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ABSTRACT

In this paper, we study the Riley polynomial of double twist knots with higher genus.
Using the root of the Riley polynomial, we compute the range of rational slope r such
that r-filling of the knot complement has left-orderable fundamental group. Further
more, we make a conjecture about left-orderable surgery slopes of two-bridge knots.
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Introduction

The study of Riley polynomial of two-bridge knots dates back to [1]. In a series of
papers by Ryoto Hakamata and Masakazu Teragaito [2,3], they studied a special
class of two-bridge knot, the double twisted knot J(k,1) (see Figure 1). Under their
convention, the half-twists in the upper box are left-handed (resp. right-handed)
if kK > 0 (resp. k < 0), while those in the lower box are right-handed (resp. left-
handed) if I > 0 (resp. I < 0). By symmetry, J(k,1) is isotopic to J(—I, —k). For
example, J(3,2) is the knot 52, while J(—3,2) is the figure-eight knot 4;. We will
follow this convention in the paper.

s fjoy-

k-half twists

i

/—/Laé[ twists \ [f/zaé[ twists

Fig. 1: The double twist knot J(k,1)
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In [3], the special case of the double twisted knot K = J(k,l) with k = 2m
and [ = 2n half twists is studied. And a property of the fundamental group of the
Dehn filling of K called left-orderability is discussed. A non-trivial group G is called
left-orderable if there is a strict total ordering invariant under left multiplication.
That is to say, if f < g then hf < hg for any f,g,h € G. We call a 3-manifold
orderable if its fundamental group is left-orderable. The main result of [3] states:

Theorem 1.1. [3, Theorem 1.1] Let K = J(2m,2n) be the hyperbolic genus one
2-bridge knot in the S-sphere S° as illustrated in Figure 1. Let I be the interval
defined by

(— 4n4m) if m >0 and n > 0,
(4m, —4n) ifm <0 andn <0,
[0, max{4m, —4n}) if m >0 and n <0,
(min{4m, —4n},0] if m <0 and n > 0.

Then any slope in I is left-orderable. That is, w1 (K (r)) is left-orderable.

As Tran informed the author, the above result is also proved independently by him
in [4] using a different method. And in Tran’s recent paper [5], he improved the
above result by showing slopes in (—o0, 0) also give rise to orderable Dehn fillings.

While in the papers [3], the authors mostly focused on the double twist knot
with 2m and 2n half twists, which has genus 1. In this paper, I computed the Riley
polynomial of the double twist knot with 2m + 1 and 2n half twists J(2m + 1, 2n),
which has higher genus. By studying the root of the Riley polynomial, I proved the
following theorem of double twist knots.

Theorem 1.2. For rational v € I, the Dehn filling of J(2m + 1,2n) of slope r is
orderable, where

(—o00,1) ifm>0andn>0, orm<—1andn > 1,
(=1,00) ifm<—1andn <0, orm >0 andn < —1,
[0, 4n) ifm < —1 andn >0,

(4n, 0] if m>0 and n <O0.

I =

Remark 1.3. When m = —1,0 or n = 0, J(—1,2n), J(1,2n) and J(2m + 1,0)
become torus knots. So these three cases are excluded. All two-bridge links except
the torus links are hyperbolic (See for example [6, Corollary 2]). Therefore as a
subset of two-bridge links, all the double twist knots in our theorem are hyperbolic.

Remark 1.4. After the author posted this paper on arxiv, Tran informed the
author that in version 3 of his paper [5], he independently computed the interval
in the first two cases of Theorem 1.2.
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Section 2-7 of this paper are devoted to proving the theorem. In Section 8, we
use computer program to check the theorem for some examples. In Section 9, we
make connections with general two-bridge knots.

2. SL2(R) Representations of the Fundamental Group of J(k,2n)

We will mostly follow the notations in [3].

Let us look at the link diagram of J(k,[) in Figure 1. The link diagram J(k,1)
is a knot (called the double twist knot) if and only if either k or [ is even. Then one
may apply symmetries of the knot to assume that [ = 2n is even. Moreover, since
J(k,2n) and J(—k, —2n) differ by mirror, then in our computation, we can assume
n > 0 without loss of generality.

The fundamental group of J(k,2n) has the following presentation (S3 —
J(k,2n)) = (z,ylw"z = yw™), where

B {(xyl)m(xly)m, if k=2m,

2.1
(xy=Hmay(xz~ly)™, if k=2m+ 1. @1

In the first case J(2m,2n) corresponds to K(m,n) as in [3]. We are interested
in the second case J(2m + 1,2n), double twist knot with 2m + 1 half twists and
2n half twists, which has genus n when m # —1 (see e.g. [7, Corollary 8.7.5]).
Under the above presentation of the fundamental group, the meridian M = x and
the longitude £ = w"w"x~*", where w, = (yz~!)™yz(y~'z)™ is obtained from
w by reversing the order of letters. See Section 4 of [8] for more details about the
presentation of 7 (S — J(k, 2n)) and £. But remark that there is a slight difference
in the notation and choice of framing.

In this paper, we will study the case when k = 2m + 1 in J(k,I).

Let p be a SLa(R) representation of 7 (S3 — J(2m + 1,2n)). Then by taking
conjugation, we can assume that

o0 = (510 o= (0 ). 22)

where s and t are real numbers. To compute the image of M and £ under p, we will
need some computational trick. Let f,, and g,, be two sequences of polynomials
in the variable s defined by inductive relations fr,12 — (8 + 2) fins1 + frn = 0 and
gm+2 — (8 + 2)gm+1 + gm = 0, with initial conditions fo = go =1, f1 = s+ 1 and
go=s+2.5et f_, = fm_1 form>1.Set g1 =0and g_,,, = —gm—o for m > 2.
So both f,,, and g,, are defined for any m € Z.

