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Gapped two-dimensional topological phases can feature ungappable edge states which are robust even in
the absence of protecting symmetries. In this Letter we argue that a multipartite entanglement measure recently
proposed in the context of holography, the Markov gap, provides a universal diagnostic of ungappable edge states.
Defined as a difference of the reflected entropy and mutual information £(A:B) = Sg(A:B) — I(A:B) between two
parties, we argue that for A, B being adjacent subregions in the bulk 2 = < In 2, where c, is the minimal total
central charge of the boundary theory. As evidence, we prove that 4 = 0 for string-net models and numerically
verify that h = Q In 2 for a Chern-C insulator. Our Letter establishes a unique bulk entanglement criteria for

the presence of a conformal field theory on the boundary.
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Introduction. Long-range entangled topological phases are
characterized by a pattern of ground-state (gs) entanglement
which cannot be adiabatically transformed into a product state
[1]. Among two-dimensional (2D) topological orders (TOs)
we may distinguish between two types. “Ungappable” TOs,
such as the integer and fractional quantum Hall effects, have
irremovable gapless edge states [2-4] even in the absence
of protecting symmetries. One mechanism for such behavior
is a mismatch between the number of left and right movers
c_ = cg — ¢, of the conformal field theory (CFT) governing
the edge; although certain nonchiral theories with fractional-
ized excitations are also ungappable [5—7]. On the other hand,
“gappable” TOs, such as the toric code [8] and string-net
states [9] admit a gapped boundary theory for a suitable choice
of edge Hamiltonian [10]. It has been shown that a TO is
gappable if and only if it admits a string-net representation
[10-12].

Whereas topological order has traditionally been probed
via its excitations (e.g., edge states and fractionalized quasi-
particles), more recently quantum information measures have
been used as a method for detecting the pattern of long-range
entanglement in the ground-state itself. Previous work has
largely focused on bipartite entanglement. In particular the
topological entanglement entropy (TEE) [5,13,14], which is
a linear combination of the entanglement entropy of differ-
ent subregions, measures the total quantum dimension of the
anyonic excitations. However, the TEE does not distinguish
between ungappable and gappable TOs. Indeed the integer
quantum Hall effect is an ungappable TO with vanishing
TEE. In order to distinguish chiral ungappable TO from gap-
pable TO, one may look at the entanglement spectrum, which
has the same anomalies as the physical edge [5,15]. On a
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translationally invariant cylinder it was argued that the entan-
glement spectrum encodes c_ mod 24 [16,17]. However, this
approach relies on translation symmetry and does not detect
nonchiral ungappable TOs. A quantitative bulk entanglement
criterion for ungappable TO is, thus, still lacking.

In this Letter we provide such a measure by going beyond
bipartite entanglement and considering a multipartite entan-
glement measure h(A:B) recently referred to as the “Markov
gap” [18]. This quantity was first discussed in the context
of 1 + 1D (one-dimensional) CFTs and holography [18-21].
After defining a procedure which eliminates the nonuniversal
short-distance contribution, we argue that the remainder takes
the universal value,

g = %* In 2, (1)

where ¢, = ¢y + cg is the minimal total central charge of a
single edge [22] of the TOs boundary CFT. To give evidence
for our conjecture we first prove that h = 0 for string-net
states, consistent with their gappable edge. Second, we nu-
merically compute 4 for integer quantum Hall states and find
excellent agreement with Eq. (1). Compared with previous
work, our method has two merits. First, it relies only on
the reduced density matrix of a subregion in the bulk and
does not require translation or other symmetries. Second, it
is a quantitative measure which determines the central charge
of the boundary CFT with finite-size corrections which ap-
pear to converge exponentially. Our Letter, thus, establishes
a quantitative bulk entanglement criteria distinguishing be-
tween gappable and ungappable TO.

Markov gap h(A:B). We start by defining the multipar-
tite entanglement measure /4 for a quantum state. Given a
pure state |Y) apc tripartitioned into A, B, and C, the reduced
density matrix on AB is given by pap = Trely)(¥]. One
purification of p4p, known as the canonical purification, is
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FIG. 1. (a) Tripartition of a 1D system on the circle. (b) A 2D
system on a square lattice.

given by the square root of the density matrix taken as a state
|/P)agap- in Ha ® Hp ® H} ® Hp. The reflected entropy
Sr(A:B) is given by the entanglement entropy AA* in the
canonical purification, Sg(A:B) = Spa=(|/p)asa+p+) [19]. The
Markov gap h(A : B) is then defined as

h(A:B) = Sg(A:B) — I(A:B) > 0, 2)

where /(A:B) is the mutual information between A and B. As
shown in Ref. [21], & is a nonnegative quantity that vanishes
if and only if the state |{/)spc has an algebraic form given by
a sum of triangle states (SOTS).

