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our knowledge, this is the first DG method that conserves all these three quantities, a property9
critical for the accurate long-time evolution of solitary waves. To achieve the desired conservation10
properties, our novel idea is to introduce two stabilization parameters in the numerical fluxes as11
new unknowns which then allow us to enforce the conservation of energy and Hamiltonian in the12
formulation of the numerical scheme. We prove the conservation properties of the scheme which13
are corroborated by numerical tests. This idea of achieving conservation properties by implicitly14
defining penalization parameters, that are traditionally specified a priori, can serve as a framework15
for designing physics-preserving numerical methods for other types of problems.16
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1. Introduction. In this paper, we consider the following generalized Korteweg-20

de Vries (KdV) equation21

(1.1) ut + εuxxx + f(u)x = g(x, t), x ∈ Ω = [a, b], t > 022

with periodic boundary conditions and the initial condition u(x, 0) = u0(x). Here,23

f(u) is usually some polynomial of u. When ε = 1, f(u) = 3u2 and g ≡ 0, (1.1)24

represents the original KdV equation.25

KdV equations are widely adopted to model one-dimensional long waves and26

have applications in plasma physics, biology, nonlinear optics, quantum mechanics,27

and fluid mechanics; see [11, 14–16, 22, 28, 31]. There is also a lot of interest in theo-28

retical studies on the mathematical properties of solutions to KdV equations. Many29

modern areas of mathematics and theoretical physics opened up thanks to the basic30

research into the KdV equations. As a consequence, there have been intense efforts31

on developing numerical methods for KdV equations, including finite difference meth-32

ods [12, 23, 32], finite element methods [3, 4, 29, 33], spectral methods [10, 13, 19, 25]33

and operator slitting methods [17,18].34

KdV equations feature a combination of the nonlinear term and the dispersive
term uxxx, which makes it difficult to achieve numerical properties such as stability
and convergence. Moreover, it is known that KdV equations may have “blow-up” so-
lutions but the mechanism of the singularity formation is not clear [26,27]. The study
in [6] showed that the simulation of blow-up solutions, almost for sure, will require
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2 Y. CHEN, B. DONG, AND R. PEREIRA

highly nonuniform meshes. This makes Discontinuous Galerkin (DG) methods suit-
able for solving KdV equations due to their advantages including high-order accuracy,
compact stencil, capability of handling nonuniform meshes and variable degrees, and
flexibility in constructing the numerical fluxes to achieve conservation of particular
physical quantities. DG methods [7, 8, 20, 30, 34–36] have been developed for KdV
type equations. In particular, there have been continuous efforts on developing DG
methods that conserve physically interesting quantities of their solutions. Indeed, all
KdV equations have three such quantities:

Mass:

∫
Ω

udx, Energy:

∫
Ω

u2dx, Hamiltonian:

∫
Ω

(u2
x − V (u))dx,

where V (·) is an anti-derivative of f(·). This property is crucial for their solitary wave35

solutions to maintain amplitude, shape, and speed even after colliding with another36

such wave. Numerical results [5,21,24,38] showed that DG methods preserving these37

invariants can maintain numerical stability over a long time period and help reduce38

phase and shape error after long time integration. However, existing conservative DG39

methods cannot conserve the energy and Hamiltonian simultaneously though the con-40

servation of mass is easy to achieve. In Table 1 we list some conservative DG methods41

for KdV equations. This is in no way an exhaustive list, but it shows the trend and42

main efforts in the development of conservative DG methods for KdV equations. We43

can see that the methods in [5,7,21,37] and the first method in [38] conserve the en-44

ergy but not the Hamiltonian, while the method in [24] and the second method in [38]45

conserve the Hamiltonian but not the energy. Most of these conservative DG methods

Method Year Hamiltonian Energy
Conservative DG for the Generalized KdV
(GKdV) [5]

2013 7 3

Direct DG for GKdV [37] 2013 7 3

Conservative LDG for GKdV [21] 2016 7 3

H2-Conservative DG for Third-Order
Equations [7]

2016 7 3

Hamiltonian-Preserving DG for GKdV [24] 2016 3 7

Conservative and Dissipative LDG for
KdV [38], Scheme I

2019 3 7

Conservative and Dissipative LDG for
KdV [38], Scheme II

2019 7 3

Table 1: The conservation properties of the previous DG methods

46

have an optimal convergence order for even degree polynomials and sub-optimal order47

for odd degree polynomials except that the Hamiltonian conserving method in [38]48

has optimal convergence order for any polynomial degrees.49

In this work, we develop a new DG method for KdV equations that conserves all50

three invariants: mass, energy, and Hamiltonian. This conservative DG method will51

allow us to model and simulate the soliton wave more accurately over a long time pe-52

riod. Our novel idea on designing the method is to treat the penalization/stabilization53

parameters in the numerical fluxes implicitly (i.e., as new unknowns), which allow two54

more equations in the formulation of the DG method that explicitly enforce the con-55

servation of energy and Hamiltonian. The stabilization parameters are solved together56
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CONSERVATIVE DG FOR GENERALIZED KDV EQUATION 3

with the approximations of the exact solutions. Due to the time-step constraint im-57

plied by the third-order spatial derivative, we use implicit time marching schemes to58

avoid extremely small time steps. Since our DG scheme for spatial discretization is59

conservative, in implementation we use the implicit midpoint method which is conser-60

vative for time discretization. Our numerical results show that, just like most other61

conservative DG methods in literature, our method has optimal convergence for the62

even polynomial degrees and sub-optimal convergence for the odd ones. More signif-63

icantly, our method can conserve both the energy and the Hamiltonian over a long64

time period.65

As shown in Table 1, both standard DG and LDG methods have appeared in lit-66

erature to achieve conservation. We choose the LDG-like framework for our method67

