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Abstract: Dipole polarizabilities and C6 and C9 dispersion coefficients are computed for
closed- and open-shell atoms and molecules, using dynamic (time-dependent) density func-
tional (TD-DFT) linear response theory as implemented in the response module of the
NWChem quantum chemistry package. The response module is capable of accurate calcu-
lations of these properties, based on spin-restricted and spin-unrestricted formalisms. The
calculated static polarizabilities and dispersion coefficients are compared to available exper-
imental and other theoretical data. The behavior of the dynamic polarizability at imaginary
frequencies is analyzed for differently sized closed- and open-shell systems. An interpolation
method enforcing the monotonic decrease of the polarizability with increasing imaginary
frequency is beneficial for the integration used to obtain C6 and C9. Scaling of the TD-DFT
data by ratios of the static polarizability, which can be calculated with a variety of methods,
including highly accurate theories, may be used as a leading-order correction.

1 Introduction

Interactions between atoms or molecules outside of the orbital overlap range are governed
by van der Waals (vdW) forces. Typically, one distinguishes long-range electrostatic vs. dis-
persion interactions, with the latter being caused by the dynamic electron correlation. Dis-
persion interactions are mediated by instantaneous multipole moments in one subsystem
inducing instantaneous multipole moments in another subsystem. These interactions are
extremely important in chemical, physical and biological systems. With distance 𝑅𝐴𝐵 be-
tween two species (subsystems), A and B, the asymptotic expansion of the nonrelativistic
two-body dispersion interaction is in leading order C6∕𝑅6𝐴𝐵, with relativistic and higher mul-
tipole order corrections involving higher powers of 1∕𝑅. C6 is the coefficient that quantifies
the dipole-dipole interactions. There is a correspondingC9∕(𝑅3𝐴𝐵𝑅

3
𝐵𝐶𝑅

3
𝐶𝐴) term parametrizing

the three-body dipole interactions among subsystems A, B, and C. Many studies of C6 coef-
ficients have been reported for rare gas atoms, alkali-atoms, alkali-metal clusters, diatomic
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molecules, alkanes, polycyclic aromatic hydrocarbons, and fullerenes.1–19 Nevertheless, an
accurate determination of dispersion coefficients such as C6 and C9 is not simple in general,
and far from routine for open-shell systems.

A variety theoretical approaches, such as density functional theory (DFT),20, 21 linear-
response time-dependent DFT (TD-DFT),1, 7, 12, 14, 19, 22–24 the DFT-based local response disper-
sion (LRD) method,25 time-dependent Hartree-Fock (TDHF),12, 17, 26 Møller-Plesset pertur-
bation theory (MPPT),27–29 perturbation theory,5, 30–33 symmetry-adapted perturbation the-
ory (SAPT),34–38 other correlated wavefunction approaches39, 40 such as coupled cluster (CC)
theory17, 29, 41–45 and the algebraic diagrammatic construction (ADC),17 and semi-empirical
approximations,46–54 have been harnessed to calculate polarizabilities and dispersion coeffi-
cients. Static polarizabilities of closed- and selected open-shell atoms and small molecules
may be computed accurately by quantum chemical techniques.19, 23, 25, 55 Treating frequency-
dependent response is in principle straightforward, but requires additional method develop-
ment effort. Molecules that are not small and have unpaired electrons remain a challenge
in the treatment of response properties in general, including dispersion interactions. Con-
sequently, few reports of dispersion coefficient calculations of such systems—which may be
highly relevant in chemistry and materials science—are yet available.

One of us has previously developed a TDDFT dynamic linear response module in the
NWChem program,56–58 which allows for massively parallelized computations of large sys-
tems. The response module is capable of calculating dynamic polarizabilities at complex
frequencies, to obtain non-singular response near or at resonances.59 The module was sub-
sequently extended to accommodate spin-unrestricted calculations,60 which therefore allows
for a uniform treatment of closed- and open-shell systems, thus expanding the application
range of TDDFT response methodology to chemical, physical and biological systems with-
out or with unpaired spins. Herein, we report calculations of dipole-polarizabilities at purely
imaginary frequencies, to determine dispersion coefficients C6 and C9 for open- and closed-
shell systems by integration of polarizability products along the imaginary frequency axis (see
Section 2). Static polarizability benchmark data are also provided. The integration to obtain
C6 and C9 coefficients is commonly done on a numerical grid of imaginary frequencies 𝑖𝜔
(with 𝜔 being real). The polarizability tends to be rapidly decreasing with increasing 𝑖𝜔, and
monotonic. We show that the integration to obtain dispersion coefficients can be facilitated
by using a cubic interpolation scheme that enforces the monotonic behavior. In the present
study, we first test small open- and closed-shell species, then proceed with calculations for
larger molecules. The results are rather satisfactory for all of the different systems that were
studied.
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2 Theoretical and Computational Details

Let the isotropic dipole polarizability of entity (subsystem) A be denoted by 𝛼𝐴. The isotropic
polarizability is the average of the principal components of the rank-2 polarizability tensor.
For the present study, the dispersion coefficientC6(A,B) for the rotationally averaged interac-
tion between entity A and Bwas calculated via the Casimir-Polder expression, in terms of the
dynamic (frequency-dependent) polarizability at imaginary frequencies61, 62 Hartree atomic
units (au) are used unless noted otherwise. The C6 coefficient is given as

𝐶6(A,B) =
3
𝜋∫

∞

0
𝛼𝐴(𝑖𝜔)𝛼𝐵(𝑖𝜔)𝑑𝜔 (1)

Here, 𝜔 is a real circular frequency, assumed to be positive, such that the integration in the
previous equation is along the positive imaginary axis. At purely imaginary frequencies, the
polarizability is purely real. Similar to C6, the three-body coefficient C9(A,B,C), which is
useful in the modeling of non-additive effects, can be obtained via

