.!®24-30

Little work has been done focusing on the dynamic aspects of knot diffusion in
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confinement.3!32

Here, we use molecular dynamics (MD) simulations of a coarse-grained polymer model to
study the diffusion mechanism and the dynamics of 3; trefoil knots in nanochannel-confined
DNA molecules. We track the knot size and knot position along the DNA molecule as a
function of time. Additionally, we examine the impact of chain contour length L on both the
mean knot size, as well as two dynamic properties, the knot mean square displacement (MSD)
and the average unknotting time. Notably, the knot size increases with increasing L and the
knot motion is subdiffusive when it is confined in a nanochannel. By comparing the diffusion
dynamics and scaling exponent obtained from simulation and theories,? the simulations reveal
that the knot diffusion is a combination of both self-reptation and knot region breathing

mechanisms.

2. Methods
2.1 Pair potential models

The pairwise interaction between beads is modeled by purely repulsive Weeks-

Chandler-Andersen (WCA) potential®

o 12 P 6
48[(:,-) -(%) L e r < 2o 0

1
0,r > 260

Uwca =

where € = kgT. The bond interaction between adjacent beads is modeled by finite extensible

nonlinear elastic (FENE) potential®*

2 rif)?
Urene = —0.5kponaRg In [1 - (R_) ]' Tij = Ro (2)

0

where the maximum bond length is Ry = 1.5¢ and the bond stiffness is kbond = 30 k7. Chain
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stiffness is implemented by a bond angle potential
Uangle = 0.5k(6; — 7.[)2 (3)

where the bending penalty ~ =5 kg7 is obtained by mapping to the persistence length /, of

DNA through the relation with /,= 60 nm and the bead diameter w = ¢ = 12 nm,

K

P Y ©

K—Kk coth(k)+1

The polymer chain is confined in nanochannel along the y- and z-axis with a wall potential

described by WCA potential

o 12 p 6
*e [(d‘i) (@ ]+ e,d; < 20 (5)

Uwall = 1
O,dl’ > 260

where d; is the orthogonal distance between bead i and wall.
2.2 Initial configuration generation

The DNA molecule is modeled as a string of beads connected by the FENE bonds described
in section 2.1. To generate the initial configuration of the knotted DNA, the two parts of an
initial configuration were generated separately. The first part is the relaxed polymer chain. To
generate this part of the initial configuration, we used molecular dynamics (MD) simulations,
described in more detail in section 2.3, to equilibrate a DNA strand from an initially fully
stretched DNA state within the channel for a total 5x108® time steps for each different chain
contour length. About 1x10% time steps are required for DNA molecules to fully relax.
Uncorrelated configurations of DNA molecules were then selected from the remaining 4 <108
time steps, with a sampling interval based on autocorrelation time (SI Figure S1). For the
longest chain L = 600, which shows slower correlation time, one additional parallel simulation

with a different random seed was performed to collect sufficient uncorrelated samples. The
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second part of the initialization produces the relatively tight 3, trefoil knot configuration, which
we set to contain 14 beads. The initial configuration of the trefoil knot was generated by
Knotplot* with a bead diameter of a. The 3; trefoil knot was then inserted into the middle of
a relaxed DNA molecule sampled from the first protocol to generate one initial configuration;
inserting this knot into each relaxed DNA sample generates an ensemble of initial conditions
with different configurations of the unknotted portion of the DNA and identical knots. This
procedure was used to generate initial conditions with the chain contour length L = 100 to 600
in units of the equilibrium bond length. Figure 1 shows three examples of initial configurations
of trefoil knots in nanochannel-confined DNA molecules with different L. For each L, at least
30 different initial configurations were generated. The topology of 31 knots was confirmed by

calculating the Alexander polynomial®¢ to avoid artifacts from bad initial configurations.

a b Q/*)O L =100

Knotted DNA confined in nanochannel

=

L 600

Figure 1. (a) Initial configurations of 3; trefoil knots in nanochannel-confined DNA molecules
in the extended de Gennes regime. (b) Three knotted DNA molecules with different chain
contour lengths by increasing the total number of beads L = 100, 300 and 600. The trefoil knots
identified by Kymoknot are highlighted as red while the unknotted polymer parts are colored
blue.

