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A NEW CONSERVATIVE DISCONTINUOUS GALERKIN METHOD
VIA IMPLICIT PENALIZATION FOR THE GENERALIZED KDV
EQUATION*

YANLAI CHENT, BO DONG!, AND REBECCA PEREIRAT

Abstract. We design, analyze, and implement a new conservative Discontinuous Galerkin
(DG) method for the simulation of solitary wave solutions to the generalized Korteweg-de Vries
(KdV) Equation. The key feature of our method is the conservation, at the numerical level, of
the mass, energy and Hamiltonian that are conserved by exact solutions of all KdV equations. To
our knowledge, this is the first DG method that conserves all these three quantities, a property
critical for the accurate long-time evolution of solitary waves. To achieve the desired conservation
properties, our novel idea is to introduce two stabilization parameters in the numerical fluxes as
new unknowns which then allow us to enforce the conservation of energy and Hamiltonian in the
formulation of the numerical scheme. We prove the conservation properties of the scheme which
are corroborated by numerical tests. This idea of achieving conservation properties by implicitly
defining penalization parameters, that are traditionally specified a priori, can serve as a framework
for designing physics-preserving numerical methods for other types of problems.

Key words. Korteweg-de Vries equation, discontinuous Galerkin, conservation of energy, con-
servation of Hamiltonian, implicit penalization
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1. Introduction. In this paper, we consider the following generalized Korteweg-
de Vries (KdV) equation

(L.1) Up + EUzge + () = g(z, 1), x€Q=la,b],t>0

with periodic boundary conditions and the initial condition u(z,0) = wug(z). Here,
f(u) is usually some polynomial of u. When ¢ = 1, f(u) = 3u? and g = 0, (1.1)
represents the original KdV equation.

KdV equations are widely adopted to model one-dimensional long waves and
have applications in plasma physics, biology, nonlinear optics, quantum mechanics,
and fluid mechanics; see [11,14-16,22,28,31]. There is also a lot of interest in theo-
retical studies on the mathematical properties of solutions to KdV equations. Many
modern areas of mathematics and theoretical physics opened up thanks to the basic
research into the KdV equations. As a consequence, there have been intense efforts
on developing numerical methods for KAV equations, including finite difference meth-
ods [12,23, 32], finite element methods [3,4, 29, 33], spectral methods [10, 13,19, 25]
and operator slitting methods [17,18].

KdV equations feature a combination of the nonlinear term and the dispersive
term .., which makes it difficult to achieve numerical properties such as stability
and convergence. Moreover, it is known that KdV equations may have “blow-up” so-
lutions but the mechanism of the singularity formation is not clear [26,27]. The study
in [6] showed that the simulation of blow-up solutions, almost for sure, will require
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2 Y. CHEN, B. DONG, AND R. PEREIRA

highly nonuniform meshes. This makes Discontinuous Galerkin (DG) methods suit-
able for solving KdV equations due to their advantages including high-order accuracy,
compact stencil, capability of handling nonuniform meshes and variable degrees, and
flexibility in constructing the numerical fluxes to achieve conservation of particular
physical quantities. DG methods [7, 8, 20, 30, 34-36] have been developed for KdV
type equations. In particular, there have been continuous efforts on developing DG
methods that conserve physically interesting quantities of their solutions. Indeed, all
KdV equations have three such quantities:

Mass: /udm, Energy:/ u?de, Hamﬂtonian:/(ui - V(u))dzx,
Q Q Q

where V() is an anti-derivative of f(-). This property is crucial for their solitary wave
solutions to maintain amplitude, shape, and speed even after colliding with another
such wave. Numerical results [5,21,24, 38] showed that DG methods preserving these
invariants can maintain numerical stability over a long time period and help reduce
phase and shape error after long time integration. However, existing conservative DG
methods cannot conserve the energy and Hamiltonian simultaneously though the con-
servation of mass is easy to achieve. In Table 1 we list some conservative DG methods
for KdV equations. This is in no way an exhaustive list, but it shows the trend and
main efforts in the development of conservative DG methods for KdV equations. We
can see that the methods in [5,7,21,37] and the first method in [38] conserve the en-
ergy but not the Hamiltonian, while the method in [24] and the second method in [38]
conserve the Hamiltonian but not the energy. Most of these conservative DG methods

Method Year Hamiltonian | Energy

Conservative DG for the Generalized KdV

(GKaV) [5] 2013 X v
Direct DG for GKdV [37] 2013 X v
Conservative LDG for GKdV [21] 2016 X v

2 . .

H —anservatlve DG for Third-Order 2016 X %
Equations [7]

Hamiltonian-Preserving DG for GKAV [24] | 2016 v X
Conservative and Dissipative LDG for

KdV [38], Scheme I 2019 v X
Conservative and Dissipative LDG for

KdV [38], Scheme II 2019 X v

Table 1: The conservation properties of the previous DG methods

have an optimal convergence order for even degree polynomials and sub-optimal order
for odd degree polynomials except that the Hamiltonian conserving method in [38]
has optimal convergence order for any polynomial degrees.

