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Motivated by recent advances in the fabrication of twisted bilayers of two-dimensional materials, we consider
the low-energy properties of a twisted pair of two-dimensional nodal superconductors. We study both the cases
of singlet and triplet superconductors. It is demonstrated that the Bogoliubov—de Gennes (BdG) quasiparticle
dispersion undergoes dramatic reconstruction due to the twist. In particular, the velocity of the neutral massless
Dirac excitations near the gap nodes is strongly renormalized by the interlayer hopping and vanishes at a “magic
angle” where in the limit of a circular Fermi surface a quadratic band touching is formed. In addition, it is
shown that the BdG dispersion can be tuned with an interlayer displacement field, magnetic field, and current,
which can suppress the velocity renormalization, create finite BAG Fermi surfaces, or open a gap, respectively.
Finally, interactions between quasiparticles are shown to lead to the emergence of a correlated superconducting
state breaking time-reversal symmetry in the vicinity of the magic angle. Estimates of the magic angle in a
variety of nodal superconductors are presented, ranging from the cuprates to the organic and heavy-fermion
superconductors, all of which are shown to be promising for the experimental realization of our proposal.
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I. INTRODUCTION

The remarkable recent discoveries of correlated insu-
lators and superconductivity in twisted bilayer graphene
(TBG) [1-4] have demonstrated a novel way of control-
ling quantum phases of matter in two-dimensional materials.
Following these discoveries, the field of “twistronics” [5]
or moiré materials [6] has rapidly expanded by developing
new experimental platforms based on twisted multilayers.
Currently, a number of systems beyond twisted graphene bi-
layers have been considered, such as hBN substrate-aligned
TBG [7,8] and trilayer [9] graphene, twisted double bilayer
graphene [10], as well as twisted transition metal dichalgo-
nides [11-15]. All of them have now been established as
promising for the observation of correlated and topological
many-body behavior [6]. In addition to correlated insulators
and superconductors, twisted materials have also been ob-
served to exhibit topological Chern insulating states [9,10,16]
and a quantized anomalous Hall conductivity [8].

From the theory perspective, TBG and related systems ap-
pear to realize a novel example of the interplay between strong
correlations [17-20] and topology [21,22], where the fragile
topology of the band structure obstructs the construction of
conventional Hubbard-type models [23,24]. Analogies with
the quantum Hall effects have been pointed out [25], and
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universal origins of the magic-angle behavior demonstrated
[26]. However, many important questions on TBG and other
twisted semiconductors, such as the strange metal behavior
[27] or the nature of the superconducting state [2], remain
to be explored and understood. Furthermore, application of
twistronics to nonsemiconductor materials, such as magnetic
insulators [28], topological surface states [29,30], and ultra-
cold atom systems [31,32] have also been proposed to lead to
novel behaviors.

Recently, the existence of emergent physics in twisted bi-
layers of cuprate superconductors [33] at twist angles around
45° has been reconsidered [34-36]. In particular, the in-
terference of superconducting order parameters leads to a
time-reversal symmetry-breaking transition [37,38] (in agree-
ment with previous works [34-36]) and a topological state
[33] has been predicted. Recent experiments on interfaces
of twisted finite-thickness flakes are consistent with d-wave
pairing [39-41] and show signatures of time-reversal breaking
near 45° [39]. However, the topological nature of the resulting
state has been later shown to be suppressed due to particular
symmetry of the Cu orbitals [42], while incoherent tunneling
has been suggested to overcome this limitation [43]. Addi-
tionally, the dependence of Josephson effect on twist angle
and temperature in these systems has been recently discussed
[37,38]. Interestingly, a time-reversal breaking transition [37]
has been predicted to occur away from 45° to a state with a
different symmetry compared to one forming at 45°. However,
the fate of the low-energy excitation spectrum at small twist
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angles has remained poorly understood despite the possibility
of a concise low-energy theoretical description at the moiré
length scale, in analogy to TBG.

Here, we propose to apply twistronics paradigm at low
twist angles to control neutral quasiparticle excitations in
nodal superconductors (SC). Indeed, in the vicinity of the
nodes, the Bogoliubov—de Gennes (BdG) quasiparticles have
a Dirac dispersion [44,45], reminiscent of graphene. In stark
contrast however, the charge neutral [46,47] nature of the
superconducting quasiparticles makes the system physically
very different, and difficult to control by conventional meth-
ods, such as electrostatic gating. Thus, one may expect that
twisted bilayers of nodal superconductors (TBSC) may dis-
play an altogether different behavior from TBG in response to
the same types of perturbations, which may open the door to
new methods of manipulating the SC quasiparticles.

Controlling the BdG quasiparticles using twisting can po-
tentially help address two important issues in the field of
superconductivity. First, topological superconductivity, which
is related to the topology of the BAG bands, while predicted
to exist more then a decade ago [48-50], currently lacks a
robust experimental realization despite many materials and
setups studied [51-55]. The possibility of creating localized
Majorana fermion excitations [56] in these states is especially
appealing for its possible applications. Second, the impact
of interactions between the BdG quasiparticles has remained
poorly understood even though they are expected to play an
important role in nodal [44,45,57], topological [50,58], and
strongly correlated [59,60] superconductors. In this regard, a
platform where correlations can be controlled by external pa-
rameters could give a tremendous advantage in understanding
these effects.

In this paper, a companion manuscript to the accompany-
ing paper [61], we derive an effective low-energy model for
twisted bilayers of two-dimensional nodal superconductors
and study the impact of external perturbations and interac-
tions on the quasiparticles. The Dirac velocity of the BdG
quasiparticles near the zeros of the superconducting gap (i.e.,
nodes) is strongly renormalized by the interlayer tunneling
and vanishes at a “magic” value of the twist angle where
the spectrum takes the form of a quadratic band touching in
the limit of a circular Fermi surface. The application of a
displacement field between the layers, a Zeeman splitting, and
an in-plane current can be used to tune the dispersion, bringing
the Dirac nodes back, or creating a BAG Fermi surface, thus
mimicking the effect of gating in two-dimensional electronic
materials. An interplane Josephson current, on the other hand,
opens a topological gap, further analyzed in [61]. Close to the
magic angle, interactions between the BAG quasiparticles are
shown to result in a (secondary) instability to a time-reversal
symmetry-breaking superconducting state. Finally, we discuss
a number of candidate materials that can realize TBSC with
current experimental techniques.

II. LOW-ENERGY HAMILTONIAN

In the following, we determine the low-energy description
of twisted bilayers of two-dimensional nodal superconductors.
Each layer has Dirac nodes in the BdG spectrum at the inter-
sections of the normal-state Fermi surface and the line node

@
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FIG. 1. (a) Illustration of the momentum-space structure for a
bilayer twisted at an angle 6 for a square lattice and a Fermi sur-
face appropriate for cuprate superconductors. Fermi surfaces of two
layers are shown in red and black, with a pair of nodes located at
Ky and Ky, forming a single “valley,” emphasized by filled circles.
Tunneling occurs between states of two layers overlapping in the fig-
ure and also the ones additionally shifted by reciprocal wave vectors
of the original Brillouin zone (e.g., G, shown by black arrows in
the inset) or of the rotated one (e.g., G, shown by gray arrows
in main panel). The latter processes are, however, suppressed and
may be neglected (see text). Inset shows the construction of the mini
Brillouin zone (green) due to the moire superlattice formation with
the inverse lattice unit vectors G’l"fz. (b) Expanded nodal region from
(a) showing the local coordinates for the case of symmetry-protected
nodes: k is along the bisector of the two node lines, and k, L k.

of the SC gap (see Fig. 1). The nodes in the BdG specturm do
not generically occur at high-symmetry points of the Brillouin
zone, which, as is demonstrated below, allows for additional
theoretical control in the calculations compared to the case
of TBG.

To describe the effective BAG Hamiltonian in a generic
way, we use the Balian-Werthammer spinors CD;K =
@/ (K) = [c] LK), ¢ (—K), o LK), —¢i 4 (—=K)] (cf. with
[62]) inlayers / = 1, 2 and denote matrices acting in Gor’kov-
Nambu and spin space by 7; and s;, respectively. A single layer
is characterized by the single-particle dispersion ¢(K)t3 and a
superconducting gap A(K)A, where A = 7; for a spin singlet
SC and A = [d(K) - s]T; for a spin triplet SC [62], where
the d?>(K) = 1 describes the spin state of the triplet Cooper
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pairs. Near a node ¢(Ky) = 0, A(Ky) = 0, to the lowest or-
der e(K) ~ vy - (K — Ky) and A(K) = v - (K — Ky). The
Hamiltonian in the vicinity of a gap node at momentum Ky
on the Fermi surface without twisting has the first-quantized
form [44,45]

Hy(K) = vp - k13 + va - KA, (D

where k = K — Ky. The tunneling Hamiltonian between lay-
ers can be written in second-quantized form as

Hyn = Z o/ (R)T(R,R)®,(R) + Hec., )
R.,R’

where T(R, R’) is, generally, a matrix in Gor’kov-Nambu
and spin space. To capture only the most essential physics of
TBSC we will assume that (i) the tunneling is spin indepen-
dent; (ii) only interlayer charge tunneling is considered that
result in T(R, R’) = i3¢(R, R’) in Gor’kov-Nambu space;
(iii) the two-center approximation (R, R") = #(R — R’) can
be used [63]. The off-diagonal elements in Gor’kov-Nambu
space, neglected due to (ii), correspond to interlayer pairing
order, which can arise in the mean-field BdG Hamilto-
nian only from the interlayer interactions, which we neglect
with respect to the intralayer ones, assuming highly two-
dimensional character of superconductivity in the material.
Taking the above into account, the tunneling term takes the
form

Hun ~ ) t(R—R)O{(R)30;(R) + He.,  (3)
R,R’

where R and R’ are the coordinates of the lattice sites in
the two layers and with R’ being rotated relative to R. In
momentum space, the tunneling matrix element fy x between

states with momentum K and K (the latter taken in the rotated
momentum space) takes the form

IR+G
g =) %%m,mc» “
G.G

where € is the unit-cell area, tq is the continuous Fourier
transform of 7(r), and G and G are the reciprocal lattice vector
of the original and twisted BZ, respectively. We assume a

J

one-atom unit cell and the shift between twisted layers to
be zero; for a generic twist angle the latter does not restrict
the generality due to the incommensurability of the twisted
lattices. The incommensurability also results in the recon-
struction of the Brillouin zone into a smaller mini-Brillouin
zone (mBZ), that at low twist angles can be approximately
constructed with the vectors G'l‘”2 =G, — (~}1,2, shown in
Fig. 1. Y

Let us consider the tunneling in the vicinity of a node. Un-
like graphene, the nodes in a superconductor are not restricted
to be at a high-symmetry point of the Brillouin zone. From
the momentum-space picture (Fig. 1) one sees that, as Ky is
at a generic point of the Brillouin zone, |KN + G| * |KN|.
Moreover, if the node is sufficiently close to the I" point, i.e.,
IKy| < |G, it follows also that |[Ky| < |Ky + G|. Alterna-
tively, this argument is equivalent to Ky being away from the
edges of the mBZ, in contrast to graphene, where it is at the
corner of the mBZ. Assuming that 74 decays on the scale of
inverse BZ size [63], all terms except the one with G, G=0
can be neglected. At small twist angles we can further approx-
imate K ~ k? + [2 x Ky10 = k? + Qy, where k? denotes k
rotated by 6. We can then approximate the tunneling term as

Hyn ~ 1) ®(k)z3da(k’ + Qy) + He., (5)
k

1 . .
where t = % is a constant and k is now measured from Ky,

the node momentum.

Note that the tunneling occurs with a momentum shift
—Qu, when tunneling 2 — 1 and Qy for 1 — 2, implying
that the momentum shift can not accumulate (e.g., to £2Qy
and so on) over repeated hopping, unlike in TBG [63]. As
the tunneling acts between the layers, Qy shift can only be
followed by —Qy one, i.e., restoring to the initial point. Fur-
thermore, the different nodes in a layer are not expected to be
very closely spaced, i.e., |[Ky — Ky| ~ Ky, where K}, is the
other node’s momentum. Consequently, [K} — Ky| ~ Ky >
QOy. It is then evident that no tunneling between different
nodes may occur in Eq. (5). The pairs of nodes stemming from
two layers can then be treated as independent “‘valleys.” The
full Hamiltonian for a single valley takes the form (after a
—6 /2 rotation of the momentum space)

H=2) @ ongunle®& " = Qu/2)5101 q0r_gy2) + D5 grsgy K + Qu/2)1319 4010, 12)
k

+ O] oy DK = Qu /AP ooy /2) + P gm0 A + Qu/2) AT, gtz 1y 2)

+10!

where ¢(k) is the quasiparticle dispersion, A(k) the super-
conducting gap, k is measured from Ky, and k*®/2) denotes
k rotated by £(6/2).