Definition 1. A pure state |) pc is @ SOTS if for each
local Hilbert space ‘H, (¢ € {A, B, C}) there exists a decom-
position Hy, = B; H,; ® H,; such that

W) asc = D VPV as Widgie) Widepy -+ @)
J

and ), p; = 1.

Roughly speaking, a SOTS only contains bipartite en-
tanglement and Greenberger-Horne-Zeilinger (GHZ) type of
entanglement. Therefore, nonvanishing /(A:B) indicates en-
tanglement across the three subregions beyond the GHZ type.

Tripartition for 1D and 2D systems. In Fig. 1 we show
the tripartition that is considered in this Letter. For a
one-dimensional system, we choose A, B, C to be adjacent
intervals. It has been shown [19,21] that the ground state of
a gapped system has & = 0 and the ground state of a gapless
system has h = h*T = $1n 2, where ¢ is the central charge
of the CFT.

Now we consider a two-dimensional lattice with the tri-
partition given in Fig. 1. In contrast to the one-dimensional
case, there are two trisection points N and S where the three
regions meet. The trisections can contribute a lattice-scale
nonuniversal contribution to i(A:B). Intuitively, UV physics
can dress the trisection with an entangled tripartite state,
which can contribute a finite 4. There are two ways around this
nonuniversal contribution. First, one may consider a modified
geometry in which a disk is removed from each trisection so
that the system becomes topologically equivalent to an open
cylinder (Fig. 2). As will become clear, this approach does
work, but it creates additional edges in the bulk. However,
since we aim to demonstrate that 2 can be made a universal
quantity purely from the bulk ground state, we instead develop
a method for the disk geometry.

C o b
(@)

(2) (b)

FIG. 2. (a) The tripartition of a two-dimensional system with
punctures illustrated by shaded regions. There are left- and right-
moving modes on the boundary of the shaded regions. Starting from
the geometry in Fig. 1(b), we act with unitary disentanglers on the
larger circular regions N and S (including the shaded interiors).
Intuitively, in systems with a gapped bulk, such a unitary can be
chosen to turn the degrees of freedom in the shaded interior into
a product state. (b) An open cylinder with a tripartition where the
three parties are strips that connect partitions of the two circles.
Viewing the product state regions as punctures, the two geometries
are topologically equivalent and can be deformed into each other
using finite-depth local unitaries.

Instead of the ground-state |1/)apc, We consider the space
of “smoothed” states UyUs|¥) agc, Where Uyys is a unitary
supported on a circle of radius R centered at N/S. We define
the bulk entanglement quantity &g at length scale R as

hg = lgvnlr]ls h(A:B). 4)

We then define hr = limg_, o, hg, Where the limit is such
that A, B, C must all be kept large in comparison with R. In
practice, we will argue hg converges exponentially quickly
at a rate which is determined by some length scale & of
the bulk ground state. The main result of this Letter is that
hir = 5 In 2 fora 2D system, where ¢, is the minimal central
charge of the boundary theory. For a gapped theory ¢, =0
and for an ungappable theory ¢y > % Note that by construc-
tion h > hg = %* In 2, so our result may also be interpreted
as a lower bound on the bare value of A.

Argument for universal hig. Here we make an intuitive
argument for the main result. Suppose Uy/s (of radius R) are
chosen to transform a subregion of radius R" < R centered
on each trisection into a product state. This can always be
performed if we allow for a buffer of width & < R — R/, where
& is related to a correlation length. Physically, for example,
this operation can be accomplished by adiabatically turning
on a topologically trivial mass term around the trisection. We
then view the product state subregions as “punctures” [shaded
in gray in Fig. 2(a)]. If C is one point compactified at infinity,
the geometry is topologically equivalent to Fig. 2(b), where
A, B, C are strips winding around an open cylinder. For an
ungappable TO, there are edge modes on the top and bottom
circles of the cylinder. As the bulk is gapped, the low-energy
theory of the system is completely determined by the edge
theory, and we can view it as a 1D theory defined on the
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edges of the cylinder, reducing to the geometry of Fig. 1(a).
As long as the top and bottom are far enough from each other,
the edge theories do not couple, and the theory on the circle
is the full boundary CFT of the TO by combining left and
right moving modes on the two boundaries of the cylinder. As
h(A:B) is invariant under local unitary operations, we expect
that 7(A:B) = h"" = % In 2 with the disentangler applied.
As hg is the minimum over Uy, Us, we may take KCFT given
by the particular choice of disentangler in the thought experi-
ment above to provide an upper bound on hz. We expect that
the disentangler gives the optimal % as the contribution from
the edge modes are ungappable by local perturbations. Thus,
hg = hSFTif R > &.

