Numerical investigations on the resonance
errors of multiscale discontinuous Galerkin
methods for one-dimensional stationary
Schrodinger equation

Bo Dong*and Wei Wang!

Abstract

In this paper, numerical experiments are carried out to investi-
gate the impact of penalty parameters in the numerical traces on
the resonance errors of high order multiscale discontinuous Galerkin
(DG) methods [6, 7] for one-dimensional stationary Schrodinger equa-
tion. Previous work showed that penalty parameters were required
to be positive in error analysis, but the methods with zero penalty
parameters worked fine in numerical simulations on coarse meshes. In
this work, by performing extensive numerical experiments, we discover
that zero penalty parameters lead to resonance errors in the multiscale
DG methods, and taking positive penalty parameters can effectively
reduce resonance errors and make the matrix in the global linear sys-
tem have better condition numbers.
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1 Introduction

In this paper, we consider the following one-dimensional second-order
equation
—e*u” — f(x)u =0, (1.1)

where € > 0 is a small parameter and f(x) is a real-valued smooth function.
One example of this type of equation is the stationary Schrodinger equation
in the modeling of quantum transport in nanoscale semiconductors [4, 14, 18].

Note that when f is positive, the solution to Eq. (1.1) is an oscillatory
wave function and the wave length is at the scale of €. For small ¢, the
solution is highly oscillatory and simulation using standard finite element or
finite difference methods requires very fine meshes. In applications such as
quantum transport, this equation needs to be repeatly solved for different
magnitudes of wave lengths and thus it is desirable to develop multiscale
methods that can effectively approximate the wave solutions even on coarse
meshes.

There have been ongoing efforts on developing multiscale finite element
methods which perform better than their polynomial-based counterparts for
equations with highly oscillatory solutions; see [1, 3, 11, 12, 10, 15, 16, 19,
20, 17, 21] and references therein. One of the popular ideas is to incorpo-
rate the information of small scale into non-polynomial basis functions so
that oscillatory solutions can be captured on coarse meshes. In [2, 14], a
second-order continuous finite element method based on WKB asymptotics
was introduced and analyzed for solving the stationary Schrodinger equation.
Similar multiscale methods in the discontinuous Galerkin (DG) framework
were developed and analyzed for Eq. (1.1) in [18, 6]. In [7], the multiscale
DG methods were extended to higher orders using two different approximate
function spaces EP and T?"~! for p > 1. Thanks to the advantage of hav-
ing no continuity constraints across element interfaces, the multiscale DG
methods in [18, 7] have been extended to two dimensions in [13, 8, 9].

In the multiscale DG methods, the numerical traces have been written
in the form of alternating fluxes with penalty terms. In [18], the third-order
multiscale DG method using the E? space with zero penalty parameters
produced good results in simulation of Schrodinger equations in Resonant
Tunneling Diode on coarse meshes. However, the error analysis in later
work [6, 7, 8, 9] required that the penalty parameters be positive for proving
the error estimates. Furthermore, numerical results in [6] showed that the



multiscale DG method using the space E? has resonance errors around h ~
when the penalty parameters are zero.

In this paper, we perform numerical experiments to further investigate
how the values of penalty parameters affect the accuracy of general multiscale
DG methods using EP and T?P~! spaces. Our numerical experiments indicate
that if the exact solution lies in the approximation space, the approximate
solutions from different choices of penalty parameters are all accurate up to
round-off errors. But in the general case when the exact solution is not in
the approximation space, zero penalty parameter will result in noticeable
resonance errors when h ~ e, while using positive penalty parameters will
greatly reduce such resonance errors. This improvement is also observed in
the condition number of the matrix in the resulting global linear system.

The rest of the paper is organized as follows. In section 2, we describe
the multiscale DG methods and related error estimates in previous work. In
section 3, we demonstrate numerical results for different choices of penalty
parameters. The concluding remarks and future work are in Section 4.