because it has three numerical traces, and thus more room for tuning for better con-68

servation properties. We would like to point out that our method has computational69

complexity that is only negligibly more than standard LDG. When the equation is70

nonlinear (which is our focus), both discretized systems are nonlinear thus needing it-71

erative solvers. Standard LDG system has 3N(k+1) equations when N elements and72

polynomials of degree k are used. Our system has 3N(k+ 1) + 2 equations due to the73

introduction of two new unknown (constant) parameters. We would like to further re-74

mark that our idea of enforcing conservation properties by using implicit stabilization75

parameters can be applied to develop new conservative methods for other types of76

problems that feature conservation of physical quantities. It can also be extended to77

preserve more invariants for the KdV equation by introducing more than two implicit78

stabilization parameters. This opens the door to promising future extensions.79

The rest of the paper is structured as follows: Section 2 will describe the formu-80

lation of our DG method and prove the conservation properties. Implementation of81

our method is briefly discussed in Section 3, leaving further details to the Appendix.82

We display numerical results on solving third-order linear and nonlinear equations83

and the classical KdV equation, showing the order of convergence and conservation84

properties we have observed in our numerical experiments in Section 4. Finally, we85

end with concluding remarks in Section 5.86

2. Main Results. In this section, we discuss our main results. We start by87

introducing our notations. Next, we describe our DG method and discuss the choice of88

penalization parameters that ensure the conservation of the Hamiltonian and energy.89

After that, we prove that our numerical solutions do conserve the three invariants:90

mass, energy, and Hamiltonian.91

2.1. Notation. To define our DG method, first let us introduce some notations.92

We partition the domain Ω = (a, b) as93

Th = {Ii := (xi−1, xi) : a = x0 < x1 < · · · < xN−1 < xN = b}.94

We use ∂Th := {∂Ii : i = 1, . . . , N} to denote the set of all element boundaries,95

and Eh := {xi}Ni=0 to denote all the nodes. We also set hi = xi − xi−1 and h :=96

max1≤i≤N hi.97

For any function ζ ∈ L2(∂Th), we denote its values on ∂Ii := {x+
i−1, x

−
i } by98

ζ(x+
i−1) (or simply ζ+

i−1) and ζ(x−i ) (or simply ζ−i ). Note that ζ(x+
i ) does not have to99

be equal to ζ(x−i ). In contrast, for any function η ∈ L2(Eh), its value at xi, η(xi) (or100

simply ηi) is uniquely defined; in this case, η(x−i ) = η(x+
i ) = η(xi).101
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4 Y. CHEN, B. DONG, AND R. PEREIRA

We let

(ϕ, v) :=
N∑
i=1

(ϕ, v)Ii , 〈ϕ, vn〉 :=
N∑
i=1

〈ϕ, vn〉∂Ii ,

where

(ϕ, v)Ii =

∫
Ii

ϕvdx, 〈ϕ, vn〉∂Ii = ϕ(x−i )v(x−i )n(x−i ) + ϕ(x+
i−1)v(x+

i−1)n(x+
i−1).

Here n denotes the outward unit normal to Ii, that is n(x+
i−1) := −1 and n(x−i ) := 1.

We define the average and jump of ϕ as

{ϕ}(xi) :=
1

2

(
ϕ(x−i ) + ϕ(x+

i )
)
, [[ϕ]](xi) := ϕ(x−i )− ϕ(x+

i ).

We also define the finite element space102

W k
h = {ω ∈ L2(Th) : ω|K ∈ Pk(K) for any K ∈ Th, and ω(a) = ω(b)},103

where Pk(D) is the space of piecewise polynomials of degree up to k on the set D.104

Finally, the Hs(D)-norm is denoted by ‖ · ‖s,D. We drop the first subindex if s = 0,105

and the second if D = Ω or Th.106

2.2. The DG method. To define our DG method for the KdV equation (1.1),107

we first rewrite it as the following system of first-order equations108

q − ux = 0, in Ω,

p− εqx = f(u), in Ω,

ut + px = g(x), in Ω,

(2.1)109

with the initial condition u(x, 0) = u0(x) and the periodic boundary conditions

u(a) = u(b), q(a) = q(b), p(a) = p(b).

We discretize (2.1) by seeking (uh, qh, ph) as approximations to (u, q, p) in the110

space
(
W k
h

)3
such that111

(qh, v) + (uh, vx)− 〈ûh, vn〉 = 0, ∀v ∈W k
h ,(2.2a)112

(ph, z) + ε(qh, zx)− ε〈q̂h, zn〉 = (f(uh), z), ∀z ∈W k
h ,(2.2b)113

(uht, w)− (ph, wx) + 〈p̂h, wn〉 = (g, w), ∀w ∈W k
h .(2.2c)114115

Here, ûh, q̂h, p̂h are the so-called numerical traces whose definitions are in general116

critical for the accuracy and stability of the DG method [2]. There are multiple ways117

of defining them. We adopt the one that is similar to the Local Discontinuous Galerkin118

(LDG) methods [2]119

ûh ={uh},(2.3a)120

q̂h ={qh}+ τqu[[uh]],(2.3b)121

p̂h ={ph}+ τpu[[uh]].(2.3c)122123

The key difference is that, instead of specifying the values of the penalty parameters124

(τqu, τpu) as done by LDG [2], we leave them as unknowns. It is exactly due to the125
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resulting freedom of placing two more constraints that, as shown in Lemma 2.2 in126

the next section, the scheme is able to conserve the mass, L2-energy, and the Hamil-127

tonian of the numerical solutions. Toward that end, we require that the penalization128

parameters τqu and τpu be constants that satisfy129

τpu

N∑
i=1

[[uh]]2(xi)− ετqu
N∑
i=1

[[uh]][[qh]](xi) =
N∑
i=1

(
[[V (uh)]]− {Πf(uh)}[[uh]]

)
(xi),

(2.4a)

130

τpu

N∑
i=1

[[ph]][[uh]](xi) + ετqu

N∑
i=1

[[uh]]t[[uh]](xi) = 0.