Lemma 2.1. [3, Lemma 2.2] The closed formulas for f., and g, are
m . m .
m+\ ; _ m+1+13\ ,
=2 () o= (")

In particular, all coefficients of f., and g, are positive integers, and the degree of
both f, and g,, are m. Also, fn, and g,, are monic.
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Then it is easy to check that f,, and g,, satisfy the following properties.
Lemma 2.2. [3, Lemma 2.3]

(1) fm + 9m—-1 = 9m
(2) fm + 89m = fm+1

(3) f2 = $gmGm-1+1

Now we can compute the image of w under p.
Proposition 2.3. Let W = p(w), then
( tf72n - Sg?n fmtgm - fmgm—1>

; (2.3)
StfmIm—1— Sfm9m me - ngn—l

Proof. We compute directly,

o= (1),

S

play) = <3 iR _1/t> :

—st

plry) = (t__ss 1?;) :

Then
—1\m fm Im—1 f'm gm—1>
X = = R
p( v ) (fm - fm—l Im—-1 — gm—Q) <ng—1 fm—l
fm —(s+1) fin m—1
oty = [ Jm ) (L ).
—5tGm—1 gm — (8 + 1)gm—1 —8tgm-1 fm—1
So

f2

_ _ tf2 — sg e Y
W = p(w) = p(zy™ )" play)pley)™ = o j g
Stfmgmfl - Sfmgm + S9m—1

Denote
W = <w1,1 wl,z) _
W21 W22
Let z and 1/z be the eigenvalues of W. Set 7 = trtW = 2+ 1/z and 7, =
2Pl k=3 oo 237k 4 217k Then 74 satisfies Tpyo — 77hy1 + 71 = 0.
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Lemma 2.4. [3, Lemma 3.5] For W™ = (?’1 21’2> = p(w™), we have
2,1 22,2

W2 1Tn Tn+1 — W1,1Tn

Wn — (wl,lTn — Tn—-1 W1,2Tn )

The proof of [3, Lemma 3.5] does not depend on the explicit expression of W. So
this lemma still holds in our case.

3. Longitude

In this section, we follow the procedures in Section 5 of [3] to compute the image
of the longitude £ under certain representation p,, which will be defined below.

Conjugating p by Q = (t 6 1 Vi _11/\/2?), we can diagonalize p(z). Call this

new representation ps. So

t—s—1

Vit 0 tjﬁ =5 L) -1
ps(x) “lo L) and ps(y) = . s+1 1/t
Vi s Ve

We will compute ps(L). Let

12
n (Ul,l 02,1> and o — s(Vt— W)
’ (

ps(w ): V1,2 V2,2

We will first compute pg(w?).

Lemma 3.1.

Ul 1 V2,1
ps(wy) = NE
V1,20 V2,2

Proof. It’s easy to compute that

t2—st—t _ sVt Vi t2—st—t s\t
ps(ry) = ( _t_il (&= 142? 1 > = ( _til st+tg—1> )
Vit H(t—1) Vvt oo t(t-1)

t2?st1—t Vel s T % t2—st—t _\/:i
— - T(t—1/t T — to
ps(yz) (—3\/7? it(—g—i;)l ) (—s\f étt(;‘rtl ) :
We can observe that the (1,2)-th entry of ps(yz) is exactly the (2,1)-th entry of
ps(zy) divided by o, and the (2, 1)-th entry of ps(yx) is exactly the (1,2)-th entry
of ps(xy) multiplied by . And the other two entries of p,(yx) and p,(zy) coincide.
The authors of [3] proved in Lemma 5.1 that similar relation holds between
ps(y~1z) and ps(xy~!), and also between p,(yz~1) and ps(x~'y). Moreover, they
showed that this relation is preserved under matrix multiplication;

ab\ (pq\ [(ap+brag+bs
cd) \rs) \ep+drecg+ds)’
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®w 93

D a £\ [ ap+br —c”jdr
qo bod) \(ag+bs)ocqg+ds)’

Therefore the same relation must also hold for p,(w™) and ps(wy). O

U1 U2,2

w21 w11 \/1? w21
U1, = w1+ U2 = NG (wl,Z - + — | w22 )

Lemma 3.2. [3, Lemma 5.4] For U = <U1,1 u1,2> = ps(w),

t—1’ t—1 t—1 -1
w21 w21
u2,2:w2,2—t_1~

u - 2
2,1 \/E)

Lemma 3.3. [3, Lemma 5.5] For U™ = (U1,1 v271> = ps(w)", we have

V1,2 V2,2
V1,1 = U1,1Tn — Tn—1, V1,2 = U1,2Tn,
V2,1 = U2,1Tn, V22 = Tn+1l — U1,1Tn-

Again, the above two lemmas still hold because no explicit expression of entries of
W is involved.

Let Bs be the (1,1)-entry of ps(£). In our case, Bs obtains the form in the
following lemma, which is different from [3, Lemma 5.6].

U1 ,_
Lemma 3.4. B, = ——=—t 2",
U1,20

Proof. We compute ps(L) = ps(wlw"z=4") first.

2n
ps(x) ™" = Qp(x) Q™ = Q <Iét - . Ut) Q™!

