

1 **A NEW CONSERVATIVE DISCONTINUOUS GALERKIN METHOD**
2 **VIA IMPLICIT PENALIZATION FOR THE GENERALIZED KDV**
3 **EQUATION***

4 YANLAI CHEN[†], BO DONG[†], AND REBECCA PEREIRA[‡]

5 **Abstract.** We design, analyze, and implement a new conservative Discontinuous Galerkin
6 (DG) method for the simulation of solitary wave solutions to the generalized Korteweg-de Vries
7 (KdV) Equation. The key feature of our method is the conservation, at the numerical level, of
8 the mass, energy and Hamiltonian that are conserved by exact solutions of all KdV equations. To
9 our knowledge, this is the first DG method that conserves all these three quantities, a property
10 critical for the accurate long-time evolution of solitary waves. To achieve the desired conservation
11 properties, our novel idea is to introduce two stabilization parameters in the numerical fluxes as
12 new unknowns which then allow us to enforce the conservation of energy and Hamiltonian in the
13 formulation of the numerical scheme. We prove the conservation properties of the scheme which
14 are corroborated by numerical tests. This idea of achieving conservation properties by implicitly
15 defining penalization parameters, that are traditionally specified *a priori*, can serve as a framework
16 for designing physics-preserving numerical methods for other types of problems.

17 **Key words.** Korteweg-de Vries equation, discontinuous Galerkin, conservation of energy, con-
18 servation of Hamiltonian, implicit penalization

19 **AMS subject classifications.** 65M60, 65N30

20 **1. Introduction.** In this paper, we consider the following generalized Korteweg-
21 de Vries (KdV) equation

22 (1.1) $u_t + \varepsilon u_{xxx} + f(u)_x = g(x, t), \quad x \in \Omega = [a, b], t > 0$

23 with periodic boundary conditions and the initial condition $u(x, 0) = u_0(x)$. Here,
24 $f(u)$ is usually some polynomial of u . When $\varepsilon = 1$, $f(u) = 3u^2$ and $g \equiv 0$, (1.1)
25 represents the original KdV equation.

26 KdV equations are widely adopted to model one-dimensional long waves and
27 have applications in plasma physics, biology, nonlinear optics, quantum mechanics,
28 and fluid mechanics; see [11, 14–16, 22, 28, 31]. There is also a lot of interest in theo-
29 retical studies on the mathematical properties of solutions to KdV equations. Many
30 modern areas of mathematics and theoretical physics opened up thanks to the basic
31 research into the KdV equations. As a consequence, there have been intense efforts
32 on developing numerical methods for KdV equations, including finite difference meth-
33 ods [12, 23, 32], finite element methods [3, 4, 29, 33], spectral methods [10, 13, 19, 25]
34 and operator splitting methods [17, 18].

35 KdV equations feature a combination of the nonlinear term and the dispersive
36 term u_{xxx} , which makes it difficult to achieve numerical properties such as stability
37 and convergence. Moreover, it is known that KdV equations may have “blow-up” solu-
38 tions but the mechanism of the singularity formation is not clear [26, 27]. The study
39 in [6] showed that the simulation of blow-up solutions, almost for sure, will require

*Submitted to the editors January 10, 2022.

Funding: The work of the first author was partially supported by a grant from the College
of Arts & Sciences at the University of Massachusetts Dartmouth, and by the UMass Dartmouth
Marine and UnderSea Technology (MUST) Research Program made possible via an Office of Naval
Research grant N00014-20-1-2849. The work of the second and third author was supported by the
National Science Foundation (grant DMS-1818998).

[†]Department of Mathematics, University of Massachusetts Dartmouth, North Dartmouth, MA
02747, USA (yanlai.chen@umassd.edu, bdong@umassd.edu, rpereira2@umassd.edu).

highly nonuniform meshes. This makes Discontinuous Galerkin (DG) methods suitable for solving KdV equations due to their advantages including high-order accuracy, compact stencil, capability of handling nonuniform meshes and variable degrees, and flexibility in constructing the numerical fluxes to achieve conservation of particular physical quantities. DG methods [7, 8, 20, 30, 34–36] have been developed for KdV type equations. In particular, there have been continuous efforts on developing DG methods that conserve physically interesting quantities of their solutions. Indeed, all KdV equations have three such quantities:

$$\text{Mass: } \int_{\Omega} u dx, \quad \text{Energy: } \int_{\Omega} u^2 dx, \quad \text{Hamiltonian: } \int_{\Omega} (u_x^2 - V(u)) dx,$$

35 where $V(\cdot)$ is an anti-derivative of $f(\cdot)$. This property is crucial for their solitary wave
 36 solutions to maintain amplitude, shape, and speed even after colliding with another
 37 such wave. Numerical results [5, 21, 24, 38] showed that DG methods preserving these
 38 invariants can maintain numerical stability over a long time period and help reduce
 39 phase and shape error after long time integration. However, existing conservative DG
 40 methods cannot conserve the energy and Hamiltonian simultaneously though the con-
 41 servation of mass is easy to achieve. In Table 1 we list some conservative DG methods
 42 for KdV equations. This is in no way an exhaustive list, but it shows the trend and
 43 main efforts in the development of conservative DG methods for KdV equations. We
 44 can see that the methods in [5, 7, 21, 37] and the first method in [38] conserve the en-
 45 ergy but not the Hamiltonian, while the method in [24] and the second method in [38]
 conserve the Hamiltonian but not the energy. Most of these conservative DG methods

Method	Year	Hamiltonian	Energy
Conservative DG for the Generalized KdV (GKdV) [5]	2013	✗	✓
Direct DG for GKdV [37]	2013	✗	✓
Conservative LDG for GKdV [21]	2016	✗	✓
H^2 -Conservative DG for Third-Order Equations [7]	2016	✗	✓
Hamiltonian-Preserving DG for GKdV [24]	2016	✓	✗
Conservative and Dissipative LDG for KdV [38], Scheme I	2019	✓	✗
Conservative and Dissipative LDG for KdV [38], Scheme II	2019	✗	✓

Table 1: The conservation properties of the previous DG methods

46
 47 have an optimal convergence order for even degree polynomials and sub-optimal order
 48 for odd degree polynomials except that the Hamiltonian conserving method in [38]
 49 has optimal convergence order for any polynomial degrees.

50 In this work, we develop a new DG method for KdV equations that conserves all
 51 three invariants: mass, energy, and Hamiltonian. This conservative DG method will
 52 allow us to model and simulate the soliton wave more accurately over a long time pe-
 53 riod. Our novel idea on designing the method is to treat the penalization/stabilization
 54 parameters in the numerical fluxes implicitly (i.e., as new unknowns), which allow two
 55 more equations in the formulation of the DG method that explicitly enforce the con-
 56 servation of energy and Hamiltonian. The stabilization parameters are solved together

57 with the approximations of the exact solutions. Due to the time-step constraint implied by the third-order spatial derivative, we use implicit time marching schemes to
 58 avoid extremely small time steps. Since our DG scheme for spatial discretization is
 59 conservative, in implementation we use the implicit midpoint method which is conservative
 60 for time discretization. Our numerical results show that, just like most other
 61 conservative DG methods in literature, our method has optimal convergence for the
 62 even polynomial degrees and sub-optimal convergence for the odd ones. More significantly,
 63 our method can conserve both the energy and the Hamiltonian over a long
 64 time period.

65 As shown in Table 1, both standard DG and LDG methods have appeared in literature to achieve conservation. We choose the LDG-like framework for our method
 66 because it has three numerical traces, and thus more room for tuning for better con-
 67 servation properties. We would like to point out that our method has computational
 68 complexity that is only negligibly more than standard LDG. When the equation is
 69 nonlinear (which is our focus), both discretized systems are nonlinear thus needing it-
 70 erative solvers. Standard LDG system has $3N(k+1)$ equations when N elements and
 71 polynomials of degree k are used. Our system has $3N(k+1) + 2$ equations due to the
 72 introduction of two new unknown (constant) parameters. We would like to further re-
 73 mark that our idea of enforcing conservation properties by using implicit stabilization
 74 parameters can be applied to develop new conservative methods for other types of
 75 problems that feature conservation of physical quantities. It can also be extended to
 76 preserve more invariants for the KdV equation by introducing more than two implicit
 77 stabilization parameters. This opens the door to promising future extensions.

78 The rest of the paper is structured as follows: Section 2 will describe the formu-
 79 lation of our DG method and prove the conservation properties. Implementation of
 80 our method is briefly discussed in Section 3, leaving further details to the Appendix.
 81 We display numerical results on solving third-order linear and nonlinear equations
 82 and the classical KdV equation, showing the order of convergence and conservation
 83 properties we have observed in our numerical experiments in Section 4. Finally, we
 84 end with concluding remarks in Section 5.

85 **2. Main Results.** In this section, we discuss our main results. We start by
 86 introducing our notations. Next, we describe our DG method and discuss the choice of
 87 penalization parameters that ensure the conservation of the Hamiltonian and energy.
 88 After that, we prove that our numerical solutions do conserve the three invariants:
 89 mass, energy, and Hamiltonian.

90 **2.1. Notation.** To define our DG method, first let us introduce some notations.
 91 We partition the domain $\Omega = (a, b)$ as

$$92 \quad \mathcal{T}_h = \{I_i := (x_{i-1}, x_i) : a = x_0 < x_1 < \cdots < x_{N-1} < x_N = b\}.$$

93 We use $\partial\mathcal{T}_h := \{\partial I_i : i = 1, \dots, N\}$ to denote the set of all element boundaries,
 94 and $\mathcal{E}_h := \{x_i\}_{i=0}^N$ to denote all the nodes. We also set $h_i = x_i - x_{i-1}$ and $h :=$
 95 $\max_{1 \leq i \leq N} h_i$.

96 For any function $\zeta \in L^2(\partial\mathcal{T}_h)$, we denote its values on $\partial I_i := \{x_{i-1}^+, x_i^-\}$ by
 97 $\zeta(x_{i-1}^+)$ (or simply ζ_{i-1}^+) and $\zeta(x_i^-)$ (or simply ζ_i^-). Note that $\zeta(x_i^+)$ does not have to
 98 be equal to $\zeta(x_i^-)$. In contrast, for any function $\eta \in L^2(\mathcal{E}_h)$, its value at x_i , $\eta(x_i)$ (or
 99 simply η_i) is uniquely defined; in this case, $\eta(x_i^-) = \eta(x_i^+) = \eta(x_i)$.

