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Motivated by recent advances in the fabrication of twisted bilayers of two-dimensional materials, we consider
the low-energy properties of a twisted pair of two-dimensional nodal superconductors. We study both the cases
of singlet and triplet superconductors. It is demonstrated that the Bogoliubov–de Gennes (BdG) quasiparticle
dispersion undergoes dramatic reconstruction due to the twist. In particular, the velocity of the neutral massless
Dirac excitations near the gap nodes is strongly renormalized by the interlayer hopping and vanishes at a “magic
angle” where in the limit of a circular Fermi surface a quadratic band touching is formed. In addition, it is
shown that the BdG dispersion can be tuned with an interlayer displacement field, magnetic field, and current,
which can suppress the velocity renormalization, create finite BdG Fermi surfaces, or open a gap, respectively.
Finally, interactions between quasiparticles are shown to lead to the emergence of a correlated superconducting
state breaking time-reversal symmetry in the vicinity of the magic angle. Estimates of the magic angle in a
variety of nodal superconductors are presented, ranging from the cuprates to the organic and heavy-fermion
superconductors, all of which are shown to be promising for the experimental realization of our proposal.
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I. INTRODUCTION

The remarkable recent discoveries of correlated insu-
lators and superconductivity in twisted bilayer graphene
(TBG) [1–4] have demonstrated a novel way of control-
ling quantum phases of matter in two-dimensional materials.
Following these discoveries, the field of “twistronics” [5]
or moiré materials [6] has rapidly expanded by developing
new experimental platforms based on twisted multilayers.
Currently, a number of systems beyond twisted graphene bi-
layers have been considered, such as hBN substrate-aligned
TBG [7,8] and trilayer [9] graphene, twisted double bilayer
graphene [10], as well as twisted transition metal dichalgo-
nides [11–15]. All of them have now been established as
promising for the observation of correlated and topological
many-body behavior [6]. In addition to correlated insulators
and superconductors, twisted materials have also been ob-
served to exhibit topological Chern insulating states [9,10,16]
and a quantized anomalous Hall conductivity [8].

From the theory perspective, TBG and related systems ap-
pear to realize a novel example of the interplay between strong
correlations [17–20] and topology [21,22], where the fragile
topology of the band structure obstructs the construction of
conventional Hubbard-type models [23,24]. Analogies with
the quantum Hall effects have been pointed out [25], and
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universal origins of the magic-angle behavior demonstrated
[26]. However, many important questions on TBG and other
twisted semiconductors, such as the strange metal behavior
[27] or the nature of the superconducting state [2], remain
to be explored and understood. Furthermore, application of
twistronics to nonsemiconductor materials, such as magnetic
insulators [28], topological surface states [29,30], and ultra-
cold atom systems [31,32] have also been proposed to lead to
novel behaviors.

Recently, the existence of emergent physics in twisted bi-
layers of cuprate superconductors [33] at twist angles around
45◦ has been reconsidered [34–36]. In particular, the in-
terference of superconducting order parameters leads to a
time-reversal symmetry-breaking transition [37,38] (in agree-
ment with previous works [34–36]) and a topological state
[33] has been predicted. Recent experiments on interfaces
of twisted finite-thickness flakes are consistent with d-wave
pairing [39–41] and show signatures of time-reversal breaking
near 45◦ [39]. However, the topological nature of the resulting
state has been later shown to be suppressed due to particular
symmetry of the Cu orbitals [42], while incoherent tunneling
has been suggested to overcome this limitation [43]. Addi-
tionally, the dependence of Josephson effect on twist angle
and temperature in these systems has been recently discussed
[37,38]. Interestingly, a time-reversal breaking transition [37]
has been predicted to occur away from 45◦ to a state with a
different symmetry compared to one forming at 45◦. However,
the fate of the low-energy excitation spectrum at small twist
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angles has remained poorly understood despite the possibility
of a concise low-energy theoretical description at the moiré
length scale, in analogy to TBG.

Here, we propose to apply twistronics paradigm at low
twist angles to control neutral quasiparticle excitations in
nodal superconductors (SC). Indeed, in the vicinity of the
nodes, the Bogoliubov–de Gennes (BdG) quasiparticles have
a Dirac dispersion [44,45], reminiscent of graphene. In stark
contrast however, the charge neutral [46,47] nature of the
superconducting quasiparticles makes the system physically
very different, and difficult to control by conventional meth-
ods, such as electrostatic gating. Thus, one may expect that
twisted bilayers of nodal superconductors (TBSC) may dis-
play an altogether different behavior from TBG in response to
the same types of perturbations, which may open the door to
new methods of manipulating the SC quasiparticles.

Controlling the BdG quasiparticles using twisting can po-
tentially help address two important issues in the field of
superconductivity. First, topological superconductivity, which
is related to the topology of the BdG bands, while predicted
to exist more then a decade ago [48–50], currently lacks a
robust experimental realization despite many materials and
setups studied [51–55]. The possibility of creating localized
Majorana fermion excitations [56] in these states is especially
appealing for its possible applications. Second, the impact
of interactions between the BdG quasiparticles has remained
poorly understood even though they are expected to play an
important role in nodal [44,45,57], topological [50,58], and
strongly correlated [59,60] superconductors. In this regard, a
platform where correlations can be controlled by external pa-
rameters could give a tremendous advantage in understanding
these effects.

In this paper, a companion manuscript to the accompany-
ing paper [61], we derive an effective low-energy model for
twisted bilayers of two-dimensional nodal superconductors
and study the impact of external perturbations and interac-
tions on the quasiparticles. The Dirac velocity of the BdG
quasiparticles near the zeros of the superconducting gap (i.e.,
nodes) is strongly renormalized by the interlayer tunneling
and vanishes at a “magic” value of the twist angle where
the spectrum takes the form of a quadratic band touching in
the limit of a circular Fermi surface. The application of a
displacement field between the layers, a Zeeman splitting, and
an in-plane current can be used to tune the dispersion, bringing
the Dirac nodes back, or creating a BdG Fermi surface, thus
mimicking the effect of gating in two-dimensional electronic
materials. An interplane Josephson current, on the other hand,
opens a topological gap, further analyzed in [61]. Close to the
magic angle, interactions between the BdG quasiparticles are
shown to result in a (secondary) instability to a time-reversal
symmetry-breaking superconducting state. Finally, we discuss
a number of candidate materials that can realize TBSC with
current experimental techniques.

II. LOW-ENERGY HAMILTONIAN

In the following, we determine the low-energy description
of twisted bilayers of two-dimensional nodal superconductors.
Each layer has Dirac nodes in the BdG spectrum at the inter-
sections of the normal-state Fermi surface and the line node
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FIG. 1. (a) Illustration of the momentum-space structure for a
bilayer twisted at an angle θ for a square lattice and a Fermi sur-
face appropriate for cuprate superconductors. Fermi surfaces of two
layers are shown in red and black, with a pair of nodes located at
KN and K̃N, forming a single “valley,” emphasized by filled circles.
Tunneling occurs between states of two layers overlapping in the fig-
ure and also the ones additionally shifted by reciprocal wave vectors
of the original Brillouin zone (e.g., G1,2 shown by black arrows in
the inset) or of the rotated one (e.g., G̃1,2, shown by gray arrows
in main panel). The latter processes are, however, suppressed and
may be neglected (see text). Inset shows the construction of the mini
Brillouin zone (green) due to the moire superlattice formation with
the inverse lattice unit vectors GM

1,2. (b) Expanded nodal region from
(a) showing the local coordinates for the case of symmetry-protected
nodes: k‖ is along the bisector of the two node lines, and k⊥ ⊥ k‖.

of the SC gap (see Fig. 1). The nodes in the BdG specturm do
not generically occur at high-symmetry points of the Brillouin
zone, which, as is demonstrated below, allows for additional
theoretical control in the calculations compared to the case
of TBG.

To describe the effective BdG Hamiltonian in a generic
way, we use the Balian-Werthammer spinors �

†
l,K ≡

�
†
l (K) = [c†

l,↑(K), cl,↓(−K), c†
l,↓(K),−cl,↑(−K)] (cf. with

[62]) in layers l = 1, 2 and denote matrices acting in Gor’kov-
Nambu and spin space by τi and si, respectively. A single layer
is characterized by the single-particle dispersion ε(K)τ3 and a
superconducting gap �(K)�̂, where �̂ = τ1 for a spin singlet
SC and �̂ = [d(K) · s]τ1 for a spin triplet SC [62], where
the d2(K) = 1 describes the spin state of the triplet Cooper
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pairs. Near a node ε(KN ) = 0, �(KN ) = 0, to the lowest or-
der ε(K) ≈ vF · (K − KN ) and �(K) ≈ v� · (K − KN ). The
Hamiltonian in the vicinity of a gap node at momentum KN

on the Fermi surface without twisting has the first-quantized
form [44,45]

HN (k) = vF · kτ3 + v� · k�̂, (1)

where k = K − KN . The tunneling Hamiltonian between lay-
ers can be written in second-quantized form as

Htun =
∑
R,R′

�
†
1(R)T̂ (R, R′)�2(R) + H.c., (2)

where T̂ (R, R′) is, generally, a matrix in Gor’kov-Nambu
and spin space. To capture only the most essential physics of
TBSC we will assume that (i) the tunneling is spin indepen-
dent; (ii) only interlayer charge tunneling is considered that
result in T̂ (R, R′) = τ3t (R, R′) in Gor’kov-Nambu space;
(iii) the two-center approximation t (R, R′) = t (R − R′) can
be used [63]. The off-diagonal elements in Gor’kov-Nambu
space, neglected due to (ii), correspond to interlayer pairing
order, which can arise in the mean-field BdG Hamilto-
nian only from the interlayer interactions, which we neglect
with respect to the intralayer ones, assuming highly two-
dimensional character of superconductivity in the material.
Taking the above into account, the tunneling term takes the
form

Htun ≈
∑
R,R′

t (R − R′)�†
1(R′)τ3�2(R) + H.c., (3)

where R and R′ are the coordinates of the lattice sites in
the two layers and with R′ being rotated relative to R. In
momentum space, the tunneling matrix element tK,K̃ between
states with momentum K and K̃ (the latter taken in the rotated
momentum space) takes the form

tK,K̃ =
∑
G,G̃

tK̃+G̃

�
δK+G,K̃+G̃, (4)

where � is the unit-cell area, tq is the continuous Fourier
transform of t (r), and G and G̃ are the reciprocal lattice vector
of the original and twisted BZ, respectively. We assume a

one-atom unit cell and the shift between twisted layers to
be zero; for a generic twist angle the latter does not restrict
the generality due to the incommensurability of the twisted
lattices. The incommensurability also results in the recon-
struction of the Brillouin zone into a smaller mini-Brillouin
zone (mBZ), that at low twist angles can be approximately
constructed with the vectors GM

1,2 = G1,2 − G̃1,2, shown in
Fig. 1.