1/62n 5 \>" 1/t2"
o e ()

() = pwiputu o) = (D4 (e (M)

V1,20 V22) \U2,1 V2,2
2
2 V2,1\;—2n
— (vis + )t *1
)
(v1,1v1,20 + V2,1V 2)t " *

)t~2". To simplify B,, we need to use the relation detU” =

v3
2 ;
So By = (vi; + —

V1,1V2,2 — V1,202 1 = 1. Moreover vy 1v1,20 42,1022 = 0, because ps(L) is diagonal.
Then
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7
v3 4 1,102, V21
—2n s s bl 4 —2n
B; (U1 1+ )t =(————" 4 v21) =t
V1,2 g
V12021 + 1 Va1, _ Vo1 ,_
= (—7 + U2~1)7t 2n = ——1 n
V1,2 ' o V1,20
Lemma 3.3 U21Tn ,_on U2,1 ,_9n
PRE 92 2 M g = ——t . O
U1,2Tn0 U1,20

Proposition 3.5. Let B be the (1,1)-entry of ps(L), where L is the longitude of
J(2m +1,2n). Then

Bs _ 9m tgm 1t_2n
Im—-1 — tgm

Proof. We compute directly using Lemma 3.2 and Proposition 2.3.

w21 S

U2,1 = \[ = \[ (tgm 1 gm)a

w t w
uyp =Vt (w1,2 — > + % (w2,2 o >

t—1 t—1
\/E
1y (= D fmgm - (t* =) fngm—1 — £ [, + stgr,)
\/Z
( Stgm 1+ f2 r_ fmgm 1 “l‘ fmgm>
\/% t2
- (t—1+ )fmgm_( _t+ )fmgm 1+(1_t2)f2 “I‘St( g?n—l))
\/f st 9 st2 9
S A -1 — (2 - (- — G _
t(tfl)fm (t +t71)gm (t t+t71)gm 1+( t)(gm Im 1)+5t(gm+gm 1)
ﬁ st 9 st?
= m -1 t)gm — (—t 1— st)gm—
\/f(st— (t—1)2) s
= m (t9m — gm-1) = — m (t9m — Gm—1) -
1t —1)2 fm (tg Im—1) \/faf (tg gm—1)
Applying Lemma 3.4, we have
B, = Y21 _ 9n— tgmﬂt,zn. o

U120 Gm—1 — t9m

4. Root of the Riley Polynomial

The Riley polynomial of two-bridge knot was first studied by Robert Riley in his
paper [1]. The root of the Riley polynomial of a two-bridge knot K describes all
the nonabelian PSLo(C) representations of 71 (S3 — K). By examining real roots of
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the Riley polynomial of K, we will be able to construct PSLy(R) representations
that we need.

Proposition 4.1. The Riley polynomial of K = J(2m + 1,2n) is

O (8,t) = (Tay1 — ) + E+ 1/t — 85— 2) frnGm—1Tn, (4.1)
where 7= (t + 1/t — s — 2)f2 + 2.
Proof. By [1, Theorem 1], the Riley polynomial for a two-bridge knot K is
G (s,t) =211 + (1 —t)z1,2. So for the double twist knot J(2m + 1, 2n),

Or(s,t) = (W11 — Tho1) + (1 — w27,

= (Tn+1 — Tn) —+ ((1 — t)wl_yg + 1 — w2,2)7_n.

_ fmgm 2 f72n 2
(I =wiz +1—wzo = (1 =T = fmgm—1) + frn = 8Gmgm—1 = (F* = 59m_1
= (t + l/t — S — Q)fmgm—lTn-
So d)K(S t) (T’ﬂ+1 - Tn) + (t + 1/t —S5— z)fmgm—lTn-
Direct computation using Proposition 2.3 and Lemma 2.2 shows
2
T =ttW = tf? — sg2 + f——sgm1—(t—|—1/t—s—2)f2 (4.2)

Lemma 4.2. When m > 0, both f,, and g, have m simple negative roots.

Proof. First, we show both f,, and g,, have at least one sign change when m # 0.
Notice that both f,, and g,, are monic polynomials in terms of s of degree m. In
particular g,,(2z — 2) is the Chebyshev Polynomial of the second kind. Therefore

gm has exactly m different negative simple roots 2 cos (—) -2, k=1,2,-

2jm
When s — oo, both f,,, and g, approach +oco. So g, < 0 on (2cos (mJH) _

2,2 cos ((2:;71)”> — 2), while g,, > 0 on (2cos (M) — 2. 2cos (2T ) — 2)

=] A1 A1

and (2003(m11> —2,00), j = 1,...,[%]. Since g1 (2005 ((QJ_TD’T> —2) =
0 and 2cos <M> -2 € (2cos (ifl) —2,2cos(%)—2) for j =
1,...,]2], then fm( (QJ 1>“)72) < 0 by Lemma 2.2 (1). Simi-

larly, we have 2cos (23 ) 2 € (2 cos (W) —2,2cos ( Zjn ) — 2) and

+1 m—+1
Jm—1 (2(:05 (anﬂ) — ) =0for j =1,...,[%] — 1. Then it follows from Lemma
2.2 (1), that f,, (2cos (2%) —2) > 0. And moreover f,,(0) =1 > 0. Then the
degree m polynomial f,, has exactly m sign changes, which implies that f,, should

have at exactly m simple roots. O

Let 77, < 0 be the largest root of f,, i.e. r¢, has the smallest absolute value
among all roots of f,,. Then for m > 0, both g,, and g,,—1 are positive on (ry,,,0).
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Setting ¢t = 1 in the Riley polynomial ¢x(s,t) = (Th41 — ™) + E+ 1/t — s —
2)fmgm717—n = 0, we get QSK(Sal) = (TnJrl - Tn) - SfmgmflTn = 0, with 7 =
—sf2 + 2. Then we can choose so > 0 to be the smallest positive solution of
oK (s,1) = 0 with respect to s.

Proposition 4.3. Set T =1t + %

(1) When n>1o0n= 1 m > 0, the Riley polynomial (4.1) has a root
f2 <T—-5-2
Moreover, 0 < T < 2 for s € (0, so)

(2) Whenm < —1 andn > 0, the Riley polynomial has a root f <T—-s5s-2<

% with vy, < s <0, where C3 and C4 are positive constants. Moreover,

T > 2 for s € (ry,,,0).

Proof.