We let

$$(\varphi, v) := \sum_{i=1}^N (\varphi, v)_{I_i}, \quad \langle \varphi, vn \rangle := \sum_{i=1}^N \langle \varphi, vn \rangle_{\partial I_i},$$

where

$$(\varphi, v)_{I_i} = \int_{I_i} \varphi v dx, \quad \langle \varphi, vn \rangle_{\partial I_i} = \varphi(x_i^-) v(x_i^-) n(x_i^-) + \varphi(x_{i-1}^+) v(x_{i-1}^+) n(x_{i-1}^+).$$

Here n denotes the outward unit normal to I_i , that is $n(x_{i-1}^+) := -1$ and $n(x_i^-) := 1$. We define the average and jump of φ as

$$\{\varphi\}(x_i) := \frac{1}{2}(\varphi(x_i^-) + \varphi(x_i^+)), \quad \llbracket \varphi \rrbracket(x_i) := \varphi(x_i^-) - \varphi(x_i^+).$$

102 We also define the finite element space

103 $W_h^k = \{\omega \in L^2(\mathcal{T}_h) : \omega|_K \in P_k(K) \text{ for any } K \in \mathcal{T}_h, \text{ and } \omega(a) = \omega(b)\},$

104 where $P_k(D)$ is the space of piecewise polynomials of degree up to k on the set D .
105 Finally, the $H^s(D)$ -norm is denoted by $\|\cdot\|_{s,D}$. We drop the first subindex if $s = 0$,
106 and the second if $D = \Omega$ or \mathcal{T}_h .

107 **2.2. The DG method.** To define our DG method for the KdV equation (1.1),
108 we first rewrite it as the following system of first-order equations

109 (2.1)
$$\begin{aligned} q - u_x &= 0, & \text{in } \Omega, \\ p - \varepsilon q_x &= f(u), & \text{in } \Omega, \\ u_t + p_x &= g(x), & \text{in } \Omega, \end{aligned}$$

with the initial condition $u(x, 0) = u_0(x)$ and the periodic boundary conditions

$$u(a) = u(b), \quad q(a) = q(b), \quad p(a) = p(b).$$

110 We discretize (2.1) by seeking (u_h, q_h, p_h) as approximations to (u, q, p) in the
111 space $(W_h^k)^3$ such that

112 (2.2a)
$$(q_h, v) + (u_h, v_x) - \langle \hat{u}_h, vn \rangle = 0, \quad \forall v \in W_h^k,$$

113 (2.2b)
$$(p_h, z) + \varepsilon(q_h, z_x) - \varepsilon \langle \hat{q}_h, zn \rangle = (f(u_h), z), \quad \forall z \in W_h^k,$$

114 (2.2c)
$$(u_{ht}, w) - (p_h, w_x) + \langle \hat{p}_h, wn \rangle = (g, w), \quad \forall w \in W_h^k.$$

116 Here, $\hat{u}_h, \hat{q}_h, \hat{p}_h$ are the so-called numerical traces whose definitions are in general
117 critical for the accuracy and stability of the DG method [2]. There are multiple ways
118 of defining them. We adopt the one that is similar to the Local Discontinuous Galerkin
119 (LDG) methods [2]

120 (2.3a)
$$\hat{u}_h = \{u_h\},$$

121 (2.3b)
$$\hat{q}_h = \{q_h\} + \tau_{qu} \llbracket u_h \rrbracket,$$

122 (2.3c)
$$\hat{p}_h = \{p_h\} + \tau_{pu} \llbracket u_h \rrbracket.$$

124 The key difference is that, instead of specifying the values of the penalty parameters
125 (τ_{qu}, τ_{pu}) as done by LDG [2], we leave them as unknowns. It is exactly due to the

126 resulting freedom of placing two more constraints that, as shown in Lemma 2.2 in
 127 the next section, the scheme is able to conserve the mass, L^2 -energy, and the Hamiltonian
 128 of the numerical solutions. Toward that end, we require that the penalization
 129 parameters τ_{qu} and τ_{pu} be constants that satisfy

(2.4a)

$$130 \quad \tau_{pu} \sum_{i=1}^N \llbracket u_h \rrbracket^2(x_i) - \varepsilon \tau_{qu} \sum_{i=1}^N \llbracket u_h \rrbracket \llbracket q_h \rrbracket(x_i) = \sum_{i=1}^N \left(\llbracket V(u_h) \rrbracket - \{ \Pi f(u_h) \} \llbracket u_h \rrbracket \right)(x_i),$$

(2.4b)

$$131 \quad \tau_{pu} \sum_{i=1}^N \llbracket p_h \rrbracket \llbracket u_h \rrbracket(x_i) + \varepsilon \tau_{qu} \sum_{i=1}^N \llbracket u_h \rrbracket_t \llbracket u_h \rrbracket(x_i) = 0.$$

133 Here, $V(\cdot)$ is an antiderivative of $f(\cdot)$. In summary, our method is to seek $(u_h, q_h, p_h) \in$
 134 $(W_h^k)^3$ and penalty parameters (τ_{qu}, τ_{pu}) such that (2.2a) - (2.2c), (2.4a), and (2.4b)
 135 are satisfied.

136 *Remark 2.1.* Here we would like to point out that our scheme is not an LDG
 137 method. To our knowledge, existing LDG methods do not conserve the energy of
 138 solutions to KdV equations. The penalty parameters in LDG methods are known
 139 constants, while in our schemes τ_{qu} and τ_{pu} are considered as new unknowns. Corre-
 140 spondingly we have two more equations from (2.4). In fact, we can write τ_{qu} and τ_{pu}
 141 in terms of u_h, q_h, p_h as

$$142 \quad \tau_{qu} = -\frac{1}{\varepsilon} \frac{\eta(p_h, u_h) \sum_{i=1}^N \left(\llbracket V(u_h) \rrbracket - \{ \Pi f(u_h) \} \llbracket u_h \rrbracket \right)}{\eta(q_h, u_h) \eta(p_h, u_h) + \eta(u_{ht}, u_h) \eta(u_h, u_h)},$$

$$143 \quad \tau_{pu} = -\varepsilon \frac{\eta(u_{ht}, u_h)}{\eta(p_h, u_h)} \tau_{qu},$$

145 where we have used the notation $\eta(w, v) = \sum_{i=1}^N \llbracket w \rrbracket \llbracket v \rrbracket(x_i)$. These expressions show
 146 that our method is different from LDG Methods.

147 **2.3. Conservative properties.** Now we discuss the conservation properties of
 148 the schemes in the previous section. First, in the following Lemma we give general
 149 conditions for $\widehat{u}_h, \widehat{q}_h, \widehat{p}_h$ under which DG methods that satisfy (2.2) conserve the mass,
 150 L^2 energy, and Hamiltonian. Then we apply the Lemma to prove the conservation
 151 properties for the DG method defined by (2.2)-(2.4).

152 **LEMMA 2.2.** *Suppose (u_h, q_h, p_h) satisfy (2.2) with $g = 0$.*

153 (i) *If \widehat{p}_h is single-valued, then we have*

$$154 \quad \frac{d}{dt} \int_{\mathcal{T}_h} u_h dx = 0, \quad (\text{mass - conservation}).$$

155 (ii) *If $\widehat{u}_h, \widehat{q}_h, \widehat{p}_h$ are single-valued and satisfy the condition*

$$156 \quad (2.5) \quad 0 = \sum_{i=1}^N \left(\llbracket V(u_h) \rrbracket - \{ \Pi f(u_h) \} \llbracket u_h \rrbracket + (\llbracket \Pi f(u_h) \rrbracket - \llbracket p_h \rrbracket)(\widehat{u}_h - \{ u_h \}) \right. \\ \left. - \llbracket u_h \rrbracket (\widehat{p}_h - \{ p_h \}) + \varepsilon \llbracket q_h \rrbracket (\widehat{q}_h - \{ q_h \}) \right)(x_i),$$

159 then we have

160 (2.6)
$$\frac{d}{dt} \int_{\mathcal{T}_h} u_h^2 dx = 0, \quad (\text{energy - conservation}).$$

161

162 (iii) If $\widehat{u}_h, \widehat{q}_h, \widehat{p}_h$ are single-valued and satisfy the condition

163 (2.7)
$$0 = \sum_{i=1}^N (\llbracket p_h \rrbracket (\widehat{p}_h - \{p_h\}) + \varepsilon \llbracket q_h \rrbracket (\widehat{u}_h - \{u_h\})_t + \varepsilon \llbracket u_h \rrbracket_t (\widehat{q}_h - \{q_h\})) (x_i),$$

164

165 then we have

166 (2.8)
$$\frac{d}{dt} \int_{\mathcal{T}_h} \left(\frac{\varepsilon}{2} q_h^2 - V(u_h) \right) dx = 0, \quad (\text{Hamiltonian - conservation}).$$

167

168 *Proof.* (i) To prove the mass conservation, we just need to take $w = 1$ in (2.2c)
169 and use the fact that \widehat{p}_h is single-valued.

170 (ii) Next, we prove the energy-conservation, which is also called L^2 -conservation.
171 We take $w := u_h, v := -p_h + \Pi f(u_h)$, and $z := q_h$ in (2.2) and add the three equations
172 together to get

173
$$(f(u_h), q_h) = (u_{ht}, u_h) - (p_h, u_{hx}) + \langle \widehat{p}_h, u_h n \rangle - (u_h, p_{hx}) + \langle \widehat{u}_h, p_h n \rangle + \varepsilon (q_h, q_{hx})$$

174
$$- \varepsilon \langle \widehat{q}_h, q_h n \rangle + (q_h, \Pi f(u_h)) + \langle u_h - \widehat{u}_h, \Pi f(u_h) n \rangle - (\Pi f(u_h), u_{hx})$$

Since

$$(f(u_h), q_h) = (\Pi f(u_h), q_h)$$

and

$$(\Pi f(u_h), u_{hx}) = (f(u_h), u_{hx}) = \langle V(u_h), n \rangle,$$

176 we have that

177
$$0 = (u_{ht}, u_h) - \langle p_h, u_h n \rangle + \langle \widehat{p}_h, u_h n \rangle + \langle \widehat{u}_h, p_h n \rangle + \frac{\varepsilon}{2} \langle q_h^2, n \rangle - \varepsilon \langle \widehat{q}_h q_h, n \rangle$$

178
$$+ \langle u_h - \widehat{u}_h, \Pi f(u_h) n \rangle - \langle V(u_h), n \rangle$$

179
$$= (u_{ht}, u_h) - \langle \widehat{p}_h - p_h + \Pi f(u_h), (\widehat{u}_h - u_h) n \rangle + \frac{\varepsilon}{2} \langle (q_h - \widehat{q}_h)^2, n \rangle - \langle V(u_h), n \rangle,$$

180

181 where we have used the single-valuedness of numerical traces. This means that

182
$$\frac{1}{2} \frac{d}{dt} (u_h, u_h) = \langle V(u_h), n \rangle + \langle \widehat{p}_h - p_h + \Pi f(u_h), (\widehat{u}_h - u_h) n \rangle - \frac{\varepsilon}{2} \langle (q_h - \widehat{q}_h)^2, n \rangle$$

183
$$= \sum_{i=1}^N (\llbracket V(u_h) \rrbracket - \{ \Pi f(u_h) \} \llbracket u_h \rrbracket + (\llbracket \Pi f(u_h) \rrbracket - \llbracket p_h \rrbracket) (\widehat{u}_h - \{u_h\})$$

184
$$- \llbracket u_h \rrbracket (\widehat{p}_h - \{p_h\}) + \varepsilon \llbracket q_h \rrbracket (\widehat{q}_h - \{q_h\})) (x_i).$$

186 Here, we used the equality $\langle \rho, vn \rangle = \sum_{i=1}^N (\llbracket \rho \rrbracket \{v\} + \llbracket v \rrbracket \{\rho\})(x_i)$ for any $\rho, v \in W_h^k$.
187 When the condition (2.5) is satisfied, we immediately get the energy-conservation,
188 (2.6).