In this work, we develop a new DG method for KdV equations that conserves all
three invariants: mass, energy, and Hamiltonian. This conservative DG method will
allow us to model and simulate the soliton wave more accurately over a long time pe-
riod. Our novel idea on designing the method is to treat the penalization/stabilization
parameters in the numerical fluxes implicitly (i.e., as new unknowns), which allow two
more equations in the formulation of the DG method that explicitly enforce the con-
servation of energy and Hamiltonian. The stabilization parameters are solved together
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CONSERVATIVE DG FOR GENERALIZED KDV EQUATION 3

with the approximations of the exact solutions. Due to the time-step constraint im-
plied by the third-order spatial derivative, we use implicit time marching schemes to
avoid extremely small time steps. Since our DG scheme for spatial discretization is
conservative, in implementation we use the implicit midpoint method which is conser-
vative for time discretization. Our numerical results show that, just like most other
conservative DG methods in literature, our method has optimal convergence for the
even polynomial degrees and sub-optimal convergence for the odd ones. More signif-
icantly, our method can conserve both the energy and the Hamiltonian over a long
time period.

As shown in Table 1, both standard DG and LDG methods have appeared in lit-
erature to achieve conservation. We choose the LDG-like framework for our method
because it has three numerical traces, and thus more room for tuning for better con-
servation properties. We would like to point out that our method has computational
complexity that is only negligibly more than standard LDG. When the equation is
nonlinear (which is our focus), both discretized systems are nonlinear thus needing it-
erative solvers. Standard LDG system has 3N (k+ 1) equations when N elements and
polynomials of degree k are used. Our system has 3N (k + 1) + 2 equations due to the
introduction of two new unknown (constant) parameters. We would like to further re-
mark that our idea of enforcing conservation properties by using implicit stabilization
parameters can be applied to develop new conservative methods for other types of
problems that feature conservation of physical quantities. It can also be extended to
preserve more invariants for the KdV equation by introducing more than two implicit
stabilization parameters. This opens the door to promising future extensions.

The rest of the paper is structured as follows: Section 2 will describe the formu-
lation of our DG method and prove the conservation properties. Implementation of
our method is briefly discussed in Section 3, leaving further details to the Appendix.
We display numerical results on solving third-order linear and nonlinear equations
and the classical KdV equation, showing the order of convergence and conservation
properties we have observed in our numerical experiments in Section 4. Finally, we
end with concluding remarks in Section 5.

2. Main Results. In this section, we discuss our main results. We start by
introducing our notations. Next, we describe our DG method and discuss the choice of
penalization parameters that ensure the conservation of the Hamiltonian and energy.
After that, we prove that our numerical solutions do conserve the three invariants:
mass, energy, and Hamiltonian.

2.1. Notation. To define our DG method, first let us introduce some notations.
We partition the domain Q = (a,b) as

Th={lLi=(zi—1,z)ca=29g <1 < -+ <aN_1 <N =Db}.

We use 0Ty, := {0I; : i = 1,...,N} to denote the set of all element boundaries,
and &, := {z;}}, to denote all the nodes. We also set h; = z; — z;_1 and h :=
maxi<;<nN hz

For any function ¢ € L?(0T), we denote its values on 9I; := {x] ,,z;} by
¢(z ) (or simply ¢;7 ;) and ¢(z; ) (or simply ¢; ). Note that {(z;") does not have to
be equal to ¢(z; ). In contrast, for any function n € L?(&}), its value at z;, n(z;) (or
simply 7;) is uniquely defined; in this case, n(z; ) = n(z]) = n(z;).
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4 Y. CHEN, B. DONG, AND R. PEREIRA

We let
N N
(QO,’U) = Z(@vv)"w <(p,’UTL> = Z<§0avn>31¢7
i=1 i=1
where

(ps0)r, = / pvdz,  (p,on)ar, = (e vl )n(z;) + ez ol )n(zi,).

i

Here n denotes the outward unit normal to I;, that is n(z} |) := —1 and n(z]) := 1.
We define the average and jump of ¢ as

{e}@i) =S (@) + o), [el() = (z;) - o).

N | =

We also define the finite element space
WE={weL*T): wlk € Pu(K) for any K € T), and w(a) = w(b)},

where P, (D) is the space of piecewise polynomials of degree up to k on the set D.
Finally, the H®(D)-norm is denoted by || - ||s,p. We drop the first subindex if s = 0,
and the second if D = Q or Ty.

2.2. The DG method. To define our DG method for the KAV equation (1.1),
we first rewrite it as the following system of first-order equations

q—u, =0, in Q,
(2.1) p—eq: = f(u), inQ,
up +pr = g(z), inQ,

with the initial condition u(x,0) = ug(x) and the periodic boundary conditions
u(a) = u(b), g(a) =q(b), pla)=p(b).

We discretize (2.1) by seeking (up,qn,pr) as approximations to (u,q,p) in the
space (W}’f)3 such that

(2.2a) (qn,v) + (up, vz) — (Gp, vn) =0, Yo e WE,
(2.2b) (ph, 2) + €(qn, 22) — €{qn, 2n) = (f(up), z), Vz e W,’f,
(2.2¢) (unt, w) — (ph,wz) + (Pr, wn) = (g, w), Yw € WF.

Here, uy, g, pn are the so-called numerical traces whose definitions are in general
critical for the accuracy and stability of the DG method [2]. There are multiple ways
of defining them. We adopt the one that is similar to the Local Discontinuous Galerkin
(LDG) methods [2]

(2.3a) up, ={un},
(2.3b) an ={aqn} + Tquﬂuhﬂa
(2.3(3) Dh :{ph} + Tpu [[uh]]

The key difference is that, instead of specifying the values of the penalty parameters
(Tqus Tpu) as done by LDG [2], we leave them as unknowns. It is exactly due to the
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CONSERVATIVE DG FOR GENERALIZED KDV EQUATION )

resulting freedom of placing two more constraints that, as shown in Lemma 2.2 in
the next section, the scheme is able to conserve the mass, L?-energy, and the Hamil-
tonian of the numerical solutions. Toward that end, we require that the penalization
parameters 74, and 7,, be constants that satisfy

(2.4a) . N N
Tow D [un]? (@) = £ Y funlland (i) = Y- (IV ()] = {2 £ (n) }un] ) (),
i=1 i=1 i=1
(2.4b)
o Y palfun] () + 7 3 Tunlefun] () = 0.