2.3 Molecular dynamics simulations

To study the diffusion of DNA knots in confinement, molecular dynamics (MD)

simulations were performed using LAMMPS?? in the canonical ensemble (NVT) using a
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Langevin thermostat with a damping coefficient T = 2. Note that the Langevin thermostat
models an implicit solvent, so there are no hydrodynamic interactions in this model. Relaxed
knotted DNA molecules were initially placed in the center of the simulation with a box size of
L x25x%25, where L is the chain contour length. The geometries of knotted DNA molecules
were subject to local energy minimization before being used for MD simulations. The periodic
boundary condition in x-dimension was applied while the wall potential on y- and z- dimensions
were applied to enforce confinement. The channel size D =25 o is mapped to experiment from

Ma and Dorfman,!”-!°

corresponding to a channel size of 300 nm in the extended de Gennes
regime. Each simulation was conducted with total 1x10® time steps for production with step
size At = 0.001 Tmp, where Tmp = o(m/€)"? is the Lennard-Jones (LJ) time based on the bead
mass m. The first 80% of the simulation data of the knot size versus the last 80% of simulation
data were compared to make sure no additional equilibrium time is required after local energy
minimization. Simulations were performed isothermally at reduced temperature 7" = 1. All

quantities are presented in LJ reduced units, and all particle beads have equal masses.

Simulation configurations were dumped every 1 x10* time steps for further analysis.
2.4 Structural analysis

The knotted topology on DNA molecules was characterized by calculating the Alexander
polynomial of the knot using Kymoknot.>® For linear chains, the knot topology can be
determined by bridging the two terminal ends of the DNA molecules. The knot topology from
a pseudo-closed ring, for which the topological state is well-defined, can thus be identified.
Several such closing techniques have been previously proposed.’®**° Here, we adopted a
bottom-up procedure that can identify the knot topology on a linear chain, where the knot is
searched staring from very short portions of the molecule and gradually considering longer

ones. The knot is localized until the subchain used for the knot calculation contains a physical
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knot of the same type as the whole chain, and the remaining portions are physically unknotted.*®
The knot start and end bead indices can then be identified based on the bottom-up knot search
approach. The size of knotted DNA molecules was further quantified by the total number of
beads contained in the knot, Nknot, Which was calculated as the difference between the identified

knot start and end bead indices.
2.5 Mean square displacement (MSD)

The locations of the edges of a knot were computed by using the Alexander polynomial
through the bottom-up approach discussed in Section 2.4. The center of mass of the DNA knot

was then calculated as

_ 1 Nknot
Xcom = Mknotzi=fo mx; (6)

where Minot 1s the total mass of all beads contained within the knot and Ninot is the number of
beads contained within the knot. All beads that are contained in the knot have equal mass m =

1 and are located along the channel axis with coordinates xi, i =1, ..., n.

The time evolution of the center of mass, X.,,, was used to compute the ensemble-

averaged MSD
MSD(8t) = ([xcom (£) = Xeom (£ — 60)]%)en )

where (- ), denotes an average over all times 7 and the ensemble of n parallel simulation

trajectories, and Jt is the time lag between the recorded simulation frames.

To analyze the diffusive behavior of knots, we computed the scaling exponent 5 of the

ensemble-averaged MSD by fitting the logarithm of the data with a linear function!’
log,o MSD (6t) = B logq, 6t + ¢ (8)

where B and ¢ are both fitted constants. The choice of upper bound used for fitting was
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determined by calculating the correlation coefficient, R?, of the linear fit with different choice
of upper bounds and a fixed lower bound at §t = 10 Tmp. The upper bound of time lag 50 Tmp

was determined based on the highest R? value obtained from all fittings.
2.6 Unknotting time

The unknotting time 7, can be directly obtained from simulation, which is defined as the
time when an initially knotted DNA molecule reaches an unknotted state for the first time.
Since the unknotted chain can reform a knot through diffusion of the chain end, an unknotted
state is defined as the absence of a knotted configuration from 10 continuous recorded
simulation frames, i.e., over 10° time steps. To obtain insights into the knot diffusion
mechanism, we computed the scaling exponent f of the ensemble-averaged ty by fitting the

logarithm of the data with a linear function

logyoty = BlogioLc +¢ )
where § and c are both fitted constants.

