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Multidimensional Item Response Theory (MIRT) is widely used in educational
and psychological assessment and evaluation. With the increasing size
of modern assessment data, many existing estimation methods become
computationally demanding and hence they are not scalable to big data,
especially for the multidimensional three-parameter and four-parameter
logistic models (i.e., M3PL and M4PL). To address this issue, we propose
an importance-weighted sampling enhanced Variational Autoencoder (VAE)
approach for the estimation of M3PL and M4PL. The key idea is to adopt a
variational inference procedure in machine learning literature to approximate
the intractable marginal likelihood, and further use importance-weighted
samples to boost the trained VAE with a better log-likelihood approximation.
Simulation studies are conducted to demonstrate the computational efficiency
and scalability of the new algorithm in comparison to the popular alternative
algorithms, i.e., Monte Carlo EM and Metropolis-Hastings Robbins-Monro
methods. The good performance of the proposed method is also illustrated
by a NAEP multistage testing data set.

Multidimensional Item Response Theory (MIRT), estimation, Monte Carlo (MC)
algorithm, variational auto encoder (VAE), four parameter item response theory

1. Introduction

Item response theory (IRT) has been widely used for the evaluation and
assessment of education and psychology test data. The most commonly used IRT
is the 2-parameter logistic model (2PL), which is based on a logistic model for
dichotomous responses and assigns a scalar factor score for each respondent. After
observing its success, flexibility beyond the 2PL model has also been pursued
for decades. Notably, McDonald (1967) suggested that the lower and upper
asymptote in 2PL can be freed up from fixed 0 and 1, respectively. Estimating
a different lower asymptote for each item results in the so-called 3PL model,
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which has been quite useful for multiple-choice items where
guessing is possible; but little empirical evidence was found
to support that estimating upper asymptote was beneficial as
well; therefore, it was widely believed that the 4PL model was
only of theoretical interest and there was no compelling reason
for practitioners to use it (Barton and Lord, 1981; Hambleton
and Swaminathan, 1985). Until the 2000s, researchers started
revisiting the 4PL model and demonstrated the rationale of
introducing upper asymptote parameters after observing early
signs of its importance (Reise and Waller, 2003; Loken and
Rulison, 2010; Waller and Reise, 2010; Yen et al., 2012). Waller
and Feuerstahler (2017) took a step further and conducted a
comprehensive study of 4PL model on a variety of real and
synthetic data. In their experiment, the 4PL model achieved
promising accuracy on medium to large data. However, despite
these existing studies and estimation methods (e.g., Ogasawara,
2002; Waller and Feuerstahler, 2017; Meng et al, 2020),
difficulties of parameter estimation in 3PL and 4PL models still
remain, especially when data sizes are large and the latent factors
exhibit a multidimensional or even high-dimensional structure.

Multidimensional IRT (MIRT) models are a family of
models where the latent trait is no longer assumed to
be unidimensional. By allowing latent factors to exhibit
multidimensional structures, 2PL, 3PL, and 4PL models are
turned into the multidimensional 2PL (M2PL), 3PL (M3PL), and
4PL (M4PL) models, respectively. Compared with IRT models,
MIRT models are capable to model each individual’s multiple
latent traits simultaneously and are usually favored by large scale
and complex real data, thereof (Reckase, 2009).

In this article, we study the general MIRT models with
a special focus on M3PL and M4PL models. Specifically,
assume that there are N individuals who respond to J items
independently with binary response Yj;, for i = 1,...,N and
j=1,...,]. The M3PL model assumes that this response from
the i-th individual to the j-th item is modeled by the following
item response function (IRF).

exp(a) 0 + b))
P(Y;i=1]60;ai,bi,cj))=ci+(1 —¢)—————"—,
v ner / / exp(ujTB,' +0bj) + 1

1

of
discrimination (loading) parameters for the j-th item; b; is

where a; is a K-dimensional  vector item
referred to as the item easiness parameters. —bj/llajl2 is
sometimes termed as item difficulty (Cho et al., 2021); ¢ >0
is known as the lower asymptote of the j-th item and measures
the probability of guessing j-th item correctly when 6; is of
negative infinity. Moreover, 6; is a K-dimensional latent variable
denoting the ability of i-th respondent, which is assumed to
have a standard K-dimensional Gaussian distribution in IRT

literature. Further generalizing M3PL, the M4PL model has an
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IRF of

( 0o o exp(a) 0+ b))
P(Y;i =1180;; a;,bj,ci,d;) =c; + (d; — ¢ ,
1 LEpEPEP Y ] ] 7 exp(a}rai 4 h]) +1

(2)

where additional d; < 1 is referred to as the upper asymptote
parameter, which is the maximum probability of answering the
j-th item correctly when 6; goes to infinity. Intuitively, 1 — d;
can be treated as the slipping probability that an individual who
is able to answer the item correctly but miss it accidentally.

For both M3PL and M4PL models, we denote model
parameters A = {a;,j = L....,J}L, b = {bj,j = 1,...,]},
c = {Cj,j =1,...,J}, d = {dj,j = 1,...,J}; and for M3PL
model dj =1,j=1,...,Jand My = {A, b, c,d} is the collection
of all model parameters. Under the typical local independence
assumption, the marginal log-likelihood of Mp, is given by

N

(Mp:Y) = ) logP(y; | Mp)
i=1

N ]
= Y- tog [ [Py 165 Mpp@cts, 3
i=1 j=1

where p(6;) is the probability density function of a standard
K-dimensional Gaussian distribution.

Due to the latent variable structure, the K dimensional
integrals involved in (3) makes maximization of the log-
likelihood function with respect to M intractable. Direct
numerical approximations of the integrals were proposed,
including the Gauss-Hermite quadrature (Bock and Aitkin,
1981) and Laplace approximation (Tierney and Kadane, 1986;
Lindstrom and Bates, 1988; Wolfinger and O’connell, 1993).
However, these methods usually fail to handle complicated
MIRT model, especially when the dimension K of latent
factors @ grows: Gauss-Hermite quadrature quickly becomes
computationally expensive in a high-dimensional setting; the
Laplace approximation, though being efficient in computation,
often performs less accurately when K increases or when the
likelihood function is skewed. Monte Carlo (MC) simulations
have also been applied to obtain numerical approximations
for MIRT, such as Monte Carlo expectation-maximization
(MCEM, McCulloch, 1997), stochastic expectation-maximization
(StEM, von Davier and Sinharay, 2010), and Metropolis-Hastings
Robbins-Monro (MHRM, Cai, 2010a,b). Nevertheless, MC based
methods need drawing samples from posterior distributions,
which could be computationally demanding as well. Recently,
Zhang et al. (2020) improved StEM for item factor analysis,
but its stochastic E-step involves an adaptive rejection-based
Gibbs sampler and may still be time consuming. All methods
discussed above can be seen as variants of the marginal
maximum likelihood (MML) estimator proposed in Bock and
Aitkin (1981), where latent @ are considered as random variables
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and are integrated out. Chen et al. (2019) instead studied
the constraint joint maximum likelihood estimator (CJMLE)
by treating @ as fixed effect parameters in order to achieve
higher speeds.