189 (iii) To prove the Hamiltonian conservation properties in (2.8), we first differen-
190 tiate the equation (2.2a) with respect to t to obtain

191
$$(q_{ht}, v) + (u_{ht}, v_x) - \langle \widehat{u}_{ht}, vn \rangle = 0.$$

192 Then, we take $v := \varepsilon q_h$ in the equation above, $z := u_{ht}$ in (2.2b) and $w := -p_h$ in
 193 (2.2c) and add the three equations together to get

$$194 \quad (f(u_h), u_{ht}) = \varepsilon(q_{ht}, q_h) + (p_h, p_{hx}) - \langle \widehat{p_h}, p_h n \rangle \\ 195 \quad + \varepsilon(u_{ht}, q_{hx}) + \varepsilon(q_h, u_{htx}) - \varepsilon \langle \widehat{u}_{ht}, q_h n \rangle - \varepsilon \langle \widehat{q}_h, u_{ht} n \rangle.$$

197 Since \widehat{u}_h , \widehat{q}_h , and \widehat{p}_h are single-valued, we have

$$198 \quad (f(u_h), u_{ht}) = \varepsilon(q_{ht}, q_h) + \left\langle \frac{1}{2} p_h^2, n \right\rangle - \langle \widehat{p_h} p_h, n \rangle + \varepsilon \langle u_{ht} - \widehat{u}_{ht}, (q_h - \widehat{q}_h) n \rangle \\ 199 \quad = \varepsilon(q_{ht}, q_h) + \frac{1}{2} \langle (p_h - \widehat{p}_h)^2, n \rangle + \varepsilon \langle u_{ht} - \widehat{u}_{ht}, (q_h - \widehat{q}_h) n \rangle.$$

201 This implies that

$$202 \quad \frac{d}{dt} \left(\frac{\varepsilon}{2} (q_h, q_h) - (V(u_h), 1) \right) \\ 203 \quad = \sum_{i=1}^N (\llbracket p_h \rrbracket (\widehat{p}_h - \{p_h\}) + \varepsilon \llbracket q_h \rrbracket (\widehat{u}_h - \{u_h\})_t + \varepsilon \llbracket u_h \rrbracket_t (\widehat{q}_h - \{q_h\})) (x_i).$$

205 If the numerical traces satisfy (2.7), we get the conservation of the Hamiltonian (2.8).
 206 This concludes the proof of Lemma 2.2. \square

207 Next we use Lemma 2.2 to show that our scheme defined by (2.2) - (2.4) conserves
 208 the mass, the L^2 -energy, and the Hamiltonian of the numerical solutions.

209 **THEOREM 2.3.** *For (u_h, q_h, p_h) satisfying (2.2) with $g = 0$ and numerical traces
 210 defined by (2.3) - (2.4), the mass, L^2 -energy and Hamiltonian conservation properties
 211 in Lemma 2.2 hold.*

212 *Proof.* (i) The numerical traces in (2.3) are single-valued, so the DG scheme
 213 conserves the mass of the approximate solutions.

214 (ii) Using (2.3), we see that

$$215 \quad \sum_{i=1}^N \left(\llbracket V(u_h) \rrbracket - \{ \Pi f(u_h) \} \llbracket u_h \rrbracket + (\llbracket \Pi f(u_h) \rrbracket - \llbracket p_h \rrbracket) (\widehat{u}_h - \{u_h\}) \right. \\ 216 \quad \left. - \llbracket u_h \rrbracket (\widehat{p}_h - \{p_h\}) + \varepsilon \llbracket q_h \rrbracket (\widehat{q}_h - \{q_h\}) \right) (x_i) \\ 217 \quad = \sum_{i=1}^N \left(\llbracket V(u_h) \rrbracket - \{ \Pi f(u_h) \} \llbracket u_h \rrbracket - \tau_{pu} \llbracket u_h \rrbracket^2 + \varepsilon \tau_{qu} \llbracket u_h \rrbracket \llbracket q_h \rrbracket \right),$$

219 which is equal to 0 when the condition (2.4a) holds. Then we get the L^2 conservation
 220 by Lemma 2.2.

221 (iii) Using the definition of the numerical traces (2.3), we get

$$222 \quad \sum_{i=1}^N (\llbracket p_h \rrbracket (\widehat{p}_h - \{p_h\}) + \varepsilon \llbracket q_h \rrbracket (\widehat{u}_h - \{u_h\})_t + \varepsilon \llbracket u_h \rrbracket_t (\widehat{q}_h - \{q_h\})) (x_i) \\ 223 \quad = \sum_{i=1}^N (\tau_{pu} \llbracket p_h \rrbracket \llbracket u_h \rrbracket + \tau_{qu} \llbracket u_h \rrbracket_t \llbracket u_h \rrbracket) = 0$$

225 by (2.4b). So we immediately get the conservation of the Hamiltonian (2.8) using
 226 Lemma 2.2.

227 This concludes the proof of Theorem 2.3. \square

228 Remark 2.4. We would like to point out that Lemma 2.2 provides a framework
 229 for achieving full conservation of mass, energy and Hamiltonian. Specifically, any
 230 choices of $\widehat{u}_h, \widehat{q}_h, \widehat{p}_h$ that satisfy the conditions (2.5) and (2.7) will do. The numerical
 231 traces we have in (2.3) are just one of them. There are many other choices. For
 232 example, one can choose $\widehat{q}_h = \{q_h\}$ and determine \widehat{u}_h and \widehat{p}_h from equations (2.5)
 233 and (2.7). The scope of this paper is to discover a novel paradigm for designing new
 234 conservative DG methods by letting the stabilization parameters be new unknowns so
 235 that conservation properties can be explicitly embedded into the scheme and therefore
 236 their achievement guaranteed.

237 **3. Implementation.** In this section, we provide a high-level summary of the
 238 implementation of our method. Further details are deferred to Appendix A.

239 **3.1. Time-stepping scheme.** Since KdV equations have the third-order spatial
 240 derivative term, we choose implicit time-marching schemes to avoid using extremely
 241 small time steps. Moreover, we need the time stepping method to be conservative
 242 so that the fully discrete scheme is conservative. Here, we use the following implicit
 243 second-order Midpoint method, which preserves the conservation laws up to round-
 244 off error. This is proven in [9] and adopted in [5, 21] for the development of energy-
 245 conserving DG methods and [24] for a Hamiltonian-preserving DG scheme. Numerical
 246 results therein and of our paper demonstrate numerically that the Midpoint method
 247 does indeed conserve conservation laws including Hamiltonian. Let $0 = t_0 < t_1 <$
 248 $\dots < t_M = T$ be a uniform partition of the interval $[0, T]$ and $\Delta t = t_{n+1} - t_n$ be the
 249 step size. For $n = 0, \dots, M - 1$, let $u_h^{n+1} \in W_h^k$ be defined as:

$$250 \quad u_h^{n+1} = 2u_h^{n+\frac{1}{2}} - u_h^n,$$

251 where $u_h^{n+\frac{1}{2}} \in W_h^k$ is the DG solution to the equation

$$252 \quad \frac{u - u_h^n}{\frac{1}{2}\Delta t} + \varepsilon u_{xxx} + f(u)_x = g(x, t_{n+\frac{1}{2}}).$$

253 At every time step $t_{n+\frac{1}{2}}, n = 0, \dots, M - 1$, we need to solve equations (2.2), (2.4a),
 254 and (2.4b) for u_h, q_h, p_h, τ_{qu} , and τ_{pu} . We can rewrite the nonlinear system into the
 255 following matrix-vector form and use MATLAB's built-in function "Fsolve" to solve
 256 it.

$$\begin{aligned} 257 \quad (3.1a) \quad & \mathbf{M}[q] + (\mathbf{D} + \mathbf{A})[u] = 0 \\ 258 \quad (3.1b) \quad & \mathbf{M}[p] + \varepsilon(\mathbf{D} + \mathbf{A})[q] + \varepsilon\tau_{qu}\mathbf{J}[u] - \mathbf{M}[f(u_h)] = 0 \\ 259 \quad (3.1c) \quad & \mathbf{M}[u] - \frac{1}{2}\Delta t(\mathbf{D} + \mathbf{A})[p] - \frac{1}{2}\Delta t\tau_{pu}\mathbf{J}[u] - \mathbf{M}[\bar{u}] - \frac{1}{2}\Delta t\mathbf{M}[g] = 0 \\ 260 \quad (3.1d) \quad & V_f - \tau_{pu}\eta(u_h, u_h) + \varepsilon\tau_{qu}\eta(q_h, u_h) = 0 \\ 261 \quad (3.1e) \quad & \tau_{pu}\eta(p_h, u_h) + \tau_{qu} \sum_{i=1}^N \varepsilon \llbracket u_h \rrbracket \llbracket u_h \rrbracket_t(x_i) = 0 \end{aligned}$$

263 where $[u], [q], [p]$ are vectors consisting of degrees of freedom of $u_h^{n+\frac{1}{2}}, q_h^{n+\frac{1}{2}}, p_h^{n+\frac{1}{2}}$,
 264 respectively, $[\bar{u}]$ is the *known* vector for the degrees of freedom of u_h^n , \mathbf{M} is the mass
 265 matrix, \mathbf{D} is the derivative matrix, \mathbf{A} is the matrix associated to the average flux, and
 266 \mathbf{J} is the matrix associated to the jump; see Appendix A for details on these matrices.

