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Abstract. In Dunfield’s catalog of the hyperbolic manifolds in the SnapPy census which are complements
of L-space knots in S3, we determine that 22 have tunnel number 2 while the remaining all have tunnel
number 1. Notably, these 22 manifolds contain 9 asymmetric L-space knot complements. Furthermore,
using SnapPy and KLO we find presentations of these 22 knots as closures of positive braids that realize
the Morton-Franks-Williams bound on braid index. The smallest of these has genus 12 and braid index 4.

1. Introduction and Results

A knot in S3 with a positive Dehn surgery to a Heegaard Floer L-space [OS05] is an L-space knot. Such
knots are necessarily fibered [Ni07, Ghi08] and strongly quasi-positive [Hed10]. Many L-space knots are also
braid positive, in that they may be expressed as closures of positive braids. For example, the torus knots
that are L-space knots are the positive torus knots, and hence they are braid positive. However, there is an
L-space knot known to not be braid positive.

Example 1. The positive trefoil T2,3 is the (2, 3) torus knot. It is the only L-space knot of genus 1 [Ghi08].
Its (2, 3)–cable T 2,3

2,3 is also an L-space knot by the cabling formula of [Hed05]. Using the cabling formula for
knot genera, one finds that T 2,3

2,3 has genus 3. As pointed out in [Dun19, Table 8], the knot T 2,3
2,3 is listed as

the 15 crossing knot 15n124802 in the nomenclature of [HTW98].
Now, for a closed positive braid diagram, Seifert’s Algorithm produces a minimal genus Seifert surface for

the closed braid. Therefore if a genus g knot with crossing number c is the closure of a positive braid with
braid index b and word length ¸ Ø c, then 2g ≠ 1 = ¸ ≠ b. Furthermore, we may assume that each braid
generator appears in the braid word at least twice so that ¸ Ø 2(b ≠ 1), since otherwise there would be a
smaller index positive braid whose closure is the knot. Putting these together, one concludes that 4g Ø c for
a knot that is the closure of a positive braid. Since the genus 3 knot T 2,3

2,3 has crossing number greater than
12, it cannot be braid positive.

Presumably, there are other satellite L-space knots which are not braid positive. Nonetheless, one wonders
the following.

Question 2 (e.g. Problem 31.2 [HLR17]). Are all hyperbolic L-space knots braid positive?

An a�rmative answer would imply that there are finitely many hyperbolic L-space knots of any given
genus, see [HW18a, Conjecture 6.7] and [BM15, Conjecture 1.2]. Given the existence of L-space knots
which are not braid positive, it seems an a�rmative answer to this question is unlikely. In attempting to
find a counterexample, one may look towards hyperbolic L-space knots with other remarkable properties or
remarkable origins.

Dunfield hands us such a collection of knots.1 The data from [Dun18] determines that there are exactly
1,267 complements of knots in S3 in the SnapPy census of 1–cusped hyperbolic manifolds that can be
triangulated with at most 9 ideal tetrahedra. Among these, the data from [Dun19] identifies 630 as L-space
knots, identifies 635 as not L-space knots, and leaves 2 of them unclassified.2 Let D be the set of these 630
L-space knots and 2 unclassified knots.

2010 Mathematics Subject Classification. Primary 57M25, 57M27; Secondary 57R58.
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1Personal communication.
2These two unclassified knots have now been shown to be actually L-space knots [BKM].

1

ar
X

iv
:1

90
9.

00
79

0v
2 

 [m
at

h.
G

T]
  1

8 
Ja

n 
20

21



A hyperbolic knot is asymmetric if the isometry group of its complement is the trivial group. Among
these 632 knots of D, via computations of their isometry groups, the set

A = {�t12533�, �t12681�, �o9_38928�, �o9_39162�, �o9_40363�,

�o9_40487�, �o9_40504�, �o9_40582�, �o9_42675�}
collects the 9 asymmetric ones. All of the rest of the knots in D have an order 2 symmetry group generated
by a strong involution as we show in Lemma 13.

For the original purpose of this note, we demonstrate that none of these 9 knots in A provide a negative
answer to Question 2.

Theorem 3. The manifolds in A are complements of braid positive knots.
Braidwords for these knots are listed in Table 3.

There is also a similar question about the tunnel numbers of L-space knots. The tunnel number of a knot
(or link) is the minimum number of properly embedded arcs that need to be drilled out from its exterior
to form a handlebody. While L-space knots with arbitrarily large tunnel number may be obtained through
iterated cables [BM18, Proposition 23], all other known examples of hyperbolic L-space knots have tunnel
number at most 2. In particular, see [Mot16, Theorem 1.13] and [BL20, Proposition 10.2].

Question 4. Do all hyperbolic L-space knots have tunnel number at most 2?
Since knots with tunnel number 1 necessarily admit an involution, asymmetric hyperbolic knots must

have tunnel number at least 2. So it is natural to consider the tunnel number for the asymmetric manifolds
in A. Indeed, this prompts the further exploration of whether any knot of D provides a negative answer to
Question 4. It turns out that none do.

Theorem 5. The knots in D all have tunnel number at most 2. More specifically, there is a subset T2 µ D
of 22 knots which contains A so that

• the knots of D ≠ T2 have tunnel number 1 and
• the knots of T2 have tunnel number 2.

These symmetric tunnel number 2 knots are
T2 ≠ A = {�t09284�, �t09450�, �t09633�, �t10496�, �o9_28751�, �o9_29751�, �o9_32314�,

�o9_33380�, �o9_33944�, �o9_33959�, �o9_34409�, �o9_36380�, �o9_40026�},

and we show in Lemma 13 that their only symmetry is a strong inversion.
We also extend Theorem 3 to all knots of T2.

Theorem 6. The manifolds in T2 are complements of braid positive knots.
Braidwords for the knots of T2 ≠ A are listed in Tables 4 and 5.

It remains to show that all the knots of D ≠ T2 are braid positive. As our methods are computer assisted
rather than purely algorithmic, we have not yet embarked upon that task.

Problem 7. Show that all the knots in D are braid positive.
The Morton-Franks-Williams inequality gives a lower bound on the braid index of a link in terms of its

HOMFLY-PT polynomial [Mor86, FW87]. For the P (v, z) version of the HOMFLY-PT polynomial of a link
L, let d+ and d≠ be the max and min degrees of v. Then the Morton-Franks-Williams inequality states that

(d+ ≠ d≠)/2 + 1 Æ b

where b is the braid index of L. We call the number (d+ ≠ d≠)/2 + 1 the MFW bound.

Theorem 8. Every manifold in T2 has a positive braid representative that realizes the MFW bound.
The braidwords listed in Tables 3, 4, and 5 all realize the MFW bound.

We conclude the introduction with a few questions.
Observe that the closure of the positive braid shown in Figure 2 is an asymmetric hyperbolic L-space knot

of genus 12 with braid index 4 and tunnel number 2. This knot (the manifold �t12533�) is the only knot in
2



A with braid index 4. In T2 ≠ A, three more knots (the manifolds �t09284�, �t10496�, �o9_34409�) also
have braid index 4. All others in T2 have larger braid indices.

Knots with braid index 2 are torus knots, and the positive ones are L-space knots. The L-space knots with
braid index 3 are either positive torus knots or braid positive twisted torus knots [LV]. In addition to being
braid positive, such knots are all strongly invertible and have tunnel number 1 (e.g. via [Dea03]). Hence
asymmetric L-space knots and, more generally, L-space knots with tunnel number greater than 1 must have
braid index at least 4.

Question 9. Are there other asymmetric L-space knots of braid index 4?

Question 10. What are the L-space knots of braid index 4 with tunnel number greater than 1?

The smallest genus of asymmetric L-space knot in A is 12 which is also realized by only the knot �t12533�.

Question 11. What is the smallest genus among asymmetric L-space knots?

The previously known examples of asymmetric L-space knots all admit an alternating surgery, a non-trivial
surgery to the double branched cover of a non-split alternating link [BL20].