(2.4b)

131

132

Here, V (·) is an antiderivative of f(·). In summary, our method is to seek (uh, qh, ph) ∈133 (
W k
h

)3
and penalty parameters (τqu, τpu) such that (2.2a) - (2.2c), (2.4a), and (2.4b)134

are satisfied.135

Remark 2.1. Here we would like to point out that our scheme is not an LDG136

method. To our knowledge, existing LDG methods do not conserve the energy of137

solutions to KdV equations. The penalty parameters in LDG methods are known138

constants, while in our schemes τqu and τpu are considered as new unknowns. Corre-139

spondingly we have two more equations from (2.4). In fact, we can write τqu and τpu140

in terms of uh, qh, ph as141

τqu = −1

ε

η(ph, uh)
∑N
i=1

(
[[V (uh)]]− {Πf(uh)}[[uh]]

)
η(qh, uh)η(ph, uh) + η(uht, uh)η(uh, uh)

,142

τpu = −εη(uht, uh)

η(ph, uh)
τqu,143

144

where we have used the notation η(w, v) =
∑N
i=1[[w]][[v]](xi). These expressions show145

that our method is different from LDG Methods.146

2.3. Conservative properties. Now we discuss the conservation properties of147

the schemes in the previous section. First, in the following Lemma we give general148

conditions for ûh, q̂h, p̂h under which DG methods that satisfy (2.2) conserve the mass,149

L2 energy, and Hamiltonian. Then we apply the Lemma to prove the conservation150

properties for the DG method defined by (2.2)-(2.4).151

Lemma 2.2. Suppose (uh, qh, ph) satisfy (2.2) with g = 0.152

(i) If p̂h is single-valued, then we have153

d

dt

∫
Th

uh dx = 0, (mass − conservation).154

(ii) If ûh, q̂h, p̂h are single-valued and satisfy the condition155

0 =

N∑
i=1

(
[[V (uh)]]− {Πf(uh)}[[uh]] + ([[Πf(uh)]]− [[ph]])(ûh − {uh})(2.5)156

− [[uh]](p̂h − {ph}) + ε[[qh]](q̂h − {qh})
)

(xi),157
158

This manuscript is for review purposes only.
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then we have159

d

dt

∫
Th

u2
h dx = 0, (energy − conservation).(2.6)160

161

(iii) If ûh, q̂h, p̂h are single-valued and satisfy the condition162

0 =
N∑
i=1

([[ph]](p̂h − {ph}) + ε[[qh]](ûh − {uh})t + ε[[uh]]t(q̂h − {qh})) (xi),(2.7)163

164

then we have165

d

dt

∫
Th

( ε
2
q2
h − V (uh)

)
dx = 0, (Hamiltonian− conservation).(2.8)166

167

Proof. (i) To prove the mass conservation, we just need to take w = 1 in (2.2c)168

and use the fact that p̂h is single-valued.169

(ii) Next, we prove the energy-conservation, which is also called L2-conservation.170

We take w := uh, v := −ph+Πf(uh), and z := qh in (2.2) and add the three equations171

together to get172

(f(uh), qh) =(uht, uh)− (ph, uhx) + 〈p̂h, uhn〉 − (uh, phx) + 〈ûh, phn〉+ ε(qh, qhx)173

− ε〈q̂h, qhn〉+ (qh, Πf(uh)) + 〈uh − ûh, Πf(uh)n〉 − (Πf(uh), uhx)174175

Since
(f(uh), qh) = (Πf(uh), qh)

and
(Πf(uh), uhx) = (f(uh), uhx) = 〈V (uh), n〉,

we have that176

0 =(uht, uh)− 〈ph, uhn〉+ 〈p̂h, uhn〉+ 〈ûh, phn〉+
ε

2
〈q2
h, n〉 − ε〈q̂hqh, n〉177

+ 〈uh − ûh, Πf(uh)n〉 − 〈V (uh), n〉178

=(uht, uh)− 〈p̂h − ph +Πf(uh), (ûh − uh)n〉+
ε

2
〈(qh − q̂h)2, n〉 − 〈V (uh), n〉,179

180

where we have used the single-valuedness of numerical traces. This means that181

1

2

d

dt
(uh, uh) =〈V (uh), n〉+ 〈p̂h − ph +Πf(uh), (ûh − uh)n〉 − ε

2
〈(qh − q̂h)2, n〉182

=
N∑
i=1

([[V (uh)]]− {Πf(uh)}[[uh]] + ([[Πf(uh)]]− [[ph]])(ûh − {uh})183

−[[uh]](p̂h − {ph}) + ε[[qh]](q̂h − {qh})) (xi).184185

Here, we used the equality 〈ρ, vn〉 =
∑N
i=1([[ρ]]{v} + [[v]]{ρ})(xi) for any ρ, v ∈ W k

h .186

When the condition (2.5) is satisfied, we immediately get the energy-conservation,187

(2.6).188

(iii) To prove the Hamiltonian conservation properties in (2.8), we first differen-189

tiate the equation (2.2a) with respect to t to obtain190

(qht, v) + (uht, vx)− 〈ûht, vn〉 = 0.191
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Then, we take v := εqh in the equation above, z := uht in (2.2b) and w := −ph in192