Let us consider the tunneling in the vicinity of a node. Un-
like graphene, the nodes in a superconductor are not restricted
to be at a high-symmetry point of the Brillouin zone. From
the momentum-space picture (Fig. 1) one sees that, as KN is
at a generic point of the Brillouin zone, |K̃N + G̃| 
= |K̃N |.
Moreover, if the node is sufficiently close to the 	 point, i.e.,
|K̃N | � |G̃|, it follows also that |K̃N | � |K̃N + G̃|. Alterna-
tively, this argument is equivalent to KN being away from the
edges of the mBZ, in contrast to graphene, where it is at the
corner of the mBZ. Assuming that tq decays on the scale of
inverse BZ size [63], all terms except the one with G, G̃ = 0
can be neglected. At small twist angles we can further approx-
imate K̃ ≈ kθ + [ẑ × KN ]θ ≡ kθ + QN , where kθ denotes k
rotated by θ . We can then approximate the tunneling term as

Htun ≈ t
∑

k

�
†
1(k)τ3�2(kθ + QN ) + H.c., (5)

where t = tKN
�

is a constant and k is now measured from KN ,
the node momentum.

Note that the tunneling occurs with a momentum shift
−QN , when tunneling 2 → 1 and QN for 1 → 2, implying
that the momentum shift can not accumulate (e.g., to ±2QN

and so on) over repeated hopping, unlike in TBG [63]. As
the tunneling acts between the layers, QN shift can only be
followed by −QN one, i.e., restoring to the initial point. Fur-
thermore, the different nodes in a layer are not expected to be
very closely spaced, i.e., |K′

N − K̃N | ∼ KN , where K′
N is the

other node’s momentum. Consequently, |K′
N − K̃N | ∼ KN �

QN . It is then evident that no tunneling between different
nodes may occur in Eq. (5). The pairs of nodes stemming from
two layers can then be treated as independent “valleys.” The
full Hamiltonian for a single valley takes the form (after a
−θ/2 rotation of the momentum space)

Ĥ =
∑

k

�
†
1,(k−θ/2−QN/2)[ε(k−θ/2 − QN/2)τ3]�1,(k−θ/2−QN/2) + �

†
2,(kθ/2+QN/2)[ε(kθ/2 + QN/2)τ3]�2,(kθ/2+QN/2)

+ �
†
1,(k−θ/2−QN/2)[�(k−θ/2 − QN/2)�̂]�1,(k−θ/2−QN/2) + �

†
2,(kθ/2+QN/2)[�(kθ/2 + QN/2)�̂]�2,(kθ/2+QN/2)

+ t�†
1,(k−θ/2−QN/2)τ3�2,(kθ/2+QN/2) + t�†

2,(kθ/2+QN/2)τ3�1,(k−θ/2−QN/2), (6)

where ε(k) is the quasiparticle dispersion, �(k) the super-
conducting gap, k is measured from KN , and k±(θ/2) denotes
k rotated by ±(θ/2).

Let us first ignore the effects of rotation of k, which
are parametrically small in the limit θ → 0 (see dis-
cussion at the end of this section and in Sec. V).
One can expand then ε(k ± QN/2) ≈ vF · (k ± QN/2),
�(k ± QN/2) ≈ v� · (k ± QN/2). Introducing the spinors

�
†
k = [�†

1(k − QN/2),�†
2(k + QN/2)] and denoting the

Pauli matrices acting in the layer space by σi the Hamiltonian
can be rewritten in a compact form:

Ĥ =
∑

k

�
†
k

(
vF · kτ3 − vF · QN

2
τ3σ3 + v� · k�̂

− v� · QN

2
�̂σ3 + tτ3σ1

)
�

†
k. (7)
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Equation (2) of [61] can then be obtained for the case
vF ‖ KN , vF ⊥ v�, that corresponds to the nodes being at
a high-symmetry line, such as in the case of symmetry-
protected gap nodes in a non s-wave superconductor. For that
case we can further write vF · k = vFk‖ and v� · k = v�k⊥,
where k‖ is along vF and k⊥ orthogonal to it [Fig. 1(b)]. To
simplify further discussion, in what follows below we will
also use the notations

ξ ≡ vF · k, δ ≡ v� · k, δ0 ≡ v� · QN

2
; α ≡ δ0

t
. (8)

Additionally, Eq. (7) for nodal triplet SC states can be
greatly simplified by choosing the spin quantization axis along
d(KN ), resulting in �̂ = τ1s3. Then, a unitary transformation
U = 1+sz

2 + 1−sz
2 τ3 (i.e., τ3 for the spin-down sector), results

in �̂ → τ1, which importantly is now equivalent to the singlet
case, without changing other terms in the Hamiltonian in
Eq. (7). Thus, unless otherwise indicated, below we will study
the singlet case without loss of generality and omit the spin
degree of freedom. When relevant, we will comment on the
distinctions between singlet and triplet TBSCs.

Finally, let us discuss the effects of the rotation of k →
k±(θ/2). We will limit ourselves to the case of symmetry-
protected nodes since otherwise the most important correction
is due to the τ3σ3 term in Eq. (7). The lowest-order corrections
are of the order θk and take the form (see Appendix A for
details)

δĤθ ≈ v
(2)
F θk⊥

2
τ3σ3 − v

(2)
� θk‖

2
τ1σ3, (9)

where

v
(2)
F = vF − KN

∂2ε(k)

∂k2
⊥

; v
(2)
� = v� + KN

∂2�(k)

∂k‖∂k⊥
. (10)

Both v
(2)
F and v

(2)
� vanish for a circularly symmetric ε(k)

and �(k) dependent only on the polar angle in K plane.
For a generic noncircularly symmetric case, v

(2)
F ∼ vF and

v
(2)
� ∼ v� are expected. As will be shown below, the rel-

evant energy scale at low twist angles is t , corresponding
to v�k⊥, vFk‖ ∼ t . Consequently, the two new terms are of
the order tθ (vF/v�) and tθ (v�/vF ) compared to the overall
scale of t . Thus, at θ � 1 neglecting these terms is justified.
Near the magic angle, their effect becomes important for the
quasiparticle dispersion as discussed in Sec. IVD. They also
can affect the weak-coupling instabilities at the magic angle,
as discussed in Sec. V.

Evolution of dispersion with twist angle

Here we analyze the low-energy spectrum of Eq. (7) ne-
glecting the term − vF ·QN

2 τ3σ3; its effect will be considered in
Sec. IV. The Hamiltonian using notations (8) and for singlet
pairing takes the form Ĥ = ∑

k �
†
kHk�k, where

Hk = ξτ3 + δτ1 − δ0τ1σ3 + tτ3σ1. (11)

The eigenenergies are given by

E2(k) = ξ 2 + δ2 + t2(1 + α2) ± 2t
√

ξ 2 + δ2α2 + t2α2.

(12)

It can be shown that the spectrum has zeros E2(k) = 0 at

ξN = ±
√

1 − α2t, δN = 0, |α| < 1

ξN = 0, δN = ±
√

1 − α−2, |α| > 1. (13)

At each of these points, the Hamiltonian has two degenerate
zero-energy eigenvectors, given by

|e1〉 = [−ξN , δ0 − t, t − δ0, ξ
N ]T /[2

√
t (t − δ0)],

|e2〉 = [−ξN , t + δ0, t + δ0,−ξN ]T /[2
√
t (t + δ0)] (14)

for |α| < 1 and

|e′
1〉 = [0, δN + δ0, t, 0]T /

√
t2 + (δN + δ0)2,

|e′
2〉 = [δN + δ0, 0, 0,−t]T /

√
t2 + (δN + δ0)2 (15)

for |α| > 1, where the first (second) two entries in the eigen-
vectors correspond to the Gor’kov-Nambu space of the first
(second) layer (spin degree of freedom is suppressed, as we
consider singlet pairing here).

One can further project Eq. (7) in the vicinity of (ξN , δN )
to the subspace spanned by |e1,2〉 or |e′

1,2〉 to obtain an effec-
tive low-energy Hamiltonian of TBSCs. Interestingly, by an
appropriate choice of basis in the subspace,1 one can bring
the effective Hamiltonian near each of the zeros to identical
forms:

Heff(k) = ṽF · kζ3 + ṽ� · kζ1, (16)

where ζi are Pauli matrices acting in the |e1〉, |e2〉 (or
|e′

1〉, |e′
2〉) low-energy subspace. The renormalized Fermi ve-

locities are given by ṽF,� =
√

1 − min{α2, α−2}vF,� (see
Fig. 2). The vanishing of the Fermi velocity at α = 1, cor-
responding to the “magic” angle of

θMA = 2t

v�KN
, (17)

suggests a different form of the spectrum at the MA. Also,
this clarifies the meaning of the dimensionless parameter α

in Eq. (8), as it is directly related to the magic angle value
by α = θ/θMA. We note that, distinct from estimates in TBG,
this result is not perturbative in the interlayer tunneling for the
generic case when the nodes are away from the Brillouin zone
boundary.