Question 12. Do any of the asymmetric L-space knots in A admit an alternating surgery? 3

2. Methods

For most calculations, we use the ‘kitchen sink’ prepackaged Docker image [Gro20]4 for running SnapPy
[CDGW] within Sage [The20] and Python [VRD09] alongside Berge’s Heegaard program [Ber18]. Throughout
we assume SnapPy has been initialized with import snappy. When finding initial diagrams and braid
presentations, we also employ the standalone SnapPy application [CDGW] and Frank Swenton’s KLO [Swe].

2.1. Census L-space knots. First we extract the collection D of Dunfield’s L-space knots. Using Dunfield’s
data exceptional_fillings.csv from [Dun18] and QHSolidTori.csv from [Dun19], one may obtain lists
of these 630 L-space knots and 2 unclassified knots that comprise our collection D using Pandas [Pdt20] for
database queries as follows:

import pandas
exfil = pandas.read_csv("exceptional_fillings.csv")
qhst = pandas.read_csv("QHSolidTori.csv")
S3knot = exfil.loc[(exfil[�kind�] == �S3�)][�cusped�].to_list();
knownFloerSimple = qhst.loc[(qhst[�floer_simple�] == 1)][�name�].to_list();
unknownFloerSimple = qhst.loc[(qhst[�floer_simple�] == 0)][�name�].to_list();
Lspaceknot = list(set(S3knot) & set(knownFloerSimple));
Lspaceknot.sort(); Lspaceknot.sort(key=len); # for ordering
maybeLspaceknot = list(set(S3knot) & set(unknownFloerSimple));
D = Lspaceknot + maybeLspaceknot

This gives the list Lspaceknot of 630 known L-space knot complements in the SnapPy census of hy-
perbolic manifolds assembled from at most 9 ideal tetrahedra. The two knot complements which have
not yet been confirmed to be complements of L-space knots are given the list maybeLspaceknot which is
{�o9_30150�, �o9_31440�}. The two lists are concatenated as D (which we also write as D). The SnapPy
census names for the manifolds of D are listed in Tables 6 and 7.

2.2. Symmetries. To obtain the collection A of asymmetric L-space knots we check the orders of the
symmetry groups of the manifolds in D. In particular, the code

A=[mfld for mfld in D if snappy.Manifold(mfld).symmetry_group().order() == 1]

3Recent work shows that none of the knots in A admit an alternating surgery [BKM].
4See also https://snappy.math.uic.edu/installing.html#kitchen-sink
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returns the following set of 9 manifolds:

A = {�t12533�, �t12681�, �o9_38928�, �o9_39162�, �o9_40363�,

�o9_40487�, �o9_40504�, �o9_40582�, �o9_42675�}

Lemma 13. The symmetry groups of the manifolds of D ≠ A are Z/2, generated by a strong involution.

Proof. First, the command
[mfld for mfld in D

if snappy.Manifold(mfld).symmetry_group().order() > 2]
returns an empty list, showing that the manifolds in D are either asymmetric or have symmetry group Z/2.
Next, the command .is_invertible_knot() checks whether a one-cusped manifold is strongly invertible.
As the code

1 noninvertible=[]
2 for mfld in D:
3 S=snappy.Manifold(mfld).symmetry_group()
4 if S.is_invertible_knot() == False:
5 noninvertible.append(mfld)
6 noninvertible

returns just the list of the 9 manifolds of A, each of these Z/2 symmetry groups of the manifolds in D ≠ A
is generated by a strong involution as claimed. ⇤

2.3. Tunnel numbers.

Proof of Theorem 5. This proof splits into two parts. In Part 1 we use SnapPy and Berge’s Heegaard to
(a) show every manifold of D has tunnel number at most 2 and (b) identify a subset T2 µ D where every
manifold of its complement D ≠T2 has tunnel number 1. Necessarily A µ T2 since the asymmetric manifolds
cannot have tunnel number 1. In Part 2 we show the manifolds of T2 ≠ A actually have tunnel number 2 by
observing they have a toroidal Dehn filling that fails Kobayashi’s criteria for having Heegaard genus 2.

2.3.1. Part 1: Bounding tunnel number. Here we use SnapPy and Berge’s Heegaard to determine upper
bounds on the tunnel numbers of manifolds in D. The tunnel number of a link complement is one less
than the Heegaard genus of the link exterior’s splittings into a handlebody and a compression body. SnapPy
provides the presentation of a manifold’s fundamental group, and Heegaard checks whether that presentation
is realized by a Heegaard splitting consisting of a handlebody and a compression body. Since only the unknot
has tunnel number 0, once we find a genus 2 Heegaard splitting for a knot complement, we know the knot has
tunnel number 1. Further obstructions (such as the absence of certain symmetries) are required to confirm
a knot for which only genus 3 Heegaard splittings were found actually has tunnel number 2 and not 1.

First we select the manifolds in D whose fundamental group SnapPy presents with 2 generators and
Berge’s Heegaard confirms is actually realized by a genus 2 Heegaard splitting.

1 import heegaard
2 TN1easy=[];
3 TNmaybemore=[];
4 for mfld in D:
5 M=snappy.Manifold(mfld)
6 G=M.fundamental_group()
7 if G.num_generators()==2 and heegaard.is_realizable(G.relators()):
8 TN1easy.append(mfld)
9 else:

10 TNmaybemore.append(mfld)
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This produces a list TN1easy consisting of 473 of the 632 manifolds in D which are easily confirmed to
have tunnel number 1. The remaining 159 which may have tunnel number greater than 1 (including those
9 of A which we already know have tunnel number 2) are collected in the list TNmaybemore.

Note that the tunnel number of a knot is bounded above by the tunnel number of any link of which it is
a component. So next we examine the tunnel numbers of the manifolds obtained by drilling a dual curve
from the manifolds in TNmaybemore. (The dual curves are curves in the 1–skeleton dual to the underlying
triangulation of a manifold in SnapPy. Such curves are frequently simple geodesics and may be drilled from
the manifold with SnapPy.)

1 TN1drilleasy=[];
2 TN2probably=[];
3 for mfld in TNmaybemore:
4 M=snappy.Manifold(mfld)
5 dclength=len(M.dual_curves())
6 for i in range(dclength):
7 N=M.drill(i)
8 G=N.fundamental_group()
9 if G.num_generators()==2 and heegaard.is_realizable(G.relators()):

10 TN1drilleasy.append([mfld,i])
11 break
12 if TN1drilleasy[-1][0] != mfld:
13 TN2probably.append(mfld)

This produces a list TN1drilleasy which records a manifold of TNmaybemore and the index of its first
dual curve for which SnapPy and Heegaard confirmed a genus 2 Heegaard splitting of the drilling of that
dual curve. In particular, the 137 manifolds of TN1drilleasy all have tunnel number 1. The remaining 22
manifolds are collected in TN2probably which we also denote as T2. Note that T2 necessarily contains A.

Now we confirm that the 22 manifolds of T2 =TN2probably actually have genus 3 Heegaard splittings and
thus have tunnel number at most 2.

1 TNcheck=[]
2 for mfld in TN2probably:
3 G=snappy.Manifold(mfld).fundamental_group()
4 TNcheck.append([mfld, G.num_generators(), heegaard.is_realizable(G.relators())])

This produces a list TNcheck which shows that each manifold in T2 = TN2probably has a presentation of
its fundamental group with 3 generators that is realized by a Heegaard splitting. Therefore these manifolds
have tunnel number at most 2 as claimed.

Finally, if any manifold in T2 had tunnel number 1, then it would have a genus 2 Heegaad splitting. In
particular, the manifold would then admit a strong involution induced by the hyperelliptic involution of the
genus 2 Heegaard surface. Therefore, since the manifolds of A µ T2 are asymmetric, they cannot have tunnel
number 1 and must have tunnel number 2.

2.3.2. Part 2: Confirming tunnel numbers. As noted in Part 1, the tunnel number of a knot is one less than
the Heegaard genus of the knot exterior. Since Heegaard genus may only decrease upon Dehn filling, the
Heegaard genus of any Dehn filling gives a lower bound on the tunnel number of a knot plus one. Knowing
that the manifolds of T2 ≠ A have tunnel number at most 2, we will confirm they have tunnel number 2 by
demonstrating they have a Dehn filling of Heegaard genus at least 3.