Let us first ignore the effects of rotation of k, which
are parametrically small in the limit 6 — 0 (see dis-
cussion at the end of this section and in Sec. V).
One can expand then ek =+ Qy/2) =~ vy - (K£Qy/2),
Ak £Qyn/2) ~ va - (k£ Qy/2). Introducing the spinors

o
l,(k’g/z—QN/Z)T?’q)2~(kﬁ/2+QN/2) + t®2’(k9/2+QN/2)r3 q)l,(k’g/zfQN/Z)s (6)

(

@] = [®](k — Qn/2), D}(k +Qy/2)] and denoting the
Pauli matrices acting in the layer space by o; the Hamiltonian
can be rewritten in a compact form:

A Vfr - A
H:Z@:{(VFJ(‘L@— F2QN‘L'3U3+VA-kA
k

— M QN AO’3 + [‘[301)‘13:;. @)
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Equation (2) of [61] can then be obtained for the case
vr || Ky, v L va, that corresponds to the nodes being at
a high-symmetry line, such as in the case of symmetry-
protected gap nodes in a non s-wave superconductor. For that
case we can further write vy - k = vpkj and vp -k = vaky,
where k| is along vy and k; orthogonal to it [Fig. 1(b)]. To
simplify further discussion, in what follows below we will

also use the notations
f—vp k. S=vs-k = oo _%
2 t

Additionally, Eq. (7) for nodal triplet SC states can be
greatly simplified by choosing the spin quantization axis along
d(Ky), resulting in A = 7;53. Then, a unitary transformation
U= 1?’ + %Q (i.e., 73 for the spin-down sector), results
in A — t;, which importantly is now equivalent to the singlet
case, without changing other terms in the Hamiltonian in
Eq. (7). Thus, unless otherwise indicated, below we will study
the singlet case without loss of generality and omit the spin
degree of freedom. When relevant, we will comment on the
distinctions between singlet and triplet TBSCs.

Finally, let us discuss the effects of the rotation of k —
k*0/2 We will limit ourselves to the case of symmetry-
protected nodes since otherwise the most important correction
is due to the t303 term in Eq. (7). The lowest-order corrections
are of the order 6k and take the form (see Appendix A for
details)

®

2) (2)
N 0k 0k
8y ~ F o=t ni0y — L, ©)
where
3%e(k) 92A(K)
(2) . 2)
Vg UF N 8ki Up VA N ok kL (10)

Both v}z) and U(AZ) vanish for a circularly symmetric e(k)
and A(k) dependent only on the polar angle in K plane.
For a generic noncircularly symmetric case, v(Fz) ~ vp and
v(Az) ~ v are expected. As will be shown below, the rel-
evant energy scale at low twist angles is ¢, corresponding
to vak, vpk) ~ t. Consequently, the two new terms are of
the order 16 (vg/va) and 18 (va/vF) compared to the overall
scale of 7. Thus, at 6 < 1 neglecting these terms is justified.
Near the magic angle, their effect becomes important for the
quasiparticle dispersion as discussed in Sec. IVD. They also
can affect the weak-coupling instabilities at the magic angle,
as discussed in Sec. V.

Evolution of dispersion with twist angle

Here we analyze the low-energy spectrum of Eq. (7) ne-
glecting the term —*£ 'ZQN 1303; its effect will be considered in
Sec. IV. The Hamiltonian using notations (8) and for singlet
pairing takes the form H = 3", ®! Hy Pk, where

Hy = &1+ 0611 — doT103 + 11307 (11)

The eigenenergies are given by

E*(K) = 24+ 82 +12(1 + &%) £ 21/€2 + 82a2 + 122,

(12)

It can be shown that the spectrum has zeros E2(k) = 0 at

V=41 —-0a2, =0, |al<l1

eVN=0, "=+V1—a2, |a|>1. (13)

At each of these points, the Hamiltonian has two degenerate
Zero-energy eigenvectors, given by

ler) = [—&N, 80 — 1,1 — 8o, EM1T J[2y/t(t — 80)],
lea) = [—&N,t + 8o, t + 80, —ENTT /1241t +80)]  (14)

for |a| < 1 and
le}) = [0, 8 + 80,1, 01" /v/12 + (8N + 80)?,
ley) = [8Y +80,0,0, =11 //12 + (8N + §p)? (15)

for |a| > 1, where the first (second) two entries in the eigen-
vectors correspond to the Gor’kov-Nambu space of the first
(second) layer (spin degree of freedom is suppressed, as we
consider singlet pairing here).

One can further project Eq. (7) in the vicinity of (&V, §")
to the subspace spanned by |e; 2) or |¢] ,) to obtain an effec-
tive low-energy Hamiltonian of TBSCs. Interestingly, by an
appropriate choice of basis in the subspace,' one can bring
the effective Hamiltonian near each of the zeros to identical
forms:

Her(K) = Vr - K83 + VA - Ky, (16)

where ¢; are Pauli matrices acting in the |e;), |e;) (or
le}), |€5)) low-energy subspace. The renormalized Fermi ve-

locities are given by ¥ra = /1 — min{a2, a=2}vp s (see
Fig. 2). The vanishing of the Fermi velocity at « = 1, cor-
responding to the “magic” angle of

2t
UAKN ’

Oma = (I7)
suggests a different form of the spectrum at the MA. Also,
this clarifies the meaning of the dimensionless parameter «
in Eq. (8), as it is directly related to the magic angle value
by o = 0/6ma. We note that, distinct from estimates in TBG,
this result is not perturbative in the interlayer tunneling for the
generic case when the nodes are away from the Brillouin zone
boundary.

Additionally, an interesting result is obtained by projecting
the terms arising from the momentum rotation on a noncircu-
lar Fermi surface, Eq. (9) for & < 1 to the basis of Eq. (17).
In particular, the result is different in sign for the two Dirac
points and equal to

N 6% vk vPk
O0Hp off = iﬂ(%ﬁ + AT”Q), (18)

which results in small corrections to ¥ and 9. Importantly,
this implies that the current-induced gap value (which appears

'The basis choice to get Eq. (16) is {(le;) + IeQ))/«/i (ler) —
lea))/+/2}  around ¥ =1—0a2,8¥ =0 and {(le;) +
le2))/7/2, (~le1) + le2))//2} around &Y = —/T— a?t, 8% = 0 for
|| < 1. For |a| > 1 one should use {|e}), |e})} near £ =0,8 =

V1 —a 2 and {le}), —|€,)} near § =0, 8" = —/1 — a2z,
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0<0<0,

FIG. 2. Evolution of the low-energy part of the BdG quasipar-
ticle spectrum (12) [see also Eq. (8)] as a function of twist angle
0 relative to the magic angle Oy5 in Eq. (17) in momentum space
for the nodal region depicted in Fig. 1(b); filled circles marking the
node positions in the unhybridized layers. At zero twist angle, the
interlayer tunneling simply leads to an appearance of split bonding
and antibonding Fermi surfaces (gray lines), with nodes located at
their intersection with the gap line node. Then, the two Dirac cones
initially separated along k; move towards each other on increasing
twist angle, while the Dirac velocity is renormalized downwards.
At the magic angle, the two merge into a quadratic band touching
[Egs. (20) and (21)], and separate again (this time along k,) on
further increasing the twist angle.

due to the ¢, term) reported in the accompanying paper [61]
is unaffected by these terms at low twist angles.

III. EFFECTIVE THEORY AT THE MAGIC ANGLE

We now proceed to construct an effective theory at the
magic angle. The Hamiltonian takes the form

H(K)|g=p,, = &E13 + 311 + 11301 —t1103. (19)

The zero-energy eigenvectors at £ =§ =0 are |a) =
(1,1,1,—1)/2 and |b) = (—1,1,1,1)/2. These states are
equal superpositions of particles and holes and thus have
zero charge, but the spin is well defined. If we project the
Hamiltonian (19) to the subspace spanned by |a), |b) we ob-
tain exactly zero. One can note that |a), |b) are eigenvectors
of the last two terms in Eq. (19); however, the first two
H' = £13 + 81y can lead to virtual transitions out of the sub-
space. Computing the second-order corrections due to these
terms in second-order perturbation theory §H, g—, (k) =
—({e|H'|c){c|H'|B) + («|H'|d)(d|H'|B)/(2t), where |c) =
(1, -1,1,1)/2, |d) = (1,1, —1, 1)/2 are states with energy
+2¢, we get

g2 — 52 &6
o BT (20)

where n matrices act in the |a), |b) subspace. This Hamilto-
nian describes a quadratic band touching (QBT) (Fig. 2), that
also occurs at the magic angle of TBG [1,64]. The spectrum

:I:(VF ‘K)? + (va - k)?
2t

Hya(k) = —

Enva (k) ~

2D

is characterized by an anisotropic effective mass mp = v%
F
and mpa = UL, For a two-dimensional system, this spectrum

A
possesses a finite density of states (DOS) at zero energy:

v = —2_ per node. To obtain an order-of-magnitude esti-
TUFUA

mate, we approximate v ~ A—N", where A is the estimate for
the superconducting gap maximum value and the size of the
Fermi surface being of the order K. This results in v ~ i—’n Vo,
where vy = 2 is the density of states in the normal state.
Interestingly, v can constitute a rather large fraction of the
normal-state DOS, especially if the superconducting gap is not
too large.

A question may be raised of whether the enhanced DOS at
Oma in the superconducting state affects the self-consistency
equation for the superconducting gap; in Appendix C we show
that the corrections due to the presence of the QBT are small
by a parameter ~(t/Ag)* log~' A/Ao (where A is the high-
energy cutoff for the pairing kernel) at low temperatures and
can be neglected. The physical reason for this suppression is
that the most pronounced effects of tunneling are confined to
the nodal region where the order parameter is small itself.

IV. TUNING THE BDG QUASIPARTICLE DISPERSION
WITH EXTERNAL FIELDS

We now show that the dispersion of TBSCs near the
magic angle can be tuned by a number of external parameters
accessible with currently available experimental techniques.
For each external perturbation type, we first identify a cor-
responding term in the basis of Eq. (7) which can then be
projected to the n basis of Eq. (20) to determine the resulting
spectrum. Here, we discuss only the experimentally relevant
perturbations; for a summary of all possible perturbations see
Appendix B.

A. Interlayer displacement field

In an experiment, the application of a back-gate leads
to displacement field which technically leads to a differ-
ence in chemical potential between the two layers (a term
proportional to t303 in Gor’kov-Nambu and layer space).
Interestingly, it has the same form as the term stemming
from (vp - Qun) # 0 in Eq. (7). Projecting 7303 to the basis
of Eq. (20) one obtains the —n; matrix.

The addition of the term an; to Eq. (20) results in the
zero-energy states being moved away from &€,5 =0 to &) =
8o = *+/ta; the dispersion around this point is also linear
(Dirac) instead of quadratic one. To study the approach to
the magic angle, we introduce a deviation term — (8¢ — #)7;073,
which projects to —(§p — #)n3. The resulting nodal points are
now at

& = \/1(t — 8) + 1/ (t — 80)> + a2,

ta
8=+ . (22)

\/t(t — 80) + 1t/ (t — 80)? + a?

The spectrum is always Dirac type and to quantify the renor-
malization of the Dirac velocities we compute the density of
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i (e) .

<

e #0

FIG. 3. Illustration of the effects of external fields on the spectrum of a TBSC. (a) Summary of the evolution of spectrum as a function
of twist angle in momentum space in the absence of external fields (cf. Fig. 2). Red lines indicate the direction of the node’s motion with
increasing twist angle. (b) Effect of an interlayer displacement field: the Dirac cones avoid merging into a QBT at all twist angles. (c) Effect of
Zeeman field: particle (hole) pockets form for spin-up (spin-down) quasiparticles. (d) Effect of in-plane current: particle and hole pockets form
for quasiparticles around Ky and —Ky, respectively. (e) Interlayer (Josephson) current opens a topological gap with an edge mode (black).

states per spin for a single valley at low energies:
1E|
2w vpva/ (8o — t)* + a? '

which can be compared to the result when a = 0 and ¢t & §g

v(E) =

(23)

of V(E)|q4=0 = WM; in both cases, the average velocity
v = /DrDa can be extracted via v(E) ~ v2|E|, resulting in

Vyen/V = {(@ — 1)?/[(oc — 1)> + @?]}/*. This ratio vanishes
at the magic angle, indicating the suppression of the Fermi
velocity renormalization effects.