𝐶9(A,B,C) =
3
𝜋∫

∞

0
𝛼𝐴(𝑖𝜔)𝛼𝐵(𝑖𝜔)𝛼𝐶(𝑖𝜔)𝑑𝜔. (2)

The isotropic part of the polarizability at 𝜔 = 0 and nonzero imaginary frequencies 𝑖𝜔 for
all systems was computed by using the Kohn-Sham (KS) density functional theory (DFT) dy-
namic linear response module of the NWChem package56–58 as released on GitHub.63 The
code allows for response calculations with complex frequencies, and includes recent mi-
nor changes to allow polarizability calculations with frequencies that are purely imaginary.
The Coulomb attenuation method with the Becke three parameter Lee-Yang-Parr (CAM-
B3LYP)64 hybrid functional, and the Sadlej polarized valence triple zeta (pVTZ)65 Gaussian-
type orbital (GTO) basis set, were employed for most calculations, except where noted oth-
erwise. This functional and basis combination were previously reported to produce accurate
static polarizabilities.66 Test calculations with several other functionals and basis sets were
performed for alkali-metal atoms and selected diatomic molecules. Basis sets were obtained
from the basis set exchange.67, 68 A response convergence criterion of 10−7 was chosen, with
the only exception of C60 fullerene where a criterion of 10−6 was used because of elevated
numerical noise related to near linear dependencies with the used basis set. We note that
the calculations for the alkali-metal atoms and small molecules required only very modest
computational resources. The computational cost of course increases with the size of the
system, with the same overall scaling in the code as the utilized (hybrid) Kohn-Sham DFT
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approximations, with the C60 fullerene being the most demanding system in this study. In
part thanks to the favorable scaling on NWChem on parralel architectures, the calculations
on the larger systems remain accessible on a modern multi-core processor system.

There are different keywords to specify the perturbation in the input for the NWChem
response module. One input value is for the real frequency of the perturbing field. The other
input parameter is for a ‘damping’ or de-phasing constant that broadens the excited states
in the response calculations and plays an analogous role to the friction damping of a classi-
cal oscillator. When both a frequency and de-phasing constant are provided, the response
calculation effectively runs with a complex perturbing frequency, with the imaginary part of
the frequency being equal to the de-phasing constant. Thus, electric-field perturbation cal-
culations with purely imaginary frequencies were achieved by setting the real frequency to
zero and selecting nonzero damping values 𝜔 representing 𝑖𝜔 in the previous equations. The
electric dipole moment response then gave 𝛼(𝑖𝜔).

For most calculations, 𝜔 ranged from 0 to 81.92 au on a 15-point frequency grid, with
the nonzero frequencies corresponding to a logarithmic grid of 0.01 au times 2𝑛 with 𝑛 =
0 to 13. Test calculations for the K atom also used a larger logarithmic grid of 0.00001 au
times 1.2𝑛 with 𝑛 = 0 to 101, to test grid cut-off errors and different interpolations (vide in-
fra). The monotonic cubic splines Steffen interpolation69 was used as implemented in the
CubicMonotonicInterpolation function available in Mathematica70 v. 13 via the Wolfram
Function Repository. We additionally verified that this function produces the same results
as aMathematica code for the Steffen interpolation that can be found on the StackExchange
web site.71 For comparison, a 12-point Gauss-Legendre quadrature, as applied in several of
the works referenced herein,12, 17, 43 was also used in the integration tests. Accordingly, the
polarizability was calculated for frequencies 𝑖𝜔 = 𝑖𝜔0(1 − 𝑡)∕(1 + 𝑡), with 𝜔0 = 0.3 au and
discrete values of 𝑡 ∈ [−1, 1] and associated weights generated for the requested number (12)
of Gauss-Legendre quadrature points. This integration was deemed to be reliable in the cited
references, ‘well beyond [...] three-digit accuracy’.17

For small molecules, we used the same experimental ground state structural data as Ref-
erence 28. In particular, the bonds lengths for diatomic molecules72 were as follows (in Å):
H2: 0.741 Å. N2: 1.098. CN: 1.172. CO: 1.128. NO: 1.151. O2: 1.208. BeH: 1.343. CaH: 2.002.
MgH: 1.731. Li2: 2.673. Na2: 3.079. K2: 3.905 Å. An experimental X-ray diffraction structure
was used for the radical cation bicarbazole (BCz)73 derivative. Structures for other systems
were optimized with the PBE074 hybrid functional and the def2-SV(P) basis75, 76 using Gaus-
sian (G16).77
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3 Results and Discussion

3.1 Polarizabilities for alkali-metal atoms and some diatomic molecules

We first examine the static polarizabilities of the alkali-metal atoms Li, Na and K, as well
as the diatomic molecules H2, N2 and CO, prior to proceeding with calculations for larger
systems. We reiterate that the module for linear response theory calculations in NWChem
can be employed in spin-restricted as well as in spin-unrestricted fashion. Therefore, the
alkali-metal atoms Li, Na and K are good examples for testing this functionality.

For accurate calculations of polarizabilities, especially for small systems, large basis sets
with polarization and diffuse functions are necessary. The exchange-correlation (XC) func-
tional and the associated response kernel also play an important role, in property calculations
in general and for polarizabilities in particular. Thus, in order to determine themost accurate
method to calculate the static polarizabilities, an extensive test of different functionals and
basis sets was performed. The results are collected in Table S1 in the Supporting Informa-
tion (SI). These calculations identified CAM-B3LYP/Sadlej-pVTZ as a suitable choice. As far
as functionals with range-separated exchange and a full long-range correction (LC) are con-
cerned, some of the results obtained with LC functionals also agree well with experiments.
For example, LC-PBE and LC-PBE0 results agree reasonably well with the experimental po-
larizability of the Li atom (calc. ∼153-160 atomic units (au) vs. expt. 164 ± 3.0 au78). Results
from the similar LC-𝜔PBE and LC-𝜔PBE0 functionals also produce results close to the ex-
perimental polarizability (Li: 160-165 au for LC-𝜔PBE and 156-160 au for LC-𝜔PBE0). The
range-separation parameter for the LC functionals was also non-empirically tuned for Li, as
described in Reference79 and works cited therein; however, no dramatic impact on the result-
ing polarizability was found. We note that for Li the Sadlej basis is the one that works best in
conjunction with the LC functionals. For Na, the LC functionals also provide results within
the experimental range (for example, 161-165 au from LC-PBE vs. an expt. value of 159.2 ±
3.4).78 However, the calculated static polarizabilities for K are somewhat overestimated with
the LC functionals. We therefore decided to proceed with the CAM-B3LYP functional, also
because of its expected better performance for larger systems.