Additionally, an interesting result is obtained by projecting
the terms arising from the momentum rotation on a noncircu-
lar Fermi surface, Eq. (9) for α < 1 to the basis of Eq. (17).
In particular, the result is different in sign for the two Dirac
points and equal to

δĤθ,eff = ± θ2

θMA

(
v

(2)
F k⊥

2
ζ1 + v

(2)
� k‖
2

ζ3

)
, (18)

which results in small corrections to ṽF and ṽ�. Importantly,
this implies that the current-induced gap value (which appears

1The basis choice to get Eq. (16) is {(|e1〉 + |e2〉)/
√

2, (|e1〉 −
|e2〉)/

√
2} around ξN = √

1 − α2t, δN = 0 and {(|e1〉 +
|e2〉)/

√
2, (−|e1〉 + |e2〉)/

√
2} around ξN = −√

1 − α2t, δN = 0 for
|α| < 1. For |α| > 1 one should use {|e′

2〉, |e′
1〉} near ξ = 0, δ =√

1 − α−2t and {|e′
1〉, −|e′

2〉} near ξ = 0, δN = −√
1 − α−2t .
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k┴

k║

θ=0 0<θ<θMA

θ>θMA
θ=θMA

FIG. 2. Evolution of the low-energy part of the BdG quasipar-
ticle spectrum (12) [see also Eq. (8)] as a function of twist angle
θ relative to the magic angle θMA in Eq. (17) in momentum space
for the nodal region depicted in Fig. 1(b); filled circles marking the
node positions in the unhybridized layers. At zero twist angle, the
interlayer tunneling simply leads to an appearance of split bonding
and antibonding Fermi surfaces (gray lines), with nodes located at
their intersection with the gap line node. Then, the two Dirac cones
initially separated along k‖ move towards each other on increasing
twist angle, while the Dirac velocity is renormalized downwards.
At the magic angle, the two merge into a quadratic band touching
[Eqs. (20) and (21)], and separate again (this time along k⊥) on
further increasing the twist angle.

due to the ζ2 term) reported in the accompanying paper [61]
is unaffected by these terms at low twist angles.

III. EFFECTIVE THEORY AT THE MAGIC ANGLE

We now proceed to construct an effective theory at the
magic angle. The Hamiltonian takes the form

H (k)|θ=θMA = ξτ3 + δτ1 + tτ3σ1 − tτ1σ3. (19)

The zero-energy eigenvectors at ξ = δ = 0 are |a〉 =
(1, 1, 1,−1)/2 and |b〉 = (−1, 1, 1, 1)/2. These states are
equal superpositions of particles and holes and thus have
zero charge, but the spin is well defined. If we project the
Hamiltonian (19) to the subspace spanned by |a〉, |b〉 we ob-
tain exactly zero. One can note that |a〉, |b〉 are eigenvectors
of the last two terms in Eq. (19); however, the first two
H ′ = ξτ3 + δτ1 can lead to virtual transitions out of the sub-
space. Computing the second-order corrections due to these
terms in second-order perturbation theory δHα,β=a,b(k) =
−(〈α|H ′|c〉〈c|H ′|β〉 + 〈α|H ′|d〉〈d|H ′|β )/(2t ), where |c〉 =
(1,−1, 1, 1)/2, |d〉 = (1, 1,−1, 1)/2 are states with energy
±2t , we get

HMA(k) = −ξ 2 − δ2

2t
η3 − ξδ

t
η1, (20)

where η matrices act in the |a〉, |b〉 subspace. This Hamilto-
nian describes a quadratic band touching (QBT) (Fig. 2), that
also occurs at the magic angle of TBG [1,64]. The spectrum

EMA(k) ≈ ± (vF · k)2 + (v� · k)2

2t
(21)

is characterized by an anisotropic effective mass mF = t
v2
F

and m� = t
v2

�

. For a two-dimensional system, this spectrum
possesses a finite density of states (DOS) at zero energy:
ν = 2t

πvF v�
per node. To obtain an order-of-magnitude esti-

mate, we approximate v� ∼ �0
KN

, where �0 is the estimate for
the superconducting gap maximum value and the size of the
Fermi surface being of the order KN . This results in ν ∼ 2t

�0
ν0,

where ν0 = m
π

is the density of states in the normal state.
Interestingly, ν can constitute a rather large fraction of the
normal-state DOS, especially if the superconducting gap is not
too large.

A question may be raised of whether the enhanced DOS at
θMA in the superconducting state affects the self-consistency
equation for the superconducting gap; in Appendix C we show
that the corrections due to the presence of the QBT are small
by a parameter ∼(t/�0)3 log−1 �/�0 (where � is the high-
energy cutoff for the pairing kernel) at low temperatures and
can be neglected. The physical reason for this suppression is
that the most pronounced effects of tunneling are confined to
the nodal region where the order parameter is small itself.

IV. TUNING THE BDG QUASIPARTICLE DISPERSION
WITH EXTERNAL FIELDS

We now show that the dispersion of TBSCs near the
magic angle can be tuned by a number of external parameters
accessible with currently available experimental techniques.
For each external perturbation type, we first identify a cor-
responding term in the basis of Eq. (7) which can then be
projected to the η basis of Eq. (20) to determine the resulting
spectrum. Here, we discuss only the experimentally relevant
perturbations; for a summary of all possible perturbations see
Appendix B.

A. Interlayer displacement field

In an experiment, the application of a back-gate leads
to displacement field which technically leads to a differ-
ence in chemical potential between the two layers (a term
proportional to τ3σ3 in Gor’kov-Nambu and layer space).
Interestingly, it has the same form as the term stemming
from (vF · QN ) 
= 0 in Eq. (7). Projecting τ3σ3 to the basis
of Eq. (20) one obtains the −η1 matrix.

The addition of the term aη1 to Eq. (20) results in the
zero-energy states being moved away from ξ, δ = 0 to ξ0 =
δ0 = ±√

ta; the dispersion around this point is also linear
(Dirac) instead of quadratic one. To study the approach to
the magic angle, we introduce a deviation term −(δ0 − t )τ1σ3,
which projects to −(δ0 − t )η3. The resulting nodal points are
now at

ξ0 = ±
√
t (t − δ0) + t

√
(t − δ0)2 + a2,

δ0 = ± ta√
t (t − δ0) + t

√
(t − δ0)2 + a2

. (22)

The spectrum is always Dirac type and to quantify the renor-
malization of the Dirac velocities we compute the density of
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FIG. 3. Illustration of the effects of external fields on the spectrum of a TBSC. (a) Summary of the evolution of spectrum as a function
of twist angle in momentum space in the absence of external fields (cf. Fig. 2). Red lines indicate the direction of the node’s motion with
increasing twist angle. (b) Effect of an interlayer displacement field: the Dirac cones avoid merging into a QBT at all twist angles. (c) Effect of
Zeeman field: particle (hole) pockets form for spin-up (spin-down) quasiparticles. (d) Effect of in-plane current: particle and hole pockets form
for quasiparticles around KN and −KN , respectively. (e) Interlayer (Josephson) current opens a topological gap with an edge mode (black).

states per spin for a single valley at low energies:

ν(E ) = t |E |
2πvFv�

√
(δ0 − t )2 + a2

, (23)

which can be compared to the result when a = 0 and t ≈ δ0

of ν(E )|a=0 = t |E |
2πvF v�|δ0−t | ; in both cases, the average velocity

v = √
ṽF ṽ� can be extracted via ν(E ) ∼ v−2|E |, resulting in

vren/v = {(α − 1)2/[(α − 1)2 + a2]}1/4. This ratio vanishes
at the magic angle, indicating the suppression of the Fermi
velocity renormalization effects.

Thus, a displacement field (or the nodes not being in a
reflection plane) results in a splitting of the QBT into two
Dirac points, such that the QBT is avoided for all twist angles.
On increasing the twist angle, two Dirac points move towards
one another, but avoid collapsing into a QBT, by preemp-
tively turning in the direction of ±v� [see Fig. 3(b)]. For the
magic-angle effects to be observable, the τ3σ3 term magnitude
has to be much smaller than t at the MA, i.e., for the case
of nodes not in a reflection plane (vF · QN )/|QN | � v� is
required. On the other hand, this gives a way to suppress
the renormalization effects with a displacement field without
changing the twist angle.

B. Zeeman field

A Zeeman magnetic field (h · s) term, for a singlet SC or
triplet SC with d ‖ h, commutes with Eq. (7), resulting in a
spectrum that splits into two sectors with energies E (k) ± h
[see Eq. (12)]. This results in the formation of compensated
quasiparticle pockets of opposite spin, as has been predicted
in d-wave superconductors [65]. However, the size of the
resulting pockets would be affected by the renormalization
of the Dirac velocity in TBSC [61]. In particular, the field-
induced DOS at the Fermi energy is ν(h) ≈ ν0h/�0

1−min{α2,α−2} .
This effect can be used to shift the quasiparticle occupation
into the miniband that is formed by the reconstruction of the
Brillouin zone by the moiré pattern (see Fig. 1). Importantly,
this represents an analog of electrostatic gating for the neutral
BdG quasiparticles. In TBG, gating to commensurate moiré

filling fractions has led to the observation of correlated states
near the magic angle [6]. Thus, in the case of TBSCs a
Zeeman magnetic field (or an in-plane current as described
below) should provide a useful way to control the correlations
of the BdG quasiparticles, thus overcoming the challenges
posed by the charge neutral character of the excitations. For
a triplet TBSC with d ⊥ h, the Zeeman term has the same
commutation properties with respect to Eq. (7) as τ3 and its
effect is equivalent to a shift of k‖. It preserves the QBT at
the magic angle, merely shifting its position in momentum
space.

As the orbital effect of the magnetic field induces inhomo-
geneities in the order parameter in the form of vortices, we
leave its detailed consideration for a future study; however,
qualitative description of the effect of an in-plane field is
discussed in the accompanying paper [61].

C. Supercurrent flow

Finally, we consider the effect of a supercurrent flow in
TBSC, that can be induced by applying an external current
bias. For a single layer, the in-plane supercurrent corresponds
to a finite Cooper pair momentum QP, such that vF · kτ3 →
vF · kτ3 + vF · QP in Eq. (1). The effect of the new term is
to produce quasiparticle pockets, similar to the Zeeman field,
albeit without spin polarization [66]. In this case the spin-
degenerate particlelike (holelike) pockets would form around
KN (−KN ) [Fig. 3(d)]. The pocket formation by an in-plane
current has been observed experimentally in two-dimensional
SCs without twist [67,68]. As with the Zeeman field, the
in-plane supercurrent effects in TBSC should be boosted by
proximity to the magic angle in TBSC and efficiently “gate”
the BdG quasiparticles.