(2.2c) and add the three equations together to get193

(f(uh), uht) = ε(qht, qh) + (ph, phx)− 〈p̂h, phn〉194

+ ε(uht, qhx) + ε(qh, uhtx)− ε〈ûht, qhn〉 − ε〈q̂h, uhtn〉.195196

Since ûh, q̂h, and p̂h are single-valued, we have197

(f(uh), uht) = ε(qht, qh) + 〈1
2
p2
h, n〉 − 〈p̂hph, n〉+ ε〈uht − ûht, (qh − q̂h)n〉198

= ε(qht, qh) +
1

2
〈(ph − p̂h)2, n〉+ ε〈uht − ûht, (qh − q̂h)n〉.199

200

This implies that201

d

dt

(ε
2

(qh, qh)− (V (uh), 1)
)

202

=
N∑
i=1

([[ph]](p̂h − {ph}) + ε[[qh]](ûh − {uh})t + ε[[uh]]t(q̂h − {qh})) (xi).203

204

If the numerical traces satisfy (2.7), we get the conservation of the Hamiltonian (2.8).205

This concludes the proof of Lemma 2.2.206

Next we use Lemma 2.2 to show that our scheme defined by (2.2) - (2.4) conserves207

the mass, the L2-energy, and the Hamiltonian of the numerical solutions.208

Theorem 2.3. For (uh, qh, ph) satisfying (2.2) with g = 0 and numerical traces209

defined by (2.3) - (2.4), the mass, L2-energy and Hamiltonian conservation properties210

in Lemma 2.2 hold.211

Proof. (i) The numerical traces in (2.3) are single-valued, so the DG scheme212

conserves the mass of the approximate solutions.213

(ii) Using (2.3), we see that214

N∑
i=1

(
[[V (uh)]]− {Πf(uh)}[[uh]] + ([[Πf(uh)]]− [[ph]])(ûh − {uh})215

− [[uh]](p̂h − {ph}) + ε[[qh]](q̂h − {qh})
)

(xi)216

=
N∑
i=1

(
[[V (uh)]]− {Πf(uh)}[[uh]]− τpu[[uh]]2 + ετqu[[uh]][[qh]]

)
,217

218

which is equal to 0 when the condition (2.4a) holds. Then we get the L2 conservation219

by Lemma 2.2.220

(iii) Using the definition of the numerical traces (2.3), we get221

N∑
i=1

([[ph]](p̂h − {ph}) + ε[[qh]](ûh − {uh})t + ε[[uh]]t(q̂h − {qh})) (xi)222

=
N∑
i=1

(τpu[[ph]][[uh]] + τqu[[uh]]t[[uh]]) = 0223

224

by (2.4b). So we immediately get the conservation of the Hamiltonian (2.8) using225

Lemma 2.2.226

This concludes the proof of Theorem 2.3.227
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Remark 2.4. We would like to point out that Lemma 2.2 provides a framework228

for achieving full conservation of mass, energy and Hamiltonian. Specifically, any229

choices of ûh, q̂h, p̂h that satisfy the conditions (2.5) and (2.7) will do. The numerical230

traces we have in (2.3) are just one of them. There are many other choices. For231

example, one can choose q̂h = {qh} and determine ûh and p̂h from equations (2.5)232

and (2.7). The scope of this paper is to discover a novel paradigm for designing new233

conservative DG methods by letting the stabilization parameters be new unknowns so234

that conservation properties can be explicitly embedded into the scheme and therefore235

their achievement guaranteed.236

3. Implementation. In this section, we provide a high-level summary of the237

implementation of our method. Further details are deferred to Appendix A.238

3.1. Time-stepping scheme. Since KdV equations have the third-order spatial239

derivative term, we choose implicit time-marching schemes to avoid using extremely240

small time steps. Moreover, we need the time stepping method to be conservative241

so that the fully discrete scheme is conservative. Here, we use the following implicit242

second-order Midpoint method, which preserves the conservation laws up to round-243

off error. This is proven in [9] and adopted in [5, 21] for the development of energy-244

conserving DG methods and [24] for a Hamiltonian-preserving DG scheme. Numerical245

results therein and of our paper demonstrate numerically that the Midpoint method246

does indeed conserve conservation laws including Hamiltonian. Let 0 = t0 < t1 <247

· · · < tM = T be a uniform partition of the interval [0, T ] and ∆t = tn+1 − tn be the248

step size. For n = 0, . . .,M − 1, let un+1
h ∈W k

h be defined as:249

un+1
h = 2u

n+ 1
2

h − unh,250

where u
n+ 1

2

h ∈W k
h is the DG solution to the equation251

u− unh
1
2∆t

+ εuxxx + f(u)x = g(x, tn+ 1
2
).252

At every time step tn+ 1
2
, n = 0, . . .,M−1, we need to solve equations (2.2), (2.4a),253

and (2.4b) for uh, qh, ph, τqu, and τpu. We can rewrite the nonlinear system into the254

following matrix-vector form and use MATLAB’s built-in function “Fsolve” to solve255

it.256

M[q] + (D + A)[u] = 0(3.1a)257

M[p] + ε(D + A)[q] + ετquJ[u]−M[f(uh))] = 0(3.1b)258

M[u]− 1

2
∆t(D + A)[p]− 1

2
∆tτpuJ[u]−M[ū]− 1

2
∆tM[g] = 0(3.1c)259

Vf − τpuη(uh, uh) + ετquη(qh, uh) = 0(3.1d)260

τpuη(ph, uh) + τqu

N∑
i=1

ε[[uh]][[uh]]t(xi) = 0(3.1e)261

262

where [u], [q], [p] are vectors consisting of degrees of freedom of u
n+ 1

2

h , q
n+ 1

2

h , p
n+ 1

2

h ,263

respectively, [ū] is the known vector for the degrees of freedom of unh, M is the mass264

matrix, D is the derivative matrix, A is the matrix associated to the average flux, and265