Unfortunately, many existing studies focusing on the M2PL
model cannot be applied to M3(4)PL models easily: for MHRM,
commercial software FlexMIRT (Chung and Houts, 2020) does
not support M4PL, and for M3PL, MHRM is known to suffer
from a lower convergence rate (Cho et al., 2021) than M2PL;
for CJMLE, the authors only derived methods for M2PL and
which not support M3(4)PL models. In general, computationally
efficient estimation methods for M3(4)PL models are still
under explored.

Variational approaches stem from the machine learning
literature, which maximizes a tractable lower bound of the log-
likelihood rather than maximizing the log-likelihood directly.
They have been applied to fitting IRT models in recent years
(Rijmen and Jeon, 2013; Natesan et al., 2016; Hui et al., 2017;
Jeon et al., 2017). More recently, these variational methods also
established a variety of successes on more complicated MIRT
(Curi et al., 2019; Wu et al., 2020; Cho et al.,, 2021) and graded
response models (Urban and Bauer, 2021). Notably, variational
autoencoder (VAE), deep learning based variational method,
and its variation, importance weighted autoencoder (IWAE), are
shown to be effective in parameters estimation and achieve
performances competitive to traditional techniques at much
faster speeds (Curi et al., 2019; Wu et al., 2020; Urban and Bauer,
2021).

In this article, we investigate the VAE method for the
more challenging M3(4)PL models with possible missing data.
Extending explorations from Urban and Bauer (2021), we
propose a new training strategy for VAE by enhancing it with the
objective function of IWAE. As revealed in Section 2.2, although
IWAE is computationally more expensive than VAE, our mixing
training method inherits both the speed advantage of VAE and
the better performance of IWAE. We also pay great attention
to several practical issues and challenges in model training and
propose corresponding methods/tricks to solve them, which
allows our model to handle missing data and have better
numeric robustness. Compared with the existing estimation
approaches, such as MCEM and MHRM, our method succeeds
in achieving comparable or better accuracy in parameter
estimation and exhibits a much faster speed. Moreover, our
method converges under M3(4)PL models within constant
fitting times on different sizes, comparable to what Urban and
Bauer (2021) found in the M2PL model, which is a key advantage
of VAE based estimation over traditional methods.

The rest of this article is organized as follows. Section 2
covers our new training strategy of VAE based estimation, which
is named as Importance-Weighted sampling enhanced VAE
(IWVAE); to make the section self-contained, we also provide
an overview of VAE and IWAE; important tricks for handling
missing data as well as improving numerical stability are also
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introduced. Section 3 provides a large-scale simulation study
where IWVAE shows consistently competitive performances to
MHRM and MCEM methods across different sample sizes, item
structures, and asymptotic regimes. Section 4 compares three
methods on a real data set from a multistage testing design. We
end up this article with final discussion and remarks in Section 5.

2. Methods

We start with a brief overview of variational inference and
how it helps tackle maximizing likelihoods whose exact forms
are unavailable. We then introduce a gradient based model from
deep learning called variational autoencoder (VAE), along with
its generalization importance weighted autoencoder (IWAE).
Given the importance and popularity of multilayer perceptron
(MLP) in machine learning, which provides an efficient way of
parameterizing and implementing VAE and IWAE, we include
a concise introduction of MLP and reveal its ability to handle
missing entries which are ubiquitous in large datasets. We end
up this section with our new proposed mixing training method
of VAE, importance-weighted sampling enhanced VAE (IWVAE).
IWVAE uses both VAE and IWAE’s objective functions and
enjoys both benefits of them.

2.1. A review of variational inference and
variational autoencoder

Since the integration in Equation (3) does not admit a
closed form solution, we need a tractable objective function
to approximate it, and variational inference (VI) is a machine
learning technique to achieve this (Bishop, 2006; Blei et al,
2017). There are two equivalent ways to setup the VI objective.
The first one aims to find the best approximation of the posterior
of latent variable 6; given y; and Mp, which results in a lower
bound of Equation (3). Additionally, the second one directly
derives the bound using Jensen Inequality.

We start with the first derivation as it better clarifies the
connection between VI and the expectation maximization (EM)
algorithm (Dempster et al., 1977). The second derivation is
revisited in Section 2.2 when we introduce a new tighter lower
bound. Let ® = (01, ..
variables. The best approximation of posterior p(® | Y; Mp),

.,0x) denote the collection of all latent

which we refer to as q(®), is obtained by finding a candidate
from some simple and tractable variational distribution families
such that the Kullback-Leibler (KL) divergence Dx1,[q(®)||p(® |
Y; Mp)] is minimized. One common variational family is the
factorized distribution g(®) = fil H]I(<=1 qik(0;x), where the
subscript ik in q;(6;1) is to emphasize that different dimensions
can follow different distributions, or follow the same distribution
but have different parameters. For instance, we can choose the
popular Gaussian distribution for each g;;(0;;), equivalently,
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we have ¢q(;) to follow a K-dimensional diagonal Gaussian
distribution. If one intends to characterize the dependence
structure among different dimensions of 6;, we may choose the
= [T, 4i(0), with 4:(0,)
following a K-dimensional Gaussian distribution.

factorized distribution family g(®)

Under this setting, the optimal variational approximation
q*(®) is given by (Blei et al., 2017).

q*(©) £ argmin Dx1[q(©)|p(® | Y; Mp)]
9(©)

= argmm/q(@) logq(©)d®
9(®)

f 4(©)log

Note that logp(Y | Mp) is independent of @©, it is easy to

p(Y | ©; Mp)p(©)

oY | M) @)

obtain the optimization objective

q"(®) = argmin Dx1[q(©)]|p(©)]

— Ey@)llogp(Y|©; Mp)],
9(®)

®)
and following decomposition

logp(Y | Mp) = Eq(g) [logp(Y|©; Mp)]
+Dk1[q(®)]|p(© | Y; Mp)].

— DxL[q(®)[p(©)]
(6)

Since Dkp[q(®)[p(® |

decomposition reveals the fact that minimizing Equation (5)

Y; Mp)] is non-negative, the

is equivalent to maximizing a lower bound of the marginal
log-likelihood, which is known as evidence lower bound (ELBO).