Table 1 collects the calculated static polarizabilities from the CAM-B3LYP/Sadlej-pVTZ
calculations for the alkali-metal atoms Li, Na and K, and the diatomic molecules H2, N2 and
CO. Available experimental data,78, 80, 81 and results from other other theoretical works1, 3–5, 7, 28

are also provided. In general, theCAM-B3LYP functionalwith the Sadlej family of basis sets is
found to produce accurate results when they are compared with experiments, both here and
in the literature.66 Comparisons with other theoretical data reported in the literature1, 7, 28
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shows that our calculated static polarizabilities for K, H2, N2 and CO agree as well or better
with experiments. Our calculated polarizabilities for the alkali-metal atoms Li and Na are
below the experimental references. Some of the functional and basis set combinations that
give closer results to the experiment for Li and Na (Table S1) strongly overestimate the polar-
izability of K, which highlights the challenge of calculating response properties with TDDFT
across a variety of systems. The calculation results are overall reasonable, especially when
taking into account the good performance of the CAM-B3LYP/Sadlej-pVTZ calculations for
K and the diatomic molecules.

3.2 Polarizability integration along the imaginary frequency axis

Calculations for the K atom were used to test the requirements for obtaining accurate dis-
persion coefficients from numerical integration of 𝛼(𝑖𝜔). Plots of the polarizability along the
imaginary frequency axis are shown in Figure 1. A large, finely spaced logarithmic grid (see
Section 2 for details) was compared to the 15-point grid with ca. 80 au cutoff used for most
of the calculations (hereafter referred to as the ‘standard’ grid). The data are representative
of 𝛼(𝑖𝜔) for all systems in our study: From its static limit, 𝛼(𝑖𝜔) drops initially somewhat
Gaussian-like, then goes through an inflection point and drops more slowly for larger fre-

Table 1: Experimental and computational static polarizabilities (in atomic units) of some
alkali-metal atoms and diatomic molecules, as well as a comparison with other studies is
represented.

Source Li Na K H2 N2 CO

Expt. 164 ± 3.0[𝑎] 159.2 ± 3.4[𝑎] 292.8 ± 6.1[𝑎] 5.4[𝑏] 11.7[𝑏] 13.1[𝑐]
This work[𝑑] 148.8 146.6 290.3 5.4 11.8 13.1
Ref. [4][𝑒] 162.97 157.65 276.89
Ref. [28][𝑓] 165 166.9 285.2
Ref. [5][𝑔] 163.7 162.2 286.1 6.7
Ref. [3][ℎ] 163.7 162.4 287.1
Ref. [54][𝑖] 164.3 162.8 290.0
Ref. [1][𝑗] 6.1 12.3 13.7
Ref. [7][𝑘] 5.7 11.9 13.1

[𝑎]Reference 78. [𝑏]Reference 80. [𝑐]Reference 81. [𝑑]CAM-B3LYP/Sadlej-pVTZ. [𝑒] TDDFT-based
complete sum-over-states with Slater-type orbital (STO) basis. [𝑓] Møller-Plesset perturbation theory
(MPPT) based on the quasi-energy derivative (QED) method using Gaussian-type orbital (GTO)
basis. [𝑔] Perturbational approach, configuration interaction (CI) calculation using GTO basis. [ℎ]

Configuration interaction (CI) + core polarization potential method with GTO basis. [𝑖]
Semi-empirical method using oscillator strength distributions. Numerical simulations. [𝑗] TDDFT
with adiabatic local density approximation (ALDA) and STO basis. [𝑘] TDDFT with STO basis.
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Figure 1: Potassium atom. Left: Isotropic polarizability for imaginary frequencies. Standard
grid (large markers) vs. extended fine grid (small markers with dashed-dotted interpolation
line) vs. Steffen interpolation (straight line) from the standard grid data. Right: Standard and
fine grid data compared to the standard-grid Steffen interpolation, using a logarithmic scale
for the vertical axis in the plot.

quencies.
Given the general behavior of 𝛼(𝑖𝜔), one may take advantage of interpolation methods

that use advance knowledge of the monotonic decrease with increasing 𝑖𝜔. We used in this
work the monotonic cubic splines interpolation of Steffen.69 As can be seen from the inset in
the left panel of Figure 1, the Steffen interpolation works extremely well. The interpolation
function generated from the standard grid of frequency points essentially goes right through
the data points from the fine grid. The log-plot of 𝛼(𝑖𝜔) in the right panel of Figure 1 indi-
cates only minor interpolation errors between the standard grid points. This means that the
standard grid with Steffen interpolation will produce reliable integrations for obtaining C6

and C9 coefficients.
Integration of 𝛼(𝑖𝜔) itself between 0 and 81.92 au, as a measure of the accuracy of the grid

and the interpolation, gives 35.93 for the Steffen interpolation using the fine grid, compared
to 36.14 with linear interpolation between the data points from the same grid. The two val-
ues are 35.95 and 38.86, respectively, when using the coarser standard grid. The error from
using linear as compared to Steffen interpolation is 7.5% for the coarse grid and drops to less
than 1% for the fine grid. Importantly, the integrals from the Steffen interpolation are vir-
tually identical for the two grids, reflecting the excellent performance of the interpolation.
For comparison, the 12-point Gauss-Legendre quadrature of 𝛼(𝑖𝜔) on the grid generated as
described in Section 2 and the relevant cited references gives 36.05, in agreement with the
Steffen-interpolated results beyond three significant figures.