The effect of an interlayer supercurrent is dramatically
different. Microscopically, it corresponds to a nonzero phase
difference between the order parameters in the two layers
�1 → �1eiϕ/2,�2 → �2e−iϕ/2, related via the current-phase
relation I (ϕ) to the applied current [69]. For TBSC at
low twist angles, the conventional Josephson current-phase
relation I (ϕ) = Ic sin ϕ can be shown to hold down to
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TABLE I. Summary of the effects of external fields on the TBSC
BdG quasiparticle spectrum. For all cases, except Zeeman field h ⊥
d, the spectrum type in the third column is valid for all nonzero
twist angles in the presence of the corresponding perturbation, such
that the QBT at the magic angle does not occur. For the “interplane
supercurrent” case with a singlet SC, iτ3�̂ = −τ2.

Term added
Tuning parameter to Eq. (7) Spectrum

Interlayer displacement field τ3σ3 Dirac point
Zeeman field h ‖ d s ‖ d Fermi surface
Zeeman field h ⊥ d s ⊥ d QBT (at θMA)
In-plane supercurrent τ0σ0 Fermi surface
Interplane supercurrent iτ3�̂ Gapped

exponentially small temperatures T ∼ 2te−2�0/πt even at the
magic angle itself (see Appendix D). It follows then that ϕ is
monotonically increasing as a function of the applied current
up to a maximal value of ϕ = π/2, corresponding to the
critical interlayer current Ic. The new terms appearing in the
Hamiltonian are (we specify first the singlet SC case)

δHMA(k, ϕ) = −δ sin(ϕ/2)τ2σ3 + t sin(ϕ/2)τ2. (24)

If projected to the basis of Eq. (20), τ2σ3 yields zero, while
second-order perturbation theory results in a contribution
− sin2(ϕ/2)δ2

2t η3 that can be neglected for ϕ � 1. On the other
hand, τ2 projects to η2 leading to the Hamiltonian

HMA(k, ϕ) = −ξ 2 − δ2

2t
η3 − ξδ

t
η1 + t sin(ϕ/2)η2. (25)

The spectrum of this Hamiltonian is gapped; furthermore, in
the accompanying paper [61] we show that the gap never
closes for any value of the twist angle and is topological.
Explicitly, we can recast the Hamiltonian (25) into the form
HMA(k, ϕ) = (f (k) · �η) where

f1(k) = −ξδ

t
; f2(k) = t sin(ϕ/2); f3(k) = −ξ 2 + δ2

2t
.

The Berry curvature Fξ,δ (ξ, δ) for a two-band system is given
by

Fξ,δ (ξ, δ) = 1

2|f |3 εabc fa∂ξ fb∂δ fc

= 1

2|f |3 (− f2∂ξ f1∂δ f3 + f2∂ξ f3∂δ f1)

= sin(ϕ/2)(ξ 2 + δ2)

2t
{(

ξ 2+δ2

2t

)2 + [t sin(ϕ/2)]2
}3/2 . (26)

Integrating the Berry curvature over k one obtains the
Chern number equal to C = sgn[αtϕ] for ϕ � 1, consistent

with the merger of two gapped Dirac points of the same
chirality [61].

The resulting effects of external fields on the spectrum are
summarized in Table I.

D. Noncircular Fermi surface

We now consider the influence of noncircularity of the
Fermi surface near the magic angle, described perturbatively
(i.e., for θ � 1) by Eq. (9). Projecting Eq. (9) to the basis of
Eq. (20) one gets

δĤMA
θ ≈ −v

(2)
F θMA

2v�

δη1 − v
(2)
� θMA

2vF
ξη3. (27)

As v
(2)
F arises from the single-particle dispersion and v

(2)
� from

the gap amplitude, one expects that v(2) ∼ vF � v
(2)
� ∼ v�

[see Eq. (10)]. Near the magic angle, the full Hamiltonian
takes the form

H eff
|θ−θMA|�θMA

≈ − ξ 2 − δ2 + ξ1ξ

2t
η3 − ξ + ξ0

t
δη1

− (δ0 − t )η3, (28)

where

ξ0 = 2t
v

(2)
F θMA

2v�

, ξ1 = t
v

(2)
� θMA

2vF
. (29)

To discuss the form of low-energy spectrum, we first find the
zero-energy states of (28). These are at ξ = ξN , δ = δN with
ξN , δN given by

(1) : δ0 < t + ξ 2
1

8t
:,

δN = 0, ξN =
−ξ1 ±

√
ξ 2

1 + 8(t − δ0)t

2
,

(2) : δ0 > t + ξ1ξ0 − ξ 2
0

2t
:, (30)

ξN = −ξ0,

δN = ±
√

ξ 2
0 − ξ1ξ0 + 2t (δ0 − t ),

where two cases are indicated. Noticing that ξ1ξ0−ξ 2
0 +2t (δ0−t )

2t �
ξ 2

1
8t one observes that there are four zero-energy points for

t + ξ1ξ0−ξ 2
0

2t < δ0 < t + ξ 2
1

8t and two otherwise. Near each of the
zero-energy points we can expand the Hamiltonian to study
the form of the dispersion:

(1) : H eff ≈ ∓ ξ 2
1 − 8t (δ0 − t )

2t
ξ ′η3 −

2ξ0 − ξ1 ±
√

ξ 2
1 − 8t (δ0 − t )

2t
δ′η1,

(2) : H eff ≈ ∓
√

ξ 2
0 − ξ1ξ0 + 2t (δ0 − t )

t
ξ ′η1 −

ξ ′(ξ1 − 2ξ0) ∓ 2δ′
√

ξ 2
0 − ξ1ξ0 + 2t (δ0 − t )

2t
η3, (31)

174506-7



VOLKOV, WILSON, LUCHT, AND PIXLEY PHYSICAL REVIEW B 107, 174506 (2023)

FIG. 4. Evolution of the low-energy part of the BdG quasiparticle spectrum as a function of twist angle including corrections due to a

noncircular Fermi surface [Eqs. (11) and (9)]. For the figures we have taken
v

(2)
F θMAk⊥

2v�
= 0.5,

v
(2)
�

θMAk‖
2vF

= 0.1. At low twist angles (a) two Dirac
points are present. One of the two Dirac points (a) first becomes a semi-Dirac point (b) and splits into three Dirac points (c) afterwards. On
further increasing θ , one of the three new Dirac points approaches the remaining original one (d) and forms a semi-Dirac point (e) before
opening a gap (f) there. Therefore, at larger twist angles only two Dirac points remain.

where ξ ′ = ξ − ξN ; δ′ = δ − δN . One observes then that the
low-energy quasiparticle dispersion (or δ0) is generally linear.

For low twist angles δ0 < t + ξ1ξ0−ξ 2
0

2t , there are two Dirac
points [see (1) in Eq. (31)]. One notes that both components of
the effective quasiparticle velocity have opposite signs for the
two Dirac points [note that in this case

√
ξ 2

1 − 8t (δ0 − t ) >

|2ξ0 − ξ1|]. Such Dirac points are characterized by the same
winding number. In presence of an interlayer current [η2 term,
see Eq. (25)], this implies that both Dirac points are gapped
and have the same Chern number of ± 1

2 . Therefore, topo-
logical properties of the system are not affected by a small
noncircularity of the Fermi surface even close to the magic
angle.

For δ0 = t + ξ1ξ0−ξ 2
0

2t one notices that the δ′ component
of the Dirac velocity vanishes for one of the Dirac points.
There full dispersion, not linearized in ξ ′, δ′ takes the
form 4t2E2 = 4(ξ ′δ′)2 + [(ξ1 − 2ξ0)ξ ′ + ξ ′2 − δ′2]2 ≈ξ ′,δ′→0

[(ξ1 − 2ξ0)ξ ′]2 + 4δ′4. Therefore, at lowest energies the dis-
persion is quadratic in one direction and linear in the other,
i.e., a semi-Dirac point [70,71]. Interestingly, for ξ1 = 2ξ0

the quadratic band-touching dispersion E = ±(ξ ′2 + δ′2)/2t
is recovered.

For t + ξ1ξ0−ξ 2
0

2t < δ0 < t + ξ 2
1

8t there are four zero-energy
points; all of these show a Dirac (linear) dispersion. Impor-
tantly, the positions of three Dirac points come together at

δ0 = t + ξ1ξ0−ξ 2
0

2t < δ0; t + ξ 2
1

8t . In the second case, the disper-
sion at the merging point is again of the semi-Dirac type
(E2 ≈ (2ξ0−ξ1 )2

4t2 δ′2 + ξ ′4
4t2 ) Therefore, the semi-Dirac point is

formed by a merger of three Dirac points. The latter has been
also predicted to occur for special values of trigonal distortion
in bilayer graphene [72]. Note that for ξ1 = 2ξ0 this region

shrinks to a single point δ0 = t + ξ 2
1 /8t , where a quadratic

band touching occurs.

Finally, for δ0 > t + ξ 2
1

8t two points exist, separating fur-
ther along k⊥ with increasing twist angle (δ0). In Fig. 4 we
summarize these findings with a numerical calculation of the
spectrum of the full Hamiltonian (9) including noncircular
corrections (11).