It so happens that each manifold of T2 ≠ A admits at least one Dehn filling to a graph manifold, a closed
orientable 3–manifold with essential tori that decompose it into Seifert fibered spaces. These fillings may be
observed through Dunfield’s survey of exceptional surgeries [Dun18]. For each manifold of T2 ≠ A, a Dehn
filling producing a graph manifold and the Regina notation [BBP+20] for that graph manifold is listed in
Table 1. Four of the manifolds of T2 ≠ A have another graph manifold filling which is not listed as those
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filled manifolds have 2 generator fundamental group presentations that correspond to a genus 2 Heegaard
splitting, as confirmed by Heegaard. Each filling in Table 1, except for the filling of o9_29751 marked with †,
is a graph manifold where two Seifert fibered spaces are glued together along a single torus. We will address
these now and the † marked one thereafter.

Kobayashi classifies the closed orientable 3–manifolds with Heegaard genus 2 that contain an essential
torus [Kob84]. Genus 2 manifolds with a single separating torus in its torus decomposition are formed from
either

(i) a Seifert fibered space over the disk with 2 exceptional fibers and the exterior of a 1–bridge knot in
a lens space,

(ii) a Seifert fibered space over the Möbius band with at most 2 exceptional fibers and the exterior of a
2–bridge knot in S3, or

(iii) a Seifert fibered space over the disk with 2 or 3 exceptional fibers and the exterior of a 2–bridge knot
in S3.

In each case, in the common torus the regular fiber is identified with the meridian of the knot. (The remaining
two cases of the main theorem of [Kob84] involve manifolds with a torus decomposition involving either (iv)
two tori or (v) a non-separating torus.) Since we are considering graph manifolds, these exteriors of 2–bridge
knots and 1–bridge knots in lens spaces must be Seifert fibered. Since a meridional filling of these knot
exteriors must extend to a Seifert fibration of S3 or a lens space, their meridians must intersect their regular
fibers just once. Thus, if a graph manifold obtained from gluing two Seifert fibered spaces together along an
incompressible torus has Heegaard genus 2, then the regular fibers of the two pieces in the common torus
intersect just once.

The graph manifolds that appear in Table 1 (not marked by †) have Regina descriptions of the type

SFS [D: (p,q) (r,s)] U/m SFS [D: (t,u) (v,w)], m = [ a,b | c,d ]

or

SFS [D: (p,q) (r,s)] U/m SFS [M/n2: (t,u)], m = [ a,b | c,d ].

Regina uses the normalization for Seifert fibered manifolds with boundary where each exceptional fiber is
described with a relatively prime pair (x, y) so that 0 < y < x. On the boundary torus, a basis is given
in terms of a fiber (1, 0) and a curve (0, 1) representing the base orbifold. With two Seifert fibered spaces
glued together along a common boundary torus, the matrix m expresses the basis from the second Seifert
fibered space in terms of the basis from the first. In particular, the regular fiber of the second is the curve
(1, 0)m = (a, b) (the first row of m) with respect to the basis from the first. Consequently, the regular fibers
of the two pieces of these kinds of graph manifolds intersect just once exactly when b (the upper right entry
of m) is ±1.

A quick check shows that among the manifolds in Table 1, only the two of type

SFS [D: (p,q) (r,s)] U/m SFS [M/n2: (t,u)], m = [ a,b | c,d ]

have b = ±1 in their gluing matrix m. However, since the second piece is a Seifert fibered space over the
Möbius band, its regular fiber must be identified with a slope that gives an S3 filling of the first piece. Both
of the first pieces are exteriors of trefoils and have meridians of slope (1, 1). Hence (1, 1)m = (a + c, b + d)
must be the fiber slope (1, 0) for the graph manifold to have Heegaard genus 2. Since b = ±1 and d = 0 in
these two cases, neither have genus 2.

The Seifert fibered pieces of the form SFS [D: (2,1) (2,1)] admit an alternative fibration as SFS
[M/n2:]. Aside from the solid torus, all other Seifert fibered spaces with boundary have unique Seifert
fibrations. In Regina’s parameterization of boundary curves of SFS [D: (2,1) (2,1)], the regular fiber of
SFS [M/n2:] has slope (1, 1). Thus, when using the alternative fibration on the first piece of

SFS [D: (2,1) (2,1)] U/m SFS [D: (t,u) (v,w)], m = [ a,b | c,d ],

the regular fibers of the two pieces of these kinds of graph manifolds intersect just once exactly when b + d
is ±1. Five of the graph manifolds in Table 1 have a SFS [D: (2,1) (2,1)] piece, but only three of them
have b + d = ±1. Of those three, the other Seifert fibered piece is not the exterior of a (2, n)–torus knot.
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Figure 1. The link L12n243 is shown with its decomposition along Conway spheres. The
double branched cover of this link is the graph manifold o9_29751(1,1). The green arc lifts
to the core curve of the Dehn filling.

Taken together, none of the manifolds in Table 1 (aside from o9_29751(1,1)) admit presentations satis-
fying any of the three criteria of Kobayashi listed above. Hence these manifolds must have Heegaard genus
at least 3. Thus the manifolds of T2 ≠ A (except �o9_29751�) must have tunnel number at least 2. Hence
their tunnel numbers are all exactly 2.

The † marked filling o9_29751(1,1) in Table 1 has a torus decomposition that almost fits Kobayashi’s
criterion (iv) for a genus 2 manifold, but it fails the gluing requirements. Unfortunately, this failure’s
dependence upon understanding Regina’s orientation conventions is somewhat delicate. So rather than
discussing that we observe o9_29751(1,1) cannot have Heegaard genus 2 by other means.

The knot exterior �o9_29751� has a surgery description as L10n72(3,-4)(0,0)(3,-2) where the filling
o9_29751(p,q) corresponds to L10n72(3,-4)(-p+q,q)(3,-2). (See Table 2 and the discussion in Sec-
tion 2.4.) Since L10n72 is a strongly invertible link, any Dehn filling of �o9_29751� can be viewed as the
double branched cover of the corresponding rational tangle filling of the branch locus of the two-fold quotient
of L10n72(3,-4)(0,0)(3,-2).

Figure 1 shows the 2-component link L12n243 whose double branched cover is the manifold o9_29751(1,1).
The green arc is the core arc of the rational tangle filling; its exterior is a tangle whose double branched
cover is �o9_29751�. (One may further observe that the torus decomposition of o9_29751(1,1) is reflected
in the Conway sphere decomposition of L12n243 also indicated in Figure 1.) Replacing a neighborhood of
the green arc by another rational tangle corresponds to Dehn surgery along the knot that is the lift of the arc
in the double branched cover, and hence to a Dehn filling of L12n243. Observe now that any link resulting
from a rational tangle replacement has one component that is an unknot and another that is the knot 8_21.
Since the knot 8_21 is a Montesinos knot (and not a two-bridge knot), it has bridge number at least 3.
Therefore L12n243 and any two-component link obtained by such a rational tangle replacement must have
bridge number at least 4. Indeed, one can find bridge number 4 presentations for these links.

Since o9_29751 has symmetry group Z/2 as we determined in Lemma 13, Thurston’s Hyperbolic Dehn
Filling Theorem implies that all but finitely many Dehn fillings of o9_29751 will also have symmetry group
Z/2. (See [Auc14, Theorem 5.2] for example.) Therefore, for all but finitely many of the two-component
links obtained by rational tangle replacements along the green arc in Figure 1, there is no other knot or link
that has the same double branched cover. Yet if o9_29751 were to have tunnel number 1, then any Dehn
filling would have Heegaard genus at most 2 and therefore be the double branched cover of a knot or link
with a 3–bridge presentation. This cannot be since all but finitely many of these links have bridge number
at least 4. Therefore the tunnel number of o9_29751 must be at least 2. Hence o9_29751 must have tunnel
number exactly 2.

This completes the proof of Theorem 5. ⇤
7



Table 1. For each manifold of T2 ≠ A, a Dehn filling that yields a graph manifold is listed.
The graph manifold is given in the notation of Regina.