Thus, a displacement field (or the nodes not being in a
reflection plane) results in a splitting of the QBT into two
Dirac points, such that the QBT is avoided for all twist angles.
On increasing the twist angle, two Dirac points move towards
one another, but avoid collapsing into a QBT, by preemp-
tively turning in the direction of +v, [see Fig. 3(b)]. For the
magic-angle effects to be observable, the t303 term magnitude
has to be much smaller than ¢ at the MA, i.e., for the case
of nodes not in a reflection plane (vg - Qy)/|Qn| K va is
required. On the other hand, this gives a way to suppress
the renormalization effects with a displacement field without
changing the twist angle.

B. Zeeman field

A Zeeman magnetic field (h - s) term, for a singlet SC or
triplet SC with d || h, commutes with Eq. (7), resulting in a
spectrum that splits into two sectors with energies E(K) £ &
[see Eq. (12)]. This results in the formation of compensated
quasiparticle pockets of opposite spin, as has been predicted
in d-wave superconductors [65]. However, the size of the
resulting pockets would be affected by the renormalization
of the Dirac velocity in TBSC [61]. In particular, the field-
induced DOS at the Fermi energy is v(h) ~ %
This effect can be used to shift the quasiparticle occupation
into the miniband that is formed by the reconstruction of the
Brillouin zone by the moiré pattern (see Fig. 1). Importantly,
this represents an analog of electrostatic gating for the neutral
BdG quasiparticles. In TBG, gating to commensurate moiré

filling fractions has led to the observation of correlated states
near the magic angle [6]. Thus, in the case of TBSCs a
Zeeman magnetic field (or an in-plane current as described
below) should provide a useful way to control the correlations
of the BAG quasiparticles, thus overcoming the challenges
posed by the charge neutral character of the excitations. For
a triplet TBSC with d L h, the Zeeman term has the same
commutation properties with respect to Eq. (7) as 73 and its
effect is equivalent to a shift of k. It preserves the QBT at
the magic angle, merely shifting its position in momentum
space.

As the orbital effect of the magnetic field induces inhomo-
geneities in the order parameter in the form of vortices, we
leave its detailed consideration for a future study; however,
qualitative description of the effect of an in-plane field is
discussed in the accompanying paper [61].

C. Supercurrent flow

Finally, we consider the effect of a supercurrent flow in
TBSC, that can be induced by applying an external current
bias. For a single layer, the in-plane supercurrent corresponds
to a finite Cooper pair momentum Qp, such that vg - k3 —
vr - k13 + vp - Qp in Eq. (1). The effect of the new term is
to produce quasiparticle pockets, similar to the Zeeman field,
albeit without spin polarization [66]. In this case the spin-
degenerate particlelike (holelike) pockets would form around
Ky (—Ky) [Fig. 3(d)]. The pocket formation by an in-plane
current has been observed experimentally in two-dimensional
SCs without twist [67,68]. As with the Zeeman field, the
in-plane supercurrent effects in TBSC should be boosted by
proximity to the magic angle in TBSC and efficiently “gate”
the BAG quasiparticles.

The effect of an interlayer supercurrent is dramatically
different. Microscopically, it corresponds to a nonzero phase
difference between the order parameters in the two layers
Ay — A2 Ay — Are /2, related via the current-phase
relation /(@) to the applied current [69]. For TBSC at
low twist angles, the conventional Josephson current-phase
relation I(¢) =1I.sing can be shown to hold down to

174506-6



MAGIC ANGLES AND CORRELATIONS IN TWISTED ...

PHYSICAL REVIEW B 107, 174506 (2023)

TABLE I. Summary of the effects of external fields on the TBSC
BdG quasiparticle spectrum. For all cases, except Zeeman field h L
d, the spectrum type in the third column is valid for all nonzero
twist angles in the presence of the corresponding perturbation, such
that the QBT at the magic angle does not occur. For the “interplane

supercurrent” case with a singlet SC, itz A = —1,.

Term added
Tuning parameter to Eq. (7) Spectrum
Interlayer displacement field 7303 Dirac point
Zeeman field h || d s|d Fermi surface
Zeeman field h 1 d sld QBT (at Oyia)
In-plane supercurrent 000 Fermi surface
Interplane supercurrent itsA Gapped
exponentially small temperatures T ~ 2te~>20/7 even at the

magic angle itself (see Appendix D). It follows then that ¢ is
monotonically increasing as a function of the applied current
up to a maximal value of ¢ = /2, corresponding to the
critical interlayer current /.. The new terms appearing in the
Hamiltonian are (we specify first the singlet SC case)

SHva(k, ¢) =

If projected to the basis of Eq. (20), 1,03 yields zero, while
second-order perturbation theory results in a contribution
__sin ((p/2)8

-4 sin(¢/2)103 + ¢ sin(p/2)1,. 24)

n3 that can be neglected for ¢ < 1. On the other
hand, 'L’2 projects to 1, leading to the Hamiltonian

%-2 _ 82
2t
The spectrum of this Hamiltonian is gapped; furthermore, in
the accompanying paper [61] we show that the gap never
closes for any value of the twist angle and is topological.

Explicitly, we can recast the Hamiltonian (25) into the form
Hya(k, ¢) = (f(k) - 7j) where

1) _£2 82
f1<k)=—§7: fak) =1 sin(p/2); fg(k)zgz—j.

The Berry curvature Fg 5(£, §) for a two-band system is given
by

Hyia (K, ) = —

)
n3 — %m +1sin(p/2)n2.  (25)

FE,S(%-a 8) Eahcfaagfbaéfc

1
2|f|3
—— (= f20: f10s f3 + f20: f305 f1)

sin(p/2)(&% 4 8%)

N 2| (82 + 1t sinp/2)1)

Integrating the Berry curvature over k one obtains the
Chern number equal to C = sgn[at¢] for ¢ < 1, consistent

J

2|f|3

(26)

286 — & &7 — 81(8p — 1) /

with the merger of two gapped Dirac points of the same
chirality [61].

The resulting effects of external fields on the spectrum are
summarized in Table L.

D. Noncircular Fermi surface

We now consider the influence of noncircularity of the
Fermi surface near the magic angle, described perturbatively
(i.e., for 8 <« 1) by Eq. (9). Projecting Eq. (9) to the basis of
Eq. (20) one gets

g (2)9
SH;\/IA%_ F_YMA Va A§

ZUA m= 21]}:

27

As vf) arises from the single-particle dispersion and v(Az) from
the gap amplitude, one expects that v® ~ vp > v'P ~ v,
[see Eq. (10)]. Near the magic angle, the full Hamlltonian

takes the form

2_ 2
fi R s it E+&
Hig” gy, 1o >~ 2 m o
— (8o — 1)n3, (28)
where
5y UF Ovia o6
& = , & = foA TMA (29)
2UA 2up

To discuss the form of low-energy spectrum, we first find the
zero-energy states of (28). These are at § = &y, 6 = oy with
&n, 8y given by

1) : 8 <t+$1 :
—& £, /E2+8(t — o)t
v=0, & = 5 ,
g2
(2):5O>t+m:, (30)
2t
&y = —&o,

by = +\J82 — £1&o + 2180 — 1),

_g2 —
where two cases are indicated. Noticing that W <

2
L one observes that there are four zero- energy points for

8
t+ E‘&’ bl & 8o <t+ E‘ and two otherwise. Near each of the

Zero- energy points we can expand the Hamiltonian to study
the form of the dispersion:

z _ 8t(8g —
51 t(O t)%_/n?,

1):H ~
(1) ¥ o

\/5(% —&ifo+ 2160 —1)

2):H ~F -

o 8,
/(61— 260) 20\ [&3 — 160 + 2139 — 1)
&m — > 3, (3D

174506-7



VOLKOV, WILSON, LUCHT, AND PIXLEY

PHYSICAL REVIEW B 107, 174506 (2023)

&it 0.5

FIG. 4. Evolution of the low-energy part of the BdG quasiparticle spectrum as a function of twist angle including corrections due to a

@ e ) )
noncircular Fermi surface [Egs. (11) and (9)]. For the figures we have taken p fmaks 0.5, % = 0.1. At low twist angles (a) two Dirac

2v,

F
points are present. One of the two Dirac points (a) first becomes a semi-Dirac point (b) and splits into three Dirac points (c) afterwards. On
further increasing 6, one of the three new Dirac points approaches the remaining original one (d) and forms a semi-Dirac point (e) before
opening a gap (f) there. Therefore, at larger twist angles only two Dirac points remain.

where &' = & — &y; 8 = § — y. One observes then that the
low-energy quasiparticle dispersion (or §y) is generally linear.

2
For low twist angles 8y <t + E“E;—t_g‘), there are two Dirac
points [see (1) in Eq. (31)]. One notes that both components of

the effective quasiparticle velocity have opposite signs for the

two Dirac points [note that in this case Vélz —8t(6g —t) >
|29 — &1]]. Such Dirac points are characterized by the same
winding number. In presence of an interlayer current [, term,
see Eq. (25)], this implies that both Dirac points are gapped
and have the same Chern number of :I:%. Therefore, topo-
logical properties of the system are not affected by a small
noncircularity of the Fermi surface even close to the magic
angle.

For 8y =1t + one notices that the 8’ component
of the Dirac velocity vanishes for one of the Dirac points.
There full dispersion, not linearized in &', §' takes the
form 41°E* = 4(£'8') + [(& — 260)E" + &7 — 8" ~g 50
[(&) — 2&9)&']*> + 48'*. Therefore, at lowest energies the dis-
persion is quadratic in one direction and linear in the other,
i.e., a semi-Dirac point [70,71]. Interestingly, for & = 2&;
the quadratic band-touching dispersion E = (£ + §'?)/2t
isrecovered. | s

For ¢ + % <8y <t—+ i—‘t there are four zero-energy
points; all of these show a Dirac (linear) dispersion. Impor-
tantly, the posiztions of three Dirac points come together at

& &

So=t+ E‘s‘;—: < 8p; t + 3. In the second case, the disper-

sion at the merging point is again of the semi-Dirac type
(E? ~ %8/2 + %) Therefore, the semi-Dirac point is
formed by a merger of three Dirac points. The latter has been
also predicted to occur for special values of trigonal distortion
in bilayer graphene [72]. Note that for & = 2&; this region

£15—8

shrinks to a single point 8y =t + &£ /8¢, where a quadratic
band touching occurs. .

Finally, for §¢ > ¢ + Sg—‘t two points exist, separating fur-
ther along k; with increasing twist angle (§y). In Fig. 4 we
summarize these findings with a numerical calculation of the
spectrum of the full Hamiltonian (9) including noncircular
corrections (11).

V. CORRELATION-INDUCED PHASES NEAR
THE MAGIC ANGLE

We now explore the role of interactions between the BdG
quasiparticles close to the magic angle. Above, we have
shown that the density of states at the magic angle is finite
due to the presence of a QBT. In this case, correlations may
manifest themselves as instabilities already at weak coupling
[73]. To analyze the likely correlated states that emerge at the
magic angle in TBSC, we study the order-parameter suscepti-
bilities defined as

2

aw?

xa(T) = — T Y log(is, — H(k) - WA), (32)

W=0 ¢ Kk Val

where A is a matrix of the form 1, ® o) ® s representing
the order parameter, &, = (2n + 1)z T are the Matsubara fre-
quencies, and a sum over valleys is implied. The critical
temperature is determined by the gap equation x4(7T) = %A,
where )4 is the coupling constant in the respective channel.
We assume the interlayer interactions to be much weaker than
the intralayer ones and thus we only consider orderings that do
not involve layer degrees of freedom, i.e., A=1,®00Q se.
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To simplify the discussion, we first address the singlet
A = 1; case. Of all the possible order parameters, only the
7, (or its spinful version s 2 3) order has a (logarithmically)
divergent susceptibility as 7 — 0 leading to a weak-coupling
instability. The susceptibilities for the other orders remain
finite at 7 = 0, as only the 7, order opens the gap at the
QBT (see Appendix B). The 1, order parameter corresponds
to a secondary superconducting instability, while the purely
imaginary character of the order parameter indicates a broken
time-reversal symmetry state, such as a d + is state [74].
Indeed, a number of competing SC states may be expected
in systems with nonphononic pairing mechanisms [75-77].
Depending on the type of the subleading SC instability, the
sign of the order parameter may change between the nodes,
affecting the topology of the state. For example, for an s-wave
secondary instability, the order-parameter sign will remain
the same, resulting in a total zero Chern number, similar to
the quantum valley Hall state in TBG [78]. On the other
hand, for a d,, instability in a d,>_,» TBSC, the resulting
state will have Chern number equal to the number of nodes,
similar to the supercurrent-induced state discussed above and
in [61].