V. CORRELATION-INDUCED PHASES NEAR
THE MAGIC ANGLE

We now explore the role of interactions between the BdG
quasiparticles close to the magic angle. Above, we have
shown that the density of states at the magic angle is finite
due to the presence of a QBT. In this case, correlations may
manifest themselves as instabilities already at weak coupling
[73]. To analyze the likely correlated states that emerge at the
magic angle in TBSC, we study the order-parameter suscepti-
bilities defined as

χÂ(T ) = − ∂2

∂W 2

∣∣∣∣
W=0

T
∑

εn,k,Val

log(iεn − H (k) −WÂ), (32)

where Â is a matrix of the form τa ⊗ σb ⊗ sc representing
the order parameter, εn = (2n + 1)πT are the Matsubara fre-
quencies, and a sum over valleys is implied. The critical
temperature is determined by the gap equation χÂ(T ) = 2

λÂ
,

where λÂ is the coupling constant in the respective channel.
We assume the interlayer interactions to be much weaker than
the intralayer ones and thus we only consider orderings that do
not involve layer degrees of freedom, i.e., Â = τa ⊗ σ0 ⊗ sc.
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To simplify the discussion, we first address the singlet
�̂ = τ1 case. Of all the possible order parameters, only the
τ2 (or its spinful version τ2s1,2,3) order has a (logarithmically)
divergent susceptibility as T → 0 leading to a weak-coupling
instability. The susceptibilities for the other orders remain
finite at T = 0, as only the τ2 order opens the gap at the
QBT (see Appendix B). The τ2 order parameter corresponds
to a secondary superconducting instability, while the purely
imaginary character of the order parameter indicates a broken
time-reversal symmetry state, such as a d + is state [74].
Indeed, a number of competing SC states may be expected
in systems with nonphononic pairing mechanisms [75–77].
Depending on the type of the subleading SC instability, the
sign of the order parameter may change between the nodes,
affecting the topology of the state. For example, for an s-wave
secondary instability, the order-parameter sign will remain
the same, resulting in a total zero Chern number, similar to
the quantum valley Hall state in TBG [78]. On the other
hand, for a dxy instability in a dx2−y2 TBSC, the resulting
state will have Chern number equal to the number of nodes,
similar to the supercurrent-induced state discussed above and
in [61].

The results above for the Â = τ2 instability apply also to
the triplet TBSC case. Unlike the singlet case, Â = τ1(h · s)
has a weak-coupling instability only for h ⊥ d, which has
the same susceptibility as τ2. Above we considered the or-
der parameters that do not break translational symmetry; in

principle, order parameters such as spin-, charge-, or pair-
density waves can couple different nodes, opening a gap.
However, their properties would likely depend on the par-
ticular Fermi surface geometry and hence we leave the
consideration of these order parameters for future studies
focused on specific materials. In particular, our results are
consistent with a nontopological gapped d + is state that has
been predicted for a model of cuprate bilayers [37].

Away from the magic angle, the spectrum has Dirac nodes
with a zero density of states instead of a QBT. This suggests
that the secondary instability temperature T ∗(θ ) should be
suppressed. To find how Tc is suppressed away from the magic
angle we evaluate the low-energy susceptibility (32) approx-
imating H (k) with HMA(k) − (δ0 − t )η3 close to the magic
angle. The contribution of the energies higher than t can be
assumed to be independent of the twist angle or temperature
for temperatures lower than t . One obtains

χτ2 (T ) ≈ χ0
τ2

− T

×
∑
εn,k

2N

ε2
n + (

ξ 2+δ2

2t

)2 + (δ0 − t )2 + (δ0 − t ) ξ 2−δ2

t

,

(33)

where N is the number of nodes and χ0
τ2

is the high-energy
contribution to the susceptibility. Then, subtracting the equa-
tions for T ∗ at the magic angle and away from it [χτ2 (T =
T ∗) − χ t=δ0

τ2
(T = T ∗)] one gets

log
T ∗(θ )

T ∗
0

=
∫ ∞

0
dε

∫ 2π

0

dη

2π

⎧⎨
⎩− tanh ε

2T ∗

ε
+ tanh

√
ε2−2|δ0−t |ε cos(2η)+(δ0−t )2

2T ∗√
ε2 − 2|δ0 − t |ε cos(2η) + (δ0 − t )2

⎫⎬
⎭, (34)

where cylindrical coordinates ε = ξ 2+δ2

2t , η for ξ, δ integration
have been used.

Solving Eq. (34) for the critical temperature T ∗ numeri-
cally, one obtains that it decreases away from the magic angle
(see Fig. 5, inset) and vanishes when the angle reaches a
critical value. The latter can be found analytically using the
following identity:∫ ∞

0
dx

∫
dη

2π

1√
x2 − 2x cos η + 1

− 1√
x2 + 1/4

= 0.

(35)

Then, the critical twist angle is found to be θ±
c = θMA ±

2πe−γ θMAT ∗
0

t .
Finally, let us discuss the expected magnitude of T ∗

0 . Eval-
uating the sum in Eq. (33) for δ0 = t (at the magic angle) with
an upper energy cutoff of the order t one obtains

T ∗
0 = 2teγ

π
e
− 4

λeff θMAN , (36)

where

λeff ≡
(

1

λτ2ν0
− χ0

τ2

2ν0

)−1

, (37)

where ν0 = h̄KN/(2πvF ) is of the order of the normal-state
density of states. If the coupling in the secondary SC channel

is weak, one expects λτ2ν0 � 1. Then, λeff � 1 is expected
and T ∗

0 should be smaller than t . However, if the system is
close to a secondary instability with zero twist angle [i.e.,
that χ0

τ2
/(2ν0) is close to 1/(λτ2ν0)], λeff can be seen to be

strongly enhanced. A further observation is that due to the
strong exponential dependence, T ∗

0 should be increased in
systems with larger θMA. This can be achieved in two ways:
increasing t is possible with pressure that brings the layers
of TBSC closer to one another. Another option is for v� to
decrease, which can be generically achieved by enhancing the
temperature of the material; however, the temperature should
remain much smaller than t , limiting the use of this approach.

Effects of deviations away from a circular Fermi surface

As has been shown in Sec. II there are parametrically small
(in θ � 1) corrections to the Hamiltonian (7) due to the rota-
tion of k. As these corrections are expected to be generically
present for noncircular Fermi surfaces they may nonetheless
affect the weak-coupling instability discussed above, as its
relevant scale is T ∗ � t . Projecting Eq. (9) to the basis of
Eq. (20) one gets

δĤMA
θ ≈ −v

(2)
F θMA

2v�

δη1 − v
(2)
� θMA

2vF
ξη3. (38)
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FIG. 5. Phase diagram of the secondary time-reversal symmetry-
breaking superconducting order induced by the quasiparticle inter-
actions near the magic angle. Its onset temperature T ∗ reaches its
maximal value T ∗

0 at the magic angle and is suppressed as the

deviation |θ − θMA| grows, vanishing at θ±
c = θMA ± 2πe−γ θMAT ∗

0
t .

The band structure schematics represent the qualitative form of the
quasiparticle spectrum in each region (cf. Fig. 3). Inset shows the
numerical solution for T ∗(θ ) as a function of the dimensionless twist
parameter t |α − 1|/T ∗

0 . Here, T ∗
0 � Tc is assumed; see text for the

discussion of the additional effects of temperature.

As v
(2)
F arises from the single-particle dispersion and v

(2)
� from

the gap amplitude one expects that v(2) ∼ vF and v
(2)
� ∼ v�

[see Eq. (10)]. Realistically, v� can be expected to be much
smaller then vF . Indeed even for the cuprates, which are often
considered to be close to the strong-coupling regime [79], this
ratio is well below 1 across the doping phase diagram [80].
Thus, the first term in Eq. (38) is larger than the second one by
a factor of the order (vF/v�)2. Therefore, we will only study
the consequences of the first term in Eq. (38). The modified
Hamiltonian at the magic angle takes the form

H θ
MA(k) = −ξ 2 − δ2

2t
η3 − (ξ + ξ0)

δ

t
η1, (39)

where ξ0 = v
(2)
F tθMA

2v�
. For t � ξ � ξ0, the QBT Hamiltonian

(20) can be still seen as a good approximation. However, at
low energies ξ � ξ0 the spectrum is modified with respect
to the QBT case. At ξ, δ ≈ 0 the dispersion is (E θ

MA)2(k) ≈
(ξ0/t )2δ2 + ξ 4/(4t2), corresponding to a semi-Dirac point
with a quadratic dispersion along k‖ and linear along k⊥. In
addition to ξ, δ = 0, one observes that there are two more
zero-energy states at ξ = −ξ0, δ = ±ξ0 with a Dirac cone-
like dispersion (E θ

MA)2(k) ≈ (ξ0/t )2[([ξ + ξ0] ± [δ ∓ ξ0])2 +
(ξ + ξ0)2] around these points. As neither of these yields
a finite density of states at zero energy, one may expect a
suppression of T ∗

0 .
Using Eq. (38) instead of H (k) in the definition of the

order-parameter susceptibility (32), one can derive the equa-
tion for the ordering temperature T ∗ for ξ0 � t . One gets in
analogy with Eq. (34)

log
T ∗(ξ0)

T ∗
0

=
∫ ∞

0
dε

∫ 2π

0

dη

2π

⎧⎪⎨
⎪⎩− tanh ε

2T ∗

ε
+ tanh

√
ε2+2(ξ0+2

√
2εt cos η)ξ0ε sin2 η/t
2T ∗√

ε2 + 2(ξ0 + 2
√

2εt cos η)ξ0ε sin2 η/t

⎫⎪⎬
⎪⎭. (40)

The numerical solution of Eq. (40) is presented in Fig. 6.
One observes that the critical temperature is almost unaffected
until ξ0 reaches values of around 4

√
tT ∗

0 .
Conversely, for a finite ξ0, there exists a critical value of

the bare T ∗
0 [i.e., computed with Eq. (36) in the absence of ξ0],

such that for T ∗
0 < T ∗(cr)

0 the secondary instability is strongly
suppressed:

T ∗(cr)
0 ∼ t

(
v

(2)
F θMA

8v�

)2

. (41)

For θMA � 1 the condition T ∗
0 > T ∗(cr)

0 does not preclude a
weak-coupling instability since T ∗(cr)

0 � t . However, for most
materials one may also expect v

(2)
F /v� ∼ vF/v� � 1. Thus,

weakly coupled superconductors, where vF/v� is expected
to be extremely large, are not favorable for the observation
of correlated states; on the other hand those with sufficiently
strong coupling (such as cuprates) or heavy mass (such as
heavy-fermion systems) will suffer less limitations.

Using the estimate (41) one can also find the critical
value of the effective coupling constant λeff [Eq. (37)] using
Eq. (36):

λ
cr
eff = 4

θMAN

{
log

[
2eγ

π

(
8v�

v
(2)
F θMA

)2]}−1

. (42)

One observes that larger θMA are actually favorable; again, this
is due to the exponential dependence of T ∗

0 on θMA.