267 In (3.1d) and (3.1e), we have adopted the notation defined in Section 2.2

268
$$\eta(w, v) = \sum_{i=1}^N \llbracket w \rrbracket \llbracket v \rrbracket(x_i) \quad \text{for any } w, v \in \{u_h, q_h, p_h\},$$

269 and a new quantity $V_f := \sum_{i=1}^N (\llbracket V(u_h) \rrbracket - \{\Pi f(u_h)\} \llbracket u_h \rrbracket)(x_i)$.

270 The solution of this system, $([u], [q], [p], \tau_{qu}, \tau_{pu})$, can be considered as a column
 271 vector of size $[3(N-1)(k+1)+2]$. So by introducing two more unknowns (τ_{qu}, τ_{pu})
 272 and enforcing the two equations for conservation of energy and Hamiltonian, we only
 273 increase the size of the system by 2.

274 **3.2. Three-point difference formulas for $\llbracket u_h \rrbracket_t$.** The last equation of the
 275 system, (3.1e), contains the non-traditional term $\llbracket u_h \rrbracket_t$. We approximate it by the
 276 following three-point difference formula on uniform stencil to maintain the second-
 277 order accuracy in time

278
$$\llbracket u_h \rrbracket_t^{n+\frac{1}{2}} = \frac{1}{\Delta t} (\llbracket u_h \rrbracket^{n-\frac{1}{2}} - 4\llbracket u_h \rrbracket^n + 3\llbracket u_h \rrbracket^{n+\frac{1}{2}}) + \mathcal{O}(\Delta t^2).$$

279 When $n = 0$, we approximate $\llbracket u_h \rrbracket_t^{\frac{1}{2}}$ by a three-point difference formula on a non-
 280 uniform stencil using $\llbracket u_h \rrbracket$ at $t = 0, (\frac{\Delta t}{2})^2$, and $\frac{\Delta t}{2}$, where u_h^0 is obtained by the
 281 L^2 -projection of u_0 and $u_h^{(\frac{\Delta t}{2})^2}$ is computed using the backward Euler method. The
 282 nonuniform three-point difference formula for $\llbracket u_h \rrbracket_t^{\frac{1}{2}}$ is as follows:

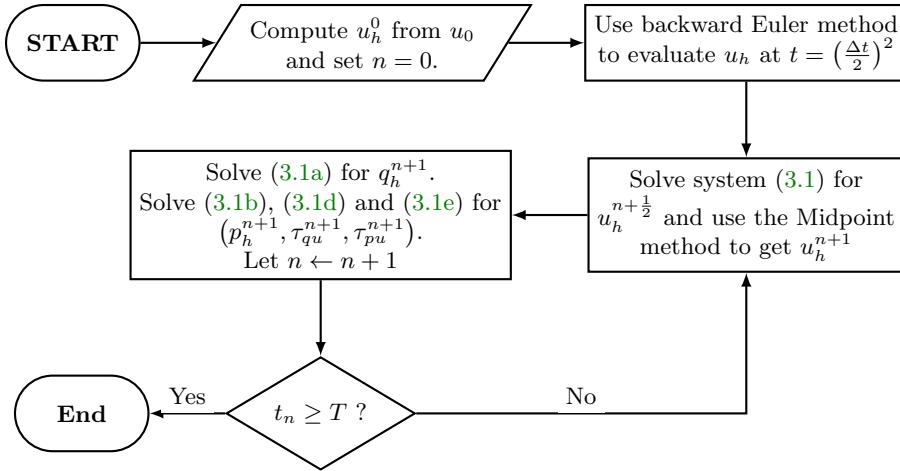
283
$$\llbracket u_h \rrbracket_t^{\frac{1}{2}} = c_1 \llbracket u_h \rrbracket^0 + c_2 \llbracket u_h \rrbracket^{(\frac{\Delta t}{2})^2} + c_3 \llbracket u_h \rrbracket^{\frac{\Delta t}{2}} + \mathcal{O}(\Delta t^2)$$

284 where

285
$$c_1 = \frac{1 - \frac{\Delta t}{2}}{\left(\frac{\Delta t}{2}\right)^2}, \quad c_2 = -\frac{1}{\left(\frac{\Delta t}{2}\right)^2 \left(1 - \frac{\Delta t}{2}\right)}, \quad c_3 = \frac{2 - \frac{\Delta t}{2}}{\left(\frac{\Delta t}{2}\right) \left(1 - \frac{\Delta t}{2}\right)}.$$

286 **3.3. The flowchart of the whole algorithm.** After solving for $u_h^{n+\frac{1}{2}}$ from the
 287 system (3.1) with the $\llbracket u_h \rrbracket_t$ term approximated by the three-point difference formulas
 288 above, we compute u_h^{n+1} through the midpoint method. Then we solve for q_h^{n+1} from
 289 the linear equation (3.1a) using u_h^{n+1} . In order to obtain p_h^{n+1} , τ_{qu}^{n+1} and τ_{pu}^{n+1} , we
 290 solve a smaller nonlinear system consisting of equations (3.1b), (3.1d) and (3.1e) using
 291 u_h^{n+1} and q_h^{n+1} . To summarize, we use the following flowchart to describe the whole
 292 algorithm.

293



294

295 **4. Numerical Results.** In this section, we carry out numerical experiments to
 296 test the convergence and conservation properties of our DG method. In the first test
 297 problem, we consider a third-order linear equation with $f(u) = u$. In the second test
 298 problem, we use our DG method to solve a third-order nonlinear equation with $\varepsilon = 1$,
 299 0.1, and 0.01 and the solutions are sine waves that are periodic on the domain. In the
 300 last test problem, we solve the classical KdV equation with a cnoidal wave solution
 301 and compare the approximate solution with the exact one. For all the test problems,
 302 we compute the L^2 -errors and convergence orders and check the conservation of the
 303 energy and Hamiltonian of the DG solutions.

304 **4.1. Numerical Experiment 1.** In this test, we solve the following third-order
 305 linear equation in [38]

306
$$u_t + \varepsilon u_{xxx} + (f(u))_x = 0,$$

307 where $\varepsilon = 1$ and $f(u) = u$, with periodic boundary conditions on the domain $\Omega =$
 308 $[0, 4\pi]$ and the initial condition $u_0 = \sin(\frac{1}{2}x)$. The exact solution to this problem is

309
$$u(x, t) = \sin\left(\frac{1}{2}x - \frac{3}{8}t\right).$$

310 First, we test the convergence of the DG method for this linear problem. We use
 311 polynomials of degree $k = 0, 1, 2$ for approximate solutions, the mesh size $h = \frac{4\pi}{N}$ for
 312 $N = 2^l, l = 3, \dots, 7$, and $\Delta t = 0.2(\frac{h}{4\pi})^{\min\{k, 1\}}$ for time discretization. The L^2 -errors
 313 and orders of convergence of the approximate solutions are displayed in Table 2 for
 314 the final time $T = 0.1$. We see that the approximate solutions for the variable u
 315 converge with an optimal order for all polynomial degrees k , those for the auxiliary
 316 variable q have an optimal convergence order for even k and a sub-optimal order for
 317 odd k , and those for p have sub-optimal orders for $k = 1, 2$.

318 Next, we test the conservation of the energy and Hamiltonian of the approximate
 319 solution using polynomials of degree $k = 2$ on 32 intervals for the final time $T = 50$. In
 320 Figure 1, we see that the Hamiltonian and energy of the approximate solution remain
 321 the same over the whole time period. The errors of the Hamiltonian and energy are
 322 very small, as shown on the second row of Figure 1.

k	N	u _h		q _h		p _h	
		L ₂ Error	Order	L ₂ Error	Order	L ₂ Error	Order
0	8	5.70e-1	-	3.10e-1	-	1.81e-0	-
	16	2.98e-1	0.93	1.52e-1	1.02	1.89e-0	-0.06
	32	1.42e-1	1.07	7.14e-2	1.09	1.07e-1	4.15
	64	7.10e-2	1.00	3.56e-2	1.01	5.33e-2	1.00
	128	3.55e-2	1.00	1.78e-2	1.00	2.66e-2	1.00
1	8	5.80e-2	-	2.55e-1	-	2.34e-1	-
	16	1.44e-2	2.01	1.38e-1	0.88	1.35e-1	0.79
	32	3.60e-3	2.00	7.06e-2	0.97	7.02e-2	0.95
	64	9.00e-4	2.00	3.55e-2	0.99	3.62e-2	0.95
	128	2.25e-4	2.00	1.78e-2	1.00	1.13e-2	1.68
2	8	3.93e-3	-	7.92e-3	-	4.07e-2	-
	16	4.84e-4	3.02	9.76e-4	3.02	9.45e-3	2.11
	32	6.00e-5	3.01	1.23e-4	2.99	2.31e-3	2.03
	64	7.47e-6	3.01	1.52e-5	3.02	5.78e-4	2.00

Table 2: Numerical Experiment 1 (third-order linear equation): Error and convergence order of u_h , q_h , and p_h

323 **4.2. Numerical Experiment 2.** In the second test, we consider the following
 324 third-order nonlinear equation

$$325 \quad u_t + \varepsilon u_{xxx} + (f(u))_x = g$$

326 with periodic boundary conditions on $\Omega = [0, 1]$ and the initial condition $u_0 =$
 327 $\sin(2\pi x)$, where $f(u) = \frac{u^2}{2}$ and g is the function which gives the solution

$$328 \quad u(x, t) = \sin(2\pi x + t).$$

329 For this problem, we first test the convergence orders of our DG method for $\varepsilon = 1$,
 330 0.1 and 0.01 when using polynomials of degree $k = 0, 1, 2$. We use $h = 1/N$, where
 331 $N = 2^l$, $l = 3, \dots, 7$, and $\Delta t = 0.2 h^{\min\{k, 1\}}$ for time discretization, and the final time
 332 is $T = 0.1$. The L^2 -errors and orders of convergence for $\varepsilon = 1, 0.1, 0.01$ are displayed
 333 in Table 3, Table 4, and Table 5, respectively. Note that for existing energy-conserving
 334 DG methods in [5, 7, 21], it is typical that approximate solutions to u have optimal
 335 convergence orders when k is even and sub-optimal orders when k is odd. Here, we
 336 see that our method has comparable convergence rates.