Dehn filling Graph Manifold

t09284(0, 1) SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -1,3 | -1,2 ]

t09450(1, 1) SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (3,2)], m = [ 1,-2 | 0,1 ]

t09633(0, 1) SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (3,1)], m = [ 1,2 | 0,1 ]

t10496(0, 1) SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (3,2)], m = [ -1,2 | -1,1 ]

o9_28751(1, 1) SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (5,2)], m = [ 1,-2 | 0,1 ]

† o9_29751(1, 1) SFS [D: (2,1) (2,1)] U/m SFS [A: (2,1)] U/n SFS [D: (2,1) (3,2)],

m = [ 0,-1 | 1,0 ], n = [ 1,1 | 0,1 ]

o9_32314(0, 1) SFS [D: (2,1) (3,1)] U/m SFS [M/n2: (4,3)], m = [ 0,1 | 1,0 ]

o9_33380(0, 1) SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (3,2)], m = [ -2,3 | -1,1 ]

o9_33944(0, 1) SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ 2,3 | 1,2 ]

o9_33959(0, 1) SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (3,2)], m = [ 1,2 | 0,1 ]

o9_34409(0, 1) SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,2)], m = [ -1,2 | -1,1 ]

o9_36380(0, 1) SFS [D: (2,1) (3,2)] U/m SFS [M/n2: (5,3)], m = [ 0,-1 | 1,0 ]

o9_40026(0, 1) SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,3)], m = [ -1,2 | -1,1 ]

Figure 2. A positive braid whose closure is the hyperbolic asymmetric L-space knot with
complement ’t12533’.

2.4. Diagrams and positive braids. Presently, SnapPy only has diagrams for knots up to 15 crossings
and links up to 14 crossings, tabulated by [HTW98]. However, hyperbolic knot complements assembled from
up to 8 ideal tetrahedra are catalogued by [CDW99, CKP04, CKM14] and presented with diagrams or as
members of certain families. Dunfield’s work [Dun18] extends this catalogue to hyperbolic knot complements
assembled from 9 ideal tetrahedra, but it does not o�er any diagram or familiar presentation of them.

Of the knots in D, only 263 admit ideal triangulations with at most 8 ideal tetrahedra. Diagrams for
these may be obtained from [CDW99, CKP04, CKM14]. In general, diagrams for the remaining 369 knots
in D have not been determined.

Among the 22 knots in T2, only six may be assembled from fewer than 9 ideal tetrahedra, and hence
diagrams have already been determined for them. In A are the two manifolds �t12533� and �t12681�
which are listed as the knots �K8_290� and �K8_296� in the Champanerkar-Kofman-Mullen tabulation
[CKM14]. There, these two knots are presented as the generalized twisted torus knots T (5, 6, 4, ≠2, 3, 5) and
T (7, 3, 5, 5, 4, 4). In T2 ≠ A are the four manifolds �t09284�, �t09450�, �t09633�, and �t10496� which are
listed as the knots �K8_186�, �K8_189�, �K8_195�, and �K8_220�. These are presented as the generalized
twisted torus knots T (5, 6, 3, ≠1, 2, 2), T (10, 6, 4, 3), T (7, 5, 5, 3), and T (10, 3, 4, 3, 2, ≠3). See [CKM14] for
the notation.

The original goal of this note was to find not only diagrams for the knots of A but also presenta-
tions of these knots as closures of positive braids. Theorem 3 records the achievement of this goal and
Theorem 6 records its extension to all of T2 which we prove below. Note that the identification of the
manifolds �t12681�, �t09450�, and �t09633� as the complements of the generalized twisted torus knots
T (7, 3, 5, 5, 4, 4), T (10, 6, 4, 3), and T (7, 5, 5, 3) by [CKM14] already achieve this goal for these knots.
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Proof of Theorem 3 and Theorem 6. For each manifold of A, Table 3 gives a positive braid word whose
closure is a knot with the manifold as its complement. For the remaining manifolds of T2 ≠ A, Tables 4 and
5 give positive braid words. As an example, Figure 2 illustrates a positive braid whose closure has �t12533�
as its complement. The braid word is given as a list of positive integers where the integer n represents the
standard braid generator ‡n. These may be verified using SnapPy by the command

snappy.Link(braid_closure=WORD).exterior().identify()
where WORD is the list of integers giving the braid word being checked. The output will be the list of names
that SnapPy has for the manifold that is the complement of the closure of the braid. ⇤

The above proof only gives confirmation that positive braidwords for the manifolds of T2 have indeed been
found. To actually obtain the braid words, we need to first find a diagram for the knot.

Given a triangulated 1–cusped manifold with a known S3 filling, it must be the complement of a knot in
S3. There are currently no implemented algorithms for computing a knot diagram given this data5, so we
attempt to find a diagram for the knot by the following method:

Using SnapPy, we drill out a small number of short geodesics (dual curves) until we obtain a manifold that
SnapPy recognizes as the complement of a hyperbolic link for which it has a corresponding link diagram.
These are prime links of at most 14 crossings. SnapPy can confirm there are isometries between the drilled
manifold and the link complement while supplying the actions of these isometries on the cusps. For each
isometry, the action on the cusps determines a slope for each link component that is either the image of a
meridian of a drilled-out geodesic or the original S3 filling slope.

Moving to KLO, we create a surgery diagram from the SnapPy link diagram with surgery coe�cients given
by the slopes. We use KLO to assist in the reduction of the surgery diagram into a diagram of the knot
(with slope Œ). In principle, this can be done through a sequence of Rolfsen twists, adding and removing
Œ–sloped unknotted components as needed [Rol84].

For the manifolds of T2, we only needed to drill at most two geodesics before SnapPy identified the resulting
manifold as the complement of a link of unknots. Furthermore, for each manifold except �o9_28751� we
were able to find

• an isometry of the drilled manifold to the link complement that took the S3 filling slope of the
original cusp to an Œ slope of one of the link complements, and

• restricting this link to the sublink of the remaining components yielded either an unknot or a Hopf
link.

Such surgery descriptions of all the manifolds in T2 are given in Table 2. For two drillings of �o9_28751�,
the only recognized link is �L12n2002� where every sublink of two-components is a (2, 4) torus link. Up
to symmetries, this gives the surgery description L12n2002(1, 0)(≠5, 2)(≠3, 2) of �o9_28751� which may be
reduced after an appropriate insertion of an unknot. However, examining three drillings of �o9_28751� yields
L14n60453(≠2, 3)(3, ≠1)(1, 0)(≠1, 2) where the surgery sublink is just a chain link that may be reduced by
a sequence of Rolfsen twists.

Since the surgery coe�cients on this unknot or Hopf sublink must present S3, reduction of this sublink to
the empty link by Rolfsen twists is straightforward. When this sublink is an unknot, its surgery coe�cient
must be of the form ≠1/n for some integer n, so it may be eliminated by performing n Rolfsen twists upon
it. When this sublink is a Hopf link, then one may reduce surgery coe�cients by performing a sequence
of Rolfsen twists alternately on each component until one component has a surgery coe�cient of the form
≠1/n, which then may be eliminated by performing n Rolfsen twists. Thereafter the remaining unknot
component may be eliminated. For the surgery descriptions given in Table 2, at least one component of the
surgery sublink already has a surgery coe�cient of the form ≠1/n except for �o9_29751� and �o9_36380�.

It turned out that in many cases the last remaining component of the sublink was either a positive braid
axis for the resulting knot or quite close to being one. While in each case a positive braid presentation can
be found by hand without too much trouble, KLO and SnapPy can aid in finding such a presentation. The
knot can be transferred from KLO to SnapPy by exporting and importing a PLink file, where then SnapPy
can use the diagram to find a braid word whose closure is the link. After possibly having SnapPy simplify
the diagram, in each case SnapPy coincidentally found a positive (or negative) braid word.