Of course, the Steffen interpolation cannot be used beyond the highest frequency point
of the grid. This is evident from the unphysical behavior of the standard grid interpolation
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beyond 80 au seen in the left panel of Figure 1. It is therefore important to estimate the error
from setting the grid cutoff around 80 au. For the fine grid, for which we assume the cutoff
error to be negligible, the 𝛼(𝑖𝜔) integration gives 36.06 for the full frequency range (almost
1000 au), compared to 35.93 with a cutoff of 𝜔 = 81.92. The grid truncation error is therefore
only about 0.3% for the integral of 𝛼 itself. For the integrations used to obtain C6(K,K) and
C9(K,K,K), the truncation error turned out to be negligible already with the standard grid, be-
cause products of 𝛼(𝑖𝜔) go to zero even faster than 𝛼, and only the data points corresponding
to low imaginary frequencies are sampled effectively. For the same reason, the grid spacing
error may become somewhat amplified. For the standard grid, we obtain C6(K,K) = 3901
from Steffen interpolation of 𝛼(𝑖𝜔) and integration according to Equation (1). The data from
the fine grid gives 3895 instead, revealing an error of 0.2%with the standard gridmainly from
the larger grid spacing at lower frequencies. For comparison, the 12-point Gauss-Legendre
quadrature gives 3895, again at in agreement by three significant figures or better with the
Steffen-interpolated results. Comparable relative agreements were obtained for C9(K,K,K).
Although the Gauss-Legendre quadrature appears to work at least as well as the integration
of the Steffen interpolation function, it is easier to add results for additional frequencies to
the interpolation procedure than adding points to the Gauss-Legendre grid. The latter re-
quires re-calculating the polarizability at all grid points if the grid size is increased. We opted
to proceed with the Steffen interpolation. The interpolation and cut-off errors are perfectly
acceptable, given that the finite basis TDDFT calculations with approximate functionals en-
tail other systematic errors. Dispersion coefficients from the present calculations, as reported
throughout the remainder of this article, were therefore obtained from Steffen-interpolated
data for the standard grid.

3.3 C6(A,A) coefficients for alkali-metal atoms and some diatomic molecules

Plots of 𝛼(𝑖𝜔) are shown again in Figure 2, comparing Li, Na, and K. Additional plots for H2,
N2, and CO are shown in Figure S1. The curves all behave qualitatively the same, although
the frequency range at which the inflection point is reached extends significantly further for
the diatomics, which also have a much smaller polarizability than the alkali atoms.

Table 2 collects the calculated C6(A,A) for A = Li, Na, K and the diatomic molecules H2,
N2 and CO. We also compare with other theoretical works. Our calculated C6 are within
the range of previously calculated values. For Li and Na, the C6 coefficients are very sim-
ilar to the those reported by Banerjee et al.,4 which were obtained with a ‘sum over states’
TDDFT method, a non-hybrid functional, and Slater-type orbital basis sets. Furthermore,
the C6 coefficient for Li is nearly the same as the one calculated with a local response dis-
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Figure 2: Polarizability at imaginary frequencies for the alkali-metal atoms Li, Na and K.
Left: Linear interpolation Right: Cubic monotonic Steffen interpolation. The area under
each interpolation is indicated by the numbers in italics.

persion method.25 The C6 coefficient obtained for K from our approach is very close to those
reported by Gould and Bučko19 (who used TDDFT and a ‘bespoke’ radial numerical code
designed specifically for atoms), Chu and Dalgarno23 (who likewise appeared to have used a
code tailored for atoms, alongwith TDDFT) and Jiang et al.54 OurC6 coefficients ofH2 andN2

are very similar to those evaluated previously by using dipole oscillator strength techniques,
as in references 80 and 52 (vide infra). For CO, we also observe a good agreement between
our approach and those calculated with dipole oscillator strength methods.81 The value in
the literature that matches best was obtained from all-electron TDDFT based method.7
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3.4 C6(A,B) and C6(A,B2) coefficients for alkali metal systems

For additional validation of our approach & implementation, we calculated C6(A,B) and
C6(A,B2) coefficients for the alkali metal atoms and compare them with available literature
data2–5, 83, 84 in Tables 3 and 4. Similar C6(A,B) and C6(A,B2) coefficients are obtained in our
approach compared to other studies, and the trends between different AB and AB2 systems
are faithfully reproduced, although in line with the noted low static polarizability for Li and

Table 2: Dispersion coefficients C6(A,A) for the alkali-metal atoms and small diatomic
molecules.[𝑎]

System C6 Literature Data

Li 1195 1118,[𝑏] 1426,[𝑏] 1385,[𝑒] 1386,[𝑔]
1389,[𝑗] 1388,[𝑙] 1387,[𝑚] 1439,[𝑛]
1408,[𝑜] 1100,[𝑝] 1396,[𝑞] 1392[𝑟]

Na 1332 1244,[𝑏] 1473,[𝑏] 1527,[𝑒] 1518,[𝑔]
1540,[𝑗] 1472,[𝑙] 1639,[𝑛] 1566,[𝑜]

1037,[𝑝] 1562,[𝑞] 1518[𝑟]
K 3901 3321,[𝑏], 3590,[𝑏] 3637,[𝑒] 3574,[𝑔]

3945,[𝑗] 3813,[𝑙] 4158,[𝑛] 3914,[𝑜]
3906,[𝑞] 3923[𝑟]

H2 11.88 12.62,[𝑐] 12.30,[𝑐] 14.3,[𝑓] 12.09,[ℎ]
12.92,[𝑘] 12.10[𝑚]

N2 72.14 75.63,[𝑐] 71.46,[𝑑] 77.2,[𝑓] 73.43,[ℎ]
74.09,[𝑘] 73.3[𝑚]

CO 78.38 89.14,[𝑐] 73.96,[𝑐] 83.8,[𝑓] 81.31,[𝑖]
79.75[𝑘]

[𝑎]This work. Equation (1) with CAM-B3LYP/Sadlej-pVTZ. [𝑏]Reference 4. ‘Sum over states’ TDDFT
method with Slater-type orbital (STO) basis. [𝑐]Reference 62. Time-Dependent coupled Hartree-Fock

(TDCHF) method with Gaussian-type orbitals (GTO) basis. [𝑑]Reference 82. Time-Dependent
coupled Hartree-Fock (TDCHF) method with tesseral harmonic GTO basis. [𝑒]Reference 5.