The results above for the A = 7, instability apply also to
the triplet TBSC case. Unlike the singlet case, A = 7;(h - s)
has a weak-coupling instability only for h L d, which has
the same susceptibility as 7,. Above we considered the or-
der parameters that do not break translational symmetry; in

J

principle, order parameters such as spin-, charge-, or pair-
density waves can couple different nodes, opening a gap.
However, their properties would likely depend on the par-
ticular Fermi surface geometry and hence we leave the
consideration of these order parameters for future studies
focused on specific materials. In particular, our results are
consistent with a nontopological gapped d + is state that has
been predicted for a model of cuprate bilayers [37].

Away from the magic angle, the spectrum has Dirac nodes
with a zero density of states instead of a QBT. This suggests
that the secondary instability temperature 7*(6) should be
suppressed. To find how T is suppressed away from the magic
angle we evaluate the low-energy susceptibility (32) approx-
imating H (k) with Hya (k) — (89 — #)n3 close to the magic
angle. The contribution of the energies higher than 7 can be
assumed to be independent of the twist angle or temperature
for temperatures lower than 7. One obtains

Xo(T)~xd =T

2N
x Z 2 é: +52 > £2-52 ’
e (50 4 G0 — 12 + (B0 —

(33)

where N is the number of nodes and X?z is the high-energy
contribution to the susceptibility. Then, subtracting the equa-
tions for T* at the magic angle and away from it [x,(T =
T*) — X;:‘SO(T = T*)] one gets

2[80—t|e cos(2n)+(89—1)?

T*(0 o d tanh 8*
o (*)=/ / dn o
1 0 0

where cylindrical coordinates € = g4 +6

have been used.

Solving Eq. (34) for the critical temperature 7* numeri-
cally, one obtains that it decreases away from the magic angle
(see Fig. 5, inset) and vanishes when the angle reaches a
critical value. The latter can be found analytically using the
following identity:

, n for &, § integration

1
[ofs =
27 /x> —2x cosn + 1 \/xz +1/4
(35)
Then, the critical twist angle is found to be Gci = 6Oya T

e~y Mald
rnt
Finally, let us discuss the expected magnitude of 7. Eval-
uating the sum in Eq. (33) for §; = ¢ (at the magic angle) with
an upper energy cutoff of the order 7 one obtains

R Y- G—
0 = e ertfMAN | (36)
T
where
Aﬂ5< —“ﬁ , 37)
)"Tz Vo 21)()

where vy = hKy/(2mvr) is of the order of the normal-state
density of states. If the coupling in the secondary SC channel

tanh Ve 57
, (34
VE2 = 2|80 — tle cos(2n) + (8 —1)?

(

is weak, one expects A, Vo < 1. Then, Teff < 1 s expected
and T should be smaller than z. However, if the system is
close to a secondary instability with zero twist angle [i.e.,
that X?Z /(2vp) is close to 1/(Ag,v0)], e can be seen to be
strongly enhanced. A further observation is that due to the
strong exponential dependence, 7" should be increased in
systems with larger 6ya. This can be achieved in two ways:
increasing ¢ is possible with pressure that brings the layers
of TBSC closer to one another. Another option is for v to
decrease, which can be generically achieved by enhancing the
temperature of the material; however, the temperature should
remain much smaller than ¢, limiting the use of this approach.

Effects of deviations away from a circular Fermi surface

As has been shown in Sec. II there are parametrically small
(in & < 1) corrections to the Hamiltonian (7) due to the rota-
tion of k. As these corrections are expected to be generically
present for noncircular Fermi surfaces they may nonetheless
affect the weak-coupling instability discussed above, as its
relevant scale is 7% « t. Projecting Eq. (9) to the basis of
Eq. (20) one gets

(2) 2)
A v, 0 A v ‘9MA
SHYM ~ 2£5m—z Ens. (38)
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FIG. 5. Phase diagram of the secondary time-reversal symmetry-
breaking superconducting order induced by the quasiparticle inter-
actions near the magic angle. Its onset temperature 7* reaches its
maximal value 7 at the magic angle and is suppressed as the
deviation |6 — 6Oya| grows, vanishing at 9} = Opma £ 2me™ M
The band structure schematics represent the qualitative form of the
quasiparticle spectrum in each region (cf. Fig. 3). Inset shows the
numerical solution for 7*(6) as a function of the dimensionless twist
parameter ¢ | — 1]|/T;. Here, T < T is assumed; see text for the
discussion of the additional effects of temperature.

As v}z) arises from the single-particle dispersion and v(Az) from
the gap amplitude one expects that v® ~ vr and vy ~ v

J

log T (r‘Eo)

[see Eq. (10)]. Realistically, va can be expected to be much
smaller then vr. Indeed even for the cuprates, which are often
considered to be close to the strong-coupling regime [79], this
ratio is well below 1 across the doping phase diagram [80].
Thus, the first term in Eq. (38) is larger than the second one by
a factor of the order (vr/va)?. Therefore, we will only study
the consequences of the first term in Eq. (38). The modified

Hamiltonian at the magic angle takes the form
2 82

2t

1)
Hjn (k) = — = E+é)m, (39)

where &) = UF "Oin . For t > & > &, the QBT Hamiltonian
(20) can be st111 seen as a good approximation. However, at
low energies £ <« &) the spectrum is modified with respect
to the QBT case. At &, 5 & 0 the dispersion is (E&A)2(k) ~
(€0/1)*8% + £*/(41?), corresponding to a semi-Dirac point
with a quadratic dispersion along k and linear along &, . In
addition to &,5 = 0, one observes that there are two more
zero-energy states at £ = —&), § = x££, with a Dirac cone-
like dispersion (Egy, )2 (k) ~ (£0/t)*[(I§ + &0] £ [8 F &1)* +
(€ + &)?] around these points. As neither of these yields
a finite density of states at zero energy, one may expect a
suppression of T;".

Using Eq. (38) instead of H(Kk) in the definition of the
order-parameter susceptibility (32), one can derive the equa-
tion for the ordering temperature 7* for & <« ¢. One gets in
analogy with Eq. (34)

tanh \/82+2(§0+2w/28l‘ cos n)&pe sin’ n/t
an 2T
. (40)

The numerical solution of Eq. (40) is presented in Fig. 6.
One observes that the critical temperature is almost unaffected
until & reaches values of around 4@ .

Conversely, for a finite &, there exists a critical value of
the bare T [i.e., computed with Eq. (36) in the absence of &],

such that for T;* < T;“” the secondary instability is strongly

suppressed:
) 2
v Oma
0~ £ =) . 41
0 ( R 41

For Ova < 1 the condition 7 > TO*(C” does not preclude a
weak-coupling instability since T*(”) « t. However, for most
materials one may also expect vF)/vA ~ vp/va > 1. Thus,
weakly coupled superconductors, where vp/va is expected
to be extremely large, are not favorable for the observation
of correlated states; on the other hand those with sufficiently
strong coupling (such as cuprates) or heavy mass (such as
heavy-fermion systems) will suffer less limitations.

Using the estimate (41) one can also find the critical
value of the effective coupling constant A.g [Eq. (37)] using
Eq. (36):

Xcr 4 1 26‘ 4 8 VA 2 -1 (42)
I (0] — |\ .
eff eMA N g e (2) QMA

/ /2” dn | tanh s
&

+
\/ €2 4 2(&y + 2+/2¢t cos n)Eye sin’ n/t

(

One observes that larger 6y are actually favorable; again, this
is due to the exponential dependence of 7" on Oyia.

VI. DISCUSSION

Let us briefly recall our findings, focusing on the pre-
dictions for experiments. The flattening of the dispersion
and the gap opening induced by the current or interactions
near Oya = 2t/(vaKy) (Figs. 3 and 5) both can be directly
revealed by probing the density of states with scanning tun-
neling microscopy (STM) and thermal transport or probing
the quasiparticle dispersion in angle-resolved photoemission
spectroscopy experiments. The latter technique can addition-
ally reveal the predicted change in the position of nodes in
momentum space with the twist angle [Figs. 3(a) and 3(b)].
STM or superconducting spectroscopy [81] can also reveal the
presence of gapless chiral edge modes in the topological SC
state [61]. For the current-induced topological state, quantized
thermal (and spin, for the singlet case) Hall conductances [82]
are also expected [61].

Having outlined the experimental scope, we now discuss
some of the material prerequisites for the observation of the
unconventional effects in TBSC. First, 6ya is of order t /A,
the ratio of interlayer tunneling to the maximal SC gap value
Ay, implying that the interlayer tunneling should be weaker
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FIG. 6. Suppression of the time-reversal symmetry-breaking
temperature 7 by the deviations from circularly symmetric Fermi
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surface [Eq. (9)] characterized by the parameter &, = on

than Ay, for the magic angle to exist. Reducing ¢ can be
achieved by introducing an insulating barrier between the two
layers, similar to conventional Josephson junctions. However,
the correlation effects near the magic angle are expected to
be stronger for larger values of Oya [see Eq. (36)]. For too
small 6ya values, increasing 6y can be achieved by applying
a c-axis pressure to TBSC, which would reduce the interlayer
distance enhancing .

For sufficiently small 7, one can also reach angles larger
than 6y . In our study, we found the effects of hybridization to
be most pronounced at 6y, and suppressed if the twist angle
is further increased (Fig. 3). On the other hand, increasing the
twist angle between nodal superconductors is known to sup-
press the leading contribution to the critical superconducting
current at small 7, eventually suppressing it to zero at special
angles dictated by symmetry (e.g., 45° in a d-wave super-
conductor [83,84]). This dramatically alters the current-phase
relation /(¢) allowing the subdominant effect to become im-
portant; in particular, a spontaneous phase transition into the
chiral topological SC state breaking time-reversal symmetry is
predicted [33-36,85]. However, the spontaneously generated
topological gap should be smaller in that case than the one
induced by an interlayer current at the magic angle since it
is an effect of a higher-order expansion in #. On dimensional
grounds, one expects the gap to be of the order t>/Ag in that
case (see also [61]).

Another important question is that of disorder, as the nodal
superconductors are usually strongly affected by it [86] due
to the presence of gapless excitations close to the gap nodes.
On the other hand, gapped topological states are expected
to be robust to weak perturbations, as the Chern number
can not change continuously [48,82]. In the accompanying
paper [61] we demonstrate that the density of states in the
current-induced topological state remains gapped for suffi-
ciently weak disorder.

Presence of an energy gap also allows to neglect tempera-
ture effects for T < T, ¢, due to exponential suppression of
excitation. On the other hand, temperature provides an addi-
tional control parameter, as the value of v, should decrease
with increasing temperature, vanishing at 7.. An increasing
temperature consequently leads to an enhanced 6ya value,
which can be used to achieve magic-angle conditions if the
device is initially at 6 > 630

TABLE II. Estimates for the magic angle and maximal current-
induced gap values for the nodal superconductors discussed in the
text.

Material Onma AM*(K)
Bi,Sr,CaCu,0g,, (OP) [80,89] 2.8° 11
(BETS ),GaCl, [94,95] 1° 24
CeColns [96,97] 14° 1.7

Let us now discuss the materials that can be used to realize
TBSC. We start with the ones already available in monolayer
form. For each material we will provide estimates for the
magic-angle value and the related quantities, summarized in
Table II.

Cuprates. Cuprates are known to host nodal d-wave
superconductivity [83] with a remarkably high transition tem-
perature. Recently, superconducting monolayers and bilayers
of [87,88] of BiSr,CaCu;0s4, have been demonstrated,
with almost the same 7, as that of the bulk samples, sug-
gesting robust superconductivity. The dominant interplane
hopping is proportional to ~(cosk, — cosky)* and van-
ishes near the gap nodes; more recent estimates suggest
that there is a nonzero tunneling along the nodal direc-
tion [89]: 4ag cos(k,/2) cos(k,/2)t; ~ 2 meV [taking Ky ~
(w/Qa), = /(2b)], where a and b are the lattice constants,
in Eq. (11) in [89]]. Importantly, Bi,Sr,CaCu,0Os.., actually
contains two layers within the unit cell with the intrabi-
layer hopping #,; = 30 meV according to fits [§9]. We can
still apply the theory developed here for monolayers to each
the bilayer-split (bonding and antibonding) Fermi surface of
the top and bottom Bi;Sr,CaCu,Ogy, layer. As only one
pair of layers is hybridized with 4ag cos(k,/2) cos(k, /2)t.t.aq,
it follows that the projection of the interbilayer hopping
is =2a cos(k,/2) cos(ky/2)t;a9/2 for the bonding and anti-
bonding bands. Note that the sign change of the hopping
can be shown not to affect the topology of the current-
induced state. Using the value of v, for optimal doping
0.1eVA [80] and taking the in-plane lattice constants
to be approximately equal to 5.4 A, one obtains Oy =
4ag cos(k,/2) cos(ky/2)t, /(vaKy) ~ 2.8°.