Remark 1. The derivation of VI above has a close connection to
the EM algorithm. Using the decomposition from Bishop (2006),
we have

logp(Y | M) = / q(®)logp(Y | M,)d©

— /q(g)logw

q(©)
+ / q(®)log

q(0)
= L(q(®),M,) + Dx1[q(®)[p(® | Y, M,)]

do

p(© Y, M)
(7)

where q(®) is an arbitrary distribution that includes the
variational distribution families. And the first term L(q(©), Mp)
is precisely the ELBO. In the EM algorithm, L(q(®), M,) is
maximized with respect to q(®) and Mp in an iterative way.
In the E-step, the maximization is over q(@®), which requires a
closed-form solution: the true posterior of ® given Y and fixed
Mgld, By doing so the second KL divergence disappears and
E(q(@),led) = logp(Y | M}‘,’ld). Since the right hand side does
not depend on q(®), the ELBO takes equality thereof. In M-step,
the My is optimized to maximize the L(q(®), Mp) by fixing q(®).
By repeating two steps the EM algorithm is guaranteed to converge
to a local optimum of log p(Y | Mp).
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The main difference between VI on IRT and EM algorithm
is that because p(©
the analytic update of q(®) in each step, as a result, plain EM

| Y; Mp) is intractable, we cannot obtain

algorithm does not scale up well to the high-dimensional MIRT
model. VI, on the other hand, finds a tractable approximation in
its “E-step” and consequently, it always optimizes a strict lower
bound. In general, another philosophical difference between VI
and EM is that unknown parameters in VI are usually treated
as latent variables as well, refer to Bishop (2006) for more
clarifications. In our setup, we distinguish model parameters My
and latent variable ©, but this is not necessary, refer to Wu et al.
(2020) where My was also treated as latent variables as well and
modeled together with ©.

Evidence lower bound derived in Equation (5) is a
global lower bound of the marginal log-likelihood of all
observations. Given the local independence assumption,
we can obtain a tighter lower bound by constructing each
individual a corresponding local lower bound. Deriving
such that

¥;; Mp)] is minimized. This is called

local lower bounds

Dxu[qi(@)lp(0; |
local variational methods, we recommend Chapter 10.4 of

indicate finding g;(6;)

Bishop (2006) for more detailed explanations, and Cho et al.
(2021) for its successful implementations on M2PL and
M3PL models.

However, despite the success of Cho et al. (2021),
in general, the local variational method is computationally
expensive on large scale data. One alternate to handle this
challenge is the amortized variational inference (AVI). To

N,

diagonal of the covariance matrix, AVI assumes that [,L,',O'Z

characterize ¢;(0;) = a?), where 012 denotes the
depend on y; through a function F(-) parameterized by
¢, formally

(hinlogo?) = Fy(y),  qi(0:) = Mu,07?). ®)

Henceforth, we denote q;(0;) as q4(0; | y;). In practice,
Fy can be flexible and expressed by a deep neural network.
One of its most famous applications on AV is the variational
autoencoder (VAE) proposed by Kingma and Welling (2014).
VAE uses two neural networks together to maximize the ELBO
bound: Fy, is termed as inference or encoder network (please refer
to Section 2.3.1 for the specification of F¢); the other generative
or decoder network learns the generative process of y; given
0;, where this process in MIRT is essentially estimating model
parameters Mp.

In VAE, ¢ and M, are learned through stochastic gradient
descents. Following Kingma and Welling (2014) and Urban and
Bauer (2021), we give a brief review here. Note the ELBO for the
i-th individual is given by
ELBO; = E — Dxi[44(0; | ) 1p(6)]

©)

a9 (0:1y, 108 P(y; 1 053 Mp)]
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The gradient Vg, ELBO; can be estimated readily with §
Monte Carlo samples 05 ~ qg(0; | y;) fors = 1,....,S
as V,ELBO; ~ %Zle Vi, logp(y; | 63: Mp)]. However,
gradient V4 ELBO; cannot be obtained in the same way, as in
general Vg and E, 4(6:]y,) cannot be switched. To solve this
problem, Kingma and Welling (2014) reparameterized 6; ~
Mu;, 01-2) as follows

e ~NO,I), 0;i=e O0;+pu; (10)
the
transforming the integration over q¢(f; |

where © means element-wise multiplications. By
y;) to p(e;),

we have

V¢ELB01‘ = V¢Eq¢(9i|yi)[10gp(yi | 01'; Mp)]
— Vg DkLlge®i | y)lp(0:)].

Then, the first term can be estimated with Monte Carlo
samples % Zsszl Vg logp(y; | € @0+ pj; Mp), and the second
term can be computed effectively by observing that the KL
divergence between q¢(0; | y;) and p(6;) has an analytic form

(Kingma and Welling, 2014).

Dxlgg(0: | v)lp(8:)] = Z(uwo 1 —logog).

€3))

The gradient can be computed readily through the chain rule
thereof. For more details, please refer to Kingma and Welling
(2014) and Urban and Bauer (2021).

2.2. Importance weighted variational
inference

Since the ELBO is a lower bound of the marginal likelihood
that we want to maximize, a tighter ELBO is appealing as
the true likelihood can be approximated more accurately. It
is known that the tightness of the ELBO is coupled with the
expressiveness of the variational family and limited expressivity
can negatively affect the learned models, and there have been
many works on reducing the gap between ELBO and marginal
log-likelihood (Burda et al., 2016; Kingma et al., 2016; Kingma
and Welling, 2019). Some studies aimed to extend the capacity
of the variational family, and techniques including normalizing
flows have been applied (Kingma et al., 2016;
etal., 2021).

Burda et al. (2016) introduced a new importance-weighted
ELBO (IW-ELBO) which alleviated the coupling without
changing the variational families. To better illustrate the
connection between IW-ELBO bound and ELBO, we start with

Papamakarios
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the second derivation of ELBO via Jensen Inequality.

P, 0i | Mp)
logp(y; | Mp) =10gE, (g.1y) | —F————
gP\y; | P 8 q¢(0ily;) |: q¢(0i |yi)
P 0i | Mp)
>E vy | log ———— | = ELBO;. (12)
‘1¢(01|}'1) |: g q¢(0i |yi) 1

The above derivation can be generalized as follows

R r
_ 1 p(y; 07 | Mp)
logp(y; | Mp) = logEo},..‘,o§~q¢(0,-|y,.) R ; 467 | y;)

R

1 T
r=

(13)

Equation (13) is known as IW-ELBO where w] £ p(y;, 07 |
Mp)/qg (07 | y;). When gy is reparameterizable, Monte Carlo
estimates of IW-ELBO and its gradient are given by

R
1 7
Bl iR gy(0ily,) | 08 7 2 Wi

r=1

1 S R
gZ Z (14)
s=1 r=1

1 R
v¢’MPE0}:R"’q¢(0i|}’,') logizw{

r=

1 R

Ee};R[V@Mp log z Z wi]

r=1

w
Er:r —x 5 Vo.M, logw]
r—lWi

*ZZ

s=1r=1 r=

V¢ M, logw (15)

where S and R are corresponding numbers of Monte Carlo
samples and importance-weighted samples. Replacing ELBO
with IW-ELBO in VAE leads to IWAE, which is a generalization
of the VAE, as indicated by observing that IW-ELBO will reduce
to ELBO for R = 1. Notably, IW-ELBO increases in R
and converges to logp(y; | Mp) as R — oo under mild
conditions (Burda et al., 2016).