Perturbational approach, configuration interaction (CI) calculation using GTO basis. [𝑓]Reference 1.
TDDFT within the adiabatic local density approximation (ALDA) kernel using STO basis.

[𝑔]Reference 3. Configuration interaction (CI) + core polarization potential method with GTO basis.
[ℎ]Reference 80. Dipole oscillator strength approach. Numerical simulations. [𝑖]Reference 81. Dipole

oscillator strength approach. Numerical simulations. [𝑗]Reference 83. Semi-empirical method.
Numerical simulations. [𝑘]Reference 7. All-electron TDDFT based method with the STO basis.

[𝑙]Reference 2. Second order perturbation expansion method. Numerical simulations. [𝑚]Reference
52. Dipole oscillator strength approach. Numerical simulations. [𝑛]Reference 84. Coupled-cluster

theory with GTO basis. [𝑜]Reference 19. TDDFT with a ‘bespoke’ radial numerical code. [𝑝]Reference
25. Local response dispersion method. Numerical simulations. [𝑞]Reference 54. Semi-empirical

method using the oscillator strength distributions. Numerical simulations. [𝑟]Reference 23. TDDFT
with a code tailored for atoms. Numerical simulations.
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Na from CAMB3LYP/Sadlej-pVTZ, the associated dispersion coefficients tend to be on the
low end of the range of available values. We observe that our approach is in good agreement
with the TDDFT sum-over-statesmethod from reference 4 for Li-Na, Li-K, Na-K andK-K2. In
addition, the perturbational approach from Reference 5 also gives very similar coefficients,
especially for the A-B2 systems.

In reference 19, Gould and Bučko found very accurate C6(A,B) coefficients by employing

Table 3: C6(A,B) for alkali atom pairs
Method/Source Li-Na Li-K Na-K

Equation (1)[𝑎] 1258 2151 2258
Equation (3)[𝑎] 1259 2153 2255
Ref. 2[𝑏] 1427 2293 2348
Ref. 3[𝑐] 1448 2219 2309
Ref. 4[𝑑] 1448 2257 2288
Ref. 5[𝑒] 1452 2238 2336
Ref. 83[𝑓] 1460 2333 2443
Ref. 84[𝑔] 1532 2441 2595

[𝑎]This work. CAM-B3LYP/Sadlej-pVTZ. [𝑏] Second order perturbation expansion method.
Numerical simulations. [𝑐] Configuration interaction (CI) + core polarization potential method with
Gaussian-type orbitals (GTO) basis. [𝑑] ‘Sum over states’ TDDFT method with Slater-type orbital
(STO) basis. [𝑒] Perturbational approach, configuration interaction (CI) using GTO basis. [𝑓]

Semi-empirical method. Numerical simulations. [𝑔] Coupled-cluster (CC) theory with GTO basis.

Table 4: Dipole-dipole dispersion coefficients C6(A,B2) in atomic units. Comparison with
other works.

A B2 This work[𝑎] Ref. 4[𝑏] Ref. 5[𝑐]

Li Li2 1695 2108 1935
Li Na2 2065 2513 2394
Li K2 3535 3967 3791
Na Li2 1799 2148 2039
Na Na2 2196 2562 2524
Na K2 3728 4029 3966
K Li2 3034 3327 3102
K Na2 3698 3969 3838
K K2 6390 6302 6144

[𝑎] Equation (1) with CAM-B3LYP/Sadlej-pVTZ. [𝑏] ‘Sum over states’ TDDFT method with with
Slater-type orbital (STO) basis. [𝑐] Perturbational approach, configuration interaction (CI) using

Gaussian-type orbital (GTO) basis.
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the Moelwyn-Hughes85 combining rule

𝐶6(𝐴, 𝐵) =
2𝐶6(𝐴,𝐴)𝐶6(𝐵, 𝐵)

𝛼𝐴(0)

𝛼𝐵(0)
𝐶6(𝐵, 𝐵) +

𝛼𝐵(0)

𝛼𝐴(0)
𝐶6(𝐴,𝐴)

. (3)

Thus, if C6(A,A) for different species A are already available, then the A–B dispersion coeffi-
cient can be estimated simply by calculating static polarizabilities. We calculated theC6(A,B)
coefficients according to Equation (3) for the alkali heterodimers, and compare the results
with the ones obtained from Equation (1) in Table 3. Indeed, Equation (3) is seen to be very
accurate, within the estimated error from the numerical integration of the interpolated po-
larizabilities using Equation (1). As a further test, for a system in which the polarizability
and C6 of species A and B differ by several orders of magnitude, C6(K,H2) was evaluated.
Integration of the polarizability product according to Equation (1) with Steffen interpolation
gave 139.7 au. Equation (3) gave 131.0 instead, using the same underlying polarizability data.
The approximation from Equation (3) is still reasonable, but the percentage error from the
approximation is evidently larger for K–H2 than it is for the alkali–alkali dimer systems, and
the use of Equation (1) is preferable. However, one may envision the use of a scaling cor-
rection,19, 23 based on ratios of 𝛼(𝜔 = 0) for species A and B, to correct for systematic errors
in the calculated polarizability by employing a lower vs. higher level of theory. Of course,
this would only be feasible for not too large systems where the scaling of the computational
demands of a targeted high-level method (beyond the scaling of TDDFT linear response) is
not impractical.