5This problem will appear on a problem list compiled from the ICERM workshop Perspectives on Dehn Surgery.
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Table 2. Surgery descriptions for the knots in A (left) and T2 ≠ A (right). The knot
corresponds to the component with the (1, 0) filling

Manifold Surgery Description

�t12533� L14n58444(5,2)(1,2)(1,0)
�t12681� L12n1968(1,3)(7,2)(1,0)
�o9_38928� L13n9833(-3,1)(1,-2)(1,0)
�o9_39162� L12n1968(1,4)(5,1)(1,0)
�o9_40363� L12n1968(1,0)(7,2)(1,4)
�o9_40487� L13n8037(1,-2)(-1,1)(1,0)
�o9_40504� L13n9833(-2,1)(1,-3)(1,0)
�o9_40582� L14n58444(-1,1)(2,-1)(1,0)
�o9_42675� L11n425(-1,-2)(3,1)(1,0)

Manifold Surgery Description

�t09284� L10n72(1,-4)(1,0)(-3,1)
�t09450� L13n9547(1,-2)(-3,2)(1,0)
�t09633� L11n345(1,-4)(5,-1)(1,0)
�t10496� L12n1925(3,-2)(1,-1)(1,0)
�o9_28751� L14n60453(-2,3)(3,-1)(1,0)(-1,2)
�o9_29751� L10n72(3,-4)(1,0)(3,-2)
�o9_32314� L10n86(1,0)(1,4)(5,1)
�o9_33380� L13n7625(1,2)(3,2)(1,0)
�o9_33944� L13n7625(1,2)(7,3)(1,0)
�o9_33959� L14n56927(3,1)(1,2)(1,0)
�o9_34409� L12n1952(5,-4)(-1,1)(1,0)
�o9_36380� L10n86(1,0)(2,5)(7,3)
�o9_40026� L11n347(1,4)(-1,0)(5,1)

While the search for surgery diagrams can be scripted in SnapPy, the manipulation in KLO presently
requires human intervention.

2.5. The MFW bound on braid index.

Proof of Theorem 8. Recall from the introduction that the MFW bound on the braid index of a link is
(d+ + d≠)/2 + 1 where d+ and d≠ are the max and min degrees of v in the P (v, z) version of the HOMFLY-
PT polynomial. Sage has routines in its Link class to compute a P (a, z) version of the polynomial which is
related to the P (v, z) version by a = v≠1. Hence the average of the max and min degrees of v in the MFW
bound equals average of the max and min degrees of a in the polynomial P (a, z). Furthermore, rather than
asking for the minimum degree of a in P (a, z), we may instead ask for the maximum degree of a in P (a≠1, z).

With our list of braid words for the manifolds of T2, we may then enter our links into Sage, compute the
MFW bounds, and compare to the braid index of our braid words.

1 output = []
2

3 for word in wordlist:
4 L = Link(B(word))
5 hp = L.homfly_polynomial(�a�,�z�,�az�)
6 braidindex = max(word)+1
7 MFWbound = hp(a,z).degree(a) + hp(a^-1,z).degree(a))/2 + 1
8 data=[snappy.Link(L).exterior().identify(), (braidindex, MFWbound)]
9 output.append(data)

10

11 print(output)

For the words which do not realize the MFW bounds, we allow SnapPy to work harder at attempting to
simplify the diagram.
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1 L=snappy.Link(braid_closure=word) # word is a braid word that needs reduction
2 L.simplify(mode=�global�,type_III_limit=1000)
3 newword=L.braid_word()
4 braidindex=max(newword)+1
5 print(braidindex, newword)

In all cases, we find that this succeeds in producing positive braids that realize the MFW bound. ⇤

2.6. An illustration of the passage from manifold to diagram. We illustrate this process with the
manifold �o9_40504�. The code

1 M = snappy.Manifold(�o9_40504�)
2 for i in range(3):
3 print(M.drill(i).identify())
4

5 for i in range(3):
6 print(M.drill(0).drill(i).identify())

informs us that two simple drillings are isometric to known link complements: The drilling M-0-1 is isometeric
to �L13n9833� while the drilling M-0-2 is isometric to �L11n425�. We shall work with the first of these.
Writing

1 M.drill(0).drill(1).is_isometric_to(snappy.Manifold(�L13n9833�),1)

lists the action on the cusps of the isometries between M-0-1 and �L13n9833� as

1 [0 -> 2 1 -> 1 2 -> 0
2 [-1 -4] [ 1 0] [-2 1]
3 [ 0 1] [-3 -1] [ 1 0]
4 Does not extend to link,
5 0 -> 2 1 -> 0 2 -> 1
6 [1 4] [-3 -1] [ 1 -1]
7 [0 -1] [ 2 1] [-2 1]
8 Does not extend to link]

In both of these isometries, the (1, 0) slope on the original cusp of M is taken to the (1, 0) slope on cusp 2 of
�L13n9833�. Since the meridians of the drilled curves have slope (1, 0) on their cusps, the action of isometries
on the cusps indicates that �o9_40504� has surgery descriptions as both �L13n9833(-2,1)(1,-3)(0,0)�
and �L13n9833(-3,2)(1,-2)(0,0)�. These surgery descriptions can be confirmed in SnapPy.

Next, using the SnapPy application, entering
Manifold(�L13n9833�).plink()

or even
Manifold(�L13n9833�).browse()

give diagrams of the link �L13n9833� along with the indexing of which components correspond to which
cusps. See Figure 3.

Using the diagram, the surgery description may now be drawn in KLO as in Figure 4 and manipulated
through a sequence of Rolfsen twists until a knot diagram is obtained. The key steps on the manipulation are
shown in Figure 5. After producing the diagram in KLO, from the Export menu of KLO we select diagram
for SnapPea to save a PLink diagram of the knot.

With the exported diagram named diagram.lnk we may import it back into SnapPy. Then
11



Figure 3. A diagram of the link �L13n9833� in PLink (left) and in the SnapPy browser (right).

Figure 4. A surgery diagram of the knot �o9_40504� on the link �L13n9833� drawn in KLO.

1 K = snappy.Manifold(�diagram.lnk�).link()
2 # for orientation correction, may need K = K.mirror()
3 K.braid_word()

returns the list
[1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 3, 5, 2, 4, 1, 3, 2, 3, 4, 5, 6, 7, 7, 6, 5,
4, 3, 2, 4, 5, 4, 6, 5, 7, 4, 6, 5, 4, -3, 4]

that represents the braid word. One observes that this is not a positive (or negative) braid word. Performing
further simplification within SnapPy with

12



(a) (b) (c)

(d) (e) (f)

Figure 5. A sequence of transformations of the surgery diagram of the knot �o9_40504� in
KLO. (a) The surgery diagram from Figure 4 has been simplified and prepared for Rolfsen
twists along the unknot with surgery coe�cient ≠1/3. (b) The result of 3 Rolfsen twists is
shown. The unknot which had surgery coe�cient ≠2 now has coe�cient 1. (c) The diagram
is now prepared for a Rolfsen twist along the unknot with surgery coe�cient 1. (d) The
result of the ≠1 Rolfsen twist is shown. (e) The result with the twisting curve is simplified
in KLO. (f) The twisting curve is discarded and the knot diagram is further simplified in
KLO.

1 K.simplify(mode=�global�,type_III_limit=1000) # K.simplify(�global�) may be sufficient
2 K.braid_word()

returns the list
[1, 2, 1, 3, 1, 4, 2, 4, 3, 5, 5, 4, 3, 5, 2, 3, 3, 4, 3, 3, 2, 1, 2, 3, 3, 4, 4, 3, 2, 3, 4, 5, 4, 3, 2, 3,
4, 3, 2, 3, 2, 4, 2, 4, 4, 3, 4]

which represents a positive braid of braid index 6, realizing the MFW bound.