Here, V(+) is an antiderivative of f(-). In summary, our method is to seek (uy,, g, pn) €

(W,’f)3 and penalty parameters (74, 7py) such that (2.2a) - (2.2¢), (2.4a), and (2.4Db)
are satisfied.

Remark 2.1. Here we would like to point out that our scheme is not an LDG
method. To our knowledge, existing LDG methods do not conserve the energy of
solutions to KdV equations. The penalty parameters in LDG methods are known
constants, while in our schemes 74, and 7, are considered as new unknowns. Corre-
spondingly we have two more equations from (2.4). In fact, we can write 74, and 7,
in terms of uy, qn, pn as

1 nonswn) S (V)] = {117 ()} [un])

Tou = ——

" € W(thuh)n(Ph»Uh) + n(uhtauh)n(uh7uh)
o (uns un)

e n(pn,un)

where we have used the notation n(w,v) = Zil[[w]] [v](x;). These expressions show
that our method is different from LDG Methods.

2.3. Conservative properties. Now we discuss the conservation properties of
the schemes in the previous section. First, in the following Lemma we give general
conditions for uy, ¢y, pr, under which DG methods that satisfy (2.2) conserve the mass,

L? energy, and Hamiltonian. Then we apply the Lemma to prove the conservation
properties for the DG method defined by (2.2)-(2.4).

LEMMA 2.2. Suppose (up, qn,pn) satisfy (2.2) with g = 0.
(i) If pr, is single-valued, then we have

d
%/ updr =0, (mass — conservation).

(i) If up, qn, pn are single-valued and satisfy the condition

(2.5) 0=>)" ([[V (un)] = {21 (un) }lun] + (ML f (un)] = [pal) (@n — {un})

i=1

— [un)Fn — {pn}) + lanl (@ — {an}) ) (0.

This manuscript is for review purposes only.



160
161

162

186
187
188
189
190

191

6 Y. CHEN, B. DONG, AND R. PEREIRA

then we have

d

— uj dr =0, (energy — conservation).
dt /g,

(2.6)

(ii2) If up, qn,pn are single-valued and satisfy the condition

N

27 0 =Z (Ipnl®n = {pn}) + elanl (un — {un})e + elunle(an — {an})) (),

then we have

d
(2.8) — ( Eqi - V(uh)) dx =0, (Hamiltonian — conservation).
dt Jy, \2

Proof. (i) To prove the mass conservation, we just need to take w = 1 in (2.2¢)
and use the fact that pj, is single-valued.

(ii) Next, we prove the energy-conservation, which is also called L?-conservation.
We take w := up, v := —pp+11 f(up), and z := g, in (2.2) and add the three equations
together to get

(f(un), qn) =(une, un) — (Prs Una) + (Pr unn) — (Un, Phe) + (Un, pan) + €(qn, Gha)
— &(@n> ann) + (qn, I f (un)) + (un — wp, I f (up)n) — (I f (un), wna)

Since
(f(un),qn) = (I f(un), qn)
and
(L f(un), unz) = (f (un), une) = (V(un),n),
we have that
€

2<C];2pn> — &(qnan,n)

0 =(unt, un) — (P, unn) + (P, unn) + (Un, prn) +
+ (up — ap, I f (up)n) — (V(un),n)

=(une, un) = (B = P+ 1F (un), (@in = wn)n) + = {(an = @), m) = (V (un), ),

where we have used the single-valuedness of numerical traces. This means that

5 o) =(V (), m) -+ (5 — oI5 ), (B~ w)m) = 5 (an — )"

(IV (un)] = {1 f (un) Hun] + (UL f (un)] — [pa]) (@n — {un})
up](pn — {pn}) + elan](@n — {qn})) (i)

Here, we used the equality (p,vn) = vazl([[p]]{v} + [wl{p})(x;) for any p,v € WF.
When the condition (2.5) is satisfied, we immediately get the energy-conservation,
(2.6).

(iii) To prove the Hamiltonian conservation properties in (2.8), we first differen-
tiate the equation (2.2a) with respect to ¢ to obtain

s
Il
_

-

—

(th, U) + (uht7 vz) - <ﬂht7 UTL> = O
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192
193
194
198

197
198

199
200

201

215

216

217
218
219
220
221

CONSERVATIVE DG FOR GENERALIZED KDV EQUATION 7

Then, we take v := £q;, in the equation above, z := up; in (2.2b) and w := —py, in
(2.2¢) and add the three equations together to get

(f(un), unt) = €(qne, qn) + (Ph> Pha) — (PR, pam)
+ e(Unt, Gha) + €(qn, Untz) — €(Unt, @) — €(qh, unen).