J is the matrix associated to the jump; see Appendix A for details on these matrices.266
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In (3.1d) and (3.1e), we have adopted the notation defined in Section 2.2267

η(w, v) =
N∑
i=1

[[w]][[v]](xi) for any w, v ∈
{
uh, qh, ph

}
,268

and a new quantity Vf :=
N∑
i=1

([[V (uh)]]− {Πf(uh)}[[uh]])(xi).269

The solution of this system, ([u], [q], [p], τqu, τpu), can be considered as a column270

vector of size [3(N − 1)(k + 1) + 2]. So by introducing two more unknowns (τqu, τpu)271

and enforcing the two equations for conservation of energy and Hamiltonian, we only272

increase the size of the system by 2.273

3.2. Three-point difference formulas for [[uh]]t. The last equation of the274

system, (3.1e), contains the non-traditional term [[uh]]t. We approximate it by the275

following three-point difference formula on uniform stencil to maintain the second-276

order accuracy in time277

[[uh]]
n+ 1

2
t =

1

∆t

(
[[uh]]n−

1
2 − 4[[uh]]n + 3[[uh]]n+ 1

2

)
+ O(∆t2).278

When n = 0, we approximate [[uh]]
1
2
t by a three-point difference formula on a non-279

uniform stencil using [[uh]] at t = 0, (∆t
2 )2, and ∆t

2 , where u0
h is obtained by the280

L2-projection of u0 and u
( ∆t

2 )2

h is computed using the backward Euler method. The281

nonuniform three-point difference formula for [[uh]]
1
2
t is as follows:282

[[uh]]
1
2
t = c1[[uh]]0 + c2[[uh]](

∆t
2 )2

+ c3[[uh]]
∆t
2 + O(∆t2)283

where284

c1 =
1− ∆t

2(
∆t
2

)2 , c2 = − 1(
∆t
2

)2(
1− ∆t

2

) , c3 =
2− ∆t

2(
∆t
2

)(
1− ∆t

2

) .285

3.3. The flowchart of the whole algorithm. After solving for u
n+ 1

2

h from the286

system (3.1) with the [[uh]]t term approximated by the three-point difference formulas287

above, we compute un+1
h through the midpoint method. Then we solve for qn+1

h from288

the linear equation (3.1a) using un+1
h . In order to obtain pn+1

h , τn+1
qu and τn+1

pu , we289

solve a smaller nonlinear system consisting of equations (3.1b), (3.1d) and (3.1e) using290

un+1
h and qn+1

h . To summarize, we use the following flowchart to describe the whole291

algorithm.292

293
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10 Y. CHEN, B. DONG, AND R. PEREIRA

START
Compute u0

h from u0

and set n = 0.

Use backward Euler method
to evaluate uh at t =

(
∆t
2

)2

Solve system (3.1) for

u
n+ 1

2
h and use the Midpoint

method to get un+1
h

Solve (3.1a) for qn+1
h .

Solve (3.1b), (3.1d) and (3.1e) for(
pn+1
h , τn+1

qu , τn+1
pu

)
.

Let n← n+ 1

tn ≥ T ?End
Yes No

294

4. Numerical Results. In this section, we carry out numerical experiments to295

test the convergence and conservation properties of our DG method. In the first test296

problem, we consider a third-order linear equation with f(u) = u. In the second test297

problem, we use our DG method to solve a third-order nonlinear equation with ε = 1,298

0.1, and 0.01 and the solutions are sine waves that are periodic on the domain. In the299

last test problem, we solve the classical KdV equation with a cnoidal wave solution300

and compare the approximate solution with the exact one. For all the test problems,301

we compute the L2-errors and convergence orders and check the conservation of the302

energy and Hamiltonian of the DG solutions.303

4.1. Numerical Experiment 1. In this test, we solve the following third-order304

linear equation in [38]305

ut + εuxxx + (f(u))x = 0,306

where ε = 1 and f(u) = u, with periodic boundary conditions on the domain Ω =307

[0, 4π] and the initial condition u0 = sin( 1
2x). The exact solution to this problem is308

u(x, t) = sin

(
1

2
x− 3

8
t

)
.309

First, we test the convergence of the DG method for this linear problem. We use310

polynomials of degree k = 0, 1, 2 for approximate solutions, the mesh size h = 4π
N for311

N = 2l, l = 3, . . . , 7, and ∆t = 0.2( h4π )min{k,1} for time discretization. The L2-errors312

and orders of convergence of the approximate solutions are displayed in Table 2 for313

the final time T = 0.1. We see that the approximate solutions for the variable u314

converge with an optimal order for all polynomial degrees k, those for the auxiliary315

variable q have an optimal convergence order for even k and a sub-optimal order for316

odd k, and those for p have sub-optimal orders for k = 1, 2.317

Next, we test the conservation of the energy and Hamiltonian of the approximate318

solution using polynomials of degree k = 2 on 32 intervals for the final time T = 50. In319

Figure 1, we see that the Hamiltonian and energy of the approximate solution remain320

the same over the whole time period. The errors of the Hamiltonian and energy are321

very small, as shown on the second row of Figure 1.322
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k N
uh qh ph

L2 Error Order L2 Error Order L2 Error Order

0

8 5.70e-1 - 3.10e-1 - 1.81e-0 -
16 2.98e-1 0.93 1.52e-1 1.02 1.89e-0 -0.06
32 1.42e-1 1.07 7.14e-2 1.09 1.07e-1 4.15
64 7.10e-2 1.00 3.56e-2 1.01 5.33e-2 1.00
128 3.55e-2 1.00 1.78e-2 1.00 2.66e-2 1.00