(1) Suppose n> 1, we set Tn+1 = 7, as in [3, Lemma 4.1]. Then we can find
two roots z = eZiFit and z = et , with

T (€)= 11 (e77T) > 0, 7 (e709T%) = 71041 (e7051%) < 0.

Let €y =2 —2cos(557) > 0, C2 = 2 — 2cos(5; +1)>0 Then
bx (sT—s+2—%)— %T(eﬁi)<07
C C m— _3m
K (s, T—S—&—Q——;)— LT(623+1Z)>0.
I Jm

Since ¢k (s,T) is a polynomial function of T, it is continuous. So it has a root
_fCQ <T—-5-2< _f—gl by Intermediate Value Theorem, with Cy,Csy € (0,4).
When m > 0 and n = 1, ¢ (s,t) = (1 —=1)+ (t+ 1/t — s — 2) frngm—1, Where
T=(t+1/t—5—2)f2% +2.S0 ¢ (s,t) = (T —5—2) fmgm+1, which has the solution
T = s+2+——. Since “ is continuous on [0, s0], then it must be bounded below
by C7 and agz)gg by Cs. gAerld it is not hard to see that 0 < C; < Cs < 1, as ¢g,, >

f(; <T—-s5-2< fgl.
To see 0 < T < 2 for s € (0, 5s0), notice that by assumption sg is the smallest
positive value for s such that T = 2.
(2) When m < =2, let m’ = —m, then f,, = fi—1 and gm—1 = —Gm—1. S0
the Riley polynomial becomes 7,11 — 7 — (T' — 8 — 2) fr'—1Gm'—17n = 0. Since

fm > 1 when s > 0. Therefore when n = 1, we still have

2 cos (m,”_1> — 2, the largest root of gn_2, is smaller than 7 , then g,/ _o is

positive and increasing on s € (ry,,0). As a result, gm/—1 = fm/—1 + gm/—2 must
also be positive and increasing on (rfm, Settmg s = ryf, and fm/ 1 = 0in

.80 gmr—1 € (/) =——,m') and

Lemma 2.2 (1) and (3), we get gm/—1(
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1

[y

fm—1 € (0,1), when s € (ry,,,0). Since —1 < rf, < 0, > 1, claim that
we can choose C3,C4 > 0 such that 24+ C3fp—1 < 7 < 24 Cyfpr—1. In fact, we
can choose C4 > 0 large enough such that 1+ Cy L >924C,>24Chfm_1.

“Tfm

When 7 > 2, both 7,, and 7,41 are positive. So

1
¢K(577_ =2+ C4fm’—1) =Tn+1 — Tn — C4gm’—1Tn < Tn4+1 — (1 + C’4 —ry )Tn
< Tpgl —TTp = —Tp—1 < 0.

When m=-2,m' =2.S0 fro_1=5+1, gpw_1 =5+2. Let Cy > 1, then
QSK(SvT =2+ C’4f'rn’71) :¢K(8a T=2+ C4(S + 1)) = Tn+1 — Tn — 04(8 + 2)Tn
=Tn+1 — (2 =+ 04(3 =+ 1) + 04 — 1)Tn
=Tpi1 —TTn + (1 = Cy)7
=—Th1+ (1 =Ca)1 < =71 < 0.

For 7 > 2, it is easy to verify that TZA is an increasing function (for example
using first derivative test), so T > "T'H So we can choose C5 > 0 such that
1+ C3m’ < ”T'H and it follows that

¢K(S,T =24+ Cgfm/_l) =Tn+1 — Tn — ngm/_l’rn > Tyl — (1 -+ Cgm/)’rn > 0.

Apparently T > 2 when s — ry +. Tosee T = t+ 1/t > 2 for all s €

(r$,.,0), we will need to look at Bs. In the proof of Lemma 3.4, notice that By =
2

1

%

Proposition 3.5 B, = —1 when t approaches and takes the value 1, then ¢t = 1 is

v
(vil + i)fz". So By is a polynomial in terms of s, %,t and i Since by
a removable singularity of B,. Therefore By is continuous for s € (ry,.,0). Now
assume T’ = 2 when s equals some s; € (ry, ,0) and choose s such that T' > 2
for s € (ry,,,s1). In fact, we can assume ¢t > 1 for s € (ry, ,s1), because similar
computations with 1/¢ > 1 instead of 0 < ¢t < 1 could be carried out. Then
Im—tgm—1 = Ugm/—1—Gm'—2 = (t_l)gm’—1+gm’—1_gm’—2 = (t_l)gm/—l"i‘fm’—l >
0 for s € (ry,,, s1). Moreover, gm—1—tgm = tgm'—2—gm'—1 > (t—1)gm/—2 > 0. This
Im — tgm-1 4—2n

implies B = > 0 for s € (ry,,,s1), and it follows by continuity
Im—-1 — tgm

that By > 0 for s € (ry,,, s1], which contradicts By(s = s1) = —1. D

5. Slopes

In this section, we will compute slopes of asymptotes of the graph of the root of
the Riley polynomial under logarithmic scale.

Lemma 5.1.

(1) lim ¢=o00 whenm < —1 and n > 0.

S%T‘f’ln +
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Proof. When m < —1 and n > 0, by Proposition 4.3 (2) we have s + 2 + % <

T<s+2+ ?4. So lim 7T = oo, and we can choose t such that lim ¢ = oog
" STt ST fmt

Lemma 5.2.

(1) lim Bg*™ =1 whenm < —1.

ST f T

(2) S£%1+BS =1 when m # —1.

(3) lim By =-1and lim Ln(Bs)= —n+ 2dw for some d € Z.

