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Learning state variables for physical systems
The problem of automatically determining state variables for physical systems is challenging, but essential in the 
modeling process of almost all scientific and engineering processes. A deep neural network-based approach is 
proposed to find state variables for systems whose data are given as video frames.
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The discovery of natural and physical 
laws from experimental data via the 
scientific method has challenged 

scientists for almost five centuries. This 
process has been rejuvenated by recent 
advances in machine learning alongside a 
tremendous increase in computing power, 
which together enable new avenues for 
scientific model discovery: advanced 
algorithms can find physical laws by sifting 
through large amounts of data1–4. Once 
found, the governing equations describe 
functional relationships between physically 
meaningful variables. These algorithms 
are commonly fed labeled and measured 
data of physical variables in rather low 
dimensions. The preceding problem, namely 
to determine which variables are necessary 
to model a physical system, has seen much 
less progress, but is equally important for 
scientific discovery. In this issue of Nature 
Computational Science, Chen et al.5 present 
an approach to discover a set of variables 
that describes a physical process that is given 
in the form of a sequence of video frames.

Computational discovery of physical laws 
from data has a history going back to the 
1970s when computers started to have the 
necessary processing power to implement 
somewhat intensive search and regression 
algorithms. The early work of Langley and 

co-authors produced the BACON software1 
that was able to determine physical laws — 
albeit from low-dimensional states — and 
to identify some functional relationships 
between independent and dependent 
variables. The identification process tested 
selective hypotheses, that is, it was looking 
for common heuristic laws such as constant 
and linear relationships, multiplicative and 
inverse correlations, and so forth. BACON 
was also able to add additional variables 
to an existing set, if it so discovered that 
a certain functional relationship existed. 
In 2009, Schmidt and Lipson2 proposed 
a genetic algorithm that would learn 
physical laws, including conservation laws 
of Hamiltonian and Lagrangian nature, 
from experimental data. Their work would 
correctly identify many known physical 
laws and became inspirational to future 
algorithmic developments. However, the 
employed genetic algorithms could be 
unstable and quite sensitive to the data 
(and noise therein). Moreover, they did not 
enforce what Occam’s razor hypothesized: 
that natural laws often arise in a simple 
form. Brunton, Proctor and Kutz4 used 
that very parsimonious principle to equip 
their symbolic regression algorithm with 
sparsity promoting regularization, which 
has been demonstrated to learn a variety 

of engineering and physical principles. 
Recently, a multidimensional symbolic 
regression algorithm with additional 
physics-inspired heuristics4 correctly 
identified all 100 equations in the Feynman 
Lectures on Physics. Yet, despite all this 
progress, none of these approaches tackled 
the ‘upstream’ problem of identifying the 
proper physical variables to describe these 
systems. While alternative sets of physical 
variables to determine a dynamical system 
can be found manually6, algorithmic 
approaches are sorely needed.

While other model identification 
methods typically rely on sensor data, 
which directly measure a specific variable, 
the proposed approach by Chen et al. 
generalizes to any physical system and avoids 
expensive experimental setups. The key of 
the algorithm is to leverage the structure 
of deep neural networks, particularly of 
encoder–decoder type. The authors trained 
the neural network to correctly predict given 
video frames and then they use a strategy 
to find out how many internal neurons 
— which the authors call the intrinsic 
dimension — the network needs for accurate 
predictions. The intrinsic dimension informs 
the number of state variables needed, and 
after an additional network is leveraged, 
results in a set of variables to describe the 

a Input RGB frames b Detect nearest distance of embedding vectors {L(1), L(2), ...L(N )}

c Propagate latent vectors L(i) and constrain network dimension to ID d Obtain and propagate ‘neural states’

L(1) L(N )

L(5)
L(2)

Predicted RGB frames

̂FV

̂

find (ID ≪ LD ≪ M)

(M ≫ LD)
gE gD

Xt ∈ ℝM Xt+dt ∈ ℝM

Lt→t+dt ∈ ℝLD

hE hDLt→t+dt ∈ ℝLD v0 v1 v2 ... vID–1 v0 v1 ... vID–1 v0 v1 ... vID–1Lt→t+dt 
̂

Vt→t+dt ∈ ℝID ̂Vt→t+dt ∈ ℝID

Fig. 1 | Workflow for the designed data-driven framework that finds state variables. a, The first step determines an encoder (gE)–decoder (gD) network 
that propagates the RGB images by one timestep. The latent vectors of the forward map are denoted Lt→t+dt . b, The next step detects the intrinsic dimension 
(ID), which is much smaller than the latent dimension (LD) and the input size (M), that is, M ≫ LD ≫ ID. The intrinsic dimension is found through a nearest-
neighbor-type argument in the nonlinear manifold of latent vectors L(i). c, A new encoder (hE)–decoder (hD) network is fitted to the latent vectors L(i), where the 
internal dimension is fixed to ID. The internal variables vk are thus interpreted as the ‘neural states’, that is, the minimal number of internal states needed to 
predict the model. d, The neural states are propagated through the learned dynamics F̂v .
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evolution of the physical system. The authors 
demonstrated the applicability of their 
approach by successfully predicting system 
dynamics in a variety of dynamical systems 
including chaotic kinematics (rigid double 
pendulum, elastic double pendulum, swing 
stick), nonlinear waves (reaction–diffusion 
system), multi-phase flow (lava lamp), 
aeroelasticity (air dancer) and combustion 
(flame dynamics).

More specifically, in the framework, 
Chen et al.5 first fit a typical encoder–
decoder architecture (gE and gD, as depicted 
in Fig. 1a) to the RGB (red, green, blue) 
image data frames, to obtain a forward map 
that advances the current frame by one time 
step. In the next stage, they use the latent 
vector of this encoder–decoder architecture 
to estimate the intrinsic dimension (Fig. 1b)  
— that is, the required number of state 
variables — of the system via the Levina–
Bickel algorithm. Once the number of state 
variables is estimated, the authors determine 
the actual variables to describe the system 
— they term them neural state variables — 

noting that those are not unique. This step 
of finding neural state variables is key to 
their algorithm as it effectively introduces 
another encoder–decoder architecture (hE 
and hD, as depicted in Fig. 1c) for the latent 
vectors and fixes the latent dimension of the 
second encoder–decoder network (Fig. 1c) 
to the identified intrinsic dimension. This 
gives them a set of neural state variables, 
which they then advance through the system 
dynamics (Fig. 1d) that were learned at the 
level of the RGB image data.

The identification of physical variables 
from data of dynamical systems is very 
challenging and has lacked automation and 
computationally tractable procedures. Chen 
et al.5 present a framework that will help 
advance the field and close an important 
gap. However, it is important to note that 
the discovered variables do not have any 
units, and may not be interpreted as physical 
variables (such as pressure, temperature, 
and velocity) per se. At the moment, 
intuitive meaning must still be assigned by 
an application expert. It will be interesting 

to see their present work stimulate more 
research in this direction where, if possible, 
a complete set of physical variables with 
units could be learned from RGB data. ❐
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