1

8 5.80e-2 - 2.55e-1 - 2.34e-1 -
16 1.44e-2 2.01 1.38e-1 0.88 1.35e-1 0.79
32 3.60e-3 2.00 7.06e-2 0.97 7.02e-2 0.95
64 9.00e-4 2.00 3.55e-2 0.99 3.62e-2 0.95
128 2.25e-4 2.00 1.78e-2 1.00 1.13e-2 1.68

2

8 3.93e-3 - 7.92e-3 - 4.07e-2 -
16 4.84e-4 3.02 9.76e-4 3.02 9.45e-3 2.11
32 6.00e-5 3.01 1.23e-4 2.99 2.31e-3 2.03
64 7.47e-6 3.01 1.52e-5 3.02 5.78e-4 2.00

Table 2: Numerical Experiment 1 (third-order linear equation): Error and convergence
order of uh, qh, and ph

4.2. Numerical Experiment 2. In the second test, we consider the following323

third-order nonlinear equation324

ut + εuxxx + (f(u))x = g325

with periodic boundary conditions on Ω = [0, 1] and the initial condition u0 =326

sin (2πx), where f(u) = u2

2 and g is the function which gives the solution327

u(x, t) = sin(2πx+ t).328

For this problem, we first test the convergence orders of our DG method for ε = 1,329

0.1 and 0.01 when using polynomials of degree k = 0, 1, 2. We use h = 1/N , where330

N = 2l, l = 3, . . . , 7, and ∆t = 0.2hmin{k,1} for time discretization, and the final time331

is T = 0.1. The L2-errors and orders of convergence for ε = 1, 0.1, 0.01 are displayed332

in Table 3, Table 4, and Table 5, respectively. Note that for existing energy-conserving333

DG methods in [5, 7, 21], it is typical that approximate solutions to u have optimal334

convergence orders when k is even and sub-optimal orders when k is odd. Here, we335

see that our method has comparable convergence rates.336

Next, we plot the exact solutions and the numerical solutions with quadratic337

polynomials on 32 elements for different ε. Note that u and q are not changing with338

respect to ε in this test problem, but p depends on ε. So we plot u, q, uh and qh339

over the time period [0, 5] in Figure 2 and the snapshot of them at the time T = 5340

in Figure 3. The graphs of p and ph for different ε over the time period [0, 5] are341

plotted in Figure 4 and the snapshots of them at the time T = 5 are in Figure 5. We342

see that in all the figures the graphs of numerical solutions match well with those of343

exact solutions.344

Finally, we test the conservation properties of our DG scheme. We plot the345

Hamiltonian and the Energy of the numerical solutions for t ∈ [0, 50] for different346

ε in Figure 6. The errors of the energy and Hamiltonian for different ε are plotted347
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Fig. 1: Numerical Experiment 1 (third-order linear equation): Hamiltonian (Left) and
energy (Right) conservation. Shown on the bottom are the corresponding errors.

in Figure 7. We see that our method successfully conserves both Hamiltonian and348

energy. We note that, even though the energy and Hamiltonian are conserved for349

the KdV equations (i.e., the source term g ≡ 0), the manufactured solution of this350

particular test with a nonzero source term happens to bear these properties as well351

and thus serves as an ideal test case.352

4.3. Numerical Experiment 3. In this example, we test the KdV equation

ut + εuxxx + (f(u))x = 0

with ε = 1
242 and f(u) = u2

2 . The domain is Ω = [0, 1] and we are testing a cnoidal-353

wave solution354

u(x, t) = Acn2(z),355

where cn(z) = cn(z|m) is the Jacobi elliptic function with modulus m = 0.9, z =356

4K(x−vt−x0), A = 192mεK(m)2, v = 64ε(2m−1)K(m)2, andK(m) =
∫ π

2

0
dθ√

(1−msin2θ)
357
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k N
uh qh ph

L2 Error Order L2 Error Order L2 Error Order

0

8 3.81e-1 - 1.96e-0 - 1.05e+1 -
16 8.00e-2 2.25 5.14e-1 1.93 3.41e-0 1.61
32 4.83e-2 0.73 2.89e-1 0.83 1.73e-0 0.97
64 2.03e-2 1.25 1.27e-1 1.18 7.99e-1 1.12
128 1.01e-2 1.01 6.33e-2 1.01 3.97e-1 1.01

1

8 5.29e-2 - 9.51e-1 - 1.05e+1 -
16 7.19e-2 -0.44 8.16e-1 0.22 2.00e-0 2.40
32 1.67e-2 2.10 1.92e-1 2.09 3.78e-0 -0.92
64 1.09e-3 3.93 1.26e-1 0.61 3.46e-2 6.77
128 1.49e-4 2.88 6.29e-2 1.00 1.08e-1 -1.64

2

8 2.08e-3 - 1.23e-1 - 7.89e-0 -
16 1.35e-4 3.94 3.48e-3 5.14 4.27e-1 4.21
32 1.69e-5 3.00 4.31e-4 3.01 1.04e-1 2.04
64 2.11e-6 3.00 5.38e-5 3.00 2.59e-2 2.01

Table 3: Numerical Experiment 2 (third-order nonlinear equation): Errors and con-
vergence orders of uh, qh, and ph for ε = 1

k N
uh qh ph

L2 Error Order L2 Error Order L2 Error Order

0

8 3.51e-1 - 1.87e-0 - 1.06e-0 -
16 1.17e-1 1.58 6.75e-1 1.47 4.00e-1 1.40
32 4.63e-2 1.34 2.80e-1 1.27 1.73e-1 1.21
64 2.11e-2 1.14 1.31e-1 1.10 8.18e-2 1.08
128 1.02e-2 1.05 6.36e-2 1.04 4.01e-2 1.03