S—So— S—Sp—

Proof. (1) When f,,, =0, from Lemma 2.2(1) we know ¢, = gm—1. So

lim B = lim Im T t9met gy, gm0
ST fm 59t 1 — tgm  57Tsmt Gm (1 — 1)
(2) To prove the second limit, set s =0 in 7, then 7 = ¢ + 1/t. When m # —1,
set s = 0 in ¢r(s,t) = 0, then we have (7,41 — ) + m(t + 1/t — 2)7, = 0.
So tntl — ¢l g g7 Lot + 1/t — 2)(t" — ™) = 0, which simplifies to
t2"[m — (m + 1)t] — [(m + 1) — mt] = 0. So

(3) When s = sg, we have t = 1 and
lim B, = m —Gm-1 _
S=50— I9m—-1 — 9m
So lim Ln(B;) = —n + 2dr for some integer d. O

S—So—

It is hard in general to give a formula to compute d, but we know [2d — 1| > 1,
and we can choose proper framing such that 2d — 1 > 0.
Let A be the (1,1)-entry of ps(M) = ps(z), which equals v/t. We define g :

(,) = R to be g(s) = —igi:;

and examine the image of g.

Proposition 5.3. For points corresponding to the root of the Riley polynomial, the
image of g contains every number in I, with

I (—00,0) ifm#—-1landn>1, orm>0andn=1,
B (0,4n)  ifm < —1andn >0,

Proof.

) . In(By) In(—1) T
1 =— 1 =— =-_ = .
Jm_gls) == lm o =i - or ™
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Applying Lemma 5.2, when m # —1 we have

. . n(B) .. 2n(B)
1 = — 1 —_— = — =
S g(e) == tm Ty T A e

When m < —1 and n > 0,

In(Bs 2 (In(Bst*™) — 2nIn(t

lim g(s) = — lim 2B _ (In(B,t™") = 2nIn(t)) _
PRIV s—rpy In(Ag) STy In(t)

Then the lemma follows from Proposition 4.3. O

6. Root of the Alexander Polynomial

Setting s =0 in (4.2), then 7 =T =t + 1/t and ¢x (s =0,t) = Tpy1 — T + m(T —
2)71, = 0, which simplifies to

n—1
0=0¢g(0,t) = (m+1)(t" +t7")+ 2m+1) Y (¢ +t7)(-1)"". (6.1)
=0

Next, we compute the Alexander polynomial A j(gm1,20)(a) of J(2m + 1,2n)
and show that it is the same as (6.1).
Let Ap(p,q) be the Alexander polynomial of the torus knot T'(p, q).

Lemma 6.1. (see for example [9, Example 9.15])

(a??—1)(a—1) _(=1(=1)
A = 2 .
T(p.q) (@) (a? — 1)(a? — 1) xa
The extra factor a~ “— 2" is multiplied to normalize Arp(, q)(a) so that it is

symmetric, i.e. Ap, (a™h) = A (a).
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AN
@ 3
P
n =
>
[
=

2n-half twists

M1
)

SISIM
Jley-(T-we

& 2n-half twists B

. 2n-half twists .

2n-half twists

2n-half twists

Fig. 2: The Skein relations

Proposition 6.2. The Alezander polynomial of the double twist knot J(2m+1,2n)
is Ag(zm1,2n)(0) = (m+1)(a" +a™) + 2m +1) 755 (@ +a™) ()"

Proof.

We will use the fact that the Alexander polynomial satisfies the Skein relations
(see for example [10, Chapter 6]) and prove by induction.

Let Aj@m+1,2n)(a) be the Alexander polynomial of the double twist
knot J(2m + 1,2n). Normalize A jomy1,20)(a) so that Ajopmiion(a) =
A j(2m+1,2n) (a~') and the coefficient of its highest degree term is positive. From
the Skein relations as shown in Figure 2, we have

AJ(2m—‘,—1,2n) - AJ(2m—1,2n) = (\/i - 1/\/E)AJ(O,271),
AJ(2m—1,2n) - AJ(2m—3,2n) = (\/i - 1/\/£)AJ(O,2n)»

As@on) — Aon = (VE—1/VOA0.20).

Adding the above equations all together, we have A 7(2,41,2n) — A s(1,2n) = m(vt—
l/ﬂ)AJ(O’Qn). Notice that J(0,2n) is the torus link 7'(2,2n), and J(1,2n) is the
torus knot T'(2,2n +1). Let Ap(, 4) be the Alexander polynomial of the torus knot
or link T'(p, q). Then A (9 .2n) = Ap(2,2n) and A j(1,2n) = Ap(2,2n+1)- Applying the
Skein relations of torus links, we have (vVi—1/vVE)A j.20) = (VE—1/V)Ar(a,on) =
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Ar@on+1) = Ar@2n-1)- 80 As@mit2m) = AT@20+1) = Bsemt1,2n) — Au,2n) =
m(A7(2,2n11) — AT(2,2n71)) Thus

Aj@mtten) = (M +1)Are@ons1) — MAT@20-1)

2(2n+1) _ 1 -1 2(2n—1) _ 1 -1
=+ ) e O S D
(a —1)(a® - 1)a (a —1)(a® - 1)a
(a2n+1 + 1) a2n—1 + 1

=(m+1)

(a+ar m(a + l)a”—1

n

_ (m+1) Z (CLZ)( n+z —-m Z n 144

i=—n i=—n+1
=(m+1)(a"+a™")+ (2m+ 1)i(ai+a’i)(fl)”’i. .
=0

We can see that the Alexander polynomial of J(2m + 1, 2n) is exactly the same
as its Riley polynomial when s = 0 (as shown in (6.1)). So when s = 0, ¢ takes the
value of a root £ of the Alexander polynomial.

Proposition 6.3.