VI. DISCUSSION

Let us briefly recall our findings, focusing on the pre-
dictions for experiments. The flattening of the dispersion
and the gap opening induced by the current or interactions
near θMA = 2t/(v�KN ) (Figs. 3 and 5) both can be directly
revealed by probing the density of states with scanning tun-
neling microscopy (STM) and thermal transport or probing
the quasiparticle dispersion in angle-resolved photoemission
spectroscopy experiments. The latter technique can addition-
ally reveal the predicted change in the position of nodes in
momentum space with the twist angle [Figs. 3(a) and 3(b)].
STM or superconducting spectroscopy [81] can also reveal the
presence of gapless chiral edge modes in the topological SC
state [61]. For the current-induced topological state, quantized
thermal (and spin, for the singlet case) Hall conductances [82]
are also expected [61].

Having outlined the experimental scope, we now discuss
some of the material prerequisites for the observation of the
unconventional effects in TBSC. First, θMA is of order t/�0,
the ratio of interlayer tunneling to the maximal SC gap value
�0, implying that the interlayer tunneling should be weaker
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FIG. 6. Suppression of the time-reversal symmetry-breaking
temperature T ∗ by the deviations from circularly symmetric Fermi

surface [Eq. (9)] characterized by the parameter ξ0 = v
(2)
F tθMA

2v�
.

than �0, for the magic angle to exist. Reducing t can be
achieved by introducing an insulating barrier between the two
layers, similar to conventional Josephson junctions. However,
the correlation effects near the magic angle are expected to
be stronger for larger values of θMA [see Eq. (36)]. For too
small θMA values, increasing θMA can be achieved by applying
a c-axis pressure to TBSC, which would reduce the interlayer
distance enhancing t .

For sufficiently small t , one can also reach angles larger
than θMA. In our study, we found the effects of hybridization to
be most pronounced at θMA, and suppressed if the twist angle
is further increased (Fig. 3). On the other hand, increasing the
twist angle between nodal superconductors is known to sup-
press the leading contribution to the critical superconducting
current at small t , eventually suppressing it to zero at special
angles dictated by symmetry (e.g., 45◦ in a d-wave super-
conductor [83,84]). This dramatically alters the current-phase
relation I (ϕ) allowing the subdominant effect to become im-
portant; in particular, a spontaneous phase transition into the
chiral topological SC state breaking time-reversal symmetry is
predicted [33–36,85]. However, the spontaneously generated
topological gap should be smaller in that case than the one
induced by an interlayer current at the magic angle since it
is an effect of a higher-order expansion in t . On dimensional
grounds, one expects the gap to be of the order t2/�0 in that
case (see also [61]).

Another important question is that of disorder, as the nodal
superconductors are usually strongly affected by it [86] due
to the presence of gapless excitations close to the gap nodes.
On the other hand, gapped topological states are expected
to be robust to weak perturbations, as the Chern number
can not change continuously [48,82]. In the accompanying
paper [61] we demonstrate that the density of states in the
current-induced topological state remains gapped for suffi-
ciently weak disorder.

Presence of an energy gap also allows to neglect tempera-
ture effects for T � T ∗

0 , t , due to exponential suppression of
excitation. On the other hand, temperature provides an addi-
tional control parameter, as the value of v� should decrease
with increasing temperature, vanishing at Tc. An increasing
temperature consequently leads to an enhanced θMA value,
which can be used to achieve magic-angle conditions if the
device is initially at θ > θT=0

MA .

TABLE II. Estimates for the magic angle and maximal current-
induced gap values for the nodal superconductors discussed in the
text.

Material θMA �Max
J (K)

Bi2Sr2CaCu2O8+y (OP) [80,89] 2.8◦ 11
(BETS)2GaCl4 [94,95] 1◦ 2.4
CeCoIn5 [96,97] 14◦ 1.7

Let us now discuss the materials that can be used to realize
TBSC. We start with the ones already available in monolayer
form. For each material we will provide estimates for the
magic-angle value and the related quantities, summarized in
Table II.

Cuprates. Cuprates are known to host nodal d-wave
superconductivity [83] with a remarkably high transition tem-
perature. Recently, superconducting monolayers and bilayers
of [87,88] of Bi2Sr2CaCu2O8+y have been demonstrated,
with almost the same Tc as that of the bulk samples, sug-
gesting robust superconductivity. The dominant interplane
hopping is proportional to ∼(cos kx − cos ky)2 and van-
ishes near the gap nodes; more recent estimates suggest
that there is a nonzero tunneling along the nodal direc-
tion [89]: 4a0 cos(kx/2) cos(ky/2)tz ≈ 2 meV [taking KN ≈
(π/(2a), π/(2b)], where a and b are the lattice constants,
in Eq. (11) in [89]]. Importantly, Bi2Sr2CaCu2O8+y actually
contains two layers within the unit cell with the intrabi-
layer hopping tbi = 30 meV according to fits [89]. We can
still apply the theory developed here for monolayers to each
the bilayer-split (bonding and antibonding) Fermi surface of
the top and bottom Bi2Sr2CaCu2O8+y layer. As only one
pair of layers is hybridized with 4a0 cos(kx/2) cos(ky/2)tztza0,
it follows that the projection of the interbilayer hopping
is ±2a0 cos(kx/2) cos(ky/2)tza0/2 for the bonding and anti-
bonding bands. Note that the sign change of the hopping
can be shown not to affect the topology of the current-
induced state. Using the value of v� for optimal doping
0.1 eV Å [80] and taking the in-plane lattice constants
to be approximately equal to 5.4 Å, one obtains θMA =
4a0 cos(kx/2) cos(ky/2)tz/(v�KN ) ≈ 2.8◦.

While the Fermi surface of the hole-doped cuprates devi-
ates noticeably from a circular one, the smallness of the magic
angle leads to these deviations being important for the corre-
lated phases only for temperatures below 0.3 K [see Eq. (41),
where v

(2)
F /v� is taken to be 0.1 consistent with vF/v� close

to optimal doping [80]]. At the same time, small values of
θMA result in a rather strong constraint on the dimensionless
critical coupling [see Eq. (42)] λ

cr
eff ≈ 3.5, which is reduced

to 1.9 for underdoped samples due to the reduction in vF and
v� [80] (where λ

cr
eff is measured relative to unity). Moreover, a

competing instability that can open a gap at the node, likely
a spin-density wave [90], has been reported in a number
of underdoped cuprates [91,92], including Bi2Sr2CaCu2O8+y

[93]. As this can enhance λeff, underdoped cuprates appear
promising for the observation of correlation-induced states
in TBSC. Furthermore, the interlayer hybridization could be
enhanced with respect to the one in bulk crystal by, e.g.,
applying pressure, which would additionally lower λ

cr
eff.
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Organics, (BETS)2GaCl4. Many organic superconductors
are believed to be unconventional, and d wave in particular
[98]. Additionally, a high anisotropy is characteristic for these
materials and (BETS)2GaCl4 has been demonstrated to be
superconducting in monolayer form [95]. The interlayer hop-
ping is of the order 0.21 meV [94]. Assuming a cos 2θ d-wave
gap with a maximum of 12 meV [95] on a cylindrical Fermi
surface one gets v� = 2�0

KN
and θMA ≈ t/�0 = 1◦.

We now move to the highly two-dimensional nodal super-
conductors, which are not yet available as monolayers.

Heavy fermions. CeCoIn5 is characterized by the
anisotropy mc/ma = 5.6 [96], the highest among the heavy-
fermion systems [98]. Due to the heavy effective mass, we
assume the hopping to be mostly due to f electrons, esti-
mating the c-axis hopping from the in-plane one [97] and
the mass anisotropy as tc ∼ mata/mc ≈ 0.15 meV. The gap
maximum is known to be around 0.6 meV [97], which yields
θMA ≈ t/�0 ≈ 14◦. The heavy masses of the conduction band
make the effects of Fermi surface noncircularity on the cor-
related states [see Eq. (41)] unimportant down to few mK
temperatures. Also, the value of λ

cr
eff ≈ 0.64 appears mod-

est, suggesting that even weakly competing superconducting
states may develop an instability at the magic angle.

Sr2RuO4. ARPES experiments reveal that this material is
highly two dimensional [99], with the observed effects of
the out-of plane dispersion suggesting an interplane hopping
being of the order of a few meV (e.g., 2.5 meV in [100]).
Sr2RuO4 has an extremely small SC gap, with a maximum of
about 350 µeV [101]. This implies that to observe the magic
angle in Sr2RuO4-based TBSC, the interlayer tunneling has
to be reduced first, by, e.g., an insulating layer introduced
between the monolayers, as discussed in the main text.

Finally, superconducting monolayers of transition metal
dichalcogenides [102] and the iron-based superconductor
FeSe [103] have recently been demonstrated. While in both
cases the superconductivity has been found to be nodeless,
theoretical proposals suggest that the realization of nodal
SC is possible in monolayer transition metal dichalcogenides
[104,105] and nodal superconductivity is known to occur in
some bulk iron-based superconductors [106], raising the ex-
citing prospect that some of these materials can remain nodal
in monolayer form.