If the edges are instead gapped, after reducing the cylinder
along the vertical direction, the remaining state can be de-
scribed by a matrix product state with finite bond dimension.
For such states, it was proved in Ref. [21] that h(A:B) =
We may think of the smoothers on the disk as ensuring that
when the trisection is mapped to the edge of a cylinder, a
local nonuniversal tripartite entangled state does not become
global.

Returning to the disk since the reduced density matrix of
A, B plus the range of smoothers only measures local correla-
tions, it is not affected by the topology of the whole system.
The quantity &g defined in Eq. (4) is, thus, universal given that
the length scales of A, B, C much larger than R and R > &.
Below we confirm the statement by showing that (i) 7 = 0
for string-net states, which are commonly believed to give a
complete classification of topological orders with gappable
edges in 2D, and that (ii)) & = % In 2 for a stack of Chern insu-
lators, where c is the minimal central charge of the boundary
CFT.

Vanishing h for gappable topological order. We consider
a tripartition as in Fig. 1 of the string-net liquids intro-
duced in Ref. [9] which (can be generalized to) characterize
the fixed-point (zero correlation length) wave functions of
all topological orders with gappable edges in two dimen-
sions. The string-net states have & = 0, and we are able
to show explicitly that they have a SOTS structure. We
review the formalism of string-net liquids and present the
general proof in the Supplemental Material [23] but illus-
trate the argument here for the simple case of the toric code
[8,24].

Consider the toric code on a trivalent lattice in Fig. 3. The
degrees of freedom are located on the links of the lattice,
and a two-dimensional Hilbert space is associated with each
link. Let {|0), |1)} label a basis for each space. The global
wave function is defined as the uniform superposition over all
configurations of 0’s and 1’s subject to the local constraint
that at any trivalent vertex, only an even number of the three
adjacent links can take on value 1.

The lattice shown in Fig. 3(a) may be viewed as covering
the surface of a sphere tripartitioned according to the dashed
black lines. Regions A and B are adjacent, and C is com-
plementary, and degrees of freedom on links straddling the
partitions are doubled. Since this wave function has zero cor-
relation length, we may employ such a minimal representation
of the toric code. As in Ref. [13] we may reduce each region,
but because each has a boundary it can only be reduced to a
treelike diagram as in Fig. 3(b).

C

(a)

FIG. 3. (a) Toric code on a mesh covering the surface of a sphere.
Degrees of freedom (0 or 1, denoted by circles) live on links, and the
ground state is a uniform superposition over configurations of 0’s and
1’s satisfying the constraint that at each vertex an even number of 1’s
must meet. (b) The configuration in (a) may be reduced to this one
using local unitaries acting on A, B, and C.

We now analyze the tripartite wave function in Fig. 3(b).
The doubling on links implies that g4, ; = gc,.is 9c,.i = GBg.is
etc., as well as s4, 0 = S4,.0, SB,.0 = SB,.0, etc. Next, the
graphical rules describing the relations between string config-
urations in Ref. [9] require that s, o = Sc,.0 = S¢,.0 = SBp.0 =
$B,.0 = Sa,.0- Let s denote the value of these central degrees of
freedom. The total wave function may be organized as a sum
over the central s, and the value of each g, 5 is set by the fusion

of sand g, | fora € {AL, Ag, By, .. .}. Define
|AB(s)) = 7 )Ar.0 15)B, 0
® 1D ap 1 198, 119D ) ay21g® shp, 25 (5)

q={0,1}

and similarly define |BC(s)) and |CA(s)). For each value of s,
this state in Eq. (5) is essentially a Bell pair among Ag, By,
and (AB(1)|AB(0)) = 0. The ground-state |1/¢) may then be
written as

1
[Ves) = —= lAB(s)) ® |BC(s)) ® |CA(5)) . (6)

This wave function manifestly satisfies the SOTS form in
Eq. (3) with the factorization into L and R Hilbert spaces on
each region as indicated by the dotted gray line in Fig. 3(b),
and we can, therefore, conclude that h(A:B) = 0 for toric
code. In the Supplemental Material [23], we apply this ap-
proach more generally to other string-net wave functions and
find that they, too, may be written as a SOTS as in Eq. (3).