3. Data

Positive braid words that realize the MFW bound are recorded in Table 3 for knots in A and in Tables 4
and 5 for knots in T2 ≠ A. Also given are their Knot Census name, genus, word length, braid index, and
MFW bound. For each knot the Alexander polynomial �(t) (which one may calculate using SnapPy within
Sage) is also given as a decreasing sequence of nonnegative integers ng > ng≠1 > · · · > n0 = 0 so that

�(t) = (≠1)g +
gÿ

i=1
(≠1)g+i(tni + t≠ni)

and g is the knot genus. All L-space knots have symmetrized Alexander polynomials �(t) of this special
form: the degree of �(t) is the knot genus [OS04] and the non-zero coe�cients of �(t) alternate between 1
and ≠1 [OS05]. See also [HW18b, Corollary 9].
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The entire list of the manifolds of D is split into Tables 6 and 7. The first contains those in the SnapPy
census of manifolds assembled with up to 8 ideal tetrahedra. The second contains those in the SnapPy census
assembled with 9 ideal tetrahedra and no fewer.
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Table 3. Each manifold of D is listed with a positive braid word whose closure is a knot
with the manifold as its complement, the length and index of the braid, the genus of the
knot, and the Alexander polynomial of the knot.

manifold braid word
knot census genus word length braid index MFW bound

Alexander polynomial

�t12533� 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 1, 3, 2, 2
�K8_290� 12 27 4 4

12, 11, 8, 7, 5, 4, 3, 2, 0

�t12681�
1, 2, 3, 4, 4, 3, 2, 3, 2, 4, 2, 1, 1, 1, 2, 1, 3, 2, 1, 3, 2, 3, 4, 3, 2, 4, 1, 3, 2, 4,
3, 4, 4, 3, 2, 4, 1, 3, 2, 4, 3, 4, 4, 3, 2, 4, 3, 4

�K8_296� 22 48 5 5
22, 21, 17, 16, 13, 12, 10, 9, 7, 6, 5, 4, 2, 0

�o9_38928�
1, 2, 1, 2, 3, 2, 4, 2, 3, 4, 4, 5, 4, 3, 5, 2, 3, 3, 2, 1, 3, 2, 3, 3, 2, 4, 2, 3, 2, 4,
3, 5, 4, 3, 5, 3, 2, 4, 1, 2, 2, 3, 3

�K9_620� 19 43 6 6
19, 18, 13, 12, 10, 9, 7, 6, 4, 3, 2, 1, 0

�o9_39162�
1, 1, 2, 1, 3, 2, 4, 2, 5, 1, 3, 2, 2, 3, 2, 4, 2, 5, 2, 4, 3, 2, 4, 2, 5, 4, 3, 5, 2, 4,
2, 5, 2, 4, 3, 2, 2, 3, 3, 2, 2, 1, 2, 3, 4, 3, 2, 4, 5, 4, 3, 4, 3

�K9_624� 24 53 6 6
24, 23, 18, 17, 15, 14, 11, 10, 9, 8, 6, 5, 3, 1, 0

�o9_40363�
1, 2, 1, 3, 4, 5, 4, 4, 4, 5, 4, 6, 3, 6, 2, 5, 4, 3, 5, 4, 6, 5, 6, 6, 5, 4, 6, 3, 5, 2,
4, 1, 3, 5, 2, 4, 6, 3, 5, 4, 6, 5, 6, 6, 5, 4, 6, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 6, 3, 5,
4, 6, 5, 4, 6, 3, 5, 2, 4, 3, 5, 4

�K9_674� 33 72 7 7
33, 32, 26, 25, 21, 20, 18, 17, 14, 13, 12, 11, 9, 8, 6, 4, 2, 1, 0

�o9_40487�
1, 2, 1, 3, 3, 2, 2, 3, 4, 3, 2, 1, 3, 2, 1, 3, 2, 4, 2, 4, 1, 4, 2, 1, 3, 2, 3, 4, 3, 4,
3, 2

�K9_679� 14 32 5 5
14,13,9,8,6,5,3,2,1,0

�o9_40504�
1, 1, 2, 1, 3, 4, 3, 4, 3, 5, 4, 3, 5, 2, 4, 1, 3, 1, 2, 1, 3, 4, 5, 4, 3, 5, 4, 3, 5, 5,
5, 4, 3, 2, 1, 3, 4, 5, 4, 4, 5, 4, 3, 2, 4, 3, 4

�K9_680� 21 47 6 6
21, 20, 15, 14, 12, 11, 9, 8, 6, 5, 4, 3, 2, 1, 0

�o9_40582�
1, 2, 2, 3, 2, 2, 3, 4, 3, 2, 1, 2, 3, 2, 4, 4, 3, 3, 2, 1, 3, 3, 3, 2, 2, 3, 4, 3, 2, 2,
1, 2, 2, 3, 2, 3

�K9_685� 16 36 5 5
16, 15, 11, 10, 7, 6, 5, 4, 2, 0

�o9_42675�
1, 2, 1, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 3, 2, 1, 2, 3, 3, 4, 4, 3, 3, 4, 3, 3, 2, 1, 3, 2,
4, 2, 3, 2, 1, 3

�K9_723� 16 36 5 5
16, 15, 11, 10, 8, 7, 5, 4, 3, 2, 1, 0
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Table 4. Each manifold of T2 is listed with a positive braid word whose closure is a knot
with the manifold as its complement, the length and index of the braid, the genus of the
knot, and the Alexander polynomial of the knot.

manifold braid word
knot census genus word length braid index MFW bound

Alexander polynomial

�t09284� 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 2, 3
�K8_186� 10 23 4 4

10, 9, 6, 5, 4, 3, 1, 0

�t09450�
1, 2, 3, 4, 5, 5, 4, 3, 5, 4, 3, 5, 2, 1, 3, 2, 4, 3, 5, 2, 3, 2, 4, 3, 5, 3, 2, 3, 3, 3,
3, 4, 5, 4, 3, 4, 4, 3, 5, 4, 3, 3, 2, 3, 4, 3, 5, 3, 5, 4, 3, 2, 3, 2, 4, 3, 4, 4, 5

�K8_189� 27 59 6 6
27, 26, 21, 20, 17, 16, 13, 12, 11, 10, 7, 5, 3, 2, 1, 0

�t09633�
1, 2, 1, 2, 3, 2, 4, 1, 3, 2, 2, 1, 2, 3, 4, 3, 3, 2, 3, 4, 3, 2, 2, 1, 3, 3, 2, 3, 3, 2,
4, 3, 3, 2, 3, 4, 3, 2, 1, 2

�K8_195� 18 40 5 5
18, 17, 13, 12, 10, 9, 6, 4, 2, 1, 0

�t10496� 1, 2, 3, 3, 3, 3, 2, 2, 1, 3, 3, 2, 3, 3, 2, 1, 3, 2, 3, 3, 2, 1, 3, 2, 3, 2, 3
�K8_220� 12 27 4 4

12, 11, 8, 7, 5, 4, 2, 1, 0

�o9_28751�

1, 2, 1, 3, 4, 5, 4, 6, 3, 5, 7, 4, 6, 5, 7, 4, 6, 5, 6, 7, 6, 5, 4, 6, 5, 4, 6, 3, 2, 4,
1, 3, 2, 1, 3, 1, 4, 5, 4, 6, 3, 4, 5, 4, 3, 5, 4, 6, 3, 5, 2, 6, 1, 7, 6, 5, 5, 4, 3, 5,
2, 4, 1, 3, 5, 2, 4, 6, 5, 7, 4, 5, 6, 5, 5, 4, 3, 2, 1, 3, 2, 4, 3, 5, 2, 4, 1, 3, 5, 2,
4, 6, 1, 3, 5, 7, 4, 6, 3, 5, 2, 4, 3, 2, 1, 3, 2, 4, 3

�K9_412� 51 109 8 8
51, 50, 43, 42, 37, 36, 33, 32, 29, 28, 25, 24, 23, 22, 19, 18, 16, 14, 11, 10, 9,
8, 7, 6, 5, 4, 2, 0

�o9_29751�
1, 2, 3, 4, 5, 4, 5, 4, 6, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 6, 3, 5, 4, 6, 3, 5, 2, 4, 6, 1,
3, 5, 2, 4, 6, 3, 5, 4, 6, 6, 5, 6, 6, 6, 5, 4, 6, 3, 5, 2, 4, 6, 3, 5, 4, 6, 5, 6, 5, 6

�K9_429� 27 60 7 7
27, 26, 20, 19, 17, 16, 13, 12, 10, 9, 7, 6, 5, 4, 3, 2, 0

[HW18a] Matthew Hedden and Liam Watson, On the geography and botany of knot Floer homology, Selecta Math. (N.S.) 24
(2018), no. 2, 997–1037, arXiv:1404.6913v3 [math.GT]. MR 3782416

[HW18b] , On the geography and botany of knot Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 997–1037.
MR 3782416

[Kob84] Tsuyoshi Kobayashi, Structures of the Haken manifolds with Heegaard splittings of genus two, Osaka J. Math. 21
(1984), no. 2, 437–455. MR 752472

[LV] Christine Ruey Shan Lee and Faramarz Vafaee, On 3-braids and L-space knots, unpublished manuscript.
[Mor86] H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 107–109.