While the Fermi surface of the hole-doped cuprates devi-
ates noticeably from a circular one, the smallness of the magic
angle leads to these deviations being important for the corre-
lated phases only for temperatures below 0.3 K [see Eq. (41),
where vff) /va is taken to be 0.1 consistent with vg/va close
to optimal doping [80]]. At the same time, small values of
Oma result in a rather strong constraint on the dimensionless
critical coupling [see Eq. (42)] XZL ~ 3.5, which is reduced
to 1.9 for underdoped samples due to the reduction in vr and
va [80] (where XZ;f is measured relative to unity). Moreover, a
competing instability that can open a gap at the node, likely
a spin-density wave [90], has been reported in a number
of underdoped cuprates [91,92], including Bi,Sr,CaCu,0Og.,
[93]. As this can enhance A, underdoped cuprates appear
promising for the observation of correlation-induced states
in TBSC. Furthermore, the interlayer hybridization could be
enhanced with respect to the one in bulk crystal by, e.g.,
applying pressure, which would additionally lower XZ;f.
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Organics, (BET S),GaCl4. Many organic superconductors
are believed to be unconventional, and d wave in particular
[98]. Additionally, a high anisotropy is characteristic for these
materials and (BETS),GaCly has been demonstrated to be
superconducting in monolayer form [95]. The interlayer hop-
ping is of the order 0.21 meV [94]. Assuming a cos 26 d-wave
gap with a maximum of 12 meV [95] on a cylindrical Fermi
surface one gets vy = ZKﬂ and Oya =t/ Ao = 1°.

We now move to the ﬁighly two-dimensional nodal super-
conductors, which are not yet available as monolayers.

Heavy fermions. CeColns is characterized by the
anisotropy m./m, = 5.6 [96], the highest among the heavy-
fermion systems [98]. Due to the heavy effective mass, we
assume the hopping to be mostly due to f electrons, esti-
mating the c-axis hopping from the in-plane one [97] and
the mass anisotropy as #, ~ myt,/m. ~ 0.15 meV. The gap
maximum is known to be around 0.6 meV [97], which yields
Oma ~ t/ Ao = 14°. The heavy masses of the conduction band
make the effects of Fermi surface noncircularity on the cor-
related states [see Eq. (41)] unimportant down to few mK
temperatures. Also, the value of Xz;f ~ 0.64 appears mod-
est, suggesting that even weakly competing superconducting
states may develop an instability at the magic angle.

SroRuO4. ARPES experiments reveal that this material is
highly two dimensional [99], with the observed effects of
the out-of plane dispersion suggesting an interplane hopping
being of the order of a few meV (e.g., 2.5 meV in [100]).
SrpRuOy has an extremely small SC gap, with a maximum of
about 350 peV [101]. This implies that to observe the magic
angle in Sr,RuOy4-based TBSC, the interlayer tunneling has
to be reduced first, by, e.g., an insulating layer introduced
between the monolayers, as discussed in the main text.

Finally, superconducting monolayers of transition metal
dichalcogenides [102] and the iron-based superconductor
FeSe [103] have recently been demonstrated. While in both
cases the superconductivity has been found to be nodeless,
theoretical proposals suggest that the realization of nodal
SC is possible in monolayer transition metal dichalcogenides
[104,105] and nodal superconductivity is known to occur in
some bulk iron-based superconductors [106], raising the ex-
citing prospect that some of these materials can remain nodal
in monolayer form.

VII. CONCLUSION

We have shown that twisted bilayers of nodal supercon-
ductors provide a versatile platform to control the properties
of neutral BAG quasiparticles. In particular, the quasiparti-
cle dispersion undergoes a dramatic reconstruction near the
“magic” value of the twist angle where for a circular Fermi
surface it forms a quadratic band touching [Fig. 3(a)] and the
system has a finite density of states of neutral fermions at
the Fermi level, which increases with the magic-angle value
and can be a significant fraction of the normal-state density
of states. At the magic angle, even weak interactions lead to a
time-reversal symmetry-breaking transition (Fig. 5), which is
suppressed away from it. The deviations from circular sym-
metry of the Fermi surface provide a lower bound on the
interaction strength required for the transition, that decreases
with the magic-angle value. We have also shown that the dis-
persion of the BAG quasiparticles in TBSC is highly tunable:

an interlayer displacement field reduces the renormalization
effects of the twisting, while a Zeeman field or in-plane
current act as an effective “gate” for the quasiparticles, allow-
ing control of their filling [Figs. 3(b)-3(d)] in analogy with
gating in twisted semiconductors. Furthermore, an interlayer
supercurrent flow results in the opening of a topological gap
analyzed in the accompanying paper [61]. Identifying sev-
eral candidate materials hosting nodal superconductivity in
monolayers, we further demonstrate that twisted bilayers of
nodal superconductors can be readily realized with currently
available materials.
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APPENDIX A: CORRECTIONS TO THE LOW-ENERGY
HAMILTONIAN DUE TO THE ROTATION OF k

Here we study the corrections due to the rotation of k vec-
tors in Eq. (6), neglected in Eq. (7) for the case of nodes on a
high-symmetry line. As will be shown below, this requires the
expansion of both the single-particle dispersion ¢(K) and the
gap amplitude A(K) to the second order in K — Ky. Denoting
the component of K along Ky as K = kj 4+ Ky and the one
orthogonal to it as k; one gets

e(k) ~ vpky + akj + Bk7, (A1)
restricted by the reflection symmetry e(K), —K,)=
(K, K1), where o= %azsk(zk); B = %92‘2(2"). The super-

i 1

conducting gap amplitude, on the other hand, has to vanish
exactly at k; =0 in case of symmetry-imposed nodes
resulting in

AK) ~ vpak, + vk ky, (A2)

92A(K) . . . .
ok ok For circularly symmetric dispersion

e(k) = e(|k]) the coefficients in the above expansions are not
independent, in particular, 8 = vr/(2Ky). At the same time,
if the gap amplitude is solely dependent on the polar angle,
i.e., A(K) = Alarctan(K, /K| )] it follows that y = —va /K.

We now include the effect of the rotation of local
axes due to the twist. In particular, KH0 2= Kjcos6/2 +
K, sin6/2; Ki/z =K, cos8/2 — K| sinf /2. We aim to keep
only the linear terms in the expansion in the twist angle 6 but
will keep here terms up to order #? for completeness:

where y =

02 0
0/2 -, .
K"~ <1 - §>(k|| + Ky) = Sk

6? 0
Ki/z = <1 — —>kJ_ + E(k” + Kn). (A3)

8
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One obtains then

02 02 0
8(K0/2) ~ UF(I — §>k — ?UFKN — Evpkl

0> 0> 62
+a(1 - —)kﬁ +a—k} —a—Kyk

4 4 4
Ok
0‘2 LA
62 62
+,B(1 - Z)kiﬂsz(k + Ky)?

+ BO(ky + Kn)ky
02
= §KN[_UF + 2BKn] + vrk)
0
H—vr +2BKNISk1 + O(k*, 0%k, 0°Ky);

Ky6
A(KQ/Z)%vAkJ__i_ UaRpy

0
+[va + yKnlSky + O(0°kKx, K2, 0°K3), (Ad)

where the terms due to the rotation of the Dirac cone are
highlighted in red. All of these terms vanish for a circularly
symmetric single-particle energy [implying 8 = vp/(2Ky)]
and gap amplitude depending only on the polar angle in the
K space (which implies y = —va/Ky).

The constant term in e(K?/?) can be trivially absorbed
into a shift of k”: k” — k” — %KN[—l + 2ﬂKN/UF]7 which
leads to corrections in A(K?/?) of the order 6% which can be
ignored.

The remaining terms, not included in (7), can be written in
the basis of Eq. (7) using the bilayer Pauli matrix notations to
arrive at the expression in Eq. (9) that is given by

. ok
SHy ~ YF ) J-‘L'3O‘3 —

)
Ok
Up UK (AS)

7103,

where vff) = vp — 28Ky and v(Az) = va + Y Ky. For a generic

noncircular dispersion and gap amplitude one may expect
v}z) ~ vr and U(Az) ~ VA.

APPENDIX B: LOW-ENERGY PROJECTION OF THE
PERTURBATIONS AT THE MAGIC ANGLE

In Table IIT we show the result of projection of the per-
turbation terms to the full Hamiltonian (7) and discuss their
possible physical origins.

1. Singlet superconductors

We consider first the singlet case and perturbation terms of
the general form WoA = 7,0 ;. Below we consider all the pos-
sible i and j, and for each case, we indicate the corresponding
term in the projected Hamiltonian (20).

A = 1,1, nos, wo—>B8—>8 + Wy, (& —
& + Wp),n3,n3. These terms are already contained in
Eqg. (19) and only lead to a renormalization of the initial

TABLE III. Effects of the the possible perturbations for the
Hamiltonian (19) ignoring spin (that have the form Wyt;0;) on the
spectrum near the QBT: entries give either the projection of the
corresponding term to the basis of Eq. (20) or the resulting change in
the parameters of Eq. (20) if Wy;0; perturbation is added (e.g., for a
Woyti00 perturbation, § is replaced with § + Wg). n; and n; result in a
spectrum with two Dirac cones; in the latter case the magic angle for
QBT is changed, while in the former one QBT does not occur for all
values of twist angle (QBT is avoided). n, results in the appearance
of a Fermi pocket while 7,, in a fully gapped spectrum. In cases
(except for 1,03 perturbation, where the spectrum is gapped) where
combinations of 13 and an another term is present the spectrum at the
magic angle is quadratic in one direction and linear in the other one.

(oh)) g1 (op) 03
wg w3
Ty Womno —Sipy — Wona Ly + M2
W2
T >3+ W) Wom =M Woms
wi w3
] Wonz s — Sy Womo —5n+im
WZ
i (E—>§+W) Wons 13 —Wom

model parameters (SC gap, chemical potential, twist angle,
or interlayer hopping).

A=1= 100 —> no. Note that this term is not equivalent
to a chemical potential shift represented by 73 in the Nambu
notation. It leads to a creation of a single Fermi surface and
can be realized in two ways.

First, a nonzero in-plane supercurrent results in A —
Ae? leading to H — H + vg - ¢ [66]. The second possibil-
ity is a Zeeman term s;. It commutes with the Hamiltonian,
resulting in two independent sectors with different signs of
the term. Note that the two mechanisms above result in differ-
ent parity properties: the supercurrent-generated term is odd
under parity and thus creates a doubly degenerate electron or
hole pocket at each node, while the Zeeman term would create
a nondegenerate coinciding electron and hole pocket (nodal
line) at each node.

A = 1, — 1. The spectrum is fully gapped and the lowest
eigenvalues at the magic angle are given by

E= i\/[\/§2 + 82+ — 1>+ Wi

Such a perturbation can be implemented by applying an inter-
layer bias current (see below); a formation of a subleading
superconducting order with a phase of w /2 (A + iB states)
with respect to the original SC order parameter will intro-
duce a similar term. The difference is in the signs of the 1,
terms for different nodes. If the SC order parameter is even
in parity, current generates 7, terms with the same sign for
inversion-related nodes and opposite for odd-parity (triplet)
ones. For example, for d-wave superconductor the induced
7, term would have the same sign for opposite nodes, but
different signs for two pairs of nodes, while in d + is state
the sign of the induced term is the same for all nodes.

A =0, — n,. Corresponds to an anomalous average
((clep — cjca)y + (cac) — cpel))) which can be recognized
as the expression for the normal interlayer current. Applica-
tion of a bias current in the SC state would result only in a
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Josephson current, while normal current will be nonzero only
above the critical current value, where the value of the gap
may be affected.

A = 1j01 — n; is off-diagonal in both Gor’kov-Nambu
and layer space and corresponds to interlayer Cooper pairing.
Note that the Hamiltonian (21) already induces interlayer pair-
ing ~1,07 2, so this component introduces a nonzero phase to
the interlayer order parameter with respect to intralayer one.

1303 — —11. This order parameter represents charge im-
balance between the layers; while it can be introduced
externally by a back gate; additionally such a term ap-
pears in case the nodes not being in a reflection plane, i.e.,
(vr - Qn) # 0. )

Wo . . . _
oy —> —3tm— 3 results in two Dirac points at &p =

0, 8p = £Wj. At the new magic angle §p =t — V;—‘t’z, the spec-

ﬂ:# — WT"E, linear along &, but quadratic along §.

o3 — %m + % Similar to o; with the roles of & and &
exchanged.

T10p —> —%173. QBT exists at the new magic angle §p =
P4

0] —> %m — %’72 at the new magic angle the spectrum
is half-Dirac (linear along &, but quadratic along §).

