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We congratulate Rohe and Zeng for this insightful paper that elegantly connects psycho-
metric methods and statistical and machine learning applications. We would like to mention
several lines of related research. First, the problem is closely related to the latent variable
selection problems (e.g., Chen et al., 2015; Xu and Shang, 2018), where regularised estima-
tion procedures are proposed to learn sparse loading structures. In fact, the vsp procedure
can be viewed as the limiting case of a regularised estimation procedure, in the sense that
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when A goes to zero if the solution path is smooth, where U and V satisfy the same constraints
as in SVD while D is allowed to be non-diagonal (Chen and Rohe, 2020). Note that the
regularisation is used to learn the sparse loading structure rather than to avoid over-fitting,
and thus, it does not require the tuning parameter to depend on the noise level. We agree
that rotation is more convenient under many models, but the regularised estimation approach
might be more general for some more complex latent variable models.

Second, various rotation methods have been proposed in the psychometric literature to
find simple and scientifically meaningful factor loading structures. For example, consider the

L criterion that minimises the objective function
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This criterion is closely related to L, regularisation and ensures statistical consistency under
suitable conditions (Jennrich, 2004, 2006; Liu et al., 2022). We run a small simulation study
to compare the Varimax and L; rotations, where data are generated from the current factor
model. Two settings are used to generate Z — one sparse setting where P([Z];; = 0) = 0.5
and one dense setting where [Z];; follows a heavy-tail distribution. The L; rotation method
only replaces v(R, U) in step 3 of the vsp algorithm with ¢(R, U). The mean squared errors
for the estimation of Z are given in Figure 1, where the L; rotation performs better under

the sparse setting while the vsp outperforms under the dense setting.
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Figure 1: Box plots of mean squared errors ||Z — ZP,||%/(nk) from 100 simulations. The
four box plots corresponds to the combinations of two settings (kK = 5,n = d = 100, 200)
and two rotation methods (Varimax and L;). In the simulations, we generate A = ZY7 +
W, where [A];; and [W];; are independent standard normal variables. Under Setting 1,
[Z)i; = V/2[C);;]5]s;, where [C];; are independent standard normal random variables and [S];;
are independent Bernoulli random variables with success probability 0.5. Under Setting 2,
[Z]i; = [T)i;/\/5/3, where [T];; follows a t distribution with 5 degrees of freedom. R code
for the simulation can be found on https://stats.lse.ac.uk/cheny185/L1_rotation.R.

Finally, another interesting extension of the current work is to non-linear factor models
that assume E([4];;|Z, B,Y) = f([ZBY7];;), for some known smooth and strictly mono-
tone non-linear function f (e.g., logistic function for binary data). Due to the non-linear
transformation, the current vsp procedure does not directly apply. One solution is to first
apply the universal singular value thresholding procedure (Chatterjee, 2015) to A to estimate
(f([ZBY™];;))nxd, which yields an estimate of ZBY ' through element-wise f~! transforma-
tions; see Zhang et al. (2020) for more details and the related consistency theory. Then, one

can learn Z by steps 2 and 3 of Algorithm vsp.
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