2 Multiscale DG method

2.1 The DG formulation

We consider the equation (1.1) with open boundary conditions,

—e2u’ — f(x)u=0, =z€la,b],
{ eu'(a) + 1/ [, u(a) = 26/ fo, e’ (b) — i/ fy u(b) = 0,

where f, = f(a), fy = f(b), and % is the imaginary unit.
By introducing an auxiliary variable ¢, we can rewrite the second-order
equation in (2.1) into the mixed form

(2.1)

q—eu' =0, —e¢ — f(x)u=0, (2.2a)
and the boundary conditions as

a(a) +iv/Faula) = 2iv/Fo,  a(b) —iv/Foud) =0.  (2.2b)

To define multiscale DG methods for (2.2), we need to introduce some
notations. Let a = T < Tyl < e < Tygl = b be a partition of the



domain, Q== {[; = (xj_%,a:j+%) :j=1,..., N} be the set of all elements,

and h = j:r?,%.}fzv(xﬂ% —T;_1).
We consider two families of multiscale finite element spaces that we in-

troduced in [7]. The first approximate function space EP is obtained by
combining two exponential basis functions and polynomial basis. For any
element [; € €, we let

Ep| B Span{eikj(x_wj)7 e_ikj(m_xj)} if p = 1,
C span{etthi(@==) 1 g ... P72} ifp > 2,
where k; = 1/ f(x;)/e is the wave number, and z; := %(xj_% + ZL‘j_,’_%) is the

middle point of the element I;. The second approximate function space T2~
contains exponential basis functions in pairs. On each element I; € ),

2p—1 +ikj(z—x; +2ik; (x—x; +pik;(x—z;
T P |Ij — Span{e J( ])76 J( J)’... ,6 P .7( J)}

for any p > 1. Note that 7' = E' and the basis functions of E? and
T?P=1 are globally discontinuous across element interfaces and contains the
information on the small scale of the problem.

Our DG method for (2.2) is to seek approximate solutions uy, g, € EP or
T?P=! that satisfy the following weak formulation

., 1
Z/qhwdx+52/ uhw’d:p—sz Up W T =0,
= 25)
N N . N
6Z/qhv’dx—sz/\hﬁ —Z/ fup,bvde =0

j=1 71 j=1 v, 1 =171

for all test functions vy, w, € EP or T?’~!, where w is the complex conjugate
of w.

The numerical traces u, and @, are defined in the same way as in [6, 7],
that is, at the interior element interfaces,

un(2je1) =y (2501) — 48 [anl (2

Gn( )4

1)
3 )

) =ai (z;51) +iafun](z0), (2.6)

%
where v_(xﬂ%) and v*(:vﬂ%) are the left and right limits of v at 1,

respectively, and [v] = v~ — v™ represents the jump across the interface.
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At the two boundary points {a, b},

amwzu—wmmw4£iq
gn(a) = vgn(a) — (1 — )/ foun(a) + 22 (1 — 7)\/ﬁ>
— (1

n(b) —wmwwdj%%@,
Gn(b) = van(b) + (1 — )/ fy un (b),

where « can be any real constant in (0, 1).

Note that when the penalty parameters o and 3 in (2.6) are taken to be
zero, the numerical traces at interior interfaces are alternating fluxes and the
method reduces to MD-LDG method [5] with multiscale bases. Note also
that the numerical traces in (2.7) satisfy

h(a) + 277

(2.7)

qn(a) + i/ fo up(a) = 2i\/ fo,  qun(b) —i+/ fi Un(b) =0,

which coincide with the boundary conditions (2.2b) for the exact solution.

2.2 Error estimates in previous work

We have proved some error estimates for the multiscale DG method de-
fined by (2.5)-(2.7) in our previous work. For ease of reading, we list them
here. First, in [6] we proved the following error estimates for the multiscale
DG method with the approximation space E*' .

Theorem 2.1. Let u be the solution of the problem (2.1) and u, € E* be
the multiscale DG approzimation defined by (2.5)-(2.7). Assume that o and
B are positive constants and 0 < v < 1. For any mesh size h > 0, we have

h* R3
= wnll < Clf e (= + )l

where C' 1s independent of € and h.