Since Uy, qn, and pj, are single-valued, we have

1 - N N
(f(un)s une) = e(qne, qn) + <§pi, ny — (Phph,n) + &(une — Une, (qn — qn)n)
1 . N N
= e(qnt, qn) + §<(ph - ph)27ﬂ> + e(unt — Unt, (gn — qn)n)-

This implies that

d re

7 (5(%7%) = (V(un), 1))

N

(Ipnd(or = {pn}) + eland (un — {un})e + elunle(@n — {an})) (2:).

i=1

If the numerical traces satisfy (2.7), we get the conservation of the Hamiltonian (2.8).
This concludes the proof of Lemma 2.2. O

Next we use Lemma 2.2 to show that our scheme defined by (2.2) - (2.4) conserves
the mass, the L?-energy, and the Hamiltonian of the numerical solutions.

THEOREM 2.3. For (up,qn,pn) satisfying (2.2) with ¢ = 0 and numerical traces
defined by (2.3) - (2.4), the mass, L*-energy and Hamiltonian conservation properties
in Lemma 2.2 hold.

Proof. (i) The numerical traces in (2.3) are single-valued, so the DG scheme
conserves the mass of the approximate solutions.
(ii) Using (2.3), we see that

N

> ([[V(uh)]] — {1 f(un)}Hun] + ([ f(un)] = [pa]) (@n — {un})

i=1

— [unl (B — {pi}) + eland (@ — {an]) (@)

=, (IV (un)] = {1 f (un) Hun] = moulun]? + erqulunllanl) ,

which is equal to 0 when the condition (2.4a) holds. Then we get the L? conservation
by Lemma 2.2.
(iil) Using the definition of the numerical traces (2.3), we get

N

> (Ipal@n — {pn}) + elanl@n — {un})e + elunle(@ — {an})) (:)

%

Il
-

-

I
-

(Tpu [pn][un] + Tqu [ur]¢[ur]) =0

K2

by (2.4b). So we immediately get the conservation of the Hamiltonian (2.8) using
Lemma 2.2.
This concludes the proof of Theorem 2.3. O
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8 Y. CHEN, B. DONG, AND R. PEREIRA

Remark 2.4. We would like to point out that Lemma 2.2 provides a framework
for achieving full conservation of mass, energy and Hamiltonian. Specifically, any
choices of uy, qr,, pp, that satisfy the conditions (2.5) and (2.7) will do. The numerical
traces we have in (2.3) are just one of them. There are many other choices. For
example, one can choose ¢, = {qn} and determine @, and pj, from equations (2.5)
and (2.7). The scope of this paper is to discover a novel paradigm for designing new
conservative DG methods by letting the stabilization parameters be new unknowns so
that conservation properties can be explicitly embedded into the scheme and therefore
their achievement guaranteed.

3. Implementation. In this section, we provide a high-level summary of the
implementation of our method. Further details are deferred to Appendix A.

3.1. Time-stepping scheme. Since KdV equations have the third-order spatial
derivative term, we choose implicit time-marching schemes to avoid using extremely
small time steps. Moreover, we need the time stepping method to be conservative
so that the fully discrete scheme is conservative. Here, we use the following implicit
second-order Midpoint method, which preserves the conservation laws up to round-
off error. This is proven in [9] and adopted in [5,21] for the development of energy-
conserving DG methods and [24] for a Hamiltonian-preserving DG scheme. Numerical
results therein and of our paper demonstrate numerically that the Midpoint method
does indeed conserve conservation laws including Hamiltonian. Let 0 = ty < t; <
-+ <ty =T be a uniform partition of the interval [0,7] and At = t,,11 — t,, be the
step size. For n =0,...,M — 1, let uZH € W,f be defined as:

n+1 _ n+3 n
u, = 2w, 2 —uy,

1
where uZ+2 € W} is the DG solution to the equation

U —up
At

Ukl F(0)a = (2t ).
2
At every time step ¢, 1,n = 0,..., M —1, we need to solve equations (2.2), (2.4a),

and (2.4b) for up, qn, pr, Tqu, and Tp,. We can rewrite the nonlinear system into the
following matrix-vector form and use MATLAB’s built-in function “Fsolve” to solve

(3.1a) Mgl + (D + A)u] =0
(3.1b) M(p] + (D + A)[q] + eTgud[u] — M[f(ur))] =0
(3.1¢) Mlu] - %At(D + A - %AtTpuJ[u} M - %AtM[g] —0
(3.1d) Vi — mpun(un, un) + €7qun(qn, un) = 0
N
(3.1e) Tpu)(Phs Un) + Tqu Z efun][un]e(z:) =0

1 1 1
where [u], [q], [p] are vectors consisting of degrees of freedom of uZ+2,qZ+2,pZ+2,

respectively, [@] is the known vector for the degrees of freedom of u}}, M is the mass
matrix, D is the derivative matrix, A is the matrix associated to the average flux, and
J is the matrix associated to the jump; see Appendix A for details on these matrices.
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CONSERVATIVE DG FOR GENERALIZED KDV EQUATION 9

In (3.1d) and (3.1e), we have adopted the notation defined in Section 2.2

N

77(“’7”) = Zﬂw]] Hvﬂ(xl) for any w,v € {Uh,(Ihaph}a
=1

N
and a new quantity Vy := Z([[V(Uh)]] = {1 f(up) }Hun]) (:)-

i=1

The solution of this system, ([u], [g], [P], Tqu, Tpu), can be considered as a column

vector of size [3(N — 1)(k + 1) 4+ 2]. So by introducing two more unknowns (74y, Tpy)

and enforcing the two equations for conservation of energy and Hamiltonian, we only
increase the size of the system by 2.