MR 809504
[Mot16] Kimihiko Motegi, L-space surgery and twisting operation, Algebr. Geom. Topol. 16 (2016), no. 3, 1727–1772,

arXiv:1405.6487v3 [math.GT]. MR 3523053
[Ni07] Yi Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577–608, arXiv:math/0607156v4

[math.GT]. MR 2357503
[OS04] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334.

MR 2023281
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Table 5. Table 4 continued

manifold braid word
knot census genus word length braid index MFW bound

Alexander polynomial

�o9_32314�
1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 1, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4,
3, 2, 1, 1, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 6,
2, 6, 1, 5, 4, 3, 2, 1

�K9_481� 31 68 7 7
31, 30, 24, 23, 21, 20, 16, 15, 14, 13, 11, 10, 8, 7, 6, 5, 4, 3, 1, 0

�o9_33380�
1, 2, 1, 2, 1, 3, 1, 4, 2, 4, 1, 3, 2, 4, 1, 3, 2, 4, 3, 4, 4, 3, 2, 4, 1, 3, 2, 4, 3, 4,
4, 3, 2, 4, 1, 3, 2, 4, 3, 4, 4, 3, 2, 4

�K9_497� 20 44 5 5
20, 19, 15, 14, 11, 10, 9, 8, 6, 5, 4, 3, 1, 0

�o9_33944�
1, 2, 1, 3, 2, 4, 1, 3, 2, 4, 3, 2, 4, 1, 3, 2, 4, 3, 4, 4, 3, 2, 4, 1, 3, 2, 4, 3, 4, 4,
3, 2, 4, 1, 3, 2, 4, 3, 4, 4, 3, 2, 4, 1, 3, 2, 4, 3, 4, 4, 3, 2, 3, 4, 4, 3

�K9_511� 26 56 5 5
26, 25, 21, 20, 16, 15, 12, 11, 10, 9, 7, 6, 5, 4, 2, 1, 0

�o9_33959�
1, 2, 3, 2, 4, 3, 5, 3, 5, 4, 3, 5, 2, 5, 2, 4, 4, 3, 2, 4, 1, 3, 5, 2, 5, 3, 6, 4, 3, 5,
2, 4, 3, 2, 2, 1, 2, 2, 3, 3, 4, 3, 5, 2, 6, 3, 4, 5, 4, 3, 2, 2, 1, 3, 2, 4, 1, 5, 4, 3,
2, 4, 3, 3, 2, 1, 3, 2, 3, 4, 4, 3, 4, 5, 4, 3, 2, 1, 3, 3, 4, 3, 5, 4

�K9_513� 39 84 7 7
39, 38, 32, 31, 27, 26, 23, 22, 20, 19, 16, 15, 14, 13, 11, 10, 8, 6, 4, 3, 2, 1, 0

�o9_34409�
1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1,
2, 2, 3

�K9_524� 15 33 4 4
15, 14, 11, 10, 8, 7, 5, 4, 2, 1, 0

�o9_36380�

1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1,
3, 5, 7, 2, 4, 6, 1, 3, 5, 2, 4, 1, 3, 2, 1, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5,
7, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, 7, 2, 4, 6, 1, 3, 5, 2, 4, 1, 3, 4, 5,
6, 7, 8, 9, 9, 8, 7, 9, 6, 8, 5, 7, 9, 4, 6, 9, 3, 5, 8, 2, 4, 7, 1, 3, 6, 8, 2, 5, 7, 9,
4, 8, 3, 7, 6, 5, 4

�K9_565� 59 127 10 10
59, 58, 49, 48, 45, 44, 39, 38, 35, 34, 31, 30, 28, 27, 25, 24, 21, 20, 19, 18,
17, 16, 14, 13, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 0

�o9_40026�
1, 2, 3, 4, 4, 3, 2, 4, 1, 4, 3, 2, 3, 4, 3, 4, 3, 4, 4, 3, 2, 3, 2, 1, 2, 2, 3, 2, 2, 3,
3, 2, 3, 4, 3, 2, 4, 2, 4, 1, 2, 3

�K9_656� 19 42 5 5
19,18,14,13,11,10,7,6,5,4,3,2,0

[OS05] , On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300,
arXiv:math/0303017v2 [math.GT]. MR 2168576

[Pdt20] The Pandas development team, pandas-dev/pandas: Pandas, 2020, https://doi.org/10.5281/zenodo.3509134.
[Rol84] Dale Rolfsen, Rational surgery calculus: extension of Kirby’s theorem, Pacific J. Math. 110 (1984), no. 2, 377–386.

MR 726496
[Swe] Frank Swenton, KLO (Knot-Like Objects), (29/07/2019), http://KLO-Software.net.
[The20] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.1), 2020,

https://www.sagemath.org.
[VRD09] Guido Van Rossum and Fred L. Drake, Python 3 reference manual, CreateSpace, Scotts Valley, CA, 2009.
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Table 6. The members of D in the SnapPy census of manifolds assembled from at most 8
ideal tetrahedra.

�m016�, �m071�, �m082�, �m103�, �m118�, �m144�, �m194�, �m198�, �m211�, �m223�, �m239�, �m240�, �m270�, �m276�,
�m281�, �s042�, �s068�, �s086�, �s104�, �s114�, �s294�, �s301�, �s308�, �s336�, �s344�, �s346�, �s367�,
�s369�, �s384�, �s407�, �s560�, �s582�, �s652�, �s665�, �s682�, �s684�, �s769�, �s800�, �s849�, �v0082�,

�v0114�, �v0165�, �v0220�, �v0223�, �v0249�, �v0319�, �v0330�, �v0398�, �v0407�, �v0424�, �v0434�, �v0497�,
�v0545�, �v0554�, �v0570�, �v0573�, �v0707�, �v0709�, �v0715�, �v0740�, �v0741�, �v0759�, �v0765�, �v0830�,
�v0847�, �v0912�, �v0939�, �v0945�, �v0959�, �v1077�, �v1109�, �v1269�, �v1300�, �v1359�, �v1392�, �v1423�,
�v1425�, �v1547�, �v1565�, �v1620�, �v1628�, �v1690�, �v1709�, �v1716�, �v1718�, �v1728�, �v1810�, �v1832�,
�v1839�, �v1915�, �v1921�, �v1940�, �v1966�, �v1980�, �v1986�, �v2024�, �v2090�, �v2215�, �v2217�, �v2290�,
�v2325�, �v2384�, �v2759�, �v2871�, �v2900�, �v2925�, �v2930�, �v3070�, �v3105�, �v3234�, �v3335�, �v3354�,

�v3482�, �t00110�, �t00146�, �t00324�, �t00423�, �t00434�, �t00550�, �t00621�, �t00729�, �t00787�, �t00826�,
�t00855�, �t00873�, �t00932�, �t01033�, �t01037�, �t01125�, �t01216�, �t01268�, �t01292�, �t01318�,
�t01368�, �t01409�, �t01422�, �t01424�, �t01440�, �t01598�, �t01636�, �t01646�, �t01690�, �t01757�,
�t01815�, �t01834�, �t01850�, �t01863�, �t01949�, �t01966�, �t02099�, �t02104�, �t02238�, �t02276�,
�t02378�, �t02398�, �t02404�, �t02470�, �t02537�, �t02567�, �t02639�, �t03106�, �t03566�, �t03607�,
�t03709�, �t03710�, �t03713�, �t03781�, �t03843�, �t03864�, �t03956�, �t03979�, �t04003�, �t04019�,
�t04102�, �t04180�, �t04228�, �t04244�, �t04382�, �t04449�, �t04557�, �t04721�, �t04756�, �t04927�,
�t05118�, �t05239�, �t05390�, �t05425�, �t05426�, �t05538�, �t05564�, �t05578�, �t05658�, �t05663�,
�t05674�, �t05695�, �t06001�, �t06246�, �t06440�, �t06463�, �t06525�, �t06570�, �t06573�, �t06605�,
�t06637�, �t06715�, �t06957�, �t07070�, �t07104�, �t07348�, �t07355�, �t07412�, �t07670�, �t08111�,
�t08114�, �t08184�, �t08201�, �t08267�, �t08273�, �t08403�, �t08532�, �t08576�, �t08936�, �t09016�,
�t09126�, �t09267�, �t09284�, �t09313�, �t09450�, �t09455�, �t09500�, �t09580�, �t09633�, �t09690�,
�t09704�, �t09847�, �t09852�, �t09882�, �t09912�, �t09954�, �t10177�, �t10188�, �t10215�, �t10224�,
�t10230�, �t10262�, �t10292�, �t10462�, �t10496�, �t10643�, �t10681�, �t10832�, �t10985�, �t11198�,
�t11376�, �t11548�, �t11556�, �t11852�, �t11887�, �t11909�, �t12288�, �t12533�, �t12681�, �t12753�
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Table 7. The members of D in the SnapPy census of manifolds assembled from 9 ideal tetrahedra.