3.5 C6(A,A) coefficients of other small molecules and larger systems

For further validation and testing of the approach & implementation, closed-shell molecules,
such as ammonia, benzene, ethane, or buckminsterfullerene (C60), as well as open-shell sys-
tems such asNH2, O2 orNO,were selected, based on the availability of literature data. We also
included several more open-shell systems for which polarizabilities and C6 coefficients have
thus far not been reported, namely NO2, perchlorotriphenylmethyl (PTM), and a persistent
bicarbazole radical cation that we encountered in a recent study of chiral emitters.73

Table 5 displays the static polarizabilities, as well as the corresponding dispersion C6 co-
efficients for the systems studied in this section. We also compare the results with the corre-
sponding experimental polarizability (in case it is available in the literature) and theoretical
C6 coefficients from other studies. Note that our approach for other diatomic molecules and
larger systems is in very good agreement with experiments and other literature data. For the
most part, the available reference data are for closed-shell systems, for the reason that com-
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putational methods for open-shell systems have traditionally been more limited, as already
stated in the Introduction.

The reference data for O2 and NO, which are both open-shell molecules, were obtained
from discretized (pseudospectral) dipole oscillator strength distributions (DOSDs)52 based
on experimental data, or frequency-dependent polarizability data using Padé approximants
also in conjunction with experimental data.53 As such, these reference values can be con-

Table 5: Static polarizabilities (𝛼) and dipole-dipole dispersion coefficients C6(A,A) for se-
lected molecules.[𝑎]
System 𝛼 (calcd.) 𝛼 (expt.) C6 C6 from Other Works

BeH 33.42 (32.72)[𝑏] - 170
MgH 60.26 (62.66)[𝑏] - 471
CaH 130.97 (134.34)[𝑏] - 1397
CN 21.65 (20.50)[𝑏] - 116
NH2 12.39 (12.21)[𝑏] - 62.9
NH3 14.8 (15.6)[𝑓] 15.0[𝑐] 88.7 94.4,[𝑓] 89.1,[𝑗] 89.0,[ℎ] 79.7[𝑞]
C2H6 27.9 (30.7,[𝑓] 29.4, [𝑘] 27.6[𝑘∗]) 30.2[𝑐] 357 397,[𝑓] 374.4,[𝑘] 349.2[𝑘], 381.8[𝑛], 374.5[𝑡]
C6H6 69.7 (68.2,[𝑔] 70.0,[𝑔∗] 68.7[𝑑] 1765 1737,[𝑔] 1773,[𝑔∗] 1730,[𝑚]

76.8,[𝑜] 79.5,[𝑜] 68.7[𝑟]) 1726,[𝑝] 1956.8[𝑞], 1779[𝑟], 1874[𝑡]
O2 10.7 10.8[𝑐] 60.7 61.6[ℎ]
NO 11.6 - 68.1 69.7,[ℎ] 69[𝑙]
NO2 19.7 - 160
BCz 387.4 - 45.0[𝑢]
PTM 448.7 - 69.0[𝑢]
C60 545.7 (538.0,[𝑠] 543.1[𝑠]) 516±54[𝑒] 99.0[𝑢] 98.8,[𝑢,𝑖] 101.0,[𝑢,𝑔] 101.8,[𝑢,𝑔] 96.0[𝑢,𝑠], 97.1[𝑢,𝑡]

[𝑎] This work, except where indicated otherwise. CAM-B3LYP/Sadlej-pVTZ. Calculated
polarizabilities from the literature given in parentheses. [𝑏]Reference 28. Møller-Plesset perturbation
theory (MPPT) based on the quasi-energy derivative (QED) method using Gaussian-type orbital
(GTO) basis. [𝑐]Reference 86. [𝑑]Reference 87. [𝑒]Reference 88. [𝑓]Reference 1. Time-dependent
Density Functional Theory (TDDFT) within the adiabatic local density approximation (ALDA)

kernel using Slater-type orbital (STO) basis. [𝑔]Reference 12. Time-dependent Hartree-Fock (TDHF)
with GTO basis. [𝑔∗]Reference 12. TDDFT with GTO basis. [ℎ]Reference 52. Derived from

experimental data; see text for details. [𝑖]Reference 16. TDDFT with GTO basis. [𝑗]Reference 89.
Dipole oscillator strength distributions (DOSDs) method. Numerical simulations. [𝑘]Reference 10.
TDDFT with GTO basis. [𝑘∗]Reference 10. TDHF with GTO basis. [𝑙]Reference 53. Derived from
experimental data; see text for details. [𝑚]Reference 14. TDDFT time propagation approach with
ALDA. [𝑛]Reference 90. DOSDs method. Numerical simulations. [𝑜]Reference 91. HF level using
GTO basis. [𝑝]Reference 35. Symmetry-adapted perturbation theory (SAPT) with GTO basis.
[𝑞]Reference 38. Effective fragment potential (EFP2) method with GTO basis. [𝑟]Reference 43.

Coupled-cluster singles and doubles (CCSD) with GTO basis. [𝑠]Reference 24. TDDFT with GTO
basis. [𝑡]Reference 45. Resolution-of-identity (RI) coupled-cluster singles and approximate doubles

(RI-CC2) with GTO basis. [𝑢]Values should be multiplied by 103.
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Figure 3: Dipole-dipole dispersion coefficients C6(A,A) of selected systems obtained with
TDDFT CAM-B3LYP/Sadlej-pVTZ, compared to DOSD-based results from Reference 52 re-
flecting experimental data.

sidered to represent experimental C6 coefficients. Figure 3 compares the C6 coefficients
of selected small systems determined with our TDDFT approach versus data from Margo-
liash and Meath,52 whose used the aforementioned DOSD approach. The Li data reflects the
aforementioned underestimation of the calculated static polarizability with TDDFT CAM-
B3LYP/Sadlej-pVTZ. Otherwise, the different results agree very well, both for closed-shell
and open-shell molecules. Previous studies for C6H6 and C60 fullerene employed the afore-
mentionedGauss-Legendre quadrature.12, 24, 43 Wenote that we obtain very similar data using
the Steffen interpolation (see Table 5), showing that the integration accuracy is sufficient for
these systems.