7,09 — 1. BAG Fermi surface is formed.

1,03 — —3n3 + 21, yields gapped spectrum.

1307 —> %m. Dirac points instead of a QBT.

Finally, any order parameter above can be converted to a
spinful one by a direct product with one of the spin Pauli
matrices.

trum is

2. Triplet superconductors

We now consider the case of a single-component triplet
superconductor. In this case, triplet SC order parameter near a
node takes the form §7,(s - d), where s; are Pauli matrices in
spin space. Consequently, the analog of Eq. (19) is

H = Z oF (k)H (k)P (k),
k, k>0

HK)=6ti(s-d)+&t3 —tt1(s - d)oz + t 1307, B1)

where the k summation is restricted to half the Brillouin zone
to avoid k — —k redundancy. Let us now discuss perturba-
tions. For perturbations without spin matrices it is convenient
to perform an SU(2) spin rotation that brings the d vector to
the form (0, 0, d). Then the two spin sectors decouple into
two copies of Eq. (19) with t; — =£t; and the spectrum is
determined as for Eq. (19).

J

Fi(ie, k) =

For perturbations involving spin in the form of the matrix
(h - s) there are two cases:

(1) h | d: As above, the problem may be reduced to two
copies of Eq. (19) with (h -s), (d -s) — *h,d.

(2) h L d: Choosing the quantization axis along d, we
apply a unitary transformation U = U" = I_T“tg + HT“ (i.e.,
spin-down component is multiplied by t3). The Hamiltonian

(B1) is transformed to

UHKUT =dst + &3 —dt 1103 + t1301,

whereas the perturbation Hamiltonian is given by

Woo.t375(h - 8) (b=0,3),

WoUo,t(h-s)UT =
0 p(h-s) { b=1.2).

—Woout3tps3(h - s)

In both cases the spin part of the perturbation is trivially
diagonalized and the overall eigenvalues correspond to two
copies of Eq. (19) with a perturbation +=Wyho, 137, for (b =
0, 3) and +iWyho, 1375 for (b = 0, 2). Thus, the spectrum in
the presence of perturbation can be determined from Table III
by identifying the commutation relations of the perturbing
operator with (h-s) — £h multiplied with 73 (which has
— + — 4 signature) with the terms in Eq. (19).

Physically, for h || d all perturbations have similar physical
effects as the ones without spin matrices. For h L d, on the
other hand, there are new effects. First, 7;(h -s) results in
a full gap with the example of p+ip state (d || x,h || y or
vice versa). Another way to create a full gap [~, term in the
reduced Hamiltonian (20)] is with o, 73(h - s), which is more
complicated physically. The Zeeman field perpendicular to d
results in a spectrum same as for the +73 perturbation, i.e.,
it shifts the QBT in momentum space rather then creating a
nodal line as for h || d.

APPENDIX C: SELF-CONSISTENT EQUATIONS
FOR THE SUPERCONDUCTING GAP

To study the effect of the tunneling on the self-consistency
equation, we use a BCS-like mean-field model with a sepa-
rable intralayer interaction Vsc(k, k') = Vsc f (K) f(K'), where
fK) = (6§ £8p)/Ag close to the nodes. The self-consistency
equation takes the form

AT k) =T Vsc(k, K)F;(ie’, K), (C1)

&k’

where Fj(ie’, k') is the anomalous Green’s function in the jth
layer. The anomalous Green’s function is

Ai(2+ 87+ A3) + 124,

(67 4+82)" + (63 +£2) (AT + A3) +202(s2 — £7) + 220180 + ATAT 414

[recall that &€ and § are defined in Eq. (8)]; F»(ie, k) is obtained from the above py exchanging~1 <> 2. Taking the separable form
of the interaction yields solutions of the form A, (T, k) = Ao(T)f(k); Ay(T, k) = Ao(T)f (k). Using the expansion A; =6 +
(—1)/8y near the nodes the equation for the amplitude of the order parameter Ao(T) takes the form [using f(K) &~ (8§ — 8)/A¢]

(8 — 80)7[€2 + % + (5 +80)7] +12(82 — 82)

T
Bo=—Vsco— Y156, en); 16,6, 6) =
0 en,k

(8,%+§2+32+t2)2—4t2§2+258(€,§+§2—t2—52)+56‘.

(C2)
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For ¢,, & > t the integrand is approximately

(3= 8)
2+ &+ (50— 80

1(6,¢, 8n)|an,§>>t ~

that can be shown to be independent of §, with a variable shift
8 — 8 + 8. Indeed, the expression above corresponds to the
case t = 0 when the layers are simply decoupled. The integral
can be estimated as follows:

TY 10 E e, e

&n,K
2

1 Ao b
~— | ds | drde——2
(27 )3 vpva ng / 5 88,%+$2+52
2A3 1 A
0 <ng g ©3)

T 321 )2vpua \ 3 Ao

where Ay is the cutoff for the & integral.

Thus, for €, £ > t the dependence on §, appears only after
an expansion in . The second-order term in ¢ at €, &, >> Ag
takes the form

1262(3¢? — £2)

81(8,8, en)le, 00 = (2 + £2)°

’

J

and its contribution to the integral can be estimated assum-
ing an upper cutoff Ay and a lower one Ag. The result is

~$, smaller by a factor of (t28(2)/Ag) log’1 (Ao/Ao).

At low values of ¢, & < ¢, 8y, on the other hand, the most
important question is whether there is a divergence near the
nodes. As it is expected to be strongest (if present) at the
magic angle, we study the case §o = ¢. The integrand can be

written as

(8 —1)* (2 + £%) + 82(8* — 1?)
(62 4+ £2 + 62)2 + 4e212

Close to the QBT at £, § = 0 the integrand is approximately

182 — 8 4 (82 + 82)8%/1

4 (E24682)2/412 + g2

where a linear in § term in the numerator is omitted as it van-

ishes after integration. The contribution of 1(6, &, €,)|c.£«r=5,

to the sum in the gap equation can be evaluated assuming a
cutoff ~¢ yielding

1(57 Sv 8n)|s,é§t,50,50:l =

1(8, &, en)le ei=sy &

t3

16027 )2vpvp

T IG.E. en)loeizs, ~

&n,k

which is smaller by a factor (#3/A3)log™'(A¢/Ao) than the
leading term, Eq. (C3), that is independent of twist angle.

APPENDIX D: CURRENT-PHASE RELATION

The Josephson current-phase relation can be obtained from the derivative of the free energy of the bilayer with respect to the

phase difference I(¢) = 2e dF(T dE(T.9)[69]. The free energy is given by
F(T,p) = 2T§:/ ds 4o log {[e7 + (& +1)* + 8*][er + (6 —1)" + &°]
(ZJT)ZUF VA " !
—4sin? 2522 — 2522 cos g + 262 (2 + £2 — 62) + 821, (D1)

where the 2 in front is due to spin. Calculating the current yields

26‘ dF (T, (p) 4e 1 /

o)=——"—=—T ——— [ d§dsS
(9) = de  h SZ (27)2vpva §
2¢2(8% — 82) sin
x ( i) sing (D2)

(62 + 62 +87)" +262(12 + 8) +2(62 — 82)(8 — 1?)

— 4822 sin? § + (12 — 83)° + 4832 sin> ¢

where the upper cutoff for the § integral is Ay. We can divide the sum into high- and low-energy parts. The former one, assuming

£,86 > t,680, T, can be approximated by

de
1@)le s ~-———————-(/ dg/dedg
£,81,80,T h 2a)3vpva ~t.50 [85 +E24 82]2

8et? sin @
(27’[ )2hUF VA

2128% sin ¢

The low-energy part &, § < ¢, §p can be estimated as follows. The effects of this part are expected to be most pronounced near the
magic angle since the density of states near zero energy is the largest in this case. As increasing ¢ enhances the spectral gap, we
may furthermore focus on the case of small phase ¢ < 1. The characteristic values of £ and é can be deduced from the dispersion
at the magic angle being £ +8 and the current-induced gap A; ~ t|sin(¢/2)| implying &2, 8% ~ t?|sin(¢/2)|, which is also
evident from Eq. (D2). Moreover for 12| sin(p/2)| > |8§ — 12| ~ 2tvaKy|0 — 6umal and thus | sin(@/2)] 3> Ag|0 — Omal/t one
can neglect the quadratic terms in £ and § with respect to the quartic ones [using sin’(¢/2) < 1]. One also observes that
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characteristic & values are of the order > sin®(¢/2) which can be neglected with respect to &2, §2, leading to the estimate:

4e 1 t?sin @
Slp)=——___ / ds de ,

I 227 )*vpva ; £.5<t g2 + (#)2 +12sin* £

et? .
3(@)lr=0 = T mhvron sing log W’
)
et? . 2te”
()| T>1sin(p/2) = “omonon sin ¢ log T (D3)

There is a logarithmic singularity at low values of ¢, however, its effect is important only for ¢ < ALOe"‘AO/ @D and T <

te=#20/(T1) where both limits are expected to be extremely small for # << Ag. As the gap maximum is attained at ¢ ~ /2
we neglect this contribution, resulting in the conventional current-phase relation /(¢) = I, sin(g).

[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
insulator behaviour at half-filling in magic-angle graphene
superlattices, Nature (London) 556, 80 (2018).

[2] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[3] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, . Das,

C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold,

A. H. MacDonald, and D. K. Efetov, Superconductors, orbital

magnets and correlated states in magic-angle bilayer graphene,

Nature (London) 574, 653 (2019).

M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe,

T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning

superconductivity in twisted bilayer graphene, Science 363,

1059 (2019).

S. Carr, D. Massatt, S. Fang, P. Cazeaux, M. Luskin, and E.

Kaxiras, Twistronics: Manipulating the electronic properties

of two-dimensional layered structures through their twist an-

gle, Phys. Rev. B 95, 075420 (2017).

[6] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Super-
conductivity and strong correlations in moiré flat bands, Nat.
Phys. 16, 725 (2020).

[7]1 A.L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe,
T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Emer-
gent ferromagnetism near three-quarters filling in twisted
bilayer graphene, Science 365, 605 (2019).

[8] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K.
Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic
quantized anomalous Hall effect in a moiré heterostructure,
Science 367, 900 (2020).

[9] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi,
T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang,
Tunable correlated Chern insulator and ferromagnetism in a
moiré superlattice, Nature (London) 579, 56 (2020).

[10] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D.
Haei Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath,
and P. Kim, Tunable spin-polarized correlated states in twisted
double bilayer graphene, Nature (London) 583, 221 (2020).

[4

—

[5

—

[11] K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai,
D. A. Sanchez, J. Quan, A. Singh, J. Embley, A. Zepeda, M.
Campbell, T. Autry, T. Taniguchi, K. Watanabe, N. Lu, S. K.
Banerjee, K. L. Silverman, S. Kim et al., Evidence for moiré
excitons in van der waals heterostructures, Nature (London)
567,71 (2019).

[12] C.Jin, E. C. Regan, A. Yan, M. Igbal Bakti Utama, D. Wang,
S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe,
T. Taniguchi, S. Tongay, A. Zettl, and F. Wang, Observation
of moiré excitons in WSe, /WS, heterostructure superlattices,
Nature (London) 567, 76 (2019).

[13] K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray,
D. G. Mandrus, J. Yan, W. Yao, and X. Xu, Signatures of
moiré-trapped valley excitons in MoSe, /WSe, heterobilayers,
Nature (London) 567, 66 (2019).

[14] E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J.
Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. L
Sohn, M. R. Molas, M. Koperski, K. Watanabe, T. Taniguchi,
K. S. Novoselov, R. V. Gorbachev, H. S. Shin, V. I. Fal’ko, and
A. I Tartakovskii, Resonantly hybridized excitons in moiré su-
perlattices in van der waals heterostructures, Nature (London)
567, 81 (2019).

[15] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C.
Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, K. Watanabe,
T. Taniguchi, X. Zhu, J. Hone, A. Rubio, A. N. Pasupathy,
and C. R. Dean, Correlated electronic phases in twisted bi-
layer transition metal dichalcogenides, Nat. Mater. 19, 861
(2020).

[16] P. Stepanov, 1. Das, X. Lu, A. Fahimniya, K. Watanabe, T.
Taniguchi, F. H. L. Koppens, J. Lischner, L. Levitov, and D. K.
Efetov, Untying the insulating and superconducting orders in
magic-angle graphene, Nature (London) 583, 375 (2020).

[17] J. Kang and O. Vafek, Strong Coupling Phases of Partially
Filled Twisted Bilayer Graphene Narrow Bands, Phys. Rev.
Lett. 122, 246401 (2019).

[18] J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, and
A. Vishwanath, Theory of correlated insulating behaviour
and spin-triplet superconductivity in twisted double bilayer
graphene, Nat. Commun. 10, 5333 (2019).