However, Rainforth et al. (2018) showed that using more
important samples is not always helpful. The authors introduced
the signal-to-noise ratio (SNR) of an estimator § as the ratio
between the absolute value of its expectation and its SD, i.e.,
SNR(8) 2 |E(8)|/0(8). Then they show the below orders
(rewritten with our notations)

SNR(Mp) = O(vRS), SNR(¢) = O(,/S/R).

In words, for any given S, increasing R makes gradient
estimates of parameters ¢ in the inference network noisier.
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TABLE 1 Mean and SE of RMSE of M, estimate on M4PL models under single regime setting, best results are in bold.

N,J Item structure Model rot(A) b c d Success rates
= Between MCEM 9.400 + 0.181 11.477 4 0.424 0.175 = 0.010 0.183 £ 0.010 1.00
MHRM / / / / /
TWVAE 0.674 % 0.02 0.384 = 0.027 0.081 = 0.008 0.087 = 0.008 1.00
Within MCEM 10.406 = 0.240 11.500 = 0.481 0.163 £ 0.010 0.146 = 0.008 1.00
MHRM / / / / /
TWVAE 0.744 % 0.022 0.402 + 0.034 0.073 = 0.008 0.088 =+ 0.008 1.00
§°§ Between MCEM 8.230 + 0.170 11.785 =+ 0.450 0.189 + 0.012 0.178 £ 0.011 1.00
MHRM / / / / /
IWVAE 0.498 + 0.019 0.341 +0.028 0.079 =+ 0.008 0.080 =+ 0.008 1.00
Within MCEM 7.799 4 0.230 8.999 4 0.464 0.132 4 0.010 0.161 4 0.011 1.00
MHRM / / / / /
IWVAE 0.609 % 0.022 0.386 = 0.029 0.069 = 0.007 0.078 = 0.008 1.00
ég Between MCEM 3.240 £ 0.156 4.351 40276 0.189 = 0.011 0.155 = 0.011 1.00
o MHRM / / / / /
IWVAE 0.369 % 0.027 0.378 + 0.043 0.091 = 0.011 0.082 = 0.009 1.00
Within MCEM 3.235 +0.221 2.939 + 0.254 0.139 + 0.012 0.133 £ 0.010 1.00
MHRM / / / / /
TWVAE 0.535 = 0.029 0.383 =+ 0.035 0.075 = 0.008 0.086 =+ 0.010 1.00
§O Between MCEM 1.988 = 0.099 2.690 + 0.184 0.174 £ 0.010 0.186 + 0.011 1.00
== MHRM / / / / /
TWVAE 0.379 %+ 0.028 0.399 + 0.042 0.084 =+ 0.008 0.079 + 0.008 1.00
Within MCEM 1.823 +0.145 1.674 4 0.151 0.136 = 0.009 0.125 + 0.007 1.00
MHRM / / / / /
IWVAE 0.516 = 0.030 0.343 £ 0.038 0.084 % 0.010 0.079 % 0.008 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.

Despite the fact that the estimates of My along may benefit from
a tighter likelihood bound, the final result can be deteriorated
due to the worse inference network as shown in Rainforth et al.
(2018).

To mitigate this problem, one simple solution is to increase
S of the same order, but such modification takes more
computational costs and slows down the training. We apply the
doubly reparameterized gradient estimator (DReG) from Tucker
et al. (2018), a recently developed method that gets rid of a
similar issue. Specifically, we use the below estimator to update
the inference network

R

1 T

V¢E0}:R~q¢(ai|y1) log R Zl w;
r=

W) 2 dlogw! 967

=E.:r —
¢l R W) o007 og
S R s 2 s s
1 wh dlogw'® 90!
~ EZZ R : s 30grsl 8(; . (16)
s=1r=1 r=1Wi i

Empirically, computing IW-ELBO and its gradient estimates
can be numerically unstable due to exponential operations
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involved in p(87*) and q4(07° | y;). To solve this problem, we
compute vi* = logw;® = logp(y; | 07°; Mp) —logqe (07 | y;) +
log p(07°), and apply the well-known log-sum-exp trick (Zhang
et al, 2021) to log % >_wi® in Equation (14) and w}*/ " wi® in
Equations (15) and (16) as follows:

R R
1
s __ rs rs rs\ _
log R Z Wi = maxv; + log Z exp ("i maxv; ) logR,
r=1 r=1
' TS TS
W] _exp (vV® — max, v[*)
R rs VR rs rs)
e WP Xy exp (v — max, vfY)

2.3. Implementation details

2.3.1. MLP and optimization

We provide a basic overview of multilayer perceptron (MLP)
applied in this study, which is used to model the variational
distribution ¢q as in Equation (8). For more details about MLP
and DNN, we recommend readers to Goodfellow et al. (2016).

Multilayer perceptron, also known as feedforward neural
networks (FNN), is one of the most popular architectures of
neural networks because of its simple form and flexibility. To
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TABLE 2 Mean and SE of RMSE of M, estimate on M4PL models under double regime setting, best results are in bold.

N,J Item structure Model rot(A) b c d Success rates
= Between MCEM 9.400 + 0.181 11.477 4 0.424 0.175 £ 0.010 0.183 £ 0.010 1.00
MHRM / / / / /
IWVAE 0.674 % 0.021 0.384 =+ 0.027 0.081 = 0.008 0.087 = 0.008 1.00
Within MCEM 10.406 = 0.240 11.500 + 0.481 0.163 £ 0.010 0.146 + 0.008 1.00
MHRM / / / / /
TWVAE 0.744 % 0.022 0.402 + 0.034 0.073 =+ 0.008 0.088 =+ 0.008 1.00
éa:] Between MCEM 5.397 + 0.069 8.312+0.188 0.180 = 0.007 0.178 = 0.007 1.00
MHRM / / / / /
IWVAE 0.500 + 0.016 0.377 + 0.025 0.080 =+ 0.006 0.088 =+ 0.007 1.00
Within MCEM 8.242 4 0.174 9.254 4 0.354 0.151 + 0.007 0.158 4 0.007 1.00
MHRM / / / / /
IWVAE 0.600 = 0.017 0.413 £ 0.024 0.080 = 0.005 0.088 = 0.007 1.00
ég Between MCEM 1.624 4 0.058 1.519 4 0.068 0.163 == 0.006 0.156 = 0.005 1.00
o MHRM / / / / /
IWVAE 0.429 +0.014 0.338 £ 0.019 0.084 = 0.005 0.081 = 0.005 1.00
Within MCEM 1.388 4 0.079 0.876 = 0.076 0.092 = 0.005 0.086 = 0.004 1.00
MHRM / / / / /
TWVAE 0.564 = 0.015 0.319 £ 0.019 0.083 = 0.005 0.080 = 0.005 1.00
§O Between MCEM 1.022 4 0.023 1.152 4 0.036 0.150 = 0.004 0.153 4 0.004 1.00
= MHRM / / / / /
IWVAE 0.432 +0.012 0.338 £ 0.015 0.086 =+ 0.004 0.086 =+ 0.004 1.00
Within MCEM 0.930 4 0.018 0.993 + 0.031 0.119 = 0.004 0.119 + 0.003 1.00
MHRM / / / / /
IWVAE 0.564 = 0.013 0.346 =+ 0.015 0.085 = 0.004 0.087 = 0.004 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.