Given that the agreement of our data for C60 with literature data is also very good, we con-
clude that the NWChem implementation is capable of computing accurate linear response
properties and dispersion coefficients for open- and closed-shell small, medium and larger
systems.

3.6 C9 coefficients

To demonstrate broader applicability of the method, additionally, C9 coefficients were deter-
mined for alkali-metal atoms, diatomic molecules, and NH3. For the case of three identical
atoms, Midzuno and Kihara92, 93 derived an approximate expression for C9(𝐴,𝐴,𝐴), which is
given by

𝐶9(𝐴,𝐴,𝐴) =
3
4𝛼

𝐴(0) C6(A,A), (4)

along with a generalized approximate expression for C9(A,B,C). We calculated the C9 coeffi-
cients according to Equations (2) and (4), and compared to available literature data. Results

14



are collected in Tables 6, 7, 8, S2 and S3.
For the alkali metal atoms, Marinescu et al.31 determined the three-body dispersion coef-

ficients using nondegenerate perturbation theory and atomic hydrogen-likewavefunctions in
the presence of pseudopotentials. Tang and coworkers94 used oscillator strength sum rules,
and Kang et al.95 employed the combined l-dependent model potential with the linear vari-
ation method based on B-spline basis functions. In line with the C6 coefficients, deviations
between our approach and these studies is also observed for the C9 coefficients of Li and Na
(Tables 6 and 7), because of the underestimation of the polarizability of these atoms by CAM-
B3LYP/Sadlej-pVTZ. For the K atom, we obtain very similar results to other data from the
literature, which is also in line with the findings for the polarizability. The aforementioned
correction scheme would seem to be useful, as it is easy to obtain the atomic polarizability
with a large variety of high-level methods. Data for other functionals are discussed further
below. Our limited set of data for the C9(A,A,A) with A = Li, Na, or K confirms the excellent
performance of the approximation provided by Equation (4).

For some diatomic molecules and NH3, DOSD-derived data fromMargoliash et al.96 and,
McDowell and Meath97 are taken as references for our C9(A,B,C) coefficients. Tables 8, S2

Table 6: Coefficients C9(A,A,A) for alkali-metal atoms. Comparison with available literature
data.

Atom Eq. (2)[𝑎] Eq. (4)[𝑎] Ref. 31[𝑏] Ref. 94[𝑐] Ref. 95[𝑑]

Li 133061 133362 170100 170620 170100
Na 145559 146453 175800 189200 175800
K 834151 849345 837500 831800 838200

[𝑎] This work. CAM-B3LYP/Sadlej-pVTZ. [𝑏] Nondegenerate perturbation theory. [𝑐] Oscillator
strength sum rules. [𝑑] l-dependent model potential with the linear variation method.

Table 7: Triple-dipole dispersion coefficients C9(A,B,C) for the combinations of alkali-metal
atoms Li, Na and K. Comparison with available literature data.

A B C This work[𝑎] Ref. 31[𝑏] Ref. 95[𝑐]

Li Li Na 136760 171600 171700
Li Li K 244456 288400 288600
Na Na Li 140904 173500 173600
Na Na K 257346 292800 292900
K K Li 450780 490800 491100
K K Na 460777 492900 493500
Li Na K 250535 290400 290500

[𝑎] This work. CAM-B3LYP/Sadlej-pVTZ. [𝑏] Nondegenerate perturbation theory. [𝑐] l-dependent
model potential with the linear variation method.
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and S3 show excellent agreement between the methods, apart from a now-expected under-
estimation when Li is involved because of the underestimation of the static polarizability by
CAM-B3LYP/Sadlej-pVTZ. We also predict C9 coefficients using other small and large sys-
tems for which these coefficients have not been reported thus far. Table S8 collects data for
C9(A,B,C) involving CO, CN, O2, NO, NO2, NH2 and NH3. Table 9 gathers our predictions for
the C9 involving larger systems, and additional calculated data can be found in Tables S4, S5,
S6, and S7.

Table 8: Triple-dipole dispersion coefficients C9(A,B,C) in atomic units involving Li, selected
diatomic molecules, or NH3. Comparison with DOSD-derived data from Margoliash et al.96
and McDowell and Meath.97

A B C This work[𝑎] DOSD96 DOSD97

H2 N2 CO 275.3 - 280.6
H2 O2 CO 248.3 - 252.1
H2 CO NO 266.5 - 272.1
N2 H2 Li 869.2 924.6
N2 CO O2 586.5 - 594.6
N2 CO NO 628.6 - 640.4
O2 H2 Li 782.4 830.8 -
O2 N2 Li 1734 1830 -
O2 N2 H2 234.3 235.7 235.9
NO H2 Li 846.7 903.0 -
NO N2 Li 1876 1988 -
NO N2 H2 251.4 254.2 254.5
NO O2 Li 1689 1787 -
NO O2 H2 226.8 228.7 228.7
NO O2 N2 537.8 541.0 541.5
CO O2 NO 568.0 - 576.7
NH3 H2 Li 1062 1121 -
NH3 N2 Li 2349 2465 -
NH3 N2 H2 298.5 299.8 -
NH3 O2 Li 2115 2216 -
NH3 O2 H2 269.1 269.4 -
NH3 O2 N2 633.2 632.0 -
NH3 NO Li 2289 2408 -
NH3 NO H2 289.0 290.0 -
NH3 NO N2 679.0 681.2 -
NH3 NO O2 613.2 613.5 -

[𝑎]CAM-B3LYP/Sadlej-pVTZ.