337 Next, we plot the exact solutions and the numerical solutions with quadratic
 338 polynomials on 32 elements for different ε . Note that u and q are not changing with
 339 respect to ε in this test problem, but p depends on ε . So we plot u, q, u_h and q_h
 340 over the time period $[0, 5]$ in Figure 2 and the snapshot of them at the time $T = 5$
 341 in Figure 3. The graphs of p and p_h for different ε over the time period $[0, 5]$ are
 342 plotted in Figure 4 and the snapshots of them at the time $T = 5$ are in Figure 5. We
 343 see that in all the figures the graphs of numerical solutions match well with those of
 344 exact solutions.

345 Finally, we test the conservation properties of our DG scheme. We plot the
 346 Hamiltonian and the Energy of the numerical solutions for $t \in [0, 50]$ for different
 347 ε in Figure 6. The errors of the energy and Hamiltonian for different ε are plotted

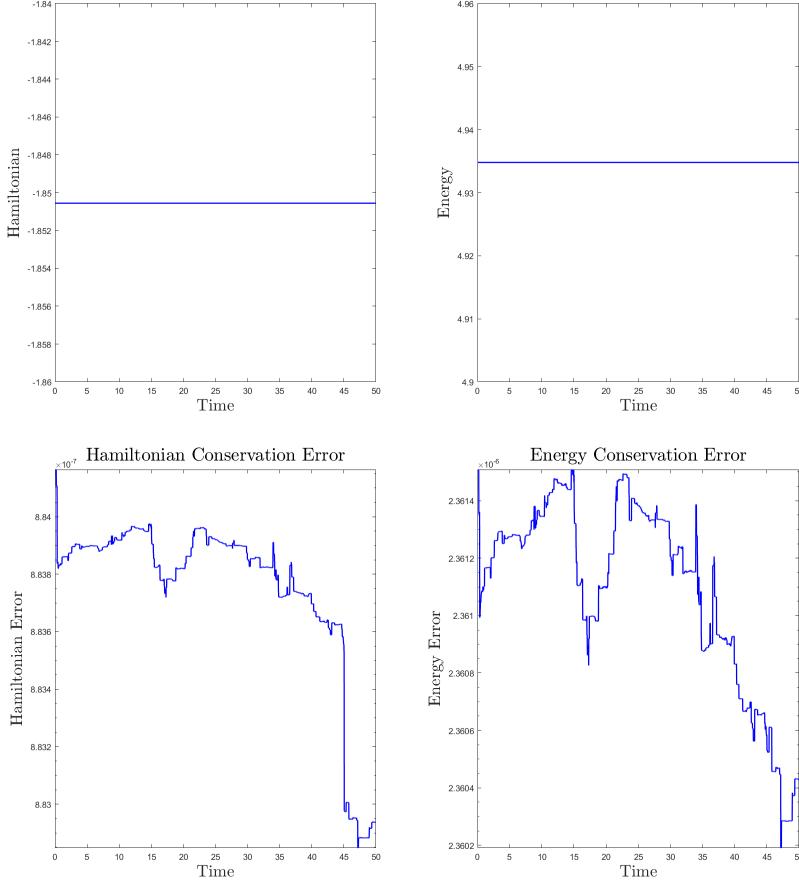


Fig. 1: Numerical Experiment 1 (third-order linear equation): Hamiltonian (Left) and energy (Right) conservation. Shown on the bottom are the corresponding errors.

348 in Figure 7. We see that our method successfully conserves both Hamiltonian and
 349 energy. We note that, even though the energy and Hamiltonian are conserved for
 350 the KdV equations (i.e., the source term $g \equiv 0$), the manufactured solution of this
 351 particular test with a nonzero source term happens to bear these properties as well
 352 and thus serves as an ideal test case.

4.3. Numerical Experiment 3. In this example, we test the KdV equation

$$u_t + \varepsilon u_{xxx} + (f(u))_x = 0$$

353 with $\varepsilon = \frac{1}{24^2}$ and $f(u) = \frac{u^2}{2}$. The domain is $\Omega = [0, 1]$ and we are testing a cnoidal-
 354 wave solution

$$u(x, t) = Acn^2(z),$$

355 where $cn(z) = cn(z|m)$ is the Jacobi elliptic function with modulus $m = 0.9$, $z =$
 356 $4K(x-vt-x_0)$, $A = 192m\varepsilon K(m)^2$, $v = 64\varepsilon(2m-1)K(m)^2$, and $K(m) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{(1-msin^2\theta)}}$

k	N	u _h		q _h		p _h	
		L ₂ Error	Order	L ₂ Error	Order	L ₂ Error	Order
0	8	3.81e-1	-	1.96e-0	-	1.05e+1	-
	16	8.00e-2	2.25	5.14e-1	1.93	3.41e-0	1.61
	32	4.83e-2	0.73	2.89e-1	0.83	1.73e-0	0.97
	64	2.03e-2	1.25	1.27e-1	1.18	7.99e-1	1.12
	128	1.01e-2	1.01	6.33e-2	1.01	3.97e-1	1.01
1	8	5.29e-2	-	9.51e-1	-	1.05e+1	-
	16	7.19e-2	-0.44	8.16e-1	0.22	2.00e-0	2.40
	32	1.67e-2	2.10	1.92e-1	2.09	3.78e-0	-0.92
	64	1.09e-3	3.93	1.26e-1	0.61	3.46e-2	6.77
	128	1.49e-4	2.88	6.29e-2	1.00	1.08e-1	-1.64
2	8	2.08e-3	-	1.23e-1	-	7.89e-0	-
	16	1.35e-4	3.94	3.48e-3	5.14	4.27e-1	4.21
	32	1.69e-5	3.00	4.31e-4	3.01	1.04e-1	2.04
	64	2.11e-6	3.00	5.38e-5	3.00	2.59e-2	2.01

Table 3: Numerical Experiment 2 (third-order nonlinear equation): Errors and convergence orders of u_h , q_h , and p_h for $\varepsilon = 1$

k	N	u _h		q _h		p _h	
		L ₂ Error	Order	L ₂ Error	Order	L ₂ Error	Order
0	8	3.51e-1	-	1.87e-0	-	1.06e-0	-
	16	1.17e-1	1.58	6.75e-1	1.47	4.00e-1	1.40
	32	4.63e-2	1.34	2.80e-1	1.27	1.73e-1	1.21
	64	2.11e-2	1.14	1.31e-1	1.10	8.18e-2	1.08
	128	1.02e-2	1.05	6.36e-2	1.04	4.01e-2	1.03
1	8	6.62e-2	-	8.79e-1	-	1.17e-0	-
	16	4.08e-2	0.70	3.11e-1	1.50	7.86e-1	0.58
	32	2.05e-2	0.99	1.48e-1	1.07	4.11e-1	0.94
	64	1.48e-3	3.80	1.26e-1	0.24	5.84e-2	2.82
	128	3.71e-4	2.00	6.29e-2	1.00	5.14e-2	0.18
2	8	1.30e-3	-	3.00e-2	-	1.86e-1	-
	16	1.44e-4	3.17	3.52e-3	3.09	4.06e-2	2.19
	32	1.69e-5	3.09	4.29e-4	3.04	1.04e-2	1.96
	64	2.11e-6	3.00	5.42e-5	2.98	2.63e-3	1.99

Table 4: Numerical Experiment 2 (third-order nonlinear equation): Errors and convergence orders of u_h , q_h , and p_h for $\varepsilon = 0.1$

358 is the Jacobi elliptic integral of the first kind; see [1]. The parameter x_0 is arbitrary,
 359 so we take it to be zero. The solution u has a spatial period 1.

360 This benchmark problem has been tested for other conservative DG methods
 361 in [5, 21, 24, 38]. Those methods conserve either the Hamiltonian or the energy of the
 362 solution, but not both.

363 In Table 6, we display the L^2 errors of approximate solutions to u , q , and p for
 364 $k = 0, 1, 2$. The convergence orders are similar to those in the previous numerical

k	N	u _h		q _h		p _h	
		L ₂ Error	Order	L ₂ Error	Order	L ₂ Error	Order
0	8	1.75e-1	-	1.20e-0	-	1.43e-1	-
	16	8.33e-2	1.07	5.62e-1	1.10	6.19e-2	1.20
	32	4.07e-2	1.03	2.62e-1	1.10	2.73e-2	1.18
	64	2.01e-2	1.02	1.27e-1	1.05	1.30e-2	1.08
	128	1.00e-2	1.00	6.31e-2	1.01	6.40e-3	1.02
1	8	2.30e-2	-	8.93e-1	-	9.15e-2	-
	16	4.08e-2	-0.83	3.14e-1	1.51	7.09e-2	0.37
	32	2.05e-3	4.31	2.53e-1	0.31	3.20e-2	1.15
	64	1.04e-3	0.99	1.26e-1	1.01	1.59e-2	1.01
	128	5.89e-4	0.81	6.29e-2	1.00	8.34e-3	0.93
2	8	1.24e-3	-	3.23e-2	-	1.63e-2	-
	16	1.41e-4	3.13	3.39e-3	3.25	4.12e-3	1.99
	32	1.70e-5	3.06	7.20e-4	2.23	1.75e-3	1.24
	64	2.37e-6	2.84	1.08e-4	2.74	5.30e-4	1.72

Table 5: Numerical Experiment 2 (third-order nonlinear equation): Errors and convergence orders of u_h , q_h , and p_h for $\varepsilon = 0.01$

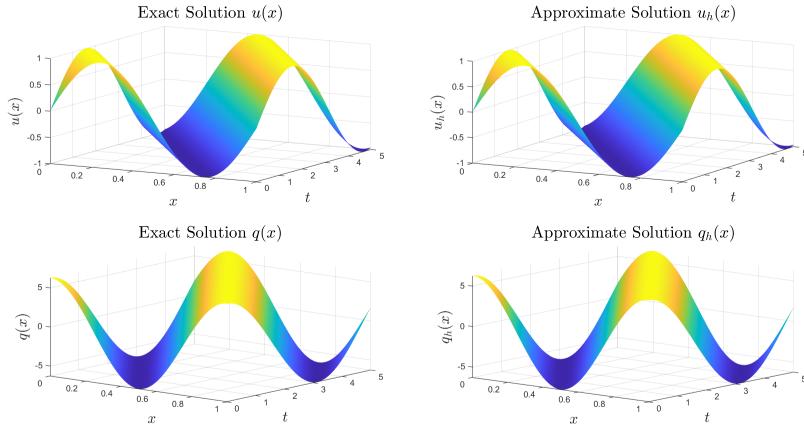


Fig. 2: Numerical Experiment 2 (third-order nonlinear equation): Solutions in time (Left: exact solution, Right: approximate solution) for the ε -independent u and q .