approximate an unknown function f* such that u = f*(v)
where v ¢ RP U € RQ, MLP takes the recursive form
h = fl(wlhlfl +bl),l = 1,...,L,and hg = v,hy = u.
Here, f1, . .
differentiable and are applied elementwisely when inputs are

., f1 are scalar functions which are almost everywhere

vectors. These functions are typically termed as activation
functions. When f,. .
MLP will reduce to linear regression; using non-linear activation

., f1, are set to identity function g(z) = z,

functions, we get a flexible function u = f(v). MLP has been
shown an universal approximator under a variety of activation
functions (Cybenko, 1989; Hornik, 1991; Sonoda and Murata,
2017), including sigmoid function g(x) = 1/(e™* + 1) , rectified
linear unit function (ReLU, Nair and Hinton, 2010) g(x) =
max(0, x), and hyperbolic tangent function (Tanh) g(x) = (¥ —
e X)/(e" + e7¥); refer to Goodfellow et al. (2016) for other
choices of activation functions. In this article, we use Tanh
activation for f1 ..., f1—1.

The f7, at the last layer is chosen depending on the data form.
To see this, note that the last layer of MLP u = ff (Wrhy—1+br)
can be seen as a generalized linear model with independent
variable hy_;. When u is continuous, f; can be set to the
identity function and we get the last layer a linear regression.
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When u is binary (categorical), fi can be set to the sigmoid
(softmax) function and we get a logistic (multinomial logistic)
regression, respectively.

In this article, we use the following encoder network

h; = Tanh(by, + W Tanh(b;_1 + ... Tanh(b; + W1y;))...),
i = Wﬂhi + b”,)
(7’12 = eXp(Wazhi + baz).

Here, h; denotes the intermediate output of the encoder
given input the i-th individual data y;, and we have
¢ = (Wi, b1,..., WL, b, Wy, by, Wg2, b2} the
decoder, to effectively utilize the gradient based method,

In

following Kucukelbir et al. (2017), we map ¢ and d from
constrained ranges [0, 1) to unconstrained space R/ through
the differentiable logit(x) =
and conduct gradient ascent in the unconstrained space. To

logx/(1 — x) transformation

avoid cluttering, we still use original notations ¢ and d in
the following.
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TABLE 3 Mean and SE of RMSE of M, estimate on M3PL models under single regime setting, best results are in bold.

N,J Item structure Model rot(A) b c Success rates
= Between MCEM 10.020 = 0.318 13.638 =£ 0.752 0.213 £0.013 1.00
MHRM 0.217 + 0.026 0.567 == 0.080 0.099 + 0.007 0.35
IWVAE 0.641 + 0.022 0.391 = 0.031 0.081 = 0.008 1.00
Within MCEM 8.133 + 0.459 8.687 + 0.727 0.194 4 0.014 1.00
MHRM 0.417 + 0.034 0.345 =+ 0.049 0.078 + 0.005 0.40
TWVAE 0.708 + 0.021 0.461 = 0.039 0.073 = 0.008 1.00
;°§ Between MCEM 5.338 + 0.287 7.799 + 0.544 0.237 £ 0.016 1.00
MHRM 0.159 + 0.017 0.280 + 0.025 0.089 + 0.007 0.30
IWVAE 0.492 + 0.019 0.320 = 0.026 0.079 = 0.008 1.00
Within MCEM 2.564 4 0.235 3.023 4 0.423 0.120 = 0.011 1.00
MHRM 0.438 + 0.038 0.313 £ 0.040 0.075 = 0.005 0.65
IWVAE 0.590 = 0.020 0.325 = 0.024 0.069 = 0.007 1.00
ég Between MCEM 1.03140.110 1.190 = 0.204 0.144 £ 0.013 1.00
o MHRM 0.151 % 0.024 0.264 = 0.028 0.090 = 0.008 0.30
IWVAE 0.403 + 0.024 0.259 £ 0.028 0.091 + 0.011 1.00
Within MCEM 0.881 + 0.063 0.575 == 0.077 0.097 = 0.009 1.00
MHRM 0.292 % 0.035 0.123 = 0.009 0.033 = 0.004 0.90
IWVAE 0.562 + 0.026 0.279 = 0.032 0.075 + 0.008 1.00
§O Between MCEM 0.810 + 0.078 1.008 = 0.169 0.112 4 0.011 1.00
== MHRM 0.106 = 0.019 0.381 + 0.131 0.055 = 0.006 0.70
TWVAE 0.393 + 0.027 0.318 £ 0.036 0.084 + 0.008 1.00
Within MCEM 0.754 4 0.045 0.662 = 0.129 0.076 = 0.007 1.00
MHRM 0.343 £ 0.035 0.154 £ 0.012 0.040 = 0.004 0.75
IWVAE 0.535 4 0.027 0.283 + 0.039 0.084 4 0.010 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.

2.3.2. Handling missing data

When y; given latent factors 6; are conditionally
independent, exactly as the MIRT models assume, MLP
based VAE and IWAE can handle incomplete data containing
entries missing at random (MAR) readily (Nazabal et al., 2020).
Here, we provide a brief summary of the input drop-out trick.

First, we replace missing entries in y; with zeros and denote
the resultant vector as y; we further use indicator vector

1; to record which entries are observed, specifically, 1,-]-
1(y;j is observed)". Next, we replace w} with W] = exp ¥} where
77 is defined as

W= [11ogp(ij | 87: My) | — logag @] | 7) +logp(@)).
=1

For now, we use é,' to emphasize that the inference network
takes y; as input. Next we show the imputing missing entries
with 0 does not influence the training. For M), based on
Equation (14), its gradient estimate is determined by VM, Ve

1 Here is a bit of abuse of notation: we use 1 to denote both the

indicator function 1(-) and its output.
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and does not depend on imputed entries because of the
multiplication of 1;, therefore Mj is also independent of them.

Additionally, if neither q4(@; | y;) nor ; is affected by
imputed entries, then such imputation will not influence the
model training as v} (and w}) does not rely on these entries.
To this end, we rely on the MLP architecture. The output
of each neuron in MLP is a non-linear transformation of a
linear combination of its inputs. This property ensures that all
intermediate states and output of the inference network, which
determines u; and o; for variational distribution q(p(éi [ 7
does not depend on zero entries in its inputs.

These observations together guarantee the condition for
vi (and wj) being independent of imputed entries, as in both
ELBO and IW-ELBO, gradient estimates of all parameters are
determined by collections of these terms.