(1) When m # —1 andn > 1 orm > 0 and n = 1, li%1+t:£isaunit
S—

complex oot of the Alexander polynomial A jom1,2n)-

(2) Whenm < —1 andn > 0, 1ir51 t = & is a positive real root of A j(2m1,2n)-
5—0—
Proof. As we see in (6.1), setting s = 0 in the Riley polynomial, we get
dr(0,t) = (m+1)(t" +t7") + (2m +1) Z (t 4+t (=1)" 7,
i=0

which is the same as the Alexander polynomial A j(g,,41,2n). Notice that it is a
palindrome (symmetric) polynomial of even degree 2n after multiplying by t™. So
by [11, Theorem 1], it has a complex root on the unit circle when m # —1 and
n > 1. When n = 1, ¢x(0,t) = (m+ 1)t + (2m + 1) + (m + 1)t~1. If m > 0, then
m+1> 1(2m+1). So again by [11, Theorem 1], ¢x(0,¢) has a unit complex root.

When m < —1, there is a positive real root different from 1. To see this, let
m' = —m > 1, then ¢ (0,t) = t*"(m/ — (m' — 1)t) + m't — (m' — 1) = 0. Set
h(t) =t(m' — (m’' — 1)t) + m't — (m’ —1). When t = 0, h(t) = 1 —m’ < 0; when
t =1, h(t) =2 > 0. So by Intermediate Value Theorem, h(t) must have a real root
between 0 and 1, and also a root> 1 by symmetry of h(t).

This proposition could also be proved by taking s =0in 0 < 2 4

2+ f22<2 and1n2<2—|—f23 <T<2+4%

f2
m m

‘Cl<T<

when m < —1. O
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7. Left-Orderability
Boyer, Rolfsen and Wiest proved the following theorem about left-orderability.

Theorem 7.1. [12, Theorem 1.1] Suppose that M is a compact, connected and
P2-irreducible 3-manifold. A necessary and sufficient condition that m (M) be left-
orderable is that either w1 (M) is trivial or there exists a non-trivial homomorphism
from w1 (M) to a left-orderable group.

Consider the Lie group SU(1,1) = {(g i) | |af® — |82 = 1}. So we can pa-

rameterize SU(1,1) by (v,w) where v = —3/a € C and w = arga is defined modulo
27. Then SLoR ~ SU(1, 1) can be described as {(v,w) | |7| < 1,—7 < w < 7}. The
nonlinear Lie group P/Sm% is defined to be the universal cover of SLoR and PSLsR.
In particular, it can be described as {(y,w) € Cx R | |7 < 1,—00 < w < oo} with
group operation given by:

(v, W) (W) =
1

((7+7/e—2iw)(1 +§7’e‘21‘”)_1,w +w/ + oF

ln(l —i—ﬁ'y’e_%“)(l +,y,y/62iW)—1) )

As a subgroup of Homeo™ (R), P/ng/]R is left-orderable. We follow the notation in
[13]. Denote PSLoR by G, and P/S_I\JJR by G. We call an element g of G elliptic,
parabolic or hyperbolic if it covers an element g of the corresponding type in PSLoR.
In particular, if g covers +1, then g is called central.

Suppose M is a knot complement in a rational homology 3-sphere. Let R(M) =
Hom(m; (M), G) be the varicty of G representations of m(M). Similarly define
R&(OM) = Hom(7, (OM), G). For a precise definition of the representation variety,
see for example [14]. We call a G representation j € R&(0M) elliptic, parabolic,
hyperbolic or central if p(m(OM)) contains the corresponding elements.

So in the case of double twist knot J(2m + 1,2n), all the G representations
corresponding to the root of the Riley polynomial described in Proposition 4.3
(1) are elliptic, parabolic or central when restricted to the boundary. All the G
representations corresponding to the solution described in Proposition 4.3 (2) are
hyperbolic, parabolic or central when restricted to the boundary.

7.1. Translation Extension Locus

[13, Section 4]

The name translation extension locus comes from the fact that we need to use
translation number in the definition. For an elements g in C~}’, define the translation
number of g to be

.
trans(g) = lim g'(a) —a for some z € R.

n—00 n
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Then trans: R5(0M) — H*(OM;R) can be defined by taking p to transop.

Let M be a knot complement in a rational homology 3-sphere. To study G
representations of M whose restrictions to 71 (9OM) are elliptic, Culler and Dunfield
gave the following definition of translation extension locus.

Definition 7.2. [13, Section 4] Let PE5(M) be the subset of representations in
R&(M) whose restriction to m1(9M) are either elliptic, parabolic, or central. Con-
sider composition

PES(M) C Rg(M) “= Rg(0M) ™% H' (OM;R).

The closure in H'(OM;R) of the image of PEg(M) under trans o t* is called
translation extension locus and denoted ELg(M).

In particular, FLz(M) contains the z-axis, which corresponds to abelian G' rep-
resentations of 71 (M) that are elliptic, parabolic, or central when restricted to
T (8M) .

Let Doo(M) be the infinite dihedral group Z x Z/2Z. They showed that the
translation extension locus EL (M) satisfies the following properties.

Theorem 7.3. [13, Theorem 4.3] The extension locus EL5(M) is a locally finite
union of analytic arcs and isolated points. It is invariant under Dy (M) with quo-
tient homeomorphic to a finite graph. The quotient contains finitely many points
which are ideal or parabolic in the sense defined above. The locus ELz(M) contains
the horizontal axis Lo, which comes from representations to G with abelian image.

In the notation of this paper, a G representation corresponds to point with coordi-
nates (5= Ln(t), 2 Ln(B,)) in ELg(M). Once we build up the translation extension
locus, we will use the following lemma to prove left-orderability.

Lemma 7.4. [13, Lemma 4.4] Suppose M is a compact orientable irreducible 3-
manifold with OM a torus, and assume the Dehn filling M(r) is irreducible. If L,
meets ELz(M) at a nonzero point which is not parabolic or ideal, then M(r) is
orderable.