3.2. Three-point difference formulas for [up]:. The last equation of the
system, (3.1e), contains the non-traditional term [up];. We approximate it by the
following three-point difference formula on uniform stencil to maintain the second-
order accuracy in time

[l = (Tond™ 2 — L] + 8[unl™4) + O(Ar2)

1
When n = 0, we approximate [up]? by a three-point difference formula on a non-
uniform stencil using [uy] at t = 0, (%)2, and %, where u% is obtained by the
(&H)°

L2-projection of ug and Uy, is computed using the backward Euler method. The

1
nonuniform three-point difference formula for [up]? is as follows:

[unl? = e [un]® + calun] 3" + eslun] ¥ + O(AE)

where

_ At 1 _ At

1
3.3. The flowchart of the whole algorithm. After solving for uZJr? from the
system (3.1) with the Jup]+ term approximated by the three-point difference formulas

above, we compute UZ_H through the midpoint method. Then we solve for q}f“ from
the linear equation (3.1a) using uzﬂ. In order to obtain pZH, T;;'_l and T;ﬁj‘l, we

solve a smaller nonlinear system consisting of equations (3.1b), (3.1d) and (3.1e) using
uZ‘H and qZ‘H. To summarize, we use the following flowchart to describe the whole

algorithm.
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Compute uy, from ug Use backward Euler method
START and set n = 0. to evaluate uy, at t = (%)2

Y

Solve (3.1a) for ¢ . Solve system (3.1) for
lve (3.1b), (3.1d) and (3.1e) f n+i
Solve B(p"")"l (jnH) igﬂ(;’ ) for < uh+2 and use the Midpoint
h s lqu 'pu . n+1
Let < m 4 1 method to get u;

| :

Y N
End 5 tn >T 7 °

4. Numerical Results. In this section, we carry out numerical experiments to
test the convergence and conservation properties of our DG method. In the first test
problem, we consider a third-order linear equation with f(u) = u. In the second test
problem, we use our DG method to solve a third-order nonlinear equation with e = 1,
0.1, and 0.01 and the solutions are sine waves that are periodic on the domain. In the
last test problem, we solve the classical KdV equation with a cnoidal wave solution
and compare the approximate solution with the exact one. For all the test problems,
we compute the L?-errors and convergence orders and check the conservation of the
energy and Hamiltonian of the DG solutions.

4.1. Numerical Experiment 1. In this test, we solve the following third-order
linear equation in [38]

Ut + EUggy + (f(u)):v = 07

where ¢ = 1 and f(u) = w, with periodic boundary conditions on the domain Q =
[0, 47] and the initial condition ug = sin(1z). The exact solution to this problem is

First, we test the convergence of the DG method for this linear problem. We use
polynomials of degree k = 0,1, 2 for approximate solutions, the mesh size h = %’T for
N=21=3..,7 and At = 0.2(%)‘“1“{’“1} for time discretization. The L2-errors
and orders of convergence of the approximate solutions are displayed in Table 2 for
the final time T" = 0.1. We see that the approximate solutions for the variable
converge with an optimal order for all polynomial degrees k, those for the auxiliary
variable ¢ have an optimal convergence order for even k and a sub-optimal order for
odd k, and those for p have sub-optimal orders for k =1, 2.

Next, we test the conservation of the energy and Hamiltonian of the approximate
solution using polynomials of degree k = 2 on 32 intervals for the final time 7" = 50. In
Figure 1, we see that the Hamiltonian and energy of the approximate solution remain
the same over the whole time period. The errors of the Hamiltonian and energy are
very small, as shown on the second row of Figure 1.
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k N Un ah Ph
Lo Error | Order | Ly Error | Order | Ly Error | Order

8 5.70e-1 - 3.10e-1 - 1.81e-0 -

0 16 2.98e-1 0.93 1.52e-1 1.02 1.89¢-0 -0.06
32 1.42e-1 1.07 7.14e-2 1.09 1.07e-1 4.15
64 7.10e-2 1.00 3.56e-2 1.01 5.33e-2 1.00
128 3.5be-2 1.00 1.78e-2 1.00 2.66e-2 1.00
8 5.80e-2 - 2.55e-1 - 2.34e-1 -

1 16 1.44e-2 2.01 1.38e-1 0.88 1.35e-1 0.79
32 3.60e-3 2.00 7.06e-2 0.97 7.02¢e-2 0.95
64 9.00e-4 2.00 3.55e-2 0.99 3.62e-2 0.95
128 2.25e-4 2.00 1.78e-2 1.00 1.13e-2 1.68
8 3.93e-3 - 7.92e-3 - 4.07e-2 -

9 16 4.84e-4 3.02 9.76e-4 3.02 9.45e-3 2.11
32 6.00e-5 3.01 1.23e-4 2.99 2.31e-3 2.03
64 7.47¢-6 3.01 1.52e-5 3.02 5.78¢e-4 2.00

Table 2: Numerical Experiment 1 (third-order linear equation): Error and convergence
order of up, qpn, and pp

4.2. Numerical Experiment 2. In the second test, we consider the following
third-order nonlinear equation

Ut + EUgge + (f(u))x =g

with periodic boundary conditions on © = [0,1] and the initial condition ug =

sin (27rzx), where f(u) = % and ¢ is the function which gives the solution

u(z,t) = sin(2nx + t).

For this problem, we first test the convergence orders of our DG method for e = 1,
0.1 and 0.01 when using polynomials of degree k = 0,1,2. We use h = 1/N, where
N=21=3,...,7, and At = 0.2 h™»{k1} for time discretization, and the final time
is T = 0.1. The L2-errors and orders of convergence for € = 1, 0.1, 0.01 are displayed
in Table 3, Table 4, and Table 5, respectively. Note that for existing energy-conserving
DG methods in [5,7,21], it is typical that approximate solutions to w have optimal
convergence orders when k is even and sub-optimal orders when k is odd. Here, we
see that our method has comparable convergence rates.