This theorem shows that when f is constant, the approximate solution
from the multiscale DG method will only have round-off errors. When f is
not constant, the method has a second order convergence rate for any mesh
size, including h 2 €.

For the multiscale DG method with higher order approximation spaces,
we obtained the following error estimates in [7].
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Theorem 2.2. Suppose (u,q) is the exact solution of the problem (2.2),
(un, qn) is the solution of the multiscale DG method using EP for p = 2 or
3, and (Un, qn) 18 the solution of the multiscale DG method using T?*~* for
p =2 or 8. Assume that o and [ are positive constants and 0 < v < 1.
When h is small enough, we have

lu = up]| < C RSP ([l gar + (gl sa),

= i) < € B2 (] g1 + [l os0),

where C' is independent of h but may depends on ¢.

Note that error estimates in Theorem 2.2 are valid only if A is sufficiently
small. There are no error estimates for higher order spaces on coarse meshes.

The proofs of Theorem 2.1 and Theorem 2.2 require the penalty param-
eters « and 8 to be positive. Numerical simulations in [18] showed that
the multiscale DG method using E? with zero penalty parameters produced
good results on coarse meshes. In this case, the global matrix in the linear
system is banded and the variable ¢ in Eq. (2.2a) can be solved locally, thus
solving the linear system is more efficient than using positive penalty param-
eters. But in [6], we found that the multiscale DG method using E? with
zero penalty parameters has suddenly increased errors around h ~ &, which
are the so-called resonance errors. Therefore, in the next section, we would
like to numerically investigate how penalty parameters affect the errors of
multiscale DG methods with E? and T?~! spaces, especially in the region
h ~e¢.

3 Numerical results

In this section, we carry out numerical experiments for multiscale DG
using high order spaces EP and T?~!, in particular, E'(= T"), E?, E3, T3
and T°. We consider four different choices of penalty parameters: (i) a =
g =0, (ii) a=01, =0, (iti)a = = 0.1, and (iv) o = p = 1.
Note that the first choice &« = 8 = 0 reduces the method to the MD-LDG
method with multiscale bases, the second choice o # 0 and § = 0 (only the
numerical trace of ¢ has penalty terms) is an LDG with multiscale basis,
but the last two choices no longer have the LDG structure. We test the
methods for two examples on the interval [0, 1] with two different levels of ¢,
e = 0.005 and € = 0.001. These two values of € are chosen because during
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Table 3.1: Example 3.1: L2-errors by multiscale DG with E' for f(z) = 10
and ¢ = 0.005.

N |a=p=0 a=0.1,=0 a==01 a==1
10 | 4.00E-12 4.05E-12 4.17E-12 4.62E-12
20 3.95E-12 3.95E-12 4.01E-12 4.36E-12
40 | 4.53E-12 4.54E-12 4.56E-12 4.78E-12
80 4.58E-12 4.60E-12 4.63E-12 4.61E-12
160 | 2.62E-12 2.63E-12 2.65E-12 2.65E-12
200 | 6.71E-12 6.72E-12 6.75E-12 6.77E-12

the mesh refinement, h is changing from h > ¢, h ~ ¢, to h < €. We compare
the behaviors of the approximate solutions, and inspect the occurrence of
resonance errors. We will also investigate the relation between the resonance
error and the condition number of the matrix resulting from the global linear
system.

Example 3.1. In the first example, we consider the simple case of constant
function f(z). It is easy to see that in this case, the exact solution of (2.1)
is in the high-order finite element spaces EP and T?~!. Thus the multiscale
DG method with these spaces can compute the solution exactly with only
round-off errors. We choose f(z) = 10 on [0, 1], which is the same as in our
previous work [6, 7]. In [7], we performed the experiments of the multiscale
DG methods only with non-zero penalty parameters a = g = 1.