1

8 6.62e-2 - 8.79e-1 - 1.17e-0 -
16 4.08e-2 0.70 3.11e-1 1.50 7.86e-1 0.58
32 2.05e-2 0.99 1.48e-1 1.07 4.11e-1 0.94
64 1.48e-3 3.80 1.26e-1 0.24 5.84e-2 2.82
128 3.71e-4 2.00 6.29e-2 1.00 5.14e-2 0.18

2

8 1.30e-3 - 3.00e-2 - 1.86e-1 -
16 1.44e-4 3.17 3.52e-3 3.09 4.06e-2 2.19
32 1.69e-5 3.09 4.29e-4 3.04 1.04e-2 1.96
64 2.11e-6 3.00 5.42e-5 2.98 2.63e-3 1.99

Table 4: Numerical Experiment 2 (third-order nonlinear equation): Errors and con-
vergence orders of uh, qh, and ph for ε = 0.1

is the Jacobi elliptic integral of the first kind; see [1]. The parameter x0 is arbitrary,358

so we take it to be zero. The solution u has a spatial period 1.359

This benchmark problem has been tested for other conservative DG methods360

in [5,21,24,38]. Those methods conserve either the Hamiltonian or the energy of the361

solution, but not both.362

In Table 6, we display the L2 errors of approximate solutions to u, q, and p for363

k = 0, 1, 2. The convergence orders are similar to those in the previous numerical364
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k N
uh qh ph

L2 Error Order L2 Error Order L2 Error Order

0

8 1.75e-1 - 1.20e-0 - 1.43e-1 -
16 8.33e-2 1.07 5.62e-1 1.10 6.19e-2 1.20
32 4.07e-2 1.03 2.62e-1 1.10 2.73e-2 1.18
64 2.01e-2 1.02 1.27e-1 1.05 1.30e-2 1.08
128 1.00e-2 1.00 6.31e-2 1.01 6.40e-3 1.02

1

8 2.30e-2 - 8.93e-1 - 9.15e-2 -
16 4.08e-2 -0.83 3.14e-1 1.51 7.09e-2 0.37
32 2.05e-3 4.31 2.53e-1 0.31 3.20e-2 1.15
64 1.04e-3 0.99 1.26e-1 1.01 1.59e-2 1.01
128 5.89e-4 0.81 6.29e-2 1.00 8.34e-3 0.93

2

8 1.24e-3 - 3.23e-2 - 1.63e-2 -
16 1.41e-4 3.13 3.39e-3 3.25 4.12e-3 1.99
32 1.70e-5 3.06 7.20e-4 2.23 1.75e-3 1.24
64 2.37e-6 2.84 1.08e-4 2.74 5.30e-4 1.72

Table 5: Numerical Experiment 2 (third-order nonlinear equation): Errors and con-
vergence orders of uh, qh, and ph for ε = 0.01

Fig. 2: Numerical Experiment 2 (third-order nonlinear equation): Solutions in time
(Left: exact solution, Right: approximate solution) for the ε-independent u and q.

experiments. In Figure 8, we plot the exact solution and the approximate solution365

using polynomial degree k = 2 over 32 intervals over the time period t ∈ [0, 5]. The366

snapshots of the exact and the approximation solutions at the final time T = 5 are367

shown in Figure 9. We can see that the graphs of exact solution and the approximate368

solution match up well in both figures. Next, we compute the numerical solution369

using k = 2 on 32 intervals for a longer time T = 50. The graphs of the Hamiltonian370

and energy of the DG solution versus time are displayed in Figure 10, and the errors371

of Hamiltonian and energy are plotted on the second row of Figure 10. We can see372

that both the Hamiltonian and the energy have been conserved during the whole time373
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Fig. 3: Numerical Experiment 2 (third-order nonlinear equation): Solutions at the
final time T = 5 (Top: u and uh, bottom: q and qh).

Fig. 4: Numerical Experiment 2 (third-order nonlinear equation): Solution in time
(Left: exact, Right: approximate, ε = 1, 0.1, 0.01 from top to bottom) for the ε-
dependent p.

period.374

5. Concluding Remarks. In this paper, we design and implement a new con-375

servative DG method for simulating solitary wave solutions to the generalized KdV376

equation. We prove that the method conserves the mass, energy and Hamiltonian of377

the solution. Numerical experiments confirm that our method does have the desir-378

able conservation properties proved by our analysis. The convergence orders are also379

comparable to prior works by others. Future extensions include the investigation of380

other choices of numerical fluxes, as well as applying the novel framework of devis-381

ing new conservative DG methods to other problems featuring physically interesting382
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Fig. 5: Numerical Experiment 2 (third-order nonlinear equation): the ε-dependent
solution p and the approximate solution ph at the final time T = 5 (with ε = 1, 0.1, 0.01
from top to bottom).

Fig. 6: Numerical Experiment 2 (third-order nonlinear equation): Conservation of
Hamiltonian (Left) and energy (Right) when ε = 1 (top), 0.1 (middle), and 0.01
(bottom).

quantities that are conserved.383

Appendix A. Implementation Details. In the Appendix, we show how384

to rewrite the weak formulation of the DG method, (2.2), into the system (3.1) for385

implementation using matrices and vectors. We start with the details on rewriting386

Eq. (2.2a) into Eq. (3.1a). Assume that the interval [−1, 1] is linearly mapped to387

the interval Ii and the Legendre polynomial of degree l on [−1, 1] is correspondingly388

mapped to the polynomial φli(x) on the interval Ii for l = 0, . . ., k, and i = 1, . . ., N .389

Then uh can be written as uh|Ii =
∑k
l=0 u

l
i(t)φ

l
i(x), where {uli(t)}kl=0 are degrees of390
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Fig. 7: Numerical Experiment 2 (third-order nonlinear equation): Errors of Hamil-
tonian (Left) and energy (Right) when ε = 1 (top), 0.1 (middle) and 0.01 (bottom).
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k N
uh qh ph