Diffusion time models were proposed for both self-reptation and knot region breathing
mechanisms by Metzler et al.? in the limit where the knot comprises a small part of the overall
chain contour length. This theory will be compared with the results obtained from our MD
simulations, so it is useful to review the key results here. The diffusivity for knot region
breathing can be characterized by Dxrs =~ aksT/A, where A is the length of the knot and « is
the inverse of the bead friction, which can be obtained from a free polymer simulation. The
knot diffusion time based on its initial location inside the chain (xz) to one of the ends is given

by23

red_ ../

() = [P 2" dx' (10)
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where Lrea = L - A is the reduced length of the two linear segments of the chain, L is the chain

length and A is the knot length. To approximate the knot length, we used total number of beads

contained in the knot, Ninot, Which can be obtained from the simulation directly. The diffusion

time for knot region breathing is given by?*

Tkre(XL) = Ao [(i) - ( L )2]

2akpgT ~\Lred Lrea

In the self-reptation mechanism, the diffusivity is characterized by}

~ akgT(L+A)
SR ™ (xp+0)(L—x1)

From Eq. (10), the diffusion time of self-reptation is given by?*

[x,{3LL;eq — 4Lx; — 2Lyeqx;, + 3x2)

k() = T b

+A(6L [Lred - xL] + X [4'xL - 3Lred])}]

(1)

(12)

(13)

Note there was a typo “3x.>” in Eq. (6) in Ref. 23, which has been corrected in our Eq. (13).

3. Results

10
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Figure 2. Snapshots for L = 500 at simulation time 7, of (a) 0, (b) 9.8 X 10°and (¢) 1.9 x 10.
The knotted region identified by Kymoknot is colored red while the unknotted polymer part is
colored blue. (d) The start (red line) and end (blue line) of the bead indices contained in a 3
trefoil knot along DNA chain for the trajectory used to generate the snapshots in panels (a,b,c).
(e) The number of beads in the knot, Not, as a function of simulation time calculated from (d).

To elucidate the dynamics of spontaneous knot untying of linear DNA molecules in
confinement, we monitored both the knot position and the knot size, characterized by the
number of beads in the knot, Ninot, during the simulations. Figure 2 shows the swelling of a
trefoil knot as a function of time. The trefoil knot diffuses away from its original central
position, fluctuating along the entire DNA molecule. During the simulation, the initially tight
knot continues growing and fluctuating in size as it moves towards the end of the DNA. The
knot is destroyed upon reaching the terminus of the DNA molecule. The phenomenology in
Figure 2 was observed across many simulations with this parameter set; corresponding results
for different initial configurations are provided in SI Figures S2 and S3. In general, we found
that knots open up, although the value of Nt fluctuates between different simulations.
Notably, we also found that the maximum Nt is restricted by the total size of the chain and

below the trivial limit of Ninot = L. As shown in Figure S4, Nino reaches a maximum size of

11
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around 150 at L = 300. Instead, at L = 500 (Figure 2), Ninot can reach a maximum of around
400. These observations suggest that the knot untying follows an “opening up process”, and

the fraction of the chain that participates in the opening up process is related to L.

This knot opening up process agrees qualitatively with previous single-molecule
experiments,'® wherein knot swelling was reported in linearly extended DNA molecules during
relaxation, although the actual knot topology in experiments may be more complicated than
the simple 3; trefoil knot studied here. The behavior in Figure 2 also agrees with Monte Carlo
simulations of long flexible linear polymers, suggesting a growth of average knot length on the

total chain length.*!
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Figure 3. (a) Histogram of Nt as a function of chain contour length L. (b) Mean Ninot as a
function of L. The intercept ¢ from fitting to a power law is 0.34. The error is estimated using
a 95% confidence interval.

To elucidate the mechanism behind knot untying, it proves useful to quantify the knot size
with respect to L. Figure 3 shows the number of beads contained within the knot, Ninot, With
respect to L. Since the unknotting dynamic is not an equilibrium process, Ninot is collected from
the start of the simulation until the knot is fully untangled in all parallel simulations. The

probability distributions of Nuo(L) in Figure 3a can be well-fitted to a normal Gaussian

12
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distribution. Aside from this phenomenological observation, two insights into the dependence
of Ninot on L emerge by examining the probability distribution. First, the length-dependent
increase in Ninot 1s clearly illustrated by the location of the peaks of the distributions. Secondly,
the spread of the probability distribution also increases linearly with increasing Ninot, indicating
the distributions are self-similar as shown in Figure S5. The sizable number of knot
configurations during a simulation allows us to further compute the mean value and the
statistical error of observables. Figure 3b shows the log-log plot of the calculated mean Ninot ,
where the true statistical error on the correlated data was computed from the block averaging
method.*? The length-dependent increase of Ninot fits a power law with exponent 8 = 0.64 +