The L?-errors of the multiscale DG method with E! for ¢ = 0.005 and
e = 0.001 are shown in Tables 3.1 and 3.2, respectively. In each table,
we compute the approximate solutions with four different choices of penalty
parameters, and we see the round-off errors in double precision for all choices
of penalty parameters. There is no resonance errors in this example because
the exact solution lies in the multiscale finite element spaces. We notice that
when ¢ is smaller, the round-off error increases slightly. This is because we use
more points in each element for the numerical integration of the exponential
functions which accumulate round-off errors for smaller . The results for
E? B3, T2 and T® are similar, so we omit them here.

Ezample 3.2. Next, we consider the model equation (2.1) with a smooth
positive function f(x) = sinz+2 on [0, 1]. There is no simple explicit formula
for the exact solution in this case and the solution is not in the finite element
spaces. The reference solutions are computed by the MD-LDG method [5]



Table 3.2: Example 3.1: L2-errors by multiscale DG with E! for f(z) = 10
and ¢ = 0.001.

N |a=p=0 a=0.1,=0 a==01 a==1
10 | 7.08E-11 7.21E-11 7.63E-11 7.66E-11
20 6.92E-11 6.98E-11 7.19E-11 7.27E-11
40 | 7.19E-11 7.20E-11 7.26E-11 7.42E-11
80 7.21E-11 7.23E-11 7.34E-11 7.31E-11
160 | 6.12E-11 6.12E-11 6.15E-11 6.23E-11
200 | 8.24E-11 8.25E-11 8.23E-11 8.31E-11

using piecewise cubic polynomials on N = 500,000 elements. The mesh is
refined from N =5 to N = 640.

We first consider € = 0.005 and the multiscale DG with E'. Figure 3.1
shows the log-log plot of L2-errors of u versus the number of elements N on
the left and the corresponding condition numbers versus N on the right for
the multiscale DG E' with four choices of penalty parameters. In the left
subfigure, we can see when o« = = 0 (in red), the method has resonance
errors around N = 30 and N = 44. Away from the resonance region, the
method shows a second-order convergence. For a = = 0.1 (green) and
a = =1 (purple), there are no noticeable resonance errors and they all have
the second-order convergence for all NV, which is consistent with Theorem 2.1.
It is interesting to see that the multiscale DG E' with a = 0.1, 3 = 0 (blue)
does not show any resonance errors either and has second-order convergence,
although we do not have proofs for this case. Here, we see that taking at least
one of the penalty parameters positive significantly help reduce the resonance
errors. In the right subfigure for the plot of condition numbers versus N, we
see big spikes appearing at the same resonance regions for a = § = 0. But
the condition number plots for the other three choices of o and 3 are slowly
increasing without spikes. This suggests that resonance errors are related to
the suddenly increased condition numbers.

Let us take a closer look at the region where the resonance error of
the multiscale DG E' with o = 8 = 0 occurs. We plot the errors from
N =20,...,50 in Figure 3.2. We see that the resonance errors occur at sev-
eral “N” in the resonance region h ~ ¢ and the graph of condition numbers
has spikes at the same locations. In Figure 3.3, we plot the numerical solu-
tions along with the reference solution for the four different choices of penalty
parameters and N = 20, 30,40. The graph of each solution is plotted using



the basis functions with 1000 points on each element. In the top left subfig-
ure, it is easy to see that the method with o = 8 = 0 can capture the solution
for N = 20 and N = 40 but has large resonance errors for N = 30. This does
not happen in the rest three figures for the other three choices of penalty
parameters. They approximate the reference solution without resonance er-
rors on all the meshes. For comparison, we also plot the numerical solutions
by MD-LDG with piecewise linear polynomial basis for N = 40, 100, 1000 in
Figure 3.4. It shows that standard DG cannot capture the solution unless
the mesh size is smaller than e.

Next, for € = 0.005, we consider the multiscale DG with F?, E3, T° and
T5 spaces and plot the errors and condition numbers in Figures 3.5-3.8, re-
spectively. We observe that all these methods have large resonance errors
for the choice a = 8 = 0 but not for the other three choices. The graphs of
condition numbers have spikes at where the resonance errors occur. For all
these methods with different choice of penalty parameters, we also observe
the second order convergence when h 2 e and optimal order convergence
when h < e. The high-order convergence of the multiscale DG methods
with positive penalty parameters for sufficiently small h is consistent with
Theorem 2.2.