Next, we plot the exact solutions and the numerical solutions with quadratic
polynomials on 32 elements for different . Note that u and ¢ are not changing with
respect to € in this test problem, but p depends on £. So we plot u,q, u; and g
over the time period [0, 5] in Figure 2 and the snapshot of them at the time 7' =5
in Figure 3. The graphs of p and p;, for different £ over the time period [0, 5] are
plotted in Figure 4 and the snapshots of them at the time 7" = 5 are in Figure 5. We
see that in all the figures the graphs of numerical solutions match well with those of
exact solutions.

Finally, we test the conservation properties of our DG scheme. We plot the
Hamiltonian and the Energy of the numerical solutions for ¢ € [0,50] for different
€ in Figure 6. The errors of the energy and Hamiltonian for different ¢ are plotted
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»
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23614

23612
8838

~
g

8836

Hamiltonian Error
Energy Error
g

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time Time

Fig. 1: Numerical Experiment 1 (third-order linear equation): Hamiltonian (Left) and
energy (Right) conservation. Shown on the bottom are the corresponding errors.

348 in Figure 7. We see that our method successfully conserves both Hamiltonian and
349 energy. We note that, even though the energy and Hamiltonian are conserved for
350 the KdV equations (i.e., the source term g = 0), the manufactured solution of this
351 particular test with a nonzero source term happens to bear these properties as well
352 and thus serves as an ideal test case.

4.3. Numerical Experiment 3. In this example, we test the KdV equation

Ut + EUgge + (f(u))y =0

353 with ¢ = 51> and f(u) = “72 The domain is Q = [0, 1] and we are testing a cnoidal-

354  wave solution
355 u(z,t) = Acn?(2),

356 where cn(z) = cn(z|m) is the Jacobi elliptic function with modulus m = 0.9, z =
357 AK (x—vt—1x0), A = 192me K (m)?, v = 64e(2m—1)K (m)?, and K (m) = [? \/ﬁl
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k N Un ah Ph
Lo Error | Order | Ly Error | Order | Ly Error | Order

8 3.81e-1 - 1.96e-0 - 1.05e+1 -

0 16 8.00e-2 2.25 5.14e-1 1.93 3.41e-0 1.61
32 4.83e-2 0.73 2.89%-1 0.83 1.73e-0 0.97
64 2.03e-2 1.25 1.27e-1 1.18 7.99e-1 1.12
128 1.01e-2 1.01 6.33e-2 1.01 3.97e-1 1.01
8 5.29e-2 - 9.51e-1 - 1.05e+1 -

1 16 7.19e-2 -0.44 8.16e-1 0.22 2.00e-0 2.40
32 1.67e-2 2.10 1.92e-1 2.09 3.78¢e-0 -0.92
64 1.09e-3 3.93 1.26e-1 0.61 3.46e-2 6.77
128 1.49¢-4 2.88 6.29¢-2 1.00 1.08e-1 -1.64
8 2.08e-3 - 1.23e-1 - 7.89¢e-0 -

9 16 1.35e-4 3.94 3.48e-3 5.14 4.27e-1 4.21
32 1.69e-5 3.00 4.31e-4 3.01 1.04e-1 2.04
64 2.11e-6 3.00 5.38e-5 3.00 2.59¢-2 2.01

Table 3: Numerical Experiment 2 (third-order nonlinear equation): Errors and con-
vergence orders of up, qp, and pp, for e =1

k| N up qn Ph
Ly Error | Order | Ly Error | Order | Ly Error | Order
8 3.51e-1 - 1.87e-0 - 1.06e-0 -
0 16 1.17e-1 1.58 6.75e-1 1.47 4.00e-1 1.40
32 4.63e-2 1.34 2.80e-1 1.27 1.73e-1 1.21
64 2.11e-2 1.14 1.31e-1 1.10 8.18¢e-2 1.08
128 1.02e-2 1.05 6.36e-2 1.04 4.01e-2 1.03
8 6.62e-2 - 8.79%-1 - 1.17e-0 -
1 16 4.08e-2 0.70 3.11e-1 1.50 7.86e-1 0.58
32 2.05e-2 0.99 1.48e-1 1.07 4.11e-1 0.94
64 1.48e-3 3.80 1.26e-1 0.24 5.84e-2 2.82
128 3.71e-4 2.00 6.29e-2 1.00 5.14e-2 0.18
8 1.30e-3 - 3.00e-2 - 1.86e-1 -
9 16 1.44e-4 3.17 3.52e-3 3.09 4.06e-2 2.19
32 1.69e-5 3.09 4.29e-4 3.04 1.04e-2 1.96
64 2.11e-6 3.00 5.42e-5 2.98 2.63e-3 1.99

Table 4: Numerical Experiment 2 (third-order nonlinear equation): Errors and con-
vergence orders of up, qp, and pp, for e = 0.1

is the Jacobi elliptic integral of the first kind; see [1]. The parameter z( is arbitrary,
so we take it to be zero. The solution u has a spatial period 1.

This benchmark problem has been tested for other conservative DG methods
in [5,21,24,38]. Those methods conserve either the Hamiltonian or the energy of the
solution, but not both.