2.3.3. Training strategy and hyperparameter
choices

We propose a three-stage training strategy for VAE by
enhancing it with IW-ELBO. We first train a standard VAE
through maximizing its own objective function ELBO. After
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TABLE 4 Mean and SE of RMSE of M, estimate on M3PL models under double regime setting, best results are in bold.

N,J Item structure Model rot(A) b c Success rates
= Between MCEM 10.020 £ 0.318 13.638 == 0.752 0.213 £ 0.013 1.00
MHRM 0.217 £ 0.026 0.567 == 0.080 0.099 = 0.007 0.35
IWVAE 0.641 £ 0.022 0.391 = 0.031 0.081 = 0.008 1.00
Within MCEM 8.133 + 0.459 8.687 + 0.727 0.194 + 0.014 1.00
MHRM 0.417 £ 0.034 0.345 =+ 0.049 0.078 == 0.005 0.40
TWVAE 0.708 + 0.021 0.461 = 0.039 0.073 £ 0.008 1.00
éa:] Between MCEM 5.224 40.192 8.544 4 0.407 0.243 +0.011 1.00
MHRM / / 0.00
IWVAE 0.506 =+ 0.015 0.348 £ 0.024 0.080 =+ 0.006 1.00
Within MCEM 2.976 4+ 0.193 3.441 4 0.304 0.157 + 0.008 1.00
MHRM / / 0.00
IWVAE 0.638 £ 0.015 0.345 = 0.020 0.080 = 0.005 1.00
ég Between MCEM 0.612 £ 0.019 0.508 = 0.048 0.114 = 0.007 1.00
o MHRM / / 0.00
IWVAE 0.459 £ 0.012 0.261 £ 0.016 0.084 = 0.005 1.00
Within MCEM 0.693 £ 0.015 0.306 == 0.020 0.075 = 0.004 1.00
MHRM / / 0.00
IWVAE 0.595 £ 0.013 0.271 £ 0.017 0.082 == 0.005 1.00
§O Between MCEM 0.561 = 0.010 0.572 = 0.032 0.097 4 0.004 1.00
=R MHRM / / 0.00
IWVAE 0.465 £ 0.011 0.258 £ 0.013 0.086 =+ 0.004 1.00
Within MCEM 0.678 £ 0.010 0.581 = 0.047 0.058 =+ 0.003 1.00
MHRM / / 0.00
IWVAE 0.592 % 0.011 0.271 £ 0.014 0.085 + 0.004 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.

reaching a local optimum, we train it to maximize the tighter
IW-ELBO until it converges again. Since the computation cost of
IW-ELBO is more expensive than ELBO, our strategy is cheaper
than training an IWAE from scratch. We refer to our model as
importance-weighted sampling enhanced VAE(IWVAE).

To be more specific, in the first 1% of total iterations, we
apply the KL annealing technique, i.e., at step ¢, we multiply
the KL divergence term Dkr[qes(0; | y;)llp(0:)] by a factor
[0.01Tmax] and Tmax = 2,00,000
is a pre-specified maximum number of iterations to avoid

t —
T where T, =

the algorithm running forever due to convergence issues. In
this stage, the weight of the KL term increases from 0 to 1
linearly. KL annealing has shown great improvement in deep
generative models (Gulrajani et al., 2016; Sonderby et al., 2016).
The rationale behind this technique is that the KL divergence
term can over-regularize the model by forcing the approximate
posterior q(6;) close to the prior p(#;) and leading the model
to converge early to unsatisfactory local minimums. To mitigate
this issue, at the beginning of training, we simply reduce the
effect of the KL term. During the annealing stage, we fix ¢ and
d and only update ¢, A, b.
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After the annealing stage, we train IWVAE until its estimated
ELBO converges such that the averaged ELBO value in every
100 steps stops increasing for L = 50 times. We refer to this
stage as ELBO converging. Finally, we use importance-weighted
samples to train IWVAE until it converges again in terms of IW-
ELBO with this same rule. This stage is referred to IW-ELBO
converging. After this stage, we end up training.

Algorithm 1 demonstrates our training method in a
simplified version where at each step only 1 sample is drawn
randomly from the data to estimate gradients. In practice,
people can instead collect multiple samples (known as a mini
batch) at each step and take the average for better gradients
estimators. In practice, we used a mini batch size of 16 for
each iteration step throughout all stages, S = 1 Monte
Carlo sample in all three stages, and R = 5 importance
samples in the last IW-ELBO converging stage following (Urban
and Bauer, 2021). In terms of parameter updates, we use
stochastic gradient ascent with fixed step size to maximize
the ELBO or IW-ELBO. We assign a smaller step size (0.001)
for parameters ¢ and d as their ranges are smaller, and all
other parameters are optimized with step size (0.01). No
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Algorithm 1 Stochastic gradient ascent of IWVAE.

Input: data Y; latent factor’s dimension K; Monte Carlo and importance sample
sizes S, R; maximum number of iterations Tiya.

Initialize @, Mp using random samples

(KL annealing stage)

while iteration number ¢ not reaching Ty = [0.01Tax | do
randomly draw y; from Y;
draw S samples 85 ~ M(p;, (rf) with Equation (10) where (u;, U?) = Fy(y,);
compute logp(y; | 0;: M,) with Equation (1) or Equation (2), Dk [q,(6; |
¥)llp(0;)] with Equation (11). Take 1 gradient ascent step on

N

N 1 t

¢, M, = argmax 3 Zlogp(y,v | 07: M,) — TIDKL[Q¢(0i [ y)1p(6:)]
*M, s=1 an

end while

(ELBO converging stage)

while iteration number ¢ not reaching Tmax and ELBO not converging do
randomly draw y; from Y;
draw S samples 65 ~ N(u;, 07) with Equation (10) where (p;,02) = Fy(y,);
compute logp(y; | 0;; M,) with Equation (1) or Equation (2), Dk [q,(8; |
¥)llp(0;)] with Equation (11). Take 1 gradient ascent step on

1 S

¢, i, = argmax < 3 logp(y; | 03 My) — i[5 (6: | ) 1p(@))]
o.M,

s=1

end while

(IW-ELBO converging stage)

while iteration number ¢ not reaching Tmax and IW-ELBO not converging do
randomly draw y; from Y;
draw SR samples 07 ~ MN(n;,¢?) with Equation (10) where (u;,02) =
Fy(y,);
compute logp(y; | 6;; M,) with Equation (1) or Equation (2), wj® =
exp [logp(yi |07 M,) — logqy (07 | y,) + logp(of)]. Take 1 gradient ascent

step on
1S LR
b, M, = argmax — log — w
M f’MP S;|: gR; x:|

end while

Output: parameter estimates 43 MP

further tweaks such as gradient clippings (Pascanu et al., 2013)
are used.