Universal h for stacked Chern insulators. The simplest chi-
ral topological order is the Chern insulator where the minimal
central charge ¢, on the boundary is given by the magnitude
of the Chern number |C| of the bulk [25-27]. The Chern
insulator can be realized on a lattice by a tight-binding model
coupled to an external magnetic-field B [28]. We consider the
Hamiltonian given by

HB)=—1Y (cle ™ Deez+ He)+p Y el (D)
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0.34 1 —e— Hofstadter model ¢ = /2
—e— Hofstadter model ¢ = 7/3
0.321 ---= 1log2

FIG. 4. h for the Hofstadter model with Chern number C = 1.
The dashed line denotes the theoretical value % In 2.

where @ runs over lattice vectors and A is the vector potential
which equals A = (0, Bx,) for the square lattice in the Landau
gauge. The Chern number of the system is a sum of the
Chern numbers of individual bands that are filled. We consider
the lowest band for B = £ /2, which has C = %1 and the
lowest two bands for B = 7 /3, which both have C = 1. A
topological insulator [29,30] can be constructed by stacking
two layers of the Chern insulator withC = 1 and C = —1. The
topological insulator is an example of symmetry-protected
topological (SPT) phase where the edge modes are protected
by the time-reversal (TR) symmetry [29]. The minimal central
charge on (both) the boundaries is c;. = 0 if TR is broken, and
cy = 2 if TR is preserved.

The model is quadratic in the fermionic variables and the
entanglement quantities can be computed by the standard
covariance matrix techniques [31,32]. In order to obtain hg
in Eq. (4), we restrict the generators of the smoothers Uy
to be quadratic in the fermionic variables. When the edge
modes are protected by TR symmetry, we further demand the
Un/s are generated by a TR-invariant flow. The smoothers are
optimized with a gradient optimization where the gradient can
be computed from the covariance matrix. We compute the
optimized £ for different disentangler sizes up to R = 6 and
different subsystem sizes up to Ly = Lg = 24.

We find that & converges to within 0.5% of the predicted
value h = % In 2, where c is the minimal central charge of
the edge modes, once £ < R < Ly, Lg. The numerical result
is shown in Fig. 4 and Table 1. Further details can be found in
the Supplemental Material [23].

Discussion. In this Letter we have established a bulk
multipartite entanglement quantity A for two-dimensional
topologically ordered systems. We have shown that Ar =
%* In 2, where cy is the minimal central charge of the
boundary CFT. One numerically irksome feature of the def-
inition is the use of disentanglers to remove short-distance

TABLEI Ay as defined in Eq. (4) for different topological orders.
The second column shows the central charge for the edge modes.
The third column shows the theoretical A"" = <= In 2. The fourth
column shows the values of hi for different lattice models. Ay is
computed analytically for string nets and optimzed numerically for
other models. The smoother range is R = 6 for B = 7 /3 with the
lowest two bands filled and R = 4 for other models.

Bulk TO Cy KCFT hg

String net 0 0 0

B = 7 /2, lowest band 1 0.2310 0.2316
B = m /3, lowest band 1 0.2310 0.2312
B = /3, lowest two bands 2 0.4621 0.4641
Topological insulator (TR preserved) 2 0.4621 0.4632
Topological insulator (TR broken) 0 0 0.0014

entanglement at the trisection points. It would be interesting
if instead a “subtraction scheme” as in the TEE could be
devised.

One may naturally wonder whether the result is sensitive
to the form of the disentangler. We first note that if the
disentanglers were restricted entirely in AB, then we would
no longer obtain hg = hFT as we are no longer able to
puncture a hole near the trisections. Next, as shown in the
Supplemental Material [23], we find & = 0 for all models if
the unitaries are allowed to entangle the degrees of freedom of
the two tripartitions (i.e., when acting with a joint Uyg). This
is expected as it allows the left-moving modes to hybridize
with the right-moving modes such that they can be removed
simultaneously. We also found that when the bulk is in an
SPT phase, we obtain different hr’s depending on whether
the disentanglers respect or break the symmetry. Therefore, in
addition to distinguishing between gappable and ungappable
long-range entanglement, # may also be used to detect short-
range entangled symmetry protected topological order.

Note added. Near the completion of this Letter, we became
aware of independent work by Liu ef al. [33], which also con-
siders the reflected entropy of 2D states, and Kim et al. [34],
which proposes a distinct entanglement measure for detecting
the chiral central charge of a 2D topological state.
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