365 experiments. In Figure 8, we plot the exact solution and the approximate solution
366 using polynomial degree $k = 2$ over 32 intervals over the time period $t \in [0, 5]$. The
367 snapshots of the exact and the approximation solutions at the final time $T = 5$ are
368 shown in Figure 9. We can see that the graphs of exact solution and the approximate
369 solution match up well in both figures. Next, we compute the numerical solution
370 using $k = 2$ on 32 intervals for a longer time $T = 50$. The graphs of the Hamiltonian
371 and energy of the DG solution versus time are displayed in Figure 10, and the errors
372 of Hamiltonian and energy are plotted on the second row of Figure 10. We can see
373 that both the Hamiltonian and the energy have been conserved during the whole time

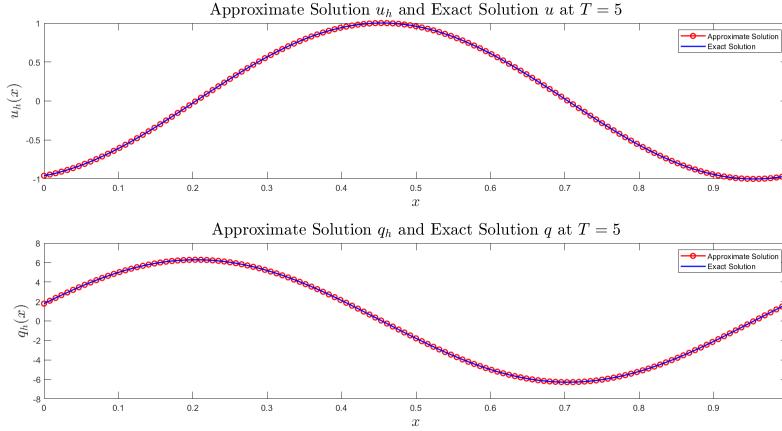


Fig. 3: Numerical Experiment 2 (third-order nonlinear equation): Solutions at the final time $T = 5$ (Top: u and u_h , bottom: q and q_h).

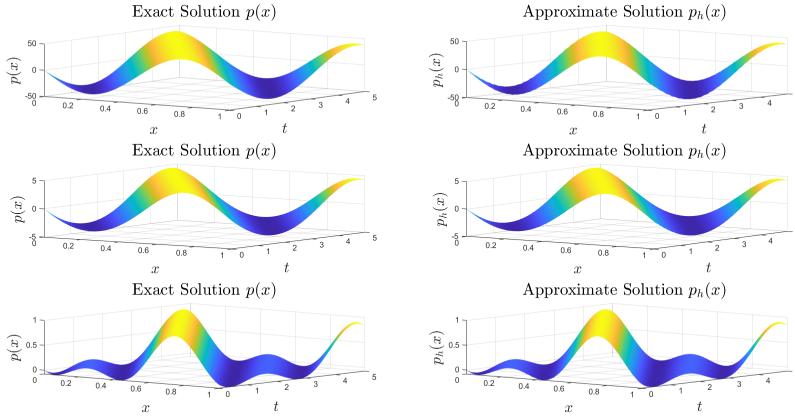


Fig. 4: Numerical Experiment 2 (third-order nonlinear equation): Solution in time (Left: exact, Right: approximate, $\varepsilon = 1, 0.1, 0.01$ from top to bottom) for the ε -dependent p .

374 period.

375 **5. Concluding Remarks.** In this paper, we design and implement a new con-
376 servative DG method for simulating solitary wave solutions to the generalized KdV
377 equation. We prove that the method conserves the mass, energy and Hamiltonian of
378 the solution. Numerical experiments confirm that our method does have the desir-
379 able conservation properties proved by our analysis. The convergence orders are also
380 comparable to prior works by others. Future extensions include the investigation of
381 other choices of numerical fluxes, as well as applying the novel framework of devis-
382 ing new conservative DG methods to other problems featuring physically interesting

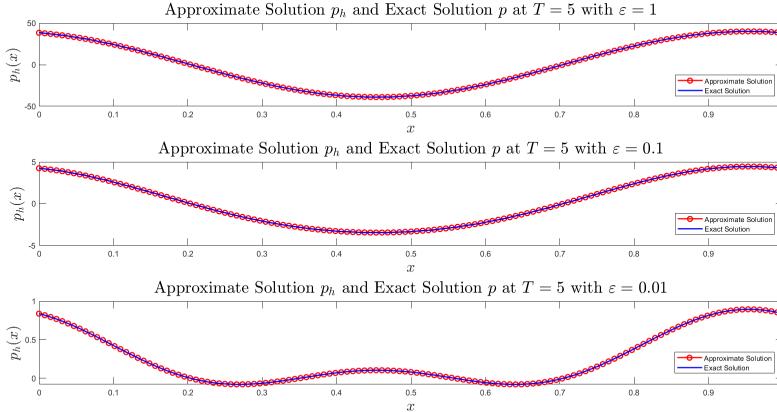


Fig. 5: Numerical Experiment 2 (third-order nonlinear equation): the ε -dependent solution p and the approximate solution p_h at the final time $T = 5$ (with $\varepsilon = 1, 0.1, 0.01$ from top to bottom).

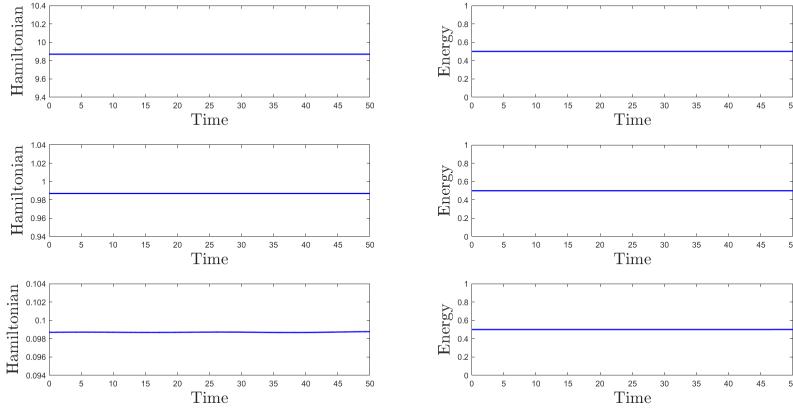


Fig. 6: Numerical Experiment 2 (third-order nonlinear equation): Conservation of Hamiltonian (Left) and energy (Right) when $\varepsilon = 1$ (top), 0.1 (middle), and 0.01 (bottom).

383 quantities that are conserved.

384 **Appendix A. Implementation Details.** In the Appendix, we show how
385 to rewrite the weak formulation of the DG method, (2.2), into the system (3.1) for
386 implementation using matrices and vectors. We start with the details on rewriting
387 Eq. (2.2a) into Eq. (3.1a). Assume that the interval $[-1, 1]$ is linearly mapped to
388 the interval I_i and the Legendre polynomial of degree l on $[-1, 1]$ is correspondingly
389 mapped to the polynomial $\phi_i^l(x)$ on the interval I_i for $l = 0, \dots, k$, and $i = 1, \dots, N$.
390 Then u_h can be written as $u_h|_{I_i} = \sum_{l=0}^k u_i^l(t) \phi_i^l(x)$, where $\{u_i^l(t)\}_{l=0}^k$ are degrees of

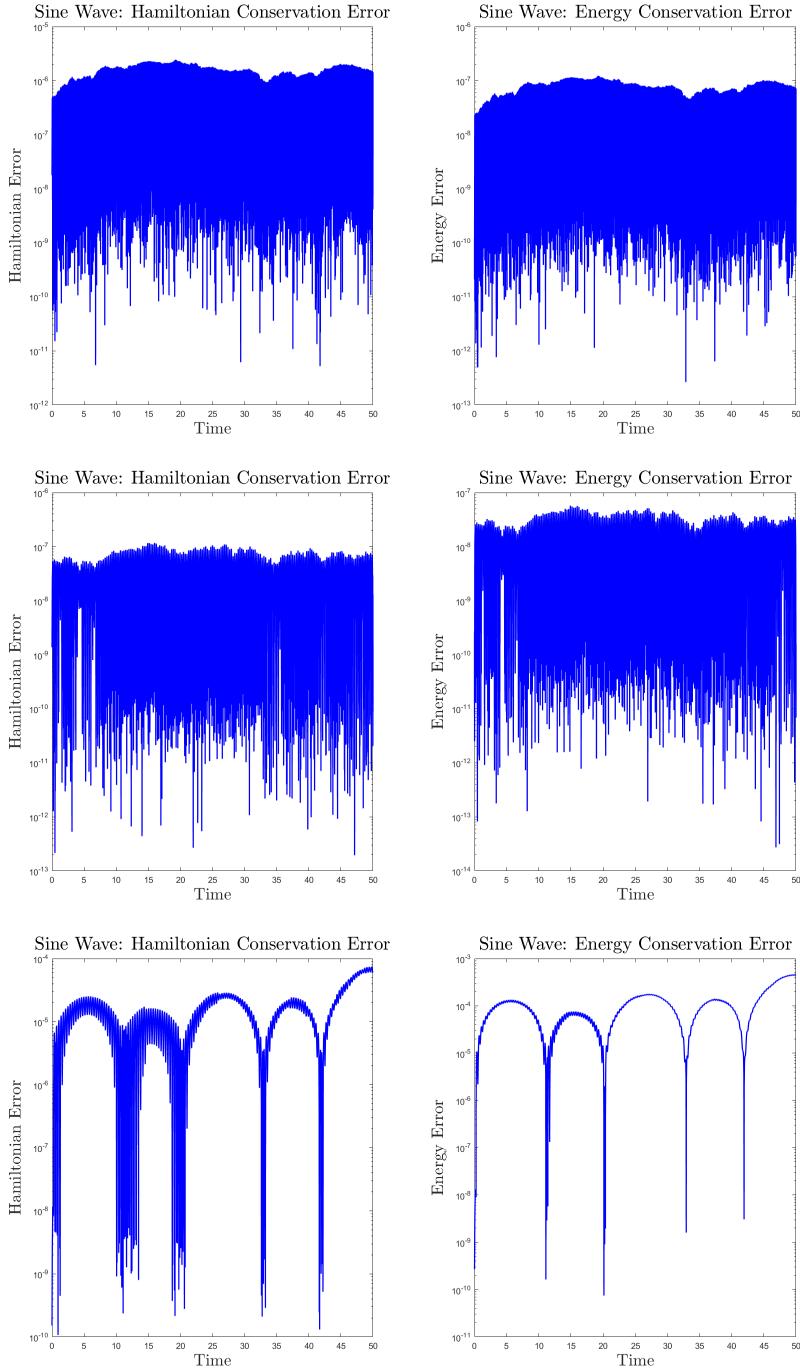


Fig. 7: Numerical Experiment 2 (third-order nonlinear equation): Errors of Hamiltonian (Left) and energy (Right) when $\varepsilon = 1$ (top) and 0.1 (middle) and 0.01 (bottom).