VII. CONCLUSION

We have shown that twisted bilayers of nodal supercon-
ductors provide a versatile platform to control the properties
of neutral BdG quasiparticles. In particular, the quasiparti-
cle dispersion undergoes a dramatic reconstruction near the
“magic” value of the twist angle where for a circular Fermi
surface it forms a quadratic band touching [Fig. 3(a)] and the
system has a finite density of states of neutral fermions at
the Fermi level, which increases with the magic-angle value
and can be a significant fraction of the normal-state density
of states. At the magic angle, even weak interactions lead to a
time-reversal symmetry-breaking transition (Fig. 5), which is
suppressed away from it. The deviations from circular sym-
metry of the Fermi surface provide a lower bound on the
interaction strength required for the transition, that decreases
with the magic-angle value. We have also shown that the dis-
persion of the BdG quasiparticles in TBSC is highly tunable:

an interlayer displacement field reduces the renormalization
effects of the twisting, while a Zeeman field or in-plane
current act as an effective “gate” for the quasiparticles, allow-
ing control of their filling [Figs. 3(b)–3(d)] in analogy with
gating in twisted semiconductors. Furthermore, an interlayer
supercurrent flow results in the opening of a topological gap
analyzed in the accompanying paper [61]. Identifying sev-
eral candidate materials hosting nodal superconductivity in
monolayers, we further demonstrate that twisted bilayers of
nodal superconductors can be readily realized with currently
available materials.
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APPENDIX A: CORRECTIONS TO THE LOW-ENERGY
HAMILTONIAN DUE TO THE ROTATION OF k

Here we study the corrections due to the rotation of k vec-
tors in Eq. (6), neglected in Eq. (7) for the case of nodes on a
high-symmetry line. As will be shown below, this requires the
expansion of both the single-particle dispersion ε(K) and the
gap amplitude �(K) to the second order in K − KN. Denoting
the component of K along KN as K‖ = k‖ + KN and the one
orthogonal to it as k⊥ one gets

ε(k) ≈ vFk‖ + αk2
‖ + βk2

⊥, (A1)

restricted by the reflection symmetry ε(K‖,−K⊥) =
ε(K‖,K⊥), where α = 1

2
∂2ε(k)
∂k2

‖
; β = 1

2
∂2ε(k)
∂k2

⊥
. The super-

conducting gap amplitude, on the other hand, has to vanish
exactly at k⊥ = 0 in case of symmetry-imposed nodes
resulting in

�(k) ≈ v�k⊥ + γ k⊥k‖, (A2)

where γ = ∂2�(k)
∂k‖∂k⊥

. For circularly symmetric dispersion
ε(k) = ε(|k|) the coefficients in the above expansions are not
independent, in particular, β = vF/(2KN ). At the same time,
if the gap amplitude is solely dependent on the polar angle,
i.e., �(K) = �[arctan(K⊥/K‖)] it follows that γ = −v�/KN .

We now include the effect of the rotation of local
axes due to the twist. In particular, Kθ/2

‖ = K‖ cos θ/2 +
K⊥ sin θ/2; Kθ/2

⊥ = K⊥ cos θ/2 − K‖ sin θ/2. We aim to keep
only the linear terms in the expansion in the twist angle θ but
will keep here terms up to order θ2 for completeness:

Kθ/2
‖ ≈

(
1 − θ2

8

)
(k‖ + KN ) − θ

2
k⊥;

Kθ/2
⊥ =

(
1 − θ2

8

)
k⊥ + θ

2
(k‖ + KN ). (A3)
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One obtains then

ε(Kθ/2) ≈ vF

(
1 − θ2

8

)
k‖ − θ2

8
vFKN − θ

2
vFk⊥

+α

(
1 − θ2

4

)
k2
‖ + α

θ2

4
k2
⊥ − α

θ2

4
KNk‖

−α
θ

2
k⊥k‖

+β

(
1 − θ2

4

)
k2
⊥ + β

θ2

4
(k‖ + KN )2

+βθ (k‖ + KN )k⊥

= θ2

8
KN [−vF + 2βKN ] + vFk‖

+[−vF + 2βKN ]
θ

2
k⊥ + O

(
k2, θ2k, θ4K2

N

)
;

�(Kθ/2) ≈ v�k⊥ + v�KNθ

2

+ [v� + γKN ]
θ

2
k‖ + O

(
θ2kKN , k2, θ3K2

N

)
, (A4)

where the terms due to the rotation of the Dirac cone are
highlighted in red. All of these terms vanish for a circularly
symmetric single-particle energy [implying β = vF/(2KN )]
and gap amplitude depending only on the polar angle in the
K space (which implies γ = −v�/KN ).

The constant term in ε(Kθ/2) can be trivially absorbed
into a shift of k‖: k‖ → k‖ − θ2

8 KN [−1 + 2βKN/vF ], which
leads to corrections in �(Kθ/2) of the order θ3 which can be
ignored.

The remaining terms, not included in (7), can be written in
the basis of Eq. (7) using the bilayer Pauli matrix notations to
arrive at the expression in Eq. (9) that is given by

δĤθ ≈ v
(2)
F θk⊥

2
τ3σ3 − v

(2)
� θk‖

2
τ1σ3, (A5)

where v
(2)
F = vF − 2βKN and v

(2)
� = v� + γKN . For a generic

noncircular dispersion and gap amplitude one may expect
v

(2)
F ∼ vF and v

(2)
� ∼ v�.

APPENDIX B: LOW-ENERGY PROJECTION OF THE
PERTURBATIONS AT THE MAGIC ANGLE

In Table III we show the result of projection of the per-
turbation terms to the full Hamiltonian (7) and discuss their
possible physical origins.

1. Singlet superconductors

We consider first the singlet case and perturbation terms of
the general form W0Â = τiσ j . Below we consider all the pos-
sible i and j, and for each case, we indicate the corresponding
term in the projected Hamiltonian (20).

Â = τ1, τ3, τ1σ3, τ3σ1 → (δ → δ + W0), (ξ →
ξ + W0), η3, η3. These terms are already contained in
Eq. (19) and only lead to a renormalization of the initial

TABLE III. Effects of the the possible perturbations for the
Hamiltonian (19) ignoring spin (that have the form W0τiσ j) on the
spectrum near the QBT: entries give either the projection of the
corresponding term to the basis of Eq. (20) or the resulting change in
the parameters of Eq. (20) if W0τiσ j perturbation is added (e.g., for a
W0τ1σ0 perturbation, δ is replaced with δ +W0). η1 and η3 result in a
spectrum with two Dirac cones; in the latter case the magic angle for
QBT is changed, while in the former one QBT does not occur for all
values of twist angle (QBT is avoided). η0 results in the appearance
of a Fermi pocket while η2, in a fully gapped spectrum. In cases
(except for τ2σ3 perturbation, where the spectrum is gapped) where
combinations of η3 and an another term is present the spectrum at the
magic angle is quadratic in one direction and linear in the other one.

σ0 σ1 σ2 σ3

τ0 W0η0 −W 2
0

2t η3 − W0ξ

t W0η2
W 2

0
2t η3 + W0δ

t

τ1 (δ → δ +W0) W0η1 −W 2
0

2t η3 W0η3

τ2 W0η2
W 2

0
2t η3 − ξW0

t η2 W0η0 −W 2
0

2t η3 + δ

t η2

τ3 (ξ → ξ +W0) W0η3
W 2

0
2t η3 −W0η1

model parameters (SC gap, chemical potential, twist angle,
or interlayer hopping).

Â = 1 ≡ τ0σ0 → η0. Note that this term is not equivalent
to a chemical potential shift represented by τ3 in the Nambu
notation. It leads to a creation of a single Fermi surface and
can be realized in two ways.

First, a nonzero in-plane supercurrent results in � →
�e2iqr leading to H → H + vF · q [66]. The second possibil-
ity is a Zeeman term si. It commutes with the Hamiltonian,
resulting in two independent sectors with different signs of
the term. Note that the two mechanisms above result in differ-
ent parity properties: the supercurrent-generated term is odd
under parity and thus creates a doubly degenerate electron or
hole pocket at each node, while the Zeeman term would create
a nondegenerate coinciding electron and hole pocket (nodal
line) at each node.

Â = τ2 → η2. The spectrum is fully gapped and the lowest
eigenvalues at the magic angle are given by

E = ±
√

[
√

ξ 2 + δ2 + t2 − t]2 +W 2
0 .

Such a perturbation can be implemented by applying an inter-
layer bias current (see below); a formation of a subleading
superconducting order with a phase of π/2 (A + iB states)
with respect to the original SC order parameter will intro-
duce a similar term. The difference is in the signs of the τ2

terms for different nodes. If the SC order parameter is even
in parity, current generates τ2 terms with the same sign for
inversion-related nodes and opposite for odd-parity (triplet)
ones. For example, for d-wave superconductor the induced
τ2 term would have the same sign for opposite nodes, but
different signs for two pairs of nodes, while in d + is state
the sign of the induced term is the same for all nodes.

Â = σ2 → η2. Corresponds to an anomalous average
〈(c†

acb − c†
bca)↑ + (cac

†
b − cbc†

a )↓〉 which can be recognized
as the expression for the normal interlayer current. Applica-
tion of a bias current in the SC state would result only in a
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Josephson current, while normal current will be nonzero only
above the critical current value, where the value of the gap
may be affected.

Â = τ1σ1 → η1 is off-diagonal in both Gor’kov-Nambu
and layer space and corresponds to interlayer Cooper pairing.
Note that the Hamiltonian (21) already induces interlayer pair-
ing ∼τ2σ1,2, so this component introduces a nonzero phase to
the interlayer order parameter with respect to intralayer one.

τ3σ3 → −η1. This order parameter represents charge im-
balance between the layers; while it can be introduced
externally by a back gate; additionally such a term ap-
pears in case the nodes not being in a reflection plane, i.e.,
(vF · QN ) 
= 0.

σ1 → −W0
2t η3 − ξ

t results in two Dirac points at ξD =
0, δD = ±W0. At the new magic angle δ0 = t − W 2

0
2t , the spec-

trum is ± ξ 2+δ2

2t − W0ξ

t , linear along ξ , but quadratic along δ.
σ3 → W0

2t η3 + δ
t . Similar to σ1 with the roles of ξ and δ

exchanged.
τ1σ2 → −W0

2t η3. QBT exists at the new magic angle δ0 =
t + W 2

0
2t

τ2σ1 → W0
2t η3 − ξ

t η2 at the new magic angle the spectrum
is half-Dirac (linear along ξ , but quadratic along δ).

τ2σ2 → η0. BdG Fermi surface is formed.
τ2σ3 → −W0

2t η3 + δ
t η2 yields gapped spectrum.

τ3σ2 → W0
2t η3. Dirac points instead of a QBT.

Finally, any order parameter above can be converted to a
spinful one by a direct product with one of the spin Pauli
matrices.

2. Triplet superconductors

We now consider the case of a single-component triplet
superconductor. In this case, triplet SC order parameter near a
node takes the form δτ1(s · d), where si are Pauli matrices in
spin space. Consequently, the analog of Eq. (19) is

Ĥ =
∑

k, kx>0

�†(k)H (k)�(k),

H (k) = δτ1(s · d) + ξτ3 − tτ1(s · d)σ3 + tτ3σ1, (B1)

where the k summation is restricted to half the Brillouin zone
to avoid k → −k redundancy. Let us now discuss perturba-
tions. For perturbations without spin matrices it is convenient
to perform an SU(2) spin rotation that brings the d vector to
the form (0, 0, d ). Then the two spin sectors decouple into
two copies of Eq. (19) with τ1 → ±τ1 and the spectrum is
determined as for Eq. (19).