7.2. Holonomy FExtension Locus

In [15], T constructed the holonomy extension locus which is an analog of the trans-
lation extension locus and has similar properties to translations extension locus.
Let M be the complement of a knot in a rational homology 3-sphere.

Definition 7.5. [15, Definition 3.3], Let PHz(M) be the subset of representations
whose restriction to m (0M) are either hyperbolic, parabolic, or central. Consider
the composition

PHg(M) C RE5(M) - R2#(9M) =% HY(9M;R) x H'(9M;Z)
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The closure of EV o .*(PHg(M)) in H'(OM;R) is called the holonomy extension

locus and denoted H Lg(M).

In particular, HLg(M) contains the z-axis, which corresponds to abelian G
representations of 71 (M) that are hyperbolic, parabolic, or central when restricted
to m (OM).

The holonomy extension locus H L (M) satisfies the following properties.

Theorem 7.6. [15, Theorem 3.1] The holonomy extension locus HLg(M) =
I—li,jGZ H; ;(M), —k% <j< k—fc” 1s a locally finite union of analytic arcs and isolated
points. It is invariant under the affine group Do (M) with quotient homeomorphic
to a finite graph with finitely many points removed. Each component H; j(M) con-
tains at most one parabolic point and has finitely many ideal points locally.

The locgs Hoo(M) contains the horizontal azis Lo, which comes from represen-

tations to G with abelian image.

Under the notation of this paper, a G representation corresponds to a point which
obtains coordinates (1 In(t),In(By), trans(ps(M)), trans(ps(£))) in HL5(M), or
equivalently (31In(¢),In(B,)) € H,;(M), with i = trans(p;(M)) and j =
trans(ps(L£)). We are using In instead of Ln in the coordinates now because both
t and B are real numbers under this setting. Once we build up the holonomy
extension locus, we will use the following lemma to prove left-orderability.

Lemma 7.7. If L, intersects Ho (M) component of HLz(M) at non parabolic or
ideal points, and assume M (r) is irreducible, then w1 (M (r)) is left-orderable.

Remark 7.8. A point in EL5(M) (or HLg(M)) is called an ideal point if it does
not come from an actual G representation of 1 (M) but only lives in the closure.
But in this paper, since we build translation extension locus/holonomy extension
locus from the root of the Riley polynomial, every pair (s,t) corresponds to a G
representation of 71(S% — J(2m + 1,2n)). So we do not encounter ideal points.

7.3. Proof of the Main Theorem
Now we can prove our main theorem.

Theorem 1.2. For any rational r € I, the Dehn filling of J(2m + 1,2n) of slope r
s orderable, where

(=00,1) ifm>0andn>0, orm< —1andn > 1,

(-1,00) ifm<—-1andn <0, orm>0 andn < —1,

[0,4n) ifm < —1 andn >0,

(4n,0]  ifm >0 andn <O0.

Proof. First of all, notice that Dehn filling of J(2m+1,2n) of slope r is irreducible
as long as n # 0 and m # 0,—1 by [16, Theorem 2 (a)]. In particular, the 0 Dehn
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filling of J(2m+1, 2n) is irreducible and has first betti number equal to 1. Therefore
by [12, Corollary 3.4], 71 (S® — J(2m + 1,2n)(0)) is left-orderable.

Case 1: m>0and n >0 or m < —1 and n > 1.

From Proposition 4.3 (1) and Lemma 5.3, we know there is an arc in
EL&(J(2m+1,2n)) going from a point (i In &, 0) on the positive half of the z-axis
to a point (0,2d — 1) (not included in the arc) on the positive half of the y-axis,
where £ is a unit complex root of the Alexander polynomial. Here d is defined by

lim Ln(Bs) = —m + 2dw. By the discussion in 5.3, we can choose proper framing
S—So—

such that 2d — 1 > 0. So by Lemma 7.4, Dehn filling of rational slope r € (—o0, 0]
is orderable. By symmetry of translation extension locus as described in Theorem
7.3, there is also an arc going from (1 — 5= In¢,0) to (1, —(2d — 1)) (excluded from
the arc). Therefore Dehn filling of rational slope r € [0,2d — 1) is also orderable. So
in total, we know the interval of left-orderable Dehn fillings should at least contain
(—o0,1).

Case 2: m < —1 and n > 0.

When s = 0, the representation ps is reducible, so trans(ps(£)) = 0. By
continuity of translation number, all representations corresponding to the same
continuous root of the Riley polynomial (i.e. for all s € (ry,,,0)) should satisfy
trans(ps (L)) = 0. From Proposition 4.3 (2) and Lemma 5.3, we know there is an
arc in Ho,o(J(2m + 1,2n)) going from a point (3 In&,0) on the positive half of the
z-axis to infinity with asymptote of slope —4n, where £ is a positive real root of the
Alexander polynomial. Applying Lemma 7.7, then we see immediately that Dehn
filling of rational slope r € [0, 4n) is orderable.

When n < 0, all computations could be carried out similarly. O

8. Examples

In this section, I will demonstrate the translation extension locus and holonomy
extension locus of some double twist knots and some general two-bridge knots.
All the figures are produced by the program PE [17] written by Marc Culler and
Nathan Dunfield.

8.1. Double Twist Knots

Let us first look at some double twist knots. Our first example (figure 3) is J(5,4) =
94, with m = 2 and n = 2. Our second example (figure 4) is J(—3,4) = 62, with
m=—2and n=2.
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ELg(94)

0.0 0.2 0.4 0.6 0.8 1.0

—3

Fig. 3: Translation Extension Locus ELz(94)

This figure demonstrates the quotient of translation extension locus of 94 under the action
of integral translation in the x direction. The = coordinate of a point in EL5(94) is
%Ln(t), the y coordinate is %Ln(Bs). From this figure we know that Dehn filling of J(5, 4)
of rational slope from —oo to 3 is orderable. The number 3 comes from the translation
number of the parabolic element ps, (L) (or equivalently %Ln(Bs0 )). It is in general difficult
to compute this number. But we know it has to be at least 1.