k	N	u _h		q _h		p _h	
		L ₂ Error	Order	L ₂ Error	Order	L ₂ Error	Order
0	8	5.44e-1	-	8.11	-	3.18e-1	-
	16	2.72e-1	1.00	4.56	0.83	2.42e-1	0.40
	32	9.89e-2	1.46	1.65	1.47	8.80e-2	1.46
	64	4.50e-2	1.14	7.69e-1	1.10	3.05e-2	1.53
	128	2.22e-2	1.02	3.87e-1	0.99	1.34e-2	1.19
1	8	1.26e-1	-	2.40	-	1.12e-1	-
	16	7.49e-2	0.75	2.82	-0.23	1.51e-1	-0.43
	32	2.13e-2	1.81	1.41	1.00	7.23e-2	1.06
	64	6.07e-3	1.81	7.41e-1	0.93	5.01e-2	0.53
	128	1.57e-3	1.95	3.74e-1	0.99	2.88e-1	0.80
2	8	1.18e-1	-	4.70	-	2.58e-1	-
	16	1.60e-2	2.88	7.24e-1	2.70	8.08e-2	1.68
	32	2.71e-3	2.56	5.96e-2	3.60	1.15e-2	2.85
	64	3.47e-4	2.96	6.15e-3	3.28	6.08e-4	4.21

Table 6: Numerical Experiment 3 (classical KdV equation): Errors and convergence orders of u_h , q_h , and p_h

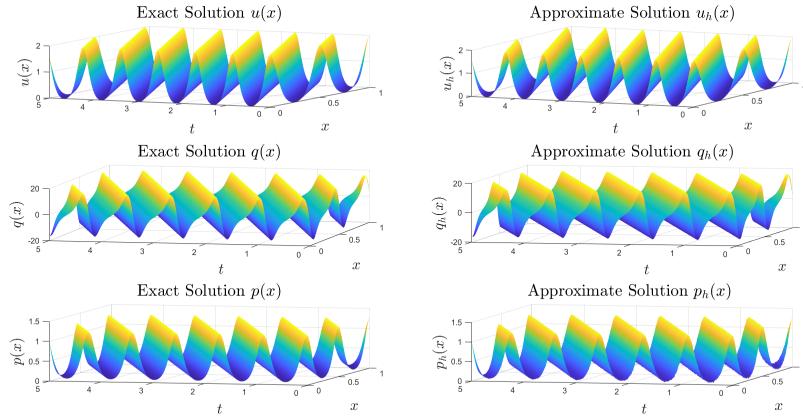


Fig. 8: Numerical Experiment 3 (classical KdV equation): Solution in time (Left: exact, Right: approximate) for the Cnoidal Wave.

391 freedom of u_h on I_i at time t . Similar expansions are performed for q_h and p_h . Taking
392 the test function $v = \phi_i^j(x)$ for $i = 1, \dots, N$ and $j = 0, \dots, k$ in (2.2a) and using the
393 definition of $\widehat{u_h}$, we get

$$394 \quad \mathbf{M}[q] + \mathbf{D}[u] + \mathbf{A}[u] = 0,$$

where $[u] = (u_1^0, \dots, u_1^k, \dots, u_N^0, \dots, u_N^k)^T$ is the column vector that contains all the degrees of freedom of u_h , and $[q]$ and $[p]$ are the column vectors of degrees of freedom

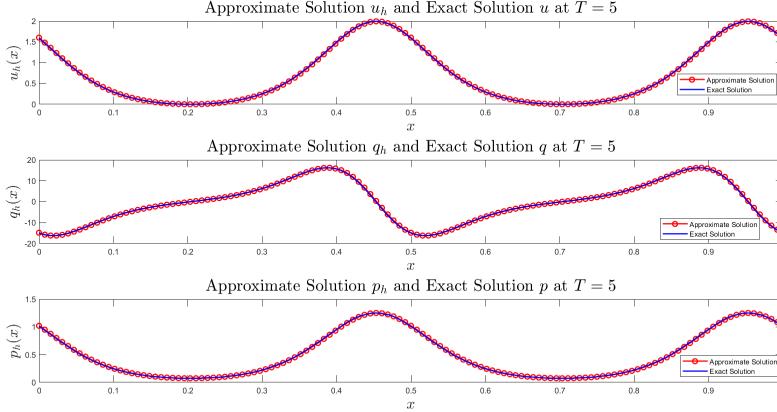


Fig. 9: Numerical Experiment 3 (classical KdV equation): Exact and approximate solutions at the final time $T = 5$ for the Cnoidal Wave (Top: u and u_h , middle: q and q_h , bottom: p and p_h).

of q_h and p_h , respectively. Here, the mass matrix \mathbf{M} is block diagonal,

$$\mathbf{M} = \text{diag}(M^{I_1}, \dots, M^{I_N})$$

with components

$$(M^{I_i})_{lj} = \int_{I_i} \phi_i^l(x) \phi_i^j(x) dx$$

for $j, l = 0, \dots, k$ and $i = 1, \dots, N$. The stiffness matrix \mathbf{D} is also block diagonal,

$$\mathbf{D} = \text{diag}(D^{I_1}, \dots, D^{I_N})$$

with components

$$(D^{I_i})_{lj} = \int_{I_i} \phi_i^l(x) (\phi_i^j)_x(x) dx$$

396 for $l, j = 0, \dots, k$ and $i = 1, \dots, N$. The matrix \mathbf{A} is associated with the average flux
397 in $\widehat{u_h}$. Note that a basis function on an interval I_i only communicates with those
398 on I_i or on the two neighboring intervals I_{i-1} and I_{i+1} . So the matrix \mathbf{A} is sparse
399 and block diagonal. So are the matrices \mathbf{D} and \mathbf{M} . This is one of the advantages of
400 DG methods which use local basis functions. Indeed, \mathbf{A} is nearly block tridiagonal
401 except the first and the last block rows. The three blocks used to assemble \mathbf{A} have
402 components as follows

$$403 \quad (\mathbf{A}_I^-)_{jl} = \frac{(-1)^j}{2}, \quad (\mathbf{A}_I^0)_{jl} = \frac{(-1)^{l+j} - 1}{2}, \quad (\mathbf{A}_I^+)_{jl} = -\frac{(-1)^l}{2}$$

405 for $j, l = 0, \dots, k$ and $i = 1, \dots, N$.

406 Next, we rewrite the Eq. (2.2b) into (3.1b) in a similar way. The main difference
407 lies in the term $\langle \widehat{q}_h, zn \rangle$. Using the definition of \widehat{q}_h , we can rewrite this term as

$$408 \quad \langle \widehat{q}_h, zn \rangle = \langle \{q_h\}, zn \rangle + \tau_{qu} \langle \llbracket u_h \rrbracket, zn \rangle.$$

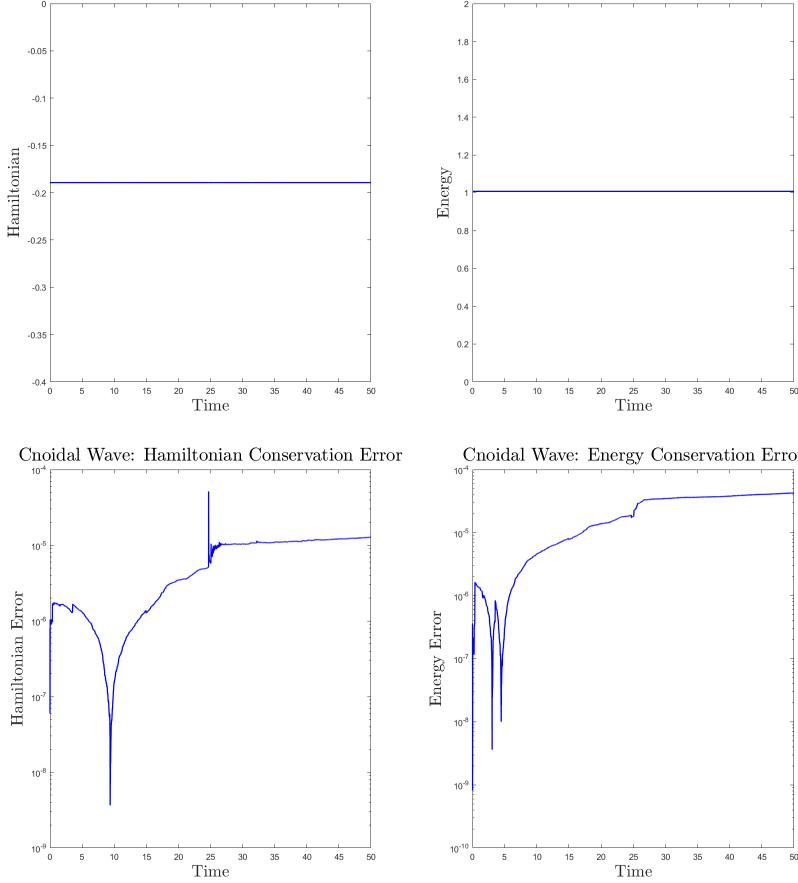


Fig. 10: Numerical Experiment 3 (classical KdV equation): Hamiltonian (Left) and energy (Right) conservation for the Cnoidal Wave. Shown on the second row are the corresponding errors.