L2 Error Order L2 Error Order L2 Error Order

0

8 5.44e-1 - 8.11 - 3.18e-1 -
16 2.72e-1 1.00 4.56 0.83 2.42e-1 0.40
32 9.89e-2 1.46 1.65 1.47 8.80e-2 1.46
64 4.50e-2 1.14 7.69e-1 1.10 3.05e-2 1.53
128 2.22e-2 1.02 3.87e-1 0.99 1.34e-2 1.19

1

8 1.26e-1 - 2.40 - 1.12e-1 -
16 7.49e-2 0.75 2.82 -0.23 1.51e-1 -0.43
32 2.13e-2 1.81 1.41 1.00 7.23e-2 1.06
64 6.07e-3 1.81 7.41e-1 0.93 5.01e-2 0.53
128 1.57e-3 1.95 3.74e-1 0.99 2.88e-1 0.80

2

8 1.18e-1 - 4.70 - 2.58e-1 -
16 1.60e-2 2.88 7.24e-1 2.70 8.08e-2 1.68
32 2.71e-3 2.56 5.96e-2 3.60 1.15e-2 2.85
64 3.47e-4 2.96 6.15e-3 3.28 6.08e-4 4.21

Table 6: Numerical Experiment 3 (classical KdV equation): Errors and convergence
orders of uh, qh, and ph

Fig. 8: Numerical Experiment 3 (classical KdV equation): Solution in time (Left:
exact, Right: approximate) for the Cnoidal Wave.

freedom of uh on Ii at time t. Similar expansions are performed for qh and ph. Taking391

the test function v = φji (x) for i = 1, . . ., N and j = 0, . . ., k in (2.2a) and using the392

definition of ûh, we get393

M[q] + D[u] + A[u] = 0,394395

where [u] = (u0
1, . . ., u

k
1 , . . ., u

0
N , . . ., u

k
N )T is the column vector that contains all the

degrees of freedom of uh, and [q] and [p] are the column vectors of degrees of freedom
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Fig. 9: Numerical Experiment 3 (classical KdV equation): Exact and approximate
solutions at the final time T = 5 for the Cnoidal Wave (Top: u and uh, middle: q and
qh, bottom: p and ph).

of qh and ph, respectively. Here, the mass matrix M is block diagonal,

M = diag(M I1 , . . .,M IN )

with components

(M Ii)lj =

∫
Ii

φli(x)φji (x)dx

for j, l = 0, . . ., k and i = 1, . . ., N . The stiffness matrix D is also block diagonal,

D = diag(DI1 , . . ., DIN )

with components

(DIi)lj =

∫
Ii

φli(x)(φji )x(x)dx

for l, j = 0, . . ., k and i = 1, . . ., N . The matrix A is associated with the average flux396

in ûh. Note that a basis function on an interval Ii only communicates with those397

on Ii or on the two neighboring intervals Ii−1 and Ii+1. So the matrix A is sparse398

and block diagonal. So are the matrices D and M. This is one of the advantages of399

DG methods which use local basis functions. Indeed, A is nearly block tridiagonal400

except the first and the last block rows. The three blocks used to assemble A have401

components as follows402

(A−I )jl =
(−1)j

2
, (A0

I)jl =
(−1)l+j − 1

2
, (A+

I )jl = − (−1)l

2
403
404

for j, l = 0, . . ., k and i = 1, . . ., N .405

Next, we rewrite the Eq. (2.2b) into (3.1b) in a similar way. The main difference406

lies in the term 〈q̂h, zn〉. Using the definition of q̂h, we can rewrite this term as407

〈q̂h, zn〉 = 〈{qh}, zn〉+ τqu〈[[uh]], zn〉.408409
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Fig. 10: Numerical Experiment 3 (classical KdV equation): Hamiltonian (Left) and
energy (Right) conservation for the Cnoidal Wave. Shown on the second row are the
corresponding errors.

For the first term on the right hand side involving {qh}, we can rewrite it as A[q] using410

the average flux matrix A. For the second term that involves [[uh]], taking z = φli, we411

have412

〈[[uh]], φlin〉 = [[uh]](xi+1)φli(x
−
i+1)− [[uh]](xi)φ

l
i(x

+
i )413

=

( k∑
j=0

uji −
k∑
j=0

uji+1(−1)j
)
−
( k∑
j=0

uji−1 −
k∑
j=0

uji (−1)j
)

(−1)l414

= (−1)l+1
k∑
j=0

uji−1 + (1 + (−1)k+l)
k∑
j=0

uji + (−1)j+1
k∑
j=0

uji+1415

416

for i = 1, . . ., N , l, j = 0, . . ., k. Note that for each i, the expression above only uses
the interval Ii, the one before it, and the one after it. So we can write the term
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〈[[uh]], zn〉 as

〈[[uh]], zn〉 = J[u],

where J is a nearly block tridiagonal matrix except the first and last block rows. Now417

the Eq. (2.2b) can be written as (3.1b).418

To rewrite Eq. (2.2c) as (3.1c), we just need to approximate the (ut, w) term by419

M([u]− [ū])/( 1
2∆t). The rest terms are handled in a similar way to what we described420

above for (2.2a) and (2.2b).421

Rewriting the equations (2.4a) and (2.4b) that enforce the conservation of Energy422

and Hamiltonian into (3.1d) and (3.1e) is straightforward. We just need to use the423

notation Vf =
∑N
i=1[[V (uh)]] − {Πf(uh)}[[uh]](xi) and η(ξ, ν) =

∑N
i=1[[ξ]][[ν]](xi) for424

ξ, ν = uh, qh, or ph.425
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