�o9_00133�, �o9_00168�, �o9_00644�, �o9_00797�, �o9_00815�, �o9_01079�, �o9_01175�, �o9_01436�,
�o9_01496�, �o9_01584�, �o9_01621�, �o9_01680�, �o9_01765�, �o9_01936�, �o9_01953�, �o9_01955�,
�o9_02255�, �o9_02340�, �o9_02350�, �o9_02383�, �o9_02386�, �o9_02655�, �o9_02696�, �o9_02706�,
�o9_02735�, �o9_02772�, �o9_02786�, �o9_02794�, �o9_02909�, �o9_03032�, �o9_03108�, �o9_03118�,
�o9_03133�, �o9_03149�, �o9_03162�, �o9_03188�, �o9_03288�, �o9_03313�, �o9_03412�, �o9_03526�,
�o9_03586�, �o9_03622�, �o9_03802�, �o9_03833�, �o9_03932�, �o9_04054�, �o9_04060�, �o9_04106�,
�o9_04205�, �o9_04245�, �o9_04269�, �o9_04313�, �o9_04431�, �o9_04435�, �o9_04438�, �o9_04938�,
�o9_05021�, �o9_05177�, �o9_05229�, �o9_05287�, �o9_05357�, �o9_05426�, �o9_05483�, �o9_05562�,
�o9_05618�, �o9_05860�, �o9_05970�, �o9_06060�, �o9_06128�, �o9_06154�, �o9_06248�, �o9_06301�,
�o9_06956�, �o9_07044�, �o9_07152�, �o9_07167�, �o9_07195�, �o9_07401�, �o9_07790�, �o9_07893�,
�o9_07943�, �o9_07945�, �o9_08006�, �o9_08042�, �o9_08224�, �o9_08302�, �o9_08402�, �o9_08477�,
�o9_08497�, �o9_08647�, �o9_08765�, �o9_08771�, �o9_08776�, �o9_08828�, �o9_08831�, �o9_08852�,
�o9_08875�, �o9_09052�, �o9_09213�, �o9_09271�, �o9_09372�, �o9_09465�, �o9_09731�, �o9_09808�,
�o9_10020�, �o9_10192�, �o9_10213�, �o9_10696�, �o9_11002�, �o9_11100�, �o9_11248�, �o9_11467�,
�o9_11537�, �o9_11541�, �o9_11556�, �o9_11560�, �o9_11570�, �o9_11658�, �o9_11685�, �o9_11795�,
�o9_11845�, �o9_11999�, �o9_12079�, �o9_12144�, �o9_12230�, �o9_12253�, �o9_12412�, �o9_12459�,
�o9_12477�, �o9_12519�, �o9_12693�, �o9_12736�, �o9_12757�, �o9_12873�, �o9_12892�, �o9_12919�,
�o9_12971�, �o9_13052�, �o9_13054�, �o9_13056�, �o9_13125�, �o9_13182�, �o9_13188�, �o9_13400�,
�o9_13403�, �o9_13433�, �o9_13508�, �o9_13537�, �o9_13604�, �o9_13639�, �o9_13649�, �o9_13666�,
�o9_13720�, �o9_13952�, �o9_14018�, �o9_14079�, �o9_14108�, �o9_14136�, �o9_14359�, �o9_14364�,
�o9_14376�, �o9_14495�, �o9_14599�, �o9_14716�, �o9_14831�, �o9_14974�, �o9_15506�, �o9_15633�,
�o9_15808�, �o9_15997�, �o9_16065�, �o9_16141�, �o9_16157�, �o9_16181�, �o9_16319�, �o9_16356�,
�o9_16431�, �o9_16514�, �o9_16527�, �o9_16642�, �o9_16685�, �o9_16748�, �o9_16920�, �o9_17382�,
�o9_17450�, �o9_17646�, �o9_18007�, �o9_18209�, �o9_18341�, �o9_18633�, �o9_18646�, �o9_18813�,
�o9_19130�, �o9_19247�, �o9_19364�, �o9_19396�, �o9_19645�, �o9_19724�, �o9_20029�, �o9_20219�,
�o9_20305�, �o9_20364�, �o9_20472�, �o9_21195�, �o9_21496�, �o9_21513�, �o9_21620�, �o9_21893�,
�o9_21918�, �o9_22129�, �o9_22252�, �o9_22477�, �o9_22607�, �o9_22663�, �o9_22698�, �o9_22925�,
�o9_23023�, �o9_23032�, �o9_23179�, �o9_23263�, �o9_23461�, �o9_23660�, �o9_23723�, �o9_23955�,
�o9_23961�, �o9_23971�, �o9_23977�, �o9_24069�, �o9_24126�, �o9_24149�, �o9_24183�, �o9_24290�,
�o9_24401�, �o9_24407�, �o9_24534�, �o9_24592�, �o9_24779�, �o9_24886�, �o9_24889�, �o9_24946�,
�o9_25110�, �o9_25199�, �o9_25341�, �o9_25444�, �o9_25595�, �o9_25709�, �o9_25832�, �o9_26141�,
�o9_26471�, �o9_26570�, �o9_26604�, �o9_26767�, �o9_26791�, �o9_27107�, �o9_27155�, �o9_27261�,
�o9_27371�, �o9_27392�, �o9_27429�, �o9_27480�, �o9_27737�, �o9_27767�, �o9_28113�, �o9_28153�,
�o9_28284�, �o9_28529�, �o9_28592�, �o9_28746�, �o9_28751�, �o9_28810�, �o9_29048�, �o9_29246�,
�o9_29436�, �o9_29529�, �o9_29551�, �o9_29648�, �o9_29751�, �o9_29766�, �o9_30142�, �o9_30150�,
�o9_30375�, �o9_30634�, �o9_30650�, �o9_30721�, �o9_30790�, �o9_31165�, �o9_31267�, �o9_31321�,
�o9_31440�, �o9_31481�, �o9_32044�, �o9_32065�, �o9_32132�, �o9_32150�, �o9_32257�, �o9_32314�,
�o9_32471�, �o9_32588�, �o9_32964�, �o9_33189�, �o9_33284�, �o9_33380�, �o9_33430�, �o9_33486�,
�o9_33526�, �o9_33585�, �o9_33801�, �o9_33944�, �o9_33959�, �o9_34000�, �o9_34403�, �o9_34409�,
�o9_34689�, �o9_35320�, �o9_35549�, �o9_35666�, �o9_35682�, �o9_35720�, �o9_35736�, �o9_35772�,
�o9_35928�, �o9_36114�, �o9_36250�, �o9_36380�, �o9_36544�, �o9_36809�, �o9_36958�, �o9_37050�,
�o9_37291�, �o9_37482�, �o9_37551�, �o9_37685�, �o9_37751�, �o9_37754�, �o9_37851�, �o9_37941�,
�o9_38287�, �o9_38679�, �o9_38811�, �o9_38928�, �o9_38989�, �o9_39162�, �o9_39394�, �o9_39451�,
�o9_39521�, �o9_39606�, �o9_39608�, �o9_39859�, �o9_39879�, �o9_39981�, �o9_40026�, �o9_40052�,
�o9_40075�, �o9_40179�, �o9_40363�, �o9_40487�, �o9_40504�, �o9_40582�, �o9_41372�, �o9_42224�,

�o9_42493�, �o9_42675�, �o9_42961�, �o9_43001�, �o9_43679�, �o9_43750�, �o9_43857�, �o9_43953�, �o9_44054�
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