[19] C. Repellin, Z. Dong, Y.-H. Zhang, and T. Senthil, Ferromag-
netism in Narrow Bands of Moiré Superlattices, Phys. Rev.
Lett. 124, 187601 (2020).

174506-16


https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1103/PhysRevB.95.075420
https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1038/s41586-020-2049-7
https://doi.org/10.1038/s41586-020-2458-7
https://doi.org/10.1038/s41586-019-0975-z
https://doi.org/10.1038/s41586-019-0976-y
https://doi.org/10.1038/s41586-019-0957-1
https://doi.org/10.1038/s41586-019-0986-9
https://doi.org/10.1038/s41563-020-0708-6
https://doi.org/10.1038/s41586-020-2459-6
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1038/s41467-019-12981-1
https://doi.org/10.1103/PhysRevLett.124.187601

MAGIC ANGLES AND CORRELATIONS IN TWISTED ...

PHYSICAL REVIEW B 107, 174506 (2023)

[20] D. D. Vu and S. Das Sarma, Moiré versus Mott: Incom-
mensuration and Interaction in One-Dimensional Bichromatic
Lattices, Phys. Rev. Lett. 126, 036803 (2021).

[21] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Origin of
Mott Insulating Behavior and Superconductivity in Twisted
Bilayer Graphene, Phys. Rev. X 8, 031089 (2018).

[22] H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Faithful tight-
binding models and fragile topology of magic-angle bilayer
graphene, Phys. Rev. B 99, 195455 (2019).

[23] L. Zou, H. C. Po, A. Vishwanath, and T. Senthil, Band
structure of twisted bilayer graphene: Emergent symmetries,
commensurate approximants, and wannier obstructions, Phys.
Rev. B 98, 085435 (2018).

[24] J. Kang and O. Vafek, Symmetry, Maximally Localized Wan-
nier States, and a Low-Energy Model for Twisted Bilayer
Graphene Narrow Bands, Phys. Rev. X 8, 031088 (2018).

[25] Y.-H. Zhang and T. Senthil, Bridging hubbard model physics
and quantum hall physics in trilayer graphene/# — BN moiré
superlattice, Phys. Rev. B 99, 205150 (2019).

[26] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of
Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett.
122, 106405 (2019).

[27] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda,
K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero,
Strange Metal in Magic-Angle Graphene with near Planckian
Dissipation, Phys. Rev. Lett. 124, 076801 (2020).

[28] K. Hejazi, Z.-X. Luo, and L. Balents, Noncollinear phases
in moiré magnets, Proc. Natl. Acad. Sci. USA 117, 10721
(2020).

[29] J. Cano, S. Fang, J. H. Pixley, and J. H. Wilson, Moiré super-
lattice on the surface of a topological insulator, Phys. Rev. B
103, 155157 (2021).

[30] T. Wang, N. F. Q. Yuan, and L. Fu, Moiré Surface States and
Enhanced Superconductivity in Topological Insulators, Phys.
Rev. X 11, 021024 (2021).

[31] A. Gonzalez-Tudela and J. I. Cirac, Cold atoms in twisted-
bilayer optical potentials, Phys. Rev. A 100, 053604 (2019).

[32] Y. Fu, E. J. Konig, J. H. Wilson, Y.-Z. Chou, and J. H. Pixley,
Magic-angle semimetals, npj Quantum Mater. 5, 71 (2020).

[33] O. Can, T. Tummuru, R. P. Day, I. Elfimov, A. Damascelli, and
M. Franz, High-temperature topological superconductivity in
twisted double-layer copper oxides, Nat. Phys. 17, 519 (2021).

[34] S. Yip, Josephson current-phase relationships with unconven-
tional superconductors, Phys. Rev. B 52, 3087 (1995).

[35] K. Kuboki and M. Sigrist, Proximity-induced time-reversal
symmetry breaking at josephson junctions between unconven-
tional superconductors, J. Phys. Soc. Jpn. 65, 361 (1996).

[36] M. Sigrist, Time-reversal symmetry breaking states in high-
temperature superconductors, Prog. Theor. Phys. 99, 899
(1998).

[37] T. Tummuru, S. Plugge, and M. Franz, Josephson effects in
twisted cuprate bilayers, Phys. Rev. B 105, 064501 (2022).

[38] P. A. Volkov, S. Y. F. Zhao, N. Poccia, X. Cui, P. Kim, and J. H.
Pixley, Josephson effects in twisted nodal superconductors,
arXiv:2108.13456.

[39] S. Y. E. Zhao, N. Poccia, X. Cui, P. A. Volkov, H. Yoo, R.
Engelke, Y. Ronen, R. Zhong, G. Gu, S. Plugge, T. Tummuru,
M. Franz, J. H. Pixley, and P. Kim, Emergent interfacial
superconductivity between twisted cuprate superconductors,
arXiv:2108.13455.

[40] J. Lee, W. Lee, G.-Y. Kim, Y.-B. Choi, J. Park, S. Jang, G. Gu,
S.-Y. Choi, G. Y. Cho, G.-H. Lee et al., Twisted van der waals
josephson junction based on a high-t ¢ superconductor, Nano
Lett. 21, 10469 (2021).

[41] Y. Lee, M. Martini, T. Confalone, S. Shokri, C. N. Saggau,
G. Gu, K. Watanabe, T. Taniguchi, D. Montemurro, V. M.
Vinokur, K. Nielsch, and N. Poccia, Encapsulating high-
temperature superconducting twisted van der waals het-
erostructures blocks detrimental effects of disorder, Adv.
Mater. 2209135 (2023), doi:10.1002/adma.202209135.

[42] X.-Y. Song, Y.-H. Zhang, and A. Vishwanath, Doping a moiré
mott insulator: A ¢t — j model study of twisted cuprates, Phys.
Rev. B 105, L.201102 (2022).

[43] R. Haenel, T. Tummuru, and M. Franz, Incoherent tunneling
and topological superconductivity in twisted cuprate bilayers,
Phys. Rev. B 106, 104505 (2022).

[44] D. V. Khveshchenko and J. Paaske, Incipient Nodal Pairing
in Planar d-Wave Superconductors, Phys. Rev. Lett. 86, 4672
(2001).

[45] 1. F. Herbut, Antiferromagnetism from Phase Disordering of a
d-Wave Superconductor, Phys. Rev. Lett. 88, 047006 (2002).

[46] S. A. Kivelson and D. S. Rokhsar, Bogoliubov quasiparticles,
spinons, and spin-charge decoupling in superconductors, Phys.
Rev. B 41, 11693 (1990).

[47] Y. Ronen, Y. Cohen, J.-H. Kang, A. Haim, M.-T. Rieder, M.
Heiblum, D. Mahalu, and H. Shtrikman, Charge of a quasi-
particle in a superconductor, Proc. Natl. Acad. Sci. USA 113,
1743 (2016).

[48] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[49] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[50] S. M. Frolov, M. J. Manfra, and J. D. Sau, Topological super-
conductivity in hybrid devices, Nat. Phys. 16, 718 (2020).

[51] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral su-
perconductivity from repulsive interactions in doped graphene,
Nat. Phys. 8, 158 (2012).

[52] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P. Bakkers,
and L. P. Kouwenhoven, Signatures of Majorana fermions
in hybrid superconductor-semiconductor nanowire devices,
Science 336, 1003 (2012).

[53] E. Liu, C.-C. Liu, K. Wu, F. Yang, and Y. Yao, d + id’ Chiral
Superconductivity in Bilayer Silicene, Phys. Rev. Lett. 111,
066804 (2013).

[54] M. H. Fischer, T. Neupert, C. Platt, A. P. Schnyder, W.
Hanke, J. Goryo, R. Thomale, and M. Sigrist, Chiral d-wave
superconductivity in SrPtAs, Phys. Rev. B 89, 020509(R)
(2014).

[55] P. Zhang, Z. Wang, X. Wu, K. Yaji, Y. Ishida, Y. Kohama, G.
Dai, Y. Sun, C. Bareille, K. Kuroda, T. Kondo, K. Okazaki, K.
Kindo, X. Wang, C. Jin, J. Hu, R. Thomale, K. Sumida, S. Wu,
K. Miyamoto et al., Multiple topological states in iron-based
superconductors, Nat. Phys. 15, 41 (2019).

[56] S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero
modes and topological quantum computation, npj Quantum
Inf. 1, 15001 (2015).

[57] M. Vojta, Y. Zhang, and S. Sachdev, Quantum Phase Transi-
tions in d-Wave Superconductors, Phys. Rev. Lett. 85, 4940
(2000).

174506-17


https://doi.org/10.1103/PhysRevLett.126.036803
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevB.98.085435
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevB.99.205150
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevLett.124.076801
https://doi.org/10.1073/pnas.2000347117
https://doi.org/10.1103/PhysRevB.103.155157
https://doi.org/10.1103/PhysRevX.11.021024
https://doi.org/10.1103/PhysRevA.100.053604
https://doi.org/10.1038/s41535-020-00271-9
https://doi.org/10.1038/s41567-020-01142-7
https://doi.org/10.1103/PhysRevB.52.3087
https://doi.org/10.1143/JPSJ.65.361
https://doi.org/10.1143/PTP.99.899
https://doi.org/10.1103/PhysRevB.105.064501
http://arxiv.org/abs/arXiv:2108.13456
http://arxiv.org/abs/arXiv:2108.13455
https://doi.org/10.1021/acs.nanolett.1c03906
https://doi.org/10.1002/adma.202209135
https://doi.org/10.1002/adma.202209135
https://doi.org/10.1103/PhysRevB.105.L201102
https://doi.org/10.1103/PhysRevB.106.104505
https://doi.org/10.1103/PhysRevLett.86.4672
https://doi.org/10.1103/PhysRevLett.88.047006
https://doi.org/10.1103/PhysRevB.41.11693
https://doi.org/10.1073/pnas.1515173113
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1038/s41567-020-0925-6
https://doi.org/10.1038/nphys2208
https://doi.org/10.1126/science.1222360
https://doi.org/10.1103/PhysRevLett.111.066804
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1038/s41567-018-0280-z
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1103/PhysRevLett.85.4940

VOLKOV, WILSON, LUCHT, AND PIXLEY

PHYSICAL REVIEW B 107, 174506 (2023)

[58] M. S. Foster and E. A. Yuzbashyan, Interaction-Mediated
Surface-State Instability in Disordered Three-Dimensional
Topological Superconductors with Spin SU(2) Symmetry,
Phys. Rev. Lett. 109, 246801 (2012).

[59] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insula-
tor: Physics of high-temperature superconductivity, Rev. Mod.
Phys. 78, 17 (20006).

[60] M. Vojta, Lattice symmetry breaking in cuprate superconduc-
tors: stripes, nematics, and superconductivity, Adv. Phys. 58,
699 (2009).

[61] See the accompanying Letter [P. A. Volkov, J. H. Wilson, K. P.
Lucht, and J. H. Pixley, Current- and Field-Induced Topol-
ogy in Twisted Nodal Superconductors, Phys. Rev. Lett. 130,
186001 (2023)] for the discussion of the topological states
induced by current and in-plane magnetic field.

[62] P. Coleman, Introduction to Many-body Physics (Cambridge
University Press, Cambridge, 2015).

[63] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. USA 108, 12233
(2011).

[64] K. Hejazi, C. Liu, H. Shapourian, X. Chen, and L. Balents,
Multiple topological transitions in twisted bilayer graphene
near the first magic angle, Phys. Rev. B 99, 035111 (2019).

[65] K. Yang and S. L. Sondhi, Response of a d,>_» superconductor
to a zeeman magnetic field, Phys. Rev. B 57, 8566 (1998).

[66] E. Berg and E. Altman, Evolution of the Fermi Surface of
d-Wave Superconductors in the Presence of Thermal Phase
Fluctuations, Phys. Rev. Lett. 99, 247001 (2007).

[67] M. Naamneh, J. C. Campuzano, and A. Kanigel, The
electronic structure of BSCCO in the presence of a super-
current: Flux-flow, Doppler shift and quasiparticle pockets,
arXiv:1607.02901.

[68] Z. Zhu, M. Papaj, X.-A. Nie, H.-K. Xu, Y.-S. Gu, X. Yang, D.
Guan, S. Wang, Y. Li, C. Liu, J. Luo, Z.-A. Xu, H. Zheng,
L. Fu, and J.-F. Jia, Discovery of segmented Fermi surface
induced by cooper pair momentum, Science 374, 1381 (2021).

[69] A. A. Golubov, M. Y. Kupriyanov, and E. II’ichev, The
current-phase relation in josephson junctions, Rev. Mod. Phys.
76, 411 (2004).