3. Simulation study

3.1. Data generation

To evaluate the performances of applying IWVAE to
M3PL and M4PL models, we conducted a thorough simulation
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study. We considered both within item and between item
multidimensionality. In particular, for the within item
multidimensionality, each item was loaded on two factors;
and for the between item multidimensionality, each item was
loaded on one factor. Under both settings, items dependency
were distributed to different factors evenly in an indirect way
through a sparse J x K loading matrix A. Specifically, we
first generated a blocked diagonal submatrix A’. Next, we
repeated two steps iteratively: (1) flipped A’ horizontally, and
(2) concatenated to previous results, until we have the full
s-shaped matrix A. When J is not a multiple of row numbers of
A’, we truncated the resultant matrix at the bottom. To make
the design more realistic and challenging, we considered a
missing data design. For datasets with large J, it is impractical
to have all items observed from every single respondent in
realistic scenarios. To reflect this concern, we randomly masked
a large portion (80% in our experiments) of responses from
each respondent, assuming each respondent only answer 20%
of the items.

Parameters My and latent factors ® were generated as
follows. For latent factor 6;, under the independent factors
setting, it was sampled from the standard multivariate
Gaussian MN(0,I). Under the correlated factors setting, a
covariance matrix X was first generated and shared by all
0;. Specifically, the diagonal entries were set to 1 so that
each factor has unit variance; and off-diagonal (specifically,
upper diagonal) entries were sampled independently from
U(0,1). This X was accepted if it was positive semi-
definitive, otherwise, another matrix was regenerated. For
free parameters in the discrimination matrix ajj € A/, we
sampled it from 24(0.5,1.5). For J pairs of guessing and upper
asymptote parameters (cj,d;), we sampled them from ¢; ~
Beta(1,9), dj ~ Beta(9,1) in parallel and kept them if
all¢j < dj.

Our experiments were conducted as follows. First, we
chose latent factors @; for i = 1,...,N to be uncorrelated
and studied two asymptotic regimes. Specifically, in the
single asymptotic regime, the dimensions of items ] and
factors K were fixed to 100 and 5 respectively, and sample
size N was increased from 500 to 10,000. In the double
asymptotic regime, only K was fixed to 5 and ] was increased
from 100 to 500 as N grew. Under both settings, we chose
N e {500,1,000,5,000,10,000} and in the double asymptotic
settings we further chose J € {100,200,300,500}. Under
each combination of N,J,K, we evaluated performances
of IWVAE, MCEM, and MHRM on the M3(4)PL model
by checking item parameters M, estimation. Finally,
we duplicated this series of experiments to correlated
factors settings.

We implemented IWVAE in PyTorch (Paszke et al., 2019)
and MCEM in the mirt R package (Chalmers, 2012). All
experiments were run on the same high performance computing
cluster (HPCC) with 4 CPUs and 4 GB memory, and no GPU
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TABLE 5 Mean and SE of RMSE of M, estimate on M4PL models under single regime setting, best results are in bold.

N,J Item structure Model rot(A) b c d Success rates
= Between MCEM 11.248 +0.217 13.315 4 0.491 0.172 £ 0.011 0.178 £ 0.010 1.00
MHRM / / / / /
IWVAE 0.654 = 0.023 0.363 = 0.024 0.081 = 0.008 0.087 =+ 0.008 1.00
Within MCEM 12.038 4 0.286 12.611 + 0.665 0.148 £ 0.010 0.138 + 0.008 1.00
MHRM / / / / /
TWVAE 0.736 =+ 0.022 0.416 =+ 0.032 0.073 = 0.008 0.088 =+ 0.008 1.00
;°§ Between MCEM 8.231 4 0.159 11.774 4+ 0.417 0.180 + 0.011 0.189 £ 0.012 1.00
MHRM / / / / /
TWVAE 0.486 =+ 0.019 0.334 +0.028 0.079 = 0.008 0.080 =+ 0.008 1.00
Within MCEM 7.181 4 0.302 7.160 4 0.527 0.108 4 0.009 0.134 £ 0.010 1.00
MHRM / / / / /
IWVAE 0.623 = 0.020 0.408 = 0.033 0.069 = 0.007 0.078 = 0.008 1.00
ég Between MCEM 3.315 £ 0.167 4.790 + 0.354 0.182 = 0.014 0.159 == 0.012 1.00
o MHRM / / / / /
IWVAE 0.379 + 0.026 0.363 = 0.043 0.091 = 0.011 0.082 = 0.009 1.00
Within MCEM 1.886 4 0.152 1.468 4 0.186 0.094 + 0.009 0.087 == 0.007 1.00
MHRM / / / / /
IWVAE 0.529 % 0.031 0.397 + 0.037 0.075 = 0.008 0.086 =+ 0.010 1.00
§O Between MCEM 1.918 +0.114 2,555 +0.213 0.157 £ 0.010 0.176 + 0.011 1.00
== MHRM / / / / /
TWVAE 0.380 =+ 0.028 0.402 + 0.040 0.084 =+ 0.008 0.079 =+ 0.008 1.00
Within MCEM 1.127 £ 0.075 0.943 + 0.079 0.095 + 0.007 0.087 == 0.006 1.00
MHRM / / / / /
IWVAE 0.520 £ 0.033 0.360 = 0.039 0.085 £ 0.010 0.079 % 0.008 1.00

Factors are correlated. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.

was used. MHRM was implemented with FlexMIRT (Chung and
Houts, 2020) and all experiments were fitted on a laptop with
Intel Intel(R) Core(TM) i7-10750H CPU and 16 GB memory?.
Because of the platform difference, we ran B = 100 independent
replications for IWVAE and MCEM on each simulated dataset,
and B = 20 replications for MHRM.

To evaluate the performances of MCEM, MHRM, and
IWVAE, we followed Cho et al. (2021) and Urban and Bauer
(2021) and reported rooted mean squared error (RMSE) across
B independent experiment replications. Specifically, for each

scalar parameter & (one of oejk,b-, Cj,dj forj = 1,....,k =
1,...,K), RMSE for each parameter was computed by
1 B
£ — _ £ _ £\2
RMSE() = | 2 b;(sb £)2, (17)

where &, is the estimated value from the b-th replication. The
final reported RMSEs were averages of corresponding entries in
matrix A or vectors b, ¢, d, and standard error were shown after
each value in the parenthesis.

2 HPCC cannot be used due to the license issue of FlexMIRT.
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Note that the matrix A in MIRT (IRT) models can be only
identified up to a rotation if no further prior constraint is
imposed, and we conducted post-hoc processing on A following
other literature. Our transformation consisted of three steps.
First, we applied the promax (Hendrickson and White, 1964)
rotation to the estimated A, which allowed different factors to be
correlated; we denoted this intermediate result with A”. Next, for
each column in A" that had a negative sum, we flipped its sign
and the corresponding factor (refer to, e.g.,, Urban and Bauer,
2021), we marked the resultant matrix in this step as A'f, Finally,
we searched over the best permutation of columns of A’/ such
that RMSE was minimized, and the corresponding RMSEs were
reported in tables.