16



3.7 Dependence of C6 and C9 coefficients on the functional

As seen, the polarizabilities and therefore the C6 and C9 coefficients depend on the accu-
racy of the dipole polarizabilities. The polarizability for Li and Na calculated with CAM-
B3LYP/Sadlej-pVTZ underestimates the experimental reference values noticeably, which
presumably translates into large deviations for the corresponding C6 and C9 coefficients.
Therefore, other functionals that give static dipole polarizability values closer to the experi-
ments were tested for verification. We evaluate here the results for Li and Na atoms, as they
are the ones with largest error respect to other methods.

Table 10 lists the static polarizabilities, and theC6 andC9 coefficients for Li andNa varying
the functional (and basis) employed. As expected, when the static polarizability is closer
to experiments, the resulting C6 and C9 coefficients agree much better with other studies
(compare with Tables 2 and 6). Excellent agreement is obtained with the LC functional LC-
𝜔PBE for Li and with LC-PBE and the jorge-ATZP basis for Na. The table also shows results
for C6 and C9 from the CAM-B3LYP/Sadlej-pVTZ calculations, scaled by the square or the
cube, respectively, of the static polarizability results obtained with the different functionals
relative to CAM-B3LYP/Sadlej-pVTZ. These are the dispersion coefficients corresponding to
a global scaling correction for the 𝛼(𝑖𝜔) data set based on the static polarizability alone. The
results are evidently improved over CAM-B3LYP/Sadlej-pVTZ, but not spot-on with the full
results from the other functionals. This demonstrates that the dispersion of 𝛼(𝑖𝜔) relative
to 𝛼(0) is also affected by the functional, and accurate results cannot be recovered simply
by scaling 𝛼(𝑖𝜔) uniformly. Nonetheless, it is seen that the error in the static polarizability
is a primary source of errors in the resulting C6 and C9 coefficients, whereas an incorrect
prediction of the dispersion of 𝛼 is a secondary source of errors. A simple scaling correction

Table 9: Triple-dipole dispersion coefficients C9(A,B,C) involving C2H6, C6H6, BCz, PTM,
and C60.

A B C CAM-B3LYP/Sadlej-pVTZ

C2H6 C6H6 BCz 192344
C2H6 C6H6 PTM 238168
C2H6 C6H6 C60 284193
C2H6 BCz PTM 1207920
C2H6 BCz C60 1442150
C2H6 PTM C60 1784310
C6H6 BCz PTM 2772140
C6H6 BCz C60 3312130
C6H6 PTM C60 4091020
BCz PTM C60 20825200
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based on 𝛼(0) alone appears to be suitable for eliminating the leading-order errors.

Table 10: Static polarizabilities, dipole-dipole dispersion coefficients C6(A,A) and triple-
dipole C9(A,A,A) coefficients for Li and Na using different functionals. The basis employed
is Sadlej-pVTZ except where noted otherwise.[𝑎]

System Functional 𝛼 C6 scaled C6 C9 scaled C9
Li CAM-B3LYP 148.8 1195 - 133061 -

LC-𝜔PBE (𝜔=0.4) 165.3 1406 1475 173983 182415
LC-PBE0 (𝜔=0.3) 160.2 1343 1385 160956 166046

Na CAM-B3LYP 146.6 1332 - 145559 -
LC-PBE (𝜔=0.27) 164.8 1589 1683 195389 206780
LC-PBE/jorge-ATZP (𝜔=0.27) 161.4 1541 1615 185900 194244

[𝑎]See text for an explanation of the ‘scaled’ columns. The experimental 𝛼 for Li and Na is 164 ± 3.0
and 159.2 ± 3.4, respectively.78 See Tables 2 and 6 for C6 and C9 coefficients from other works.
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4 Conclusions

We have demonstrated an efficient and accurate way to calculate dispersion coefficients C6

and C9 coefficients for closed- and open-shell molecules by using dynamic TDDFT complex-
frequency linear response theory as implemented in the NWChem program. The dispersion
coefficients were determined by the calculation of the corresponding polarizability at differ-
ent imaginary frequencies with subsequent monotonic Steffen interpolation and integration.
The results for closed- vs. open-shell species appear to be of similar quality. Systems with
known large static correlation effects were not included in the test set on purpose, because
Kohn-Sham (TD)DFT with commonly used approximations is expected to fail in such cases.
Extensive comparisons with literature data were used to validate the polarizability and C6

and C9 coefficients. For motivation of new approaches for calculating dispersion coefficients
of larger complexes with open-shell subsystems, and for future reference, we have predicted
polarizabilities 𝛼(𝑖𝜔) as well as C6 and C9 coefficients for selected medium-size and larger
compounds.

The results from the study indicate that a simple scaling of the static polarizabilities of the
subsystems, based on comparisons of calculations at different levels of theory, would likely
lead to improvements for cases where the static polarizability is predicted poorly by DFT.
However, the dispersion of the polarizability along the imaginary frequency axis is also im-
pacted by the functional/basis combination, such that a simple global scaling of 𝛼(𝑖𝜔) based
on 𝛼(0) ratios is unlikely to recover the results from a higher-level method fully. However,
the scaling appears to work well as a leading-order correction. The Steffen interpolation was
shown to perform very well, and it can be recommended as an alternative to Gauss-Legendre
quadrature for the integration used to obtainC6,C9, and in similar types of integrationswhere
the underlying data can be assumed to decay in a monotonic fashion.

Supporting Information

Static polarizabilities of alkali-metal and diatomic molecules with different functionals and
basis sets, polarizability of diatomic molecules using linear and Steffen interpolations, triple-
dipole dispersion coefficients; C9(A,A,A), C9(A,A,B) and C9(A,B,C) and, xyz coordinates.
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