In Table 6, we display the L? errors of approximate solutions to u,q, and p for
k = 0,1,2. The convergence orders are similar to those in the previous numerical
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k N Un ah Ph
Lo Error | Order | Ly Error | Order | Ly Error | Order
8 1.75e-1 - 1.20e-0 - 1.43e-1 -
0 16 8.33e-2 1.07 5.62e-1 1.10 6.19e-2 1.20
32 4.07e-2 1.03 2.62e-1 1.10 2.73e-2 1.18
64 2.01e-2 1.02 1.27e-1 1.05 1.30e-2 1.08
128 1.00e-2 1.00 6.31e-2 1.01 6.40e-3 1.02
8 2.30e-2 - 8.93e-1 - 9.15e-2 -
1 16 4.08e-2 -0.83 3.14e-1 1.51 7.09e-2 0.37
32 2.05e-3 4.31 2.53e-1 0.31 3.20e-2 1.15
64 1.04e-3 0.99 1.26e-1 1.01 1.59¢-2 1.01
128 5.89¢-4 0.81 6.29e-2 1.00 8.34e-3 0.93
8 1.24e-3 - 3.23e-2 - 1.63e-2 -
9 16 1.41e-4 3.13 3.39%-3 3.25 4.12e-3 1.99
32 1.70e-5 3.06 7.20e-4 2.23 1.75e-3 1.24
64 2.37e-6 2.84 1.08e-4 2.74 5.30e-4 1.72

Table 5: Numerical Experiment 2 (third-order nonlinear equation): Errors and con-
vergence orders of uy, gy, and pp, for e = 0.01

Exact Solution u(z) Approximate Solution wuy(x)

Fig. 2: Numerical Experiment 2 (third-order nonlinear equation): Solutions in time
(Left: exact solution, Right: approximate solution) for the e-independent u and gq.

experiments. In Figure 8, we plot the exact solution and the approximate solution
using polynomial degree k = 2 over 32 intervals over the time period ¢ € [0,5]. The
snapshots of the exact and the approximation solutions at the final time T = 5 are
shown in Figure 9. We can see that the graphs of exact solution and the approximate
solution match up well in both figures. Next, we compute the numerical solution
using k = 2 on 32 intervals for a longer time 7' = 50. The graphs of the Hamiltonian
and energy of the DG solution versus time are displayed in Figure 10, and the errors
of Hamiltonian and energy are plotted on the second row of Figure 10. We can see
that both the Hamiltonian and the energy have been conserved during the whole time

This manuscript is for review purposes only.
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Approximate Solution u;, and Exact Solution v at T =5
T PO6se, T T

I L I L L L L Sae
-

0 01 02 03 04 05 06 07 08 09 1
T

Approximate Solution ¢, and Exact Solution ¢ at T' =5
T T T T

—6— Approximate Solution
Exact Soluton | |

Fig. 3: Numerical Experiment 2 (third-order nonlinear equation): Solutions at the
final time T' =5 (Top: w and uy, bottom: ¢ and gp,).

Exact Solution p(z Approximate Solution pj(z)
50 4 50
= N
sl L —
0 KArTa—— e T 5
T T t
Exact Solution p(z) Approximate Solution pj(z)
54 s
= g
e s T _,4/13*44/ -
O F*?T{ :e R T e I
Exact Solution p(z Approxlmate Solution ph(

Sl W e

Fig. 4: Numerical Experiment 2 (third-order nonlinear equation): Solution in time
(Left: exact, Right: approximate, ¢ = 1,0.1,0.01 from top to bottom) for the e-
dependent p.

period.

5. Concluding Remarks. In this paper, we design and implement a new con-
servative DG method for simulating solitary wave solutions to the generalized KdV
equation. We prove that the method conserves the mass, energy and Hamiltonian of
the solution. Numerical experiments confirm that our method does have the desir-
able conservation properties proved by our analysis. The convergence orders are also
comparable to prior works by others. Future extensions include the investigation of
other choices of numerical fluxes, as well as applying the novel framework of devis-
ing new conservative DG methods to other problems featuring physically interesting
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Approximate Solution p;, and Exact Solution p at 7' =5 with e =1
T T

—6— Approximate Solution
|—— Exact Solution

0 041 02 03 04 05 06 o1 08 09 1

Approximate Solution p, and Exact Solution p at T' =5 with € = 0.01
T T T T T T

Fig. 5: Numerical Experiment 2 (third-order nonlinear equation): the e-dependent
solution p and the approximate solution py, at the final time T' = 5 (withe = 1,0.1,0.01
from top to bottom).
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Fig. 6: Numerical Experiment 2 (third-order nonlinear equation): Conservation of
Hamiltonian (Left) and energy (Right) when ¢ = 1 (top), 0.1 (middle), and 0.01
(bottom).

quantities that are conserved.

