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Learning state variables for physical systems

The problem of automatically determining state variables for physical systems is challenging, but essential in the
modeling process of almost all scientific and engineering processes. A deep neural network-based approach is
proposed to find state variables for systems whose data are given as video frames.

Boris Kramer

he discovery of natural and physical

laws from experimental data via the

scientific method has challenged
scientists for almost five centuries. This
process has been rejuvenated by recent
advances in machine learning alongside a
tremendous increase in computing power,
which together enable new avenues for
scientific model discovery: advanced
algorithms can find physical laws by sifting
through large amounts of data’™". Once
found, the governing equations describe
functional relationships between physically
meaningful variables. These algorithms
are commonly fed labeled and measured
data of physical variables in rather low
dimensions. The preceding problem, namely
to determine which variables are necessary
to model a physical system, has seen much
less progress, but is equally important for
scientific discovery. In this issue of Nature
Computational Science, Chen et al.” present
an approach to discover a set of variables
that describes a physical process that is given
in the form of a sequence of video frames.

Computational discovery of physical laws

from data has a history going back to the
1970s when computers started to have the
necessary processing power to implement
somewhat intensive search and regression
algorithms. The early work of Langley and
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co-authors produced the BACON software'
that was able to determine physical laws —
albeit from low-dimensional states — and
to identify some functional relationships
between independent and dependent
variables. The identification process tested
selective hypotheses, that is, it was looking
for common heuristic laws such as constant
and linear relationships, multiplicative and
inverse correlations, and so forth. BACON
was also able to add additional variables

to an existing set, if it so discovered that

a certain functional relationship existed.

In 2009, Schmidt and Lipson? proposed

a genetic algorithm that would learn
physical laws, including conservation laws
of Hamiltonian and Lagrangian nature,
from experimental data. Their work would
correctly identify many known physical
laws and became inspirational to future
algorithmic developments. However, the
employed genetic algorithms could be
unstable and quite sensitive to the data
(and noise therein). Moreover, they did not
enforce what Occam’s razor hypothesized:
that natural laws often arise in a simple
form. Brunton, Proctor and Kutz* used
that very parsimonious principle to equip
their symbolic regression algorithm with
sparsity promoting regularization, which
has been demonstrated to learn a variety
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of engineering and physical principles.
Recently, a multidimensional symbolic
regression algorithm with additional
physics-inspired heuristics’ correctly
identified all 100 equations in the Feynman
Lectures on Physics. Yet, despite all this
progress, none of these approaches tackled
the ‘upstream’ problem of identifying the
proper physical variables to describe these
systems. While alternative sets of physical
variables to determine a dynamical system
can be found manually®, algorithmic
approaches are sorely needed.

While other model identification
methods typically rely on sensor data,
which directly measure a specific variable,
the proposed approach by Chen et al.
generalizes to any physical system and avoids
expensive experimental setups. The key of
the algorithm is to leverage the structure
of deep neural networks, particularly of
encoder—decoder type. The authors trained
the neural network to correctly predict given
video frames and then they use a strategy
to find out how many internal neurons
— which the authors call the intrinsic
dimension — the network needs for accurate
predictions. The intrinsic dimension informs
the number of state variables needed, and
after an additional network is leveraged,
results in a set of variables to describe the
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Workflow for the designed data-driven framework that finds state variables. a, The first step determines an encoder (g¢)-decoder (gp) network
that propagates the RGB images by one timestep. The latent vectors of the forward map are denoted L,_,4 . b, The next step detects the intrinsic dimension
(ID), which is much smaller than the latent dimension (LD) and the input size (M), that is, M > LD > ID. The intrinsic dimension is found through a nearest-
neighbor-type argument in the nonlinear manifold of latent vectors L. ¢, A new encoder (h.)-decoder (hy) network is fitted to the latent vectors L®, where the
internal dimension is fixed to ID. The internal variables v, are thus interpreted as the ‘neural states’, that is, the minimal number of internal states needed to
predict the model. d, The neural states are propagated through the learned dynamics F,.
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evolution of the physical system. The authors
demonstrated the applicability of their
approach by successfully predicting system
dynamics in a variety of dynamical systems
including chaotic kinematics (rigid double
pendulum, elastic double pendulum, swing
stick), nonlinear waves (reaction-diffusion
system), multi-phase flow (lava lamp),
aeroelasticity (air dancer) and combustion
(flame dynamics).

More specifically, in the framework,
Chen et al.” first fit a typical encoder-
decoder architecture (g; and gy, as depicted
in Fig. 1a) to the RGB (red, green, blue)
image data frames, to obtain a forward map
that advances the current frame by one time
step. In the next stage, they use the latent
vector of this encoder-decoder architecture
to estimate the intrinsic dimension (Fig. 1b)
— that is, the required number of state
variables — of the system via the Levina-
Bickel algorithm. Once the number of state
variables is estimated, the authors determine
the actual variables to describe the system
— they term them neural state variables —

noting that those are not unique. This step
of finding neural state variables is key to
their algorithm as it effectively introduces
another encoder-decoder architecture (h;
and hy,, as depicted in Fig. 1¢) for the latent
vectors and fixes the latent dimension of the
second encoder-decoder network (Fig. 1c)
to the identified intrinsic dimension. This
gives them a set of neural state variables,
which they then advance through the system
dynamics (Fig. 1d) that were learned at the
level of the RGB image data.

The identification of physical variables
from data of dynamical systems is very
challenging and has lacked automation and
computationally tractable procedures. Chen
et al.” present a framework that will help
advance the field and close an important
gap. However, it is important to note that
the discovered variables do not have any
units, and may not be interpreted as physical
variables (such as pressure, temperature,
and velocity) per se. At the moment,
intuitive meaning must still be assigned by
an application expert. It will be interesting
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to see their present work stimulate more
research in this direction where, if possible,
a complete set of physical variables with
units could be learned from RGB data. O
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	Fig. 1 Workflow for the designed data-driven framework that finds state variables.