-5

-10

Ho,0(62)

0.0 0.5 1.0 1.5 2.0

Fig. 4: Holonomy Extension Locus HLgz(62).

This figure is the quotient of the Hp 0(62) component of the holonomy extension locus of
62 under the Z/2Z action of reflection about the origin. The x coordinate of a point in
Hp,0(62) is %ln(t), the y coordinate is In(Bs). The asymptotes have slope —8 and 4. So
we know Dehn filling of J(—3,4) of rational slope r € (—8,4) is orderable. Unfortunately,
our Theorem 1.2 could only predict the slope —8 = —4n, but not the other slope 4.
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8.2. Two-Bridge Knots

Now let us look at more general examples of two-bridge knots.

w00 [EL (86)

0.00

-0.25 1

—0.50 4

—0.75

—1.00

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5: Translation Extension Locus ELg&(8s).

1 Ho0(86)

154

104

—54

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Fig. 6: Holonomy Extension Locus HLz(8s).

Figure 5 is the quotient of translation extension locus of 8¢ under the Z/2Z action of
integral translation in the x direction. Figure 6 is the quotient of the Hg (8s) component
of the holonomy extension locus of 8¢ under the action of reflection about the origin.
The two-bridge knot 8¢ is not a double twist knot. Its Alexander polynomial is 2a* —6a> +
7a® — 6a + 2, which has a pair (reciprocal to each other) of positive real roots and a pair
of unit complex roots.



May 16, 2022 0:36 two'bridgel3

21

We can see from the above example that the holonomy extension locus and
translation extension locus of 85 have similar patterns as those of double twists
knots shown in Figure 3 and Figure 4.

When the Alexander polynomial of a two-bridge knot has no positive real roots
or unit complex roots, in most cases we are still able to find intervals of left-orderable
surgery slopes by constructing G representations and studying the holonomy ex-
tension loci. However, in other cases, it is possible that we may not be able to
obtain such intervals of left-orderable surgery slopes using G representations. The
two-bridge knot 63 is such an example.

The translation extension locus £ Lz(63) contains only abelian boundary ellip-
tic G representations, so we look at the holonomy extension locus HLg(63). Let p
be a nonabelian boundary hyperbolic G representation of 71 (63) in H Lz(63). Then
the translation number of p(£) must be £1. So we only see the Hy 11(63) compo-
nents in the holonomy extension locus of 63, except abelian boundary hyperbolic
G representations which constitute Hy 0(63).

~1Ho,1(63)

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 7: Holonomy Extension Locus HLg(63).

This figure is the Hg,1(63) component of the holonomy extension locus of 63. (The compo-
nent Hy —1(63) only differ from Ho, 1(63) by reflection about the origin. So we will not show
it here.) There are two asymptotes of slope —2 and 2. So for every rational r € (—2,2),
m1(M (r)) has a nonabelian G representation. However, such a representation does not lift

to G because the translation number of p(L£) does not vanish, which means we cannot
obtain an interval of left-orderable surgery slopes by constructing G representations.
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9. Conjecture
9.1. Improving the Results

As observed in Figure 4, the arc in the holonomy extension locus Hgo(62) has
another asymptote of slope 4 = —(4m + 4), in addition to the slope —8 = —4n
which is confirmed by Proposition 5.3. This phenomenon is also observed in other
examples of J(2m + 1,2n) with m < —1 and n > 0. Actually, according to our
computational data, the other slope should be —(4m+4). Unfortunately the author
does not know how prove this.

But as we will see next, —4n is the boundary slope of some incompressible
surface in S3 — J(2m + 1, 2n). We follow the notation in [16]. For rational number
0< % < 1, there is a continued fraction expansion

p
6:[al,—a27a3,—a4,...7iak]: . , Jag| > 1.
ay +
az +
1

ag

Consider the case when m < —1. The two-bridge slope of J(2m + 1,2n) is

1
= [2m + 1,—2n]. Let nt and n~ be the number of positive and

1
2m+ 1+ —
2n

negative numbers in [2m + 1, —2n], then n™ =0 and n~= = 2.
Rewrite this slope in the unique continued fraction expansion with each number
even, then

1 1

1
2m+14+ — 2m+2+
2n

Let né and ng be the number of positive and negative numbers in [2m+2,2,...,2],
—
2n—1
then n =2n —1 and ny = 1.
Som(2,...,2) =2[(n* —n~) — (ng —ngy)] = —4n. By [16, Proposition 2], —4n
is the boundary slope of some incompressible surface in S® — J(2m + 1, 2n).

9.2. General Case for Two-Bridge Knots

In [15, Lemma 3.6], the author noticed that an arc in the holonomy extension
locus approaches the line through the origin of slope equal to the slope of the
incompressible surface associated to an ideal point of the character variety. So
Dunfield made the following conjecture.
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Conjecture 9.1. Let K be a two-bridge knot. Suppose the Alexander poly-
nomial of K has a root py. For any rational r € I as defined below, Dehn
filling of K of slope r is orderable, with

- {(—51,—52) ifpo > 0,

B (=00, k) if pg is a unit complex number,
where S; and S, are slopes of incompressible surfaces associated to ideal
points of the PSL,;C character variety of the complement of K, and 0 <
k <2¢(K)—1 is some odd integer.

The interval is optimal in the sense that any interval I’ such that 71 (M(r)) has a

—_~—

nontrivial PSLa(R) representation for any rational r € I’ is contained in I. This
conjecture is also the motivation of this paper.
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