Appendix A. Implementation Details. In the Appendix, we show how
to rewrite the weak formulation of the DG method, (2.2), into the system (3.1) for
implementation using matrices and vectors. We start with the details on rewriting
Eq. (2.2a) into Eq. (3.1a). Assume that the interval [—1,1] is linearly mapped to
the interval I; and the Legendre polynomial of degree | on [—1,1] is correspondingly
mapped to the polynomial ¢!(x) on the interval I; for [ =0,...,k, and i = 1,..., N.
5, = Zf:o ul(t)pl(z), where {ul(t)}r_, are degrees of

Then uy, can be written as uy,
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Fig. 7: Numerical Experiment 2 (third-order nonlinear equation): Errors of Hamil-
tonian (Left) and energy (Right) when € =1 (top), 0.1 (middle) and 0.01 (bottom).
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k N Uph ah Ph
Lo Error | Order | Ly Error | Order | Ly Error | Order
8 5.44e-1 - 8.11 - 3.18e-1 -
0 16 2.72e-1 1.00 4.56 0.83 2.42e-1 0.40
32 9.89e-2 1.46 1.65 1.47 8.80e-2 1.46

64 4.50e-2 1.14 7.69e-1 1.10 3.05e-2 1.53
128 2.22e-2 1.02 3.87e-1 0.99 1.34e-2 1.19

8 1.26e-1 - 2.40 - 1.12e-1 -
1 16 7.49e-2 0.75 2.82 -0.23 1.51e-1 -0.43
32 2.13e-2 1.81 1.41 1.00 7.23e-2 1.06
64 6.07e-3 1.81 7.41e-1 0.93 5.01e-2 0.53
128 1.57e-3 1.95 3.74e-1 0.99 2.88e-1 0.80
8 1.18e-1 - 4.70 - 2.58e-1 -
9 16 1.60e-2 2.88 7.24e-1 2.70 8.08e-2 1.68

32 2.71e-3 2.56 5.96e-2 3.60 1.15e-2 2.85
64 3.47e-4 2.96 6.15e-3 3.28 6.08e-4 4.21

Table 6: Numerical Experiment 3 (classical KdV equation): Errors and convergence
orders of uy, qn, and pp

Exact Solution u(z) Approximate Solution wuy(x)
2
v
H ) y :
5 n 3 2 " o 05
t T
Exact Solutxon q(z Approximate Solution g, (x)
20 — 20—
ol S
20 A— ﬂ 20 -1 - /{ !
3 2 1 o 3 3 2 T )
t v t x
Exact Solution p(z Approximate Solution pj,(z)
15 154
05 S 05 AN
e A i i A A B S A . S . A &> ol
5 4 3 2 1 0 0 5 4 3 2 1 0 0

Fig. 8: Numerical Experiment 3 (classical KdV equation): Solution in time (Left:
exact, Right: approximate) for the Cnoidal Wave.

freedom of uy on I; at time ¢. Similar expansions are performed for g;, and p;,. Taking
the test function v = ¢J(z) for i = 1,...,N and j = 0,...,k in (2.2a) and using the
definition of uy, we get

M[q] + Du] + Alu] =

where [u] = (u,...,uf, .., u®, .., uk)T is the column vector that contains all the
degrees of freedom of up,, and [q] and [p] are the column vectors of degrees of freedom
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Approximate Solution u;, and Exact Solution u at =5
“Seg | T T

up(w)

an(x)

pi(w)

Fig. 9: Numerical Experiment 3 (classical KdV equation): Exact and approximate
solutions at the final time T' = 5 for the Cnoidal Wave (Top: u and uy,, middle: ¢ and
gn, bottom: p and pp,).

of g5, and py, respectively. Here, the mass matrix M is block diagonal,
M = diag(M™,..., M)
with components
(1) = [ olsitants
for j,l=0,...,kandi=1,...,N. The stiffness matrix D is also block diagonal,
D = diag(D",...,D'V)

with components
(D" = [ o))l

forl,j=0,...,kand i=1,...,N. The matrix A is associated with the average flux
in @,. Note that a basis function on an interval I; only communicates with those
on I; or on the two neighboring intervals I;_; and I;11. So the matrix A is sparse
and block diagonal. So are the matrices D and M. This is one of the advantages of
DG methods which use local basis functions. Indeed, A is nearly block tridiagonal
except the first and the last block rows. The three blocks used to assemble A have
components as follows

(=1 (=D -1

(ADu =5 ADi="—5— (ADu=-5~

for j,l=0,...,kandi=1,...,N.
Next, we rewrite the Eq. (2.2b) into (3.1b) in a similar way. The main difference
lies in the term (g, zn). Using the definition of gy, we can rewrite this term as

(@n, 2n) = (an}, 2n) + 7qu(fun], 2n).
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Fig. 10: Numerical Experiment 3 (classical KdV equation): Hamiltonian (Left) and
energy (Right) conservation for the Cnoidal Wave. Shown on the second row are the
corresponding errors.

410 For the first term on the right hand side involving {gp, }, we can rewrite it as A[q] using

111 the average flux matrix A. For the second term that involves [uy], taking z = ¢, we

412 have

wr o (détn) = [wdEa)d ) - @ e

4 SO ED IS IO SRS SIS [
7=0 7=0 7=0 7=0

k k
415 = (=D w4+ (DM D ]+ (1))
j=0 =0

416 Jj=0

S

fori=1,...,N,[,j =0,...,k. Note that for each i, the expression above only uses
the interval I;, the one before it, and the one after it. So we can write the term
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([un], zn) as

([un], zn) = JIul,

where J is a nearly block tridiagonal matrix except the first and last block rows. Now
the Eq. (2.2b) can be written as (3.1b).

To rewrite Eq. (2.2¢) as (3.1c), we just need to approximate the (us, w) term by
M([u] — [a])/(3At). The rest terms are handled in a similar way to what we described
above for (2.2a) and (2.2b).

Rewriting the equations (2.4a) and (2.4b) that enforce the conservation of Energy
and Hamiltonian into (3.1d) and (3.1e) is straightforward. We just need to use the

notation Vi = SV [V(un)] — {I1f (un) Hun](z:) and ne&,v) = S [€][v](x:) for

5, V = Up,dh, OT Pp.
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