0.08, where error refers to a 95% confidence interval from the linear regression.
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O L=200, B=0.90 + 0.04, c=0.07
O L=300, B=0.85 * 0.04, c=0.00

L=400, =0.85 = 0.04, c=0.02
O L=500, B=0.84 + 0.04, c=-0.02
O L=600, p=0.87 + 0.08, c=-0.05 _ PR giie
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Figure 4. (a) Ensemble-averaged mean square displacements as a function of time lag for
different L. The time-averaged MSDs for calculating ensemble-averaged MSD from each
trajectory is provided in Figure S6. (b) Linear fit to the logarithm of ensemble-averaged MSD
and time lag window between 10 to 50 Tmp. The choice of time lag window is discussed in
Section 2.5.

The evolution of the center-of-mass of knots in time further allows us to calculate the knot
mean-square displacement. Figure 4 shows the ensemble-averaged MSD as a function of time

lag for different chain contour lengths. The knot diffusive behavior is further quantified by

13
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274 fitting the logarithm of ensemble-averaged MSD and the time lag window between 10* to
275 5x10% which avoids the localization error (at short time lags) and the sampling error (at long
276  time lags). The range of scaling exponent extracted from fitting in Figure 4 is [0.79,0.90]
277  despite the difference in L. Notably, there is no apparent correlation between the scaling
278  exponent and chain contour length. One possible reason for not seeing correlation between the
279  scaling exponent and L can be large statistical uncertainty due to the small dataset of knotted
280  state. In any event, all calculated scaling exponents indicate subdiffusive motion of knots along

281  DNA molecules confined in nanochannel at short times.
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283  Figure 5. (a,b) Mean unknotting time (blue squares) obtained from the MD simulations and
284  theories for knot region breathing (red circles) and self-reptation (gold triangles) as a function
285  of L using (a) Ninot = 14 and (b) Ninot = 2.19L%%4, The blue dashed line is the best fit to the
286  logarithm of the mean unknotting time and chain contour length obtained from the MD
287  simulations. The red and gold lines are the unknotting time predicted from the knot region
288  breathing model and the self-reptation model, respectively.?? (a) Using Ninot = 14, the slope
289  and intercept predicted from the knot region breathing model are 2.14 and -2.22, respectively,
290  while the slope and intercept predicted from the self-reptation model are 2.93 and -3.64,
291  respectively. (b) Using Ninot= 2.19L%%4, the slope and intercept predicted from the knot region
292 breathing model are 2.96 and -3.73, respectively, while the slope and intercept predicted from
293 the self-reptation model are 3.16 and -4.23, respectively. The error bars are the standard error
294  of the mean.

295

296 The mean time required to spontaneously untie the trefoil knot is shown as blue squares in

297  Figure 5. The mean unknotting time grows appreciably with L. These values can be well-fitted
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to a power law with an exponent of 2.64 + 0.23, where the error refers to a 95% confidence
interval from the linear regression. Similar observations have been reported for knots on
tension-free, open linear chains, where knots exhibit larger size and survival time for longer
chains despite the difference in model and simulation setup.** The magnitude of unknotting
time also agrees with the reported Brownian simulations of semiflexible open chains confined

in nanochannel (see supplementary material).**

The scaling exponent can be further compared with the existing theories proposed by
Meltzer et al., namely the self-reptation (SR) and knot region breathing (KRB) mechanisms.??
However, this comparison is not as straightforward as one might initially expect, since the
theory assumes that the knot is small compared to the total length of the chain, but Figure 3
shows that the knots are a significant fraction of their total chain contour and can grow

significantly (e.g., Figure 2), especially towards the end of the untying process.