For perturbations involving spin in the form of the matrix
(h · s) there are two cases:

(1) h ‖ d: As above, the problem may be reduced to two
copies of Eq. (19) with (h · s), (d · s) → ±h, d .

(2) h ⊥ d: Choosing the quantization axis along d, we
apply a unitary transformation U = U † = 1−s3

2 τ3 + 1+s3
2 (i.e.,

spin-down component is multiplied by τ3). The Hamiltonian
(B1) is transformed to

UH (k)U † = dδ τ1 + ξτ3 − dt τ1σ3 + tτ3σ1,

whereas the perturbation Hamiltonian is given by

W0Uσaτb(h · s)U † =
{
W0σaτ3τb(h · s) (b = 0, 3),

−W0σaτ3τbs3(h · s) (b = 1, 2).

In both cases the spin part of the perturbation is trivially
diagonalized and the overall eigenvalues correspond to two
copies of Eq. (19) with a perturbation ±W0hσaτ3τb for (b =
0, 3) and ±iW0hσaτ3τb for (b = 0, 2). Thus, the spectrum in
the presence of perturbation can be determined from Table III
by identifying the commutation relations of the perturbing
operator with (h · s) → ±h multiplied with τ3 (which has
− + − + signature) with the terms in Eq. (19).

Physically, for h ‖ d all perturbations have similar physical
effects as the ones without spin matrices. For h ⊥ d, on the
other hand, there are new effects. First, τ1(h · s) results in
a full gap with the example of p+ ip state (d ‖ x, h ‖ y or
vice versa). Another way to create a full gap [∼η2 term in the
reduced Hamiltonian (20)] is with σ2τ3(h · s), which is more
complicated physically. The Zeeman field perpendicular to d
results in a spectrum same as for the ±τ3 perturbation, i.e.,
it shifts the QBT in momentum space rather then creating a
nodal line as for h ‖ d.

APPENDIX C: SELF-CONSISTENT EQUATIONS
FOR THE SUPERCONDUCTING GAP

To study the effect of the tunneling on the self-consistency
equation, we use a BCS-like mean-field model with a sepa-
rable intralayer interactionVSC(k, k′) = VSC f (k) f (k′), where
f (k) ≈ (δ ± δ0)/�0 close to the nodes. The self-consistency
equation takes the form

� j (T, k) = T
∑
ε′
n,k′

VSC(k, k′)Fj (iε
′, k′), (C1)

where Fj (iε′, k′) is the anomalous Green’s function in the jth
layer. The anomalous Green’s function is

F1(iε, k) = �1
(
ε2
n + ξ 2 + �2

2

) + t2�2(
ε2
n + ξ 2

)2 + (
ε2
n + ξ 2

)(
�2

1 + �2
2

) + 2t2
(
ε2
n − ξ 2

) + 2t2�1�2 + �2
1�

2
2 + t4

[recall that ξ and δ are defined in Eq. (8)]; F2(iε, k) is obtained from the above by exchanging 1 ↔ 2. Taking the separable form
of the interaction yields solutions of the form �a(T, k) = �0(T ) f (k); �b(T, k̃) = �0(T ) f (k̃). Using the expansion � j = δ +
(−1) jδ0 near the nodes the equation for the amplitude of the order parameter �0(T ) takes the form [using f (k) ≈ (δ − δ0)/�0]

�0 = −VSC
T

�0

∑
εn,k

I (δ, ξ , εn); I (δ, ξ , εn) = (δ − δ0)2
[
ε2
n + ξ 2 + (δ + δ0)2

] + t2
(
δ2 − δ2

0

)
(
ε2
n + ξ 2 + δ2 + t2

)2 − 4t2ξ 2 + 2δ2
0

(
ε2
n + ξ 2 − t2 − δ2

) + δ4
0

. (C2)
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For εn, ξ � t the integrand is approximately

I (δ, ξ , εn)|εn,ξ�t ≈ (δ − δ0)2

ε2
n + ξ 2 + (δ − δ0)2

,

that can be shown to be independent of δ0 with a variable shift
δ → δ + δ0. Indeed, the expression above corresponds to the
case t = 0 when the layers are simply decoupled. The integral
can be estimated as follows:

T
∑
εn,k

I (δ, ξ , εn)|εn,ξ�t

≈ 1

(2π )3vFv�

∫ �0

−�0

dδ

∫
dξ dε

δ2

ε2
n + ξ 2 + δ2

≈ 2�3
0

3(2π )2vFv�

(
1

3
+ log

�0

�0

)
, (C3)

where �0 is the cutoff for the ξ integral.
Thus, for ε, ξ � t the dependence on δ0 appears only after

an expansion in t . The second-order term in t at ξ, εn � �0

takes the form

δI (δ, ξ , εn)|εn,ξ�t ≈ t2δ2
0 (3ε2 − ξ 2)

(ε2 + ξ 2)3
,

and its contribution to the integral can be estimated assum-
ing an upper cutoff �0 and a lower one �0. The result is

∼ t2δ2
0

�0(2π )2vF v�
, smaller by a factor of (t2δ2

0/�
4
0) log−1(�0/�0).

At low values of ε, ξ � t, δ0, on the other hand, the most
important question is whether there is a divergence near the
nodes. As it is expected to be strongest (if present) at the
magic angle, we study the case δ0 = t . The integrand can be
written as

I (δ, ξ , εn)|ε,ξ�t,δ0,δ0=t = (δ − t )2(ε2 + ξ 2) + δ2(δ2 − t2)

(ε2 + ξ 2 + δ2)2 + 4ε2t2
.

Close to the QBT at ξ, δ = 0 the integrand is approximately

I (δ, ξ , εn)|ε,ξ�t=δ0 ≈ 1

4

ξ 2 − δ2 + (ξ 2 + δ2)δ2/t2

(ξ 2 + δ2)2/4t2 + ε2
,

where a linear in δ term in the numerator is omitted as it van-
ishes after integration. The contribution of I (δ, ξ , εn)|ε,ξ�t=δ0

to the sum in the gap equation can be evaluated assuming a
cutoff ∼t yielding

T
∑
εn,k

I (δ, ξ , εn)|ε,ξ�t=δ0
∼ πt3

16(2π )2vFv�

,

which is smaller by a factor (t3/�3
0) log−1(�0/�0) than the

leading term, Eq. (C3), that is independent of twist angle.

APPENDIX D: CURRENT-PHASE RELATION

The Josephson current-phase relation can be obtained from the derivative of the free energy of the bilayer with respect to the
phase difference I (ϕ) = 2e

h̄
dF (T,ϕ)

dϕ
[69]. The free energy is given by

F (T, ϕ) = − 2T
∑
εn

∫
dξ dδ

(2π )2vFv�

log
{[

ε2
n + (ξ + t )2 + δ2

][
ε2
n + (ξ − t )2 + δ2

]

− 4 sin2 ϕ

2
δ2t2 − 2δ2

0t
2 cos ϕ + 2δ2

0

(
ε2
n + ξ 2 − δ2

) + δ4
0

}
, (D1)

where the 2 in front is due to spin. Calculating the current yields

I (ϕ) = 2e

h̄

dF (T, ϕ)

dϕ
= 4e

h̄
T

∑
εn

1

(2π )2vFv�

∫
dξ dδ

× 2t2
(
δ2 − δ2

0

)
sin ϕ(

ε2
n + ξ 2 + δ2

)2 + 2ε2
n

(
t2 + δ2

0

) + 2(ξ 2 − δ2)
(
δ2

0 − t2
) − 4δ2t2 sin2 ϕ

2 + (
t2 − δ2

0

)2 + 4δ2
0t

2 sin2 ϕ

2

, (D2)

where the upper cutoff for the δ integral is �0. We can divide the sum into high- and low-energy parts. The former one, assuming
ξ, δ � t, δ0,T , can be approximated by

I (ϕ)|ξ,δ�t,δ0,T ≈ 4e

h̄

1

(2π )3vFv�

2
∫ �0

∼t,δ0

dδ

∫
dε dξ

2t2δ2 sin ϕ[
ε2
n + ξ 2 + δ2

]2 ≈ 8et2 sin ϕ

(2π )2h̄vFv�

�0.

The low-energy part ξ, δ � t, δ0 can be estimated as follows. The effects of this part are expected to be most pronounced near the
magic angle since the density of states near zero energy is the largest in this case. As increasing ϕ enhances the spectral gap, we
may furthermore focus on the case of small phase ϕ � 1. The characteristic values of ξ and δ can be deduced from the dispersion
at the magic angle being ξ 2+δ2

2t and the current-induced gap �J ∼ t | sin(ϕ/2)| implying ξ 2, δ2 ∼ t2| sin(ϕ/2)|, which is also
evident from Eq. (D2). Moreover, for t2| sin(ϕ/2)| � |δ2

0 − t2| ∼ 2tv�KN |θ − θMA| and thus | sin(ϕ/2)| � �0|θ − θMA|/t one
can neglect the quadratic terms in ξ and δ with respect to the quartic ones [using sin2(ϕ/2) � 1]. One also observes that
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characteristic ε2
n values are of the order t2 sin2(ϕ/2) which can be neglected with respect to ξ 2, δ2, leading to the estimate:

δI (ϕ) = −4e

h̄

1

2(2π )2vFv�

T
∑
εn

∫
ξ,δ�t

dδ dξ
t2 sin ϕ

ε2
n + (

ξ 2+δ2

2t

)2 + t2 sin2 ϕ

2

,

δI (ϕ)|T=0 = − et3

2π h̄vFv�

sin ϕ log
1∣∣ sin ϕ

2

∣∣ ,
δI (ϕ)|T�t sin(ϕ/2) = − et3

2π h̄vFv�

sin ϕ log
2teγ

πT
. (D3)

There is a logarithmic singularity at low values of ϕ, however, its effect is important only for ϕ < t
�0
e−4�0/(πt ) and T <

te−4�0/(πt ) where both limits are expected to be extremely small for t � �0. As the gap maximum is attained at ϕ ≈ π/2
we neglect this contribution, resulting in the conventional current-phase relation I (ϕ) ≈ Ic sin(ϕ).
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