[70] P. Dietl, F. Piéchon, and G. Montambaux, New Magnetic Field
Dependence of Landau Levels in a Graphenelike Structure,
Phys. Rev. Lett. 100, 236405 (2008).

[71] S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett,
Tight-Binding Modeling and Low-Energy Behavior of the
Semi-Dirac Point, Phys. Rev. Lett. 103, 016402 (2009).

[72] R. de Gail, M. O. Goerbig, and G. Montambaux, Magnetic
spectrum of trigonally warped bilayer graphene: Semiclassical
analysis, zero modes, and topological winding numbers, Phys.
Rev. B 86, 045407 (2012).

[73] K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Topological
Insulators and Nematic Phases from Spontaneous Symmetry
Breaking in 2D Fermi Systems with a Quadratic Band Cross-
ing, Phys. Rev. Lett. 103, 046811 (2009).

[74] S. K. Ghosh, M. Smidman, T. Shang, J. F. Annett, A. D.
Hillier, J. Quintanilla, and H. Yuan, Recent progress on su-
perconductors with time-reversal symmetry breaking, J. Phys.:
Condens. Matter 33, 033001 (2021).

[75] A. T. Rgmer, A. Kreisel, I. Eremin, M. A. Malakhov, T. A.
Maier, P. J. Hirschfeld, and B. M. Andersen, Pairing sym-
metry of the one-band Hubbard model in the paramagnetic

weak-coupling limit: A numerical RPA study, Phys. Rev. B
92, 104505 (2015).

[76] E. Simkovic, X.-W. Liu, Y. Deng, and E. Kozik, Ground-
state phase diagram of the repulsive fermionic ¢ — ¢" Hubbard
model on the square lattice from weak coupling, Phys. Rev. B
94, 085106 (2016).

[77] H. S. Rgising, F. Flicker, T. Scaffidi, and S. H. Simon,
Weak-coupling superconductivity in an anisotropic three-
dimensional repulsive Hubbard model, Phys. Rev. B 98,
224515 (2018).

[78] A. Thomson and J. Alicea, Recovery of massless dirac
fermions at charge neutrality in strongly interacting twisted
bilayer graphene with disorder, Phys. Rev. B 103, 125138
(2021).

[79] Y.J. Uemura, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu,
J. H. Brewer, T. M. Riseman, C. L. Seaman, M. B. Maple,
M. Ishikawa, D. G. Hinks, J. D. Jorgensen, G. Saito, and
H. Yamochi, Basic Similarities Among Cuprate, Bismuthate,
Organic, Chevrel-Phase, and Heavy-Fermion Superconductors
Shown by Penetration-Depth Measurements, Phys. Rev. Lett.
66, 2665 (1991).

[80] I. M. Vishik, W. S. Lee, F. Schmitt, B. Moritz, T. Sasagawa,
S. Uchida, K. Fujita, S. Ishida, C. Zhang, T. P. Devereaux,
and Z. X. Shen, Doping-Dependent Nodal Fermi Velocity
of the High-Temperature Superconductor Bi,Sr,CaCu,Og44
Revealed Using High-Resolution Angle-Resolved Photoemis-
sion Spectroscopy, Phys. Rev. Lett. 104, 207002 (2010).

[81] J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. L. Yeyati,
and P. Joyez, Andreev bound states in supercurrent-carrying
carbon nanotubes revealed, Nat. Phys. 6, 965 (2010).

[82] T. Senthil, J. B. Marston, and M. P. A. Fisher, Spin quantum
hall effect in unconventional superconductors, Phys. Rev. B
60, 4245 (1999).

[83] C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate
superconductors, Rev. Mod. Phys. 72, 969 (2000).

[84] R. A. Klemm, The phase-sensitive c-axis twist experiments on
Bi,Sr,CaCu,0g + § and their implications, Philos. Mag. 85,
801 (2005).

[85] T. Tummuru, O. Can, and M. Franz, Chiral p-wave supercon-
ductivity in a twisted array of proximitized quantum wires,
Phys. Rev. B 103, L100501 (2021).

[86] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Impurity-induced
states in conventional and unconventional superconductors,
Rev. Mod. Phys. 78, 373 (2000).

[87]1 S. Y. F. Zhao, N. Poccia, M. G. Panetta, C. Yu, J. W.
Johnson, H. Yoo, R. Zhong, G. D. Gu, K. Watanabe, T.
Taniguchi, S. V. Postolova, V. M. Vinokur, and P. Kim, Sign-
Reversing Hall Effect in Atomically Thin High-Temperature
Biy 1 Sry 9CaCu, ¢Oss Superconductors, Phys. Rev. Lett. 122,
247001 (2019).

[88] Y. Yu, L. Ma, P. Cai, R. Zhong, C. Ye, J. Shen, G. D. Gu,
X. H. Chen, and Y. Zhang, High-temperature superconductiv-
ity in monolayer Bi,Sr,CaCu,0Os. s, Nature (London) 575, 156
(2019).

[89] R. S. Markiewicz, S. Sahrakorpi, M. Lindroos, H. Lin, and A.
Bansil, One-band tight-binding model parametrization of the
high-7, cuprates including the effect of k, dispersion, Phys.
Rev. B 72, 054519 (2005).

[90] G. Drachuck, E. Razzoli, G. Bazalitski, A. Kanigel, C.
Niedermayer, M. Shi, and A. Keren, Comprehensive study of

174506-18


https://doi.org/10.1103/PhysRevLett.109.246801
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1103/PhysRevLett.130.186001
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.99.035111
https://doi.org/10.1103/PhysRevB.57.8566
https://doi.org/10.1103/PhysRevLett.99.247001
http://arxiv.org/abs/arXiv:1607.02901
https://doi.org/10.1126/science.abf1077
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/PhysRevLett.100.236405
https://doi.org/10.1103/PhysRevLett.103.016402
https://doi.org/10.1103/PhysRevB.86.045407
https://doi.org/10.1103/PhysRevLett.103.046811
https://doi.org/10.1088/1361-648X/abaa06
https://doi.org/10.1103/PhysRevB.92.104505
https://doi.org/10.1103/PhysRevB.94.085106
https://doi.org/10.1103/PhysRevB.98.224515
https://doi.org/10.1103/PhysRevB.103.125138
https://doi.org/10.1103/PhysRevLett.66.2665
https://doi.org/10.1103/PhysRevLett.104.207002
https://doi.org/10.1038/nphys1811
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1080/14786430412331314573
https://doi.org/10.1103/PhysRevB.103.L100501
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/PhysRevLett.122.247001
https://doi.org/10.1038/s41586-019-1718-x
https://doi.org/10.1103/PhysRevB.72.054519

MAGIC ANGLES AND CORRELATIONS IN TWISTED ...

PHYSICAL REVIEW B 107, 174506 (2023)

the spin-charge interplay in antiferromagnetic La,_,Sr,CuQy,
Nat. Commun. 5, 3390 (2014).

[91] Y. Peng, J. Meng, D. Mou, J. He, L. Zhao, Y. Wu, G. Liu,
X. Dong, S. He, J. Zhang, X. Wang, Q. Peng, Z. Wang, S.
Zhang, F. Yang, C. Chen, Z. Xu, T. K. Lee, and X. J. Zhou, Dis-
appearance of nodal gap across the insulator—superconductor
transition in a copper-oxide superconductor, Nat. Commun. 4,
2459 (2013).

[92] E. Razzoli, G. Drachuck, A. Keren, M. Radovic, N. C.
Plumb, J. Chang, Y.-B. Huang, H. Ding, J. Mesot, and
M. Shi, Evolution from a Nodeless Gap to d,>_,»-Wave in
Underdoped La, ,Sr,CuQ,4, Phys. Rev. Lett. 110, 047004
(2013).

[93] 1. M. Vishik, M. Hashimoto, R.-H. He, W.-S. Lee, F. Schmitt,
D. Lu, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa,
S. Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H.
Eisaki, Z. Hussain, T. P. Devereaux, and Z.-X. Shen, Phase
competition in trisected superconducting dome, Proc. Natl.
Acad. Sci. USA 109, 18332 (2012).

[94] C. Mielke, J. Singleton, M.-S. Nam, N. Harrison, C. C. Agosta,
B. Fravel, and L. K. Montgomery, Superconducting properties
and Fermi-surface topology of the quasi-two-dimensional
organic superconductor A-(BETS),GaCly(BETS =
bis(ethylene-dithio)tetraselenafulvalene), J. Phys.: Condens.
Matter 13, 8325 (2001).

[95] K. Clark, A. Hassanien, S. Khan, K.-F. Braun, H. Tanaka,
and S.-W. Hla, Superconductivity in just four pairs of
(BETS),GaCly molecules, Nat. Nanotechnol. 5, 261 (2010).

[96] R. Settai, H. Shishido, S. Ikeda, Y. Murakawa, M. Nakashima,
D. Aoki, Y. Haga, H. Harima, and Y. Onuki, Quasi-two-
dimensional Fermi surfaces and the de Haas-van Alphen
oscillation in both the normal and superconducting mixed
states of CeColns, J. Phys.: Condens. Matter 13, L627
(2001).

[97] J. S. Van Dyke, F. Massee, M. P. Allan, J. C. S. Davis, C.
Petrovic, and D. K. Morr, Direct evidence for a magnetic

f-electron—mediated pairing mechanism of heavy-fermion
superconductivity in CeColns, Proc. Natl. Acad. Sci. USA
111, 11663 (2014).

[98] G. R. Stewart, Unconventional superconductivity, Adv. Phys.
66, 75 (2017).

[99] M. W. Haverkort, I. S. Elfimov, L. H. Tjeng, G. A. Sawatzky,
and A. Damascelli, Strong Spin-Orbit Coupling Effects on the
Fermi Surface of Sr,RuO,4 and Sr,RhO,, Phys. Rev. Lett. 101,
026406 (2008).

[100] H. G. Suh, H. Menke, P. M. R. Brydon, C. Timm, A.
Ramires, and D. F. Agterberg, Stabilizing even-parity chiral
superconductivity in Sr,RuQy4, Phys. Rev. Res. 2, 032023(R)
(2020).

[101] R. Sharma, S. D. Edkins, Z. Wang, A. Kostin, C. Sow,
Y. Maeno, A. P. Mackenzie, J. C. S. Davis, and V.
Madhavan, Momentum-resolved superconducting energy gaps
of Sr,RuQ, from quasiparticle interference imaging, Proc.
Natl. Acad. Sci. USA 117, 5222 (2020).

[102] J. Li, P. Song, J. Zhao, K. Vaklinova, X. Zhao, Z. Li, Z. Qiu, Z.
Wang, L. Lin, M. Zhao, T. S. Herng, Y. Zuo, W. Jonhson, W.
Yu, X. Hai, P. Lyu, H. Xu, H. Yang, C. Chen, S. J. Pennycook
et al., Printable two-dimensional superconducting monolayers,
Nat. Mater. 20, 181 (2020).

[103] D. Huang and J. E. Hoffman, Monolayer FeSe on SrTiOs;,
Annu. Rev. Condens. Matter Phys. 8, 311 (2017).

[104] W.-Y. He, B. T. Zhou, J. J. He, N. E. Yuan, T. Zhang, and K. T.
Law, Magnetic field driven nodal topological superconductiv-
ity in monolayer transition metal dichalcogenides, Commun.
Phys. 1, 40 (2018).

[105] D. Shaffer, J. Kang, F. J. Burnell, and R. M. Fernandes, Crys-
talline nodal topological superconductivity and Bogolyubov
Fermi surfaces in monolayer NbSe,, Phys. Rev. B 101, 224503
(2020).

[106] P.J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap sym-
metry and structure of fe-based superconductors, Rep. Prog.
Phys. 74, 124508 (2011).

174506-19


https://doi.org/10.1038/ncomms4390
https://doi.org/10.1038/ncomms3459
https://doi.org/10.1103/PhysRevLett.110.047004
https://doi.org/10.1073/pnas.1209471109
https://doi.org/10.1088/0953-8984/13/36/308
https://doi.org/10.1038/nnano.2010.41
https://doi.org/10.1088/0953-8984/13/27/103
https://doi.org/10.1073/pnas.1409444111
https://doi.org/10.1080/00018732.2017.1331615
https://doi.org/10.1103/PhysRevLett.101.026406
https://doi.org/10.1103/PhysRevResearch.2.032023
https://doi.org/10.1073/pnas.1916463117
https://doi.org/10.1038/s41563-020-00831-1
https://doi.org/10.1146/annurev-conmatphys-031016-025242
https://doi.org/10.1038/s42005-018-0041-4
https://doi.org/10.1103/PhysRevB.101.224503
https://doi.org/10.1088/0034-4885/74/12/124508