Let us first consider the naive case where we assume that A = Ninot is small compared to L
by fixing the knot size to that of the initial tight trefoil knot, Nknot = 14. Figure Sa compares
the predictions of Eqgs. (11) and (13) using Niot = 14 to the simulation data. The apparent
scaling exponents from fitting the theory predictions over this limited range in L are 2.93 for
SR and 2.14 for KRB. For this choice of a small Nwnot, the quantitative agreement between the
prediction of SR in Eq. (13) and the simulation is very good; this agreement is possible despite
the disagreement in scaling exponents because our simulations span less than one decade in L.
If we instead probe out to very large L for the theory (Figure S7), the simulation data are
approaching the predictions of the self-reptation model, suggesting that the difference in slope
would be rectified for sufficiently large L. Hence, if we take as an assumption that Ny, < L,

the simulations support the self-reptation model.

However, the quantitative agreement between the simulation data and self-reptation in
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Figure 5a, as well as the disagreement with knot region breathing, is an artifact of assuming a
small knot. In the MD simulations, we found that the knot size is not much smaller than the
total contour length, as suggested by the theory of Meltzer et al., but rather is a significant
fraction of the total chain length (Figure 3a). Thus, we repeated the analysis of Melzer et al.,
replacing Ninot = 14 with the empirical results Ninot = 2.19L%%* regressed from Figure 3b. As
shown in Figure Sb, the apparent diffusion time now scales as 3.16 for the self-reptation and
2.96 for the knot region breathing mechanism respectively. When taking into account that
Ninot/L is not small (i.e., sensible Nnot/L limit), it is no longer possible to distinguish between
the different diffusion mechanisms and the simulation data; for the sensible Ninot/L limit, the
scaling exponent 2.64 + 0.23 extracted from the simulation does not agree perfectly well with
the prediction either from KRB or SR theory. When taking in conjunction with our
observations of the knot dynamics, the results suggest that knot diffusion is a combination of

both mechanisms.

4. Discussion

The most straightforward method to characterize the unknotting mechanism is to analyze
the nature of the diffusion itself. Anomalous subdiffusive dynamics are considered in many
publications to be an indicator for the self-reptation mechanism, while the regular diffusive
behavior is suggested for knot region breathing in the large L limit.?* A previous study by Klotz
et al. noted the anomalous diffusive behavior of knots in DNA molecules under an elongational
field in microfluidic devices, where the knot motion is mediated by self-reptation.!®
Additionally, computational work by Matthews et al. reported a subdiffusive motion of knots
along stretched polymers at short times, again illustrating that the knots diffuse through a

mechanism similar to reptation.*> In addition to these studies of the dynamics of knots under
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external tensions, Ma and Dorfman'’ observed the subdiffusive motion of knots under
nanochannel confinement, which again suggested a self-reptation mechanism. Our MSD
results for different values of L (Figure 4b) clearly demonstrate that the knot motion is
anomalous, with subdiffusive scaling exponents at short times under nanochannel confinement,
consistent with all of the aforementioned studies.!>!”-234> However, our analysis suggests that
even if the knot MSD shows a subdiffusive scaling, that does not imply strictly self-reptation
behavior for the reasons noted in the discussion of Figure 5. This result suggests caution when

inferring the knot diffusion mechanism solely from the MSD data.

There are several salient features of the knot dynamics that appear to arise due to
confinement, in contrast to the previous literature on stretched polymers where the knots
exhibit self-reptation along the entire molecule.!>* When the polymer is stretched, the knot
remains localized and tight during its motion, only losing its tightness when it is destroyed
when it diffuses to the end of molecule.*>*’ Furthermore, knots on tense chains can remain
jammed with a fairly constant and tight knot size in a relatively long time period, and the knot
diffusivity decreases exponentially with increasing tension.*’ Several qualitative differences
were observed in knot dynamics between knots that are under tension and those under
confinement. Firstly, in our MD simulations, we observed that the knot size fluctuates
substantially during the entire process. Secondly, the knot sizes and knot positions change
simultaneously and fluctuate frequently along the DNA molecules. As depicted in Figure 2
and SI Figures S2-4, we found no sign of a jammed state in our simulations, i.e., where the
knot remained stagnant with a relatively constant size over time. Finally, the knots follow an
opening-up processes, with knots typically growing in size via power laws that depend on L at
the short chain length limit between L = 100 to 600. There are thus several qualitative signatures