410 For the first term on the right hand side involving $\{q_h\}$, we can rewrite it as $\mathbf{A}[q]$ using
 411 the average flux matrix \mathbf{A} . For the second term that involves $[\![u_h]\!]$, taking $z = \phi_i^l$, we
 412 have

$$\begin{aligned}
 413 \quad \langle [\![u_h]\!], \phi_i^l n \rangle &= [\![u_h]\!](x_{i+1}) \phi_i^l(x_{i+1}^-) - [\![u_h]\!](x_i) \phi_i^l(x_i^+) \\
 414 \quad &= \left(\sum_{j=0}^k u_i^j - \sum_{j=0}^k u_{i+1}^j (-1)^j \right) - \left(\sum_{j=0}^k u_{i-1}^j - \sum_{j=0}^k u_i^j (-1)^j \right) (-1)^l \\
 415 \quad &= (-1)^{l+1} \sum_{j=0}^k u_{i-1}^j + (1 + (-1)^{k+l}) \sum_{j=0}^k u_i^j + (-1)^{j+1} \sum_{j=0}^k u_{i+1}^j
 \end{aligned}$$

for $i = 1, \dots, N$, $l, j = 0, \dots, k$. Note that for each i , the expression above only uses the interval I_i , the one before it, and the one after it. So we can write the term

417 $\langle \llbracket u_h \rrbracket, zn \rangle$ as

$$\langle \llbracket u_h \rrbracket, zn \rangle = \mathbf{J}[u],$$

418 where \mathbf{J} is a nearly block tridiagonal matrix except the first and last block rows. Now
419 the Eq. (2.2b) can be written as (3.1b).

420 To rewrite Eq. (2.2c) as (3.1c), we just need to approximate the (u_t, w) term by
421 $\mathbf{M}([u] - [\bar{u}]) / (\frac{1}{2} \Delta t)$. The rest terms are handled in a similar way to what we described
422 above for (2.2a) and (2.2b).

423 Rewriting the equations (2.4a) and (2.4b) that enforce the conservation of Energy
424 and Hamiltonian into (3.1d) and (3.1e) is straightforward. We just need to use the
425 notation $V_f = \sum_{i=1}^N \llbracket V(u_h) \rrbracket - \{ \Pi f(u_h) \} \llbracket u_h \rrbracket(x_i)$ and $\eta(\xi, \nu) = \sum_{i=1}^N \llbracket \xi \rrbracket \llbracket \nu \rrbracket(x_i)$ for
 $\xi, \nu = u_h, q_h$, or p_h .

426 REFERENCES

- 427 [1] M. ABRAMOWITZ AND I. A. STEGUN, *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, vol. 55, US Government printing office, 1970.
- 428 [2] D. N. ARNOLD, F. BREZZI, B. COCKBURN, AND L. D. MARINI, *Unified analysis of discontinuous Galerkin methods for elliptic problems*, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779.
- 429 [3] D. N. ARNOLD AND R. WINther, *A superconvergent finite element method for the Korteweg-de Vries equation*, Mathematics of Computation, 38 (1982), pp. 23–36.
- 430 [4] G. A. BAKER, V. A. DOUGALIS, AND O. A. KARAKASHIAN, *Convergence of Galerkin approximations for the Korteweg-de Vries equation*, Mathematics of Computation, 40 (1983), pp. 419–433.
- 431 [5] J. BONA, H. CHEN, O. KARAKASHIAN, AND Y. XING, *Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation*, Mathematics of Computation, 82 (2013), pp. 1401–1432.
- 432 [6] J. BONA, V. DOUGALIS, O. KARAKASHIAN, AND W. MCKINNEY, *Fully discrete methods with grid refinement for the generalized Korteweg-de Vries equation*, In M. Shearer, editor, Proceedings of the workshop on viscous and numerical approximations of shock waves, N.C. State University, (1990), pp. 117–124.
- 433 [7] Y. CHEN, B. COCKBURN, AND B. DONG, *A new discontinuous Galerkin method, conserving the discrete H^2 -norm, for third-order linear equations in one space dimension*, IMA Journal of Numerical Analysis, 36 (2016), pp. 1570–1598.
- 434 [8] Y. CHENG AND C.-W. SHU, *A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives*, Mathematics of Computation, 77 (2008), pp. 699–730.
- 435 [9] K. DEKKER AND J. G. VERWER, *Stability of Runge-Kutta methods for stiff nonlinear differential equations*, vol. 2 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1984.
- 436 [10] B. FORNBERG AND G. WHITHAM, *A numerical and theoretical study of certain nonlinear wave phenomena*, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 289 (1978), pp. 373–404.
- 437 [11] C. S. GARDNER AND G. K. MORIKAWA, *Courant Inst. Math. Sci. Res. Rep. NYO-9082*, New York University, 1960.
- 438 [12] K. GODA, *Numerical studies on recurrence of the Korteweg-de Vries equation*, Journal of the Physical Society of Japan, 42 (1977), pp. 1040–1046.
- 439 [13] B. GUO AND J. SHE, *On spectral approximations using modified Legendre rational functions: Application to the Korteweg-de Vries equation on the half line*, Indiana University Mathematics Journal, 50 (2001), pp. 181–204.
- 440 [14] J. L. HAMMACK AND H. SEGUR, *The Korteweg-de Vries equation and water waves. part 2. comparison with experiments*, Journal of Fluid Mechanics, 65 (1974), pp. 289–314.
- 441 [15] J. L. HAMMACK AND H. SEGUR, *The Korteweg-de Vries equation and water waves. part 3. oscillatory waves*, Journal of Fluid Mechanics, 84 (1978), pp. 337–358.
- 442 [16] K. R. HELFRICH AND J. A. WHITEHEAD, *Solitary waves on conduits of buoyant fluid in a more viscous fluid*, Geophysical and Astrophysical Fluid Dynamics, 51 (1989), pp. 35–52.
- 443 [17] H. HOLDEN, K. H. KARLSEN, AND N. H. RISEBRO, *Operator splitting methods for generalized Korteweg-de Vries equations*, Journal of Computational Physics, 153 (1999), pp. 203–222.
- 444 [18] H. HOLDEN, K. H. KARLSEN, N. H. RISEBRO, AND T. TAO, *Operator splitting for the KdV equation*, Mathematics of Computation, 80 (2011), pp. 821–846.

470 [19] W. HUANG AND D. M. SLOAN, *The pseudospectral method for third-order differential equations*,
471 SIAM Journal on Numerical Analysis, 29 (1992), pp. 1626–1647.

472 [20] C. HUFFORD AND Y. XING, *Superconvergence of the local discontinuous Galerkin method for*
473 *the linearized Korteweg-de Vries equation*, Journal of Computational and Applied Mathematics,
474 255 (2014), pp. 441–455.

475 [21] O. KARAKASHIAN AND Y. XING, *A posteriori error estimates for conservative local discontinu-*
476 *uous Galerkin methods for the generalized Korteweg-de Vries equation*, Communications
477 in Computational Physics, 20 (2016), pp. 250–278.

478 [22] A. KLUWICK, *Small-amplitude finite-rate waves in suspensions of particles in fluids*, ZAMM -
479 *Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik*
480 *und Mechanik*, 63 (1983), pp. 161–171.

481 [23] J. LI AND M. VISBAL, *High-order compact schemes for nonlinear dispersive waves*, Journal of
482 *Scientific Computing*, 26 (2006), pp. 1–23.

483 [24] H. LIU AND N. YI, *A Hamiltonian preserving discontinuous Galerkin method for the generalized*
484 *Korteweg-de Vries equation*, Journal of Computational Physics, 321 (2016), pp. 776–796.

485 [25] H. MA AND W. SUN, *Optimal error estimates of the Legendre-Petrov-Galerkin method for the*
486 *Korteweg-de Vries equation*, SIAM Journal on Numerical Analysis, 39 (2001), pp. 1380–
487 1394.

488 [26] Y. MARTEL AND F. MERLE, *Stability of blow-up profile and lower bounds on the blow up rate*
489 *for the critical generalized KdV equation*, Annals of Mathematics, 155 (2002), pp. 235–280.

490 [27] F. MERLE, *Existence of blow-up solutions in the energy space for the critical generalized KdV*
491 *equation*, Journal of the American Mathematical Society, 14 (2001), pp. 666–678.

492 [28] A. R. OSBORNE, *Chapter 7, in A. P. Fordy (ed.), Soliton Theory: A Survey of Results*, Man-
493 chester Univ. Press, 1990.

494 [29] J. SANZ-SERNA AND I. CHRISTIE, *Petrov-Galerkin methods for nonlinear dispersive waves*,
495 *Journal of Computational Physics*, 39 (1981), pp. 94–102, [https://doi.org/https://doi.org/10.1016/0021-9991\(81\)90138-8](https://doi.org/https://doi.org/10.1016/0021-9991(81)90138-8), <https://www.sciencedirect.com/science/article/pii/0021999181901388>.

496 [30] C.-W. SHU, *Discontinuous Galerkin methods: general approach and stability*, Numerical solu-
497 tions of partial differential equations, 201 (2009).

500 [31] L. VAN WIJNGAARDEN, *One-dimensional flow of liquids containing small gas bubbles*, Annual
501 *review of fluid mechanics*, 4 (1972), pp. 369–396, <https://doi.org/10.1146/annurev.fl.04.010172.002101>.

503 [32] A. C. VLIEGENTHART, *On finite-difference methods for the Korteweg-de Vries equation*, Journal
504 *of Engineering Mathematics*, 5 (1971), pp. 137–155.

505 [33] R. WINTHER, *A conservative finite element method for the Korteweg-de Vries equa-*
506 *tion*, Mathematics of Computation, 34 (1980), pp. 23–23, <https://doi.org/10.1090/S0025-5718-1980-0551289-5>.

508 [34] Y. XU AND C.-W. SHU, *Local discontinuous Galerkin methods for two classes of two-*
509 *dimensional nonlinear wave equations*, Physica D: Nonlinear Phenomena, 208 (2005),
510 pp. 21–58.

511 [35] Y. XU AND C.-W. SHU, *Optimal error estimates of the semidiscrete local discontinuous*
512 *Galerkin methods for high order wave equations*, SIAM Journal on Numerical Analysis,
513 50 (2012), pp. 79–104.

514 [36] J. YAN AND C.-W. SHU, *Local discontinuous Galerkin methods for partial differential equations*
515 *with higher order derivatives*, Journal of Scientific Computing, 17 (2002), pp. 27–47.

516 [37] N. YI, Y. HUANG, AND H. LIU, *A direct discontinuous Galerkin method for the generalized*
517 *Korteweg-de Vries equation: energy conservation and boundary effect*, Journal of Compu-
518 *tational Physics*, 242 (2013), pp. 351–366.

519 [38] Q. ZHANG AND Y. XIA, *Conservative and dissipative local discontinuous Galerkin methods for*
520 *Korteweg-de Vries type equations*, Communications in Computational Physics, 25 (2019),
521 pp. 532–563.