Now we reduce ¢ from 0.005 to 0.001 and we expect the resonance location
N to increase by a factor 5. As we see in the error plot in Fig. 3.9, the
multiscale DG E! has resonance around N = 140 and N = 220, which are
about 5 times of previous N = 30 and N = 44 in Fig. 3.1. The condition
numbers show spikes at the same locations. We can see similar phenomenon
for multiscale DG with E?, E3, T3 and T® as well; see Fig. 3.10-3.13.

4 Concluding remarks

In this paper, we carry out numerical experiments and have the following
findings:

1. We observe resonance errors in multiscale DG with o = g = 0 for all
five different spaces E'(=T"), E* E*, T® and T°. The multiscale DG with
positive penalty parameters have almost no resonance errors. Thus taking
at least one of the penalty parameters positive significantly helps reduce the
resonance errors.

2. In general, the resonance errors occur in regions around h ~ . For
different function spaces EP or T?~!, the resonance errors may occur at
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Figure 3.1: Example 3.2: Numerical results by multiscale DG E*! for ¢ =
5 x 1073, Left: L%-errors of u. Right: condition numbers.
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Figure 3.2: Example 3.2: Zoom-in numerical results by multiscale DG E!

for e = 5 x 1073 for N = 20,...,50. Left: L2-errors of u. Right: condition
numbers.
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Figure 3.3: Example 3.2: Numerical solutions by multiscale DG E! for ¢ =
5 x 1073 for N = 20, 30,40. Top left: a = 3 = 0; top right: a = 0.1 8 = 0;
bottom left: a = 8 = 0.1; bottom right: a = = 1.
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T T T

referece solution
=40

16 ——N=100
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Figure 3.4: Example 3.2: Numerical solutions by MD-LDG P! for ¢ = 5 x
1073 for N = 40, 100, 1000.
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Figure 3.5: Example 3.2: Numerical results by multiscale DG E? for ¢ =
5 x 1073, Left: L%-errors of u. Right: condition numbers.
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Figure 3.6: Example 3.2: Numerical results by multiscale DG E3 for ¢ =
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5 x 1073, Left: L?-errors of u. Right: condition numbers.
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Figure 3.7: Example 3.2: Numerical results by multiscale DG T for
5 x 1073, Left: L%-errors of u. Right: condition numbers.
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e= 0.005, T° basis €= 0.005, T° basis
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Figure 3.8: Example 3.2: Numerical results by multiscale DG T° for ¢ =
5 x 1073, Left: L2-errors of u. Right: condition numbers.
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Figure 3.9: Example 3.2: Numerical results by multiscale DG E*! for ¢ =
1 x 1073, Left: L?-errors of u. Right: condition numbers.
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Figure 3.10: Example 3.2: Numerical results by multiscale DG E? for ¢ =
1 x 1073, Left: L*-errors of u. Right: condition numbers.
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Figure 3.11: Example 3.2: Numerical results by multiscale DG E? for ¢ =
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Figure 3.12: Example 3.2: Numerical results by multiscale DG T3 for ¢ =
1 x 1073, Left: L*-errors of u. Right: condition numbers.
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Figure 3.13: Example 3.2: Numerical results by multiscale DG T° for ¢ =
1 x 1073, Left: L?-errors of u. Right: condition numbers.
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different locations. The graphs of corresponding condition numbers also have
spikes at those locations.

3. Multiscale DG methods with positive penalty parameters show second
order convergence when h 2 ¢ and optimal order convergence when h < e.
Multiscale DG methods with @ = 8 = 0 behave similiarly when the mesh
size h is away from the resonance location h ~ €.

In the future work, we would like to investigate the resonance errors of
multiscale discontinuous Galerkin methods for two-dimensional Schrédinger
equation in [8; 9].
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