that distinguish diffusion of confined knots and knots on stretched chains.
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The direct observation of knot dynamics and comparison of the scaling exponent of knot
diffusion time vs L with the existing theories?? illustrates that both SR and KRB mechanisms
contribute to knot diffusion at the sensible Nino/L limit for nanochannel confinement. The
significant difference in the prediction of apparent scaling exponents in the KRB at different
Nino/L 1imit also indicate that the knot size plays an important role in governing the diffusion
time. Both mechanisms appear to be active on our simulations, and the results do not
correspond directly to the limiting cases in the theory of Meltzer et al.>*> When the chain
becomes longer (or confinement becomes stronger), the knot size should become increasingly
small when compared to the total chain length, and it would be interesting to see if the results
indeed approach the predictions of Meltzer et al.>*> However, longer chains and increased
confinement may impact the geometry and size of the knot differently, leading to different
scaling exponents and diffusion times. This is a promising direction for future work to develop

a complete understanding of the diffusion of knots along DNA molecules.

5. Conclusions

In the present contribution, we explored the diffusion mechanism of trefoil knots with different
chain contour lengths in confined systems using coarse-grained molecular dynamics
simulations. The knot was observed to swell and continuously fluctuate in size during the
simulation, in contrast to the self-reptation behavior that is reported for tight knots diffusing on
stretched polymers. We observed subdiffusive motion of the knot, in agreement with the
anomalous subdiffusive dynamics for the self-reptation mechanism. However, our
observations of the knot structure indicate that, even if the knot MSD shows subdiffusive
scaling, this does not strictly imply self-reptation behavior. Rather, the knot diffusion is a

combination of both self-reptation and knot region breathing.
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Supplementary Material

Supplementary information is available in the online version of the paper. Autocorrelation
function of radius of gyration for different chain contour length L; Additional quantification
of knotted DNA trajectories at L=300,500; The standard deviation in Ninot as a function of
Nunot; details for calculating ensemble-averaged MSD from time-averaged MSD; Additional

prediction of unknotting time vs. L.
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1. Supplementary Figures
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Figure S1. Autocorrelation function of radius of gyration for different chain length L. The
autocorrelation time is 1x103, 1x103, 2x103, 5x103, 1x10% 2x10* Tmp for L = 100, 200, 300,
400, 500 and 600, respectively.
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Figure S2. (a) The start (red line) and end (blue line) position of 3; trefoil knot along DNA
chain in a MD simulation with different initial configuration at L = 500. (b) Knot size (i.e., the

number of beads in the trefoil 3; knot core) as a function of simulation time calculated from
upper panel.
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Figure S3. (a) The start (red line) and end (blue line) position of 3; trefoil knot along DNA
chain in a MD simulation with different initial configuration at L = 500. (b) Knot size (i.e., the
number of beads in the trefoil 3; knot core) as a function of simulation time calculated from

upper panel.
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Figure S4. (a) The start (red line) and end (blue line) position of 3; trefoil knot along DNA
chain in a MD simulation with total bead number L = 300. (b) The total bead number contained
in the knot Ninot as a function of simulation time calculated from upper panel.
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Figure S6. (a-f) The time-averaged MSDs (gray) for calculating ensemble-averaged MSD (red)
from all simulation trajectories at L = 100, 200, 300, 400, 500, and 600, respectively.
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Figure S7. Unknotting time vs. L for varied chain length L = 1000 to 100000 with knot size A
= 14. The predicted unknotting time for the knot region breathing (KRB) and the self-reptation
(SR) is tkre = 10713220 and tsg = 103439,

2. Supplementary text
S1. Comparison of unknotting dynamics

As mentioned in the main text, we compared the unknotting dynamics with the reported
knotting-unknotting dynamics of linear chain in nanochannel confinement.! In the compared
reference paper, the chain contour length was reported as Lc = 3.6 um, which corresponds to
L =300 with a bead diameter of 0 = 12 nm in our simulation. Using the same assumption with
Ref. 1, the characteristic simulation time Tvp = o(m/ksT)"? = 67ns10°/e = 6mNs010°/(ksT),
where 77501 = 1 cP is the nominal water viscosity. At 7= 300 K and ¢ = 12 nm, we obtained tmp
= 8223 ns. Thus, the unknotting time in our simulation is about 3x10° Tmp = 24 ms at L = 300
as shown in Figure 5. The reported value of the mean knot duration is around 5 ms for a similar
channel size at D = 300 nm in Ref. 1. Considering the differences in the model and simulation
setup, we can conclude that the unknotting time reported in our simulation is within the same
order of magnitude compared to the results in Ref. 1.
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