We also utilized the CF-Quartimax rotation as in Cho
et al. (2022) to evaluate the sparsity structure estimation of
different methods. However, since sparsity estimation is not the
main focus of this article, we defer presenting these results to
the appendix.

Finally, Considering that M3PL is notoriously hard for
MHRM to fit (Cho etal.,, 2021), and M4PL is expected to be more
difficult, we reported the success rate of each method, which
refers to the percentage of successful replications. The exact
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TABLE 6 Mean and SE of RMSE of M, estimate on M4PL models under double regime setting, best results are in bold.

N,J Item structure Model rot(A) b c d Success rates
= Between MCEM 11.248 +0.217 13.315 4 0.491 0.172 £ 0.011 0.178 £ 0.010 1.00
MHRM / / / / /
IWVAE 0.654 = 0.023 0.363 = 0.024 0.081 = 0.008 0.087 =+ 0.008 1.00
Within MCEM 12.038 4 0.286 12.611 + 0.665 0.148 £ 0.010 0.138 + 0.008 1.00
MHRM / / / / /
TWVAE 0.736 =+ 0.022 0.416 =+ 0.032 0.073 = 0.008 0.088 =+ 0.008 1.00
éa:] Between MCEM 8.314 4 0.097 11.742 4 0.298 0.178 + 0.008 0.197 = 0.008 1.00
MHRM / / / / /
TWVAE 0.503 = 0.015 0.362 + 0.024 0.080 = 0.006 0.088 =+ 0.007 1.00
Within MCEM 7.32340.213 7.628 4 0.362 0.125 4 0.006 0.131 = 0.007 1.00
MHRM / / / / /
IWVAE 0.609 = 0.015 0.407 £ 0.024 0.080 = 0.005 0.088 = 0.007 1.00
ég Between MCEM 2.041 = 0.090 2.292 + 0.154 0.143 + 0.006 0.139 == 0.006 1.00
o MHRM / / / / /
IWVAE 0.426 =+ 0.013 0.340 = 0.020 0.084 = 0.005 0.081 = 0.005 1.00
Within MCEM 1.049 + 0.053 0.525 + 0.065 0.066 = 0.005 0.059 £ 0.004 1.00
MHRM / / / / /
IWVAE 0.582 + 0.014 0.339 £ 0.019 0.083 + 0.005 0.080 == 0.005 1.00
§O Between MCEM 1.062 4 0.036 1.163 4 0.060 0.129 + 0.004 0.131 + 0.004 1.00
= MHRM / / / / /
IWVAE 0.426 + 0.011 0.332 £ 0.015 0.086 =+ 0.004 0.086 =+ 0.004 1.00
Within MCEM 0.884 4 0.015 0.944 + 0.031 0.098 + 0.003 0.099 = 0.003 1.00
MHRM / / / / /
IWVAE 0.562 % 0.012 0.367 £ 0.016 0.085 = 0.004 0.087 = 0.004 1.00

Factors are correlated. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.

definition of success for different methods differs. For MCEM,
it refers to the case where the MCEM algorithm terminates
and provides estimates successfully, regardless of convergence?®.
For IWVAE, it also refers to successful termination without
reaching the maximum iteration number, which implies proper
convergence. The difference in success, as we shall see later, is
influential: MHRM usually performed the best if it succeeds.
MCEM, on the contrary, had much worse performances while
succeeding in all experiments.

3.2. Numeric results

In this section, we show detailed numeric results on
M) estimations, which are summarized in Tables 1-8. In a
nutshell, IWVAE achieved competitive or better performances
compared to the two other statistical methods. IWVAE achieved
much lower RMSE on nearly all item parameters in almost

3 Unlike the mirt package, FlexMIRT only provides convergent

estimates.
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all experiments than MCEM; and unlike MHRM, IWVAE
succeed in all experiments from small- to large-scale datasets.
Additionally, IWVAE required much more scalable training
times on all experiments, while MCEM and MHRM had time
costs growing faster as sample size increased.

Tables 1-4 show RMSE of M, estimation in M4PL and
M3PL models under single and double asymptotic regimes,
where different entries in each latent factor § were generated
independently. Two item structures were reported together in
the same table. First, we observed that MCEM and IWVAE are
more robust, as they succeed in all experiments, while MHRM
achieved a success rate of 50% on few experiments in the M3PL
model. Next, IWVAE reached much lower RMSE than MCEM,
especially on small to medium sized data. In addition, IWVAE
showed similar tendencies as MCEM and MHRM did: as N
grew, its RMSE showed remarkable decreases, and on more
challenging within-item structure scenarios, IWVAE also had
slightly higher RMSEs.

For experiments where each latent factor 6 has correlated
components, we organized results in the same way as before.
Tables 5-8 show RMSE of M estimation in M4PL and M3PL
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TABLE 7 Mean and SE of RMSE of M, estimate on M3PL models under single regime setting, best results are in bold.

N,J Item structure Model rot(A) b c Success rates
S Between MCEM 9.137 £ 0.396 12.034 = 0.799 0.192 + 0.012 1.00
MHRM 0.331 = 0.040 0.441 + 0.062 0.077 % 0.006 0.05
IWVAE 0.659 == 0.020 0.411 % 0.029 0.081 = 0.008 1.00
Within MCEM 7.644 + 0.465 7.291 £ 0.612 0.153 = 0.011 1.00
MHRM 0.492 + 0.048 0.364 % 0.054 0.064 = 0.005 0.45
IWVAE 0.733 £ 0.020 0.440 + 0.038 0.073 = 0.008 1.00
§.§ Between MCEM 5231 4+ 0.279 8.080 = 0.573 0.219 = 0.014 1.00
MHRM 0.284 =+ 0.027 0.350 = 0.041 0.090 = 0.007 0.25
IWVAE 0.483 £ 0.019 0.312 +0.024 0.079 % 0.008 1.00
Within MCEM 2.855 = 0.299 2.912 + 0.457 0.118 = 0.010 1.00
MHRM 0.428 £ 0.034 0.336 = 0.020 0.045 = 0.004 0.80
IWVAE 0.601 == 0.024 0.299 + 0.026 0.069 = 0.007 1.00
ég Between MCEM 0.762 = 0.063 0.638 £ 0.117 0.130 = 0.015 1.00
o MHRM 0.242 £ 0.019 0.120 % 0.011 0.051 = 0.005 0.75
IWVAE 0.415 £ 0.023 0.256 = 0.031 0.091 = 0.011 1.00
Within MCEM 0.986 == 0.075 0.421 + 0.054 0.066 = 0.006 1.00
MHRM 0.357 £ 0.034 0.460 + 0.013 0.030 = 0.002 0.80
IWVAE 0.578 = 0.029 0.308 = 0.034 0.075 = 0.008 1.00
%o Between MCEM 0.917 £ 0.107 1.073 4 0.170 0.110 = 0.012 1.00
== MHRM 0.155 £ 0.013 0.114 £ 0.014 0.037 = 0.006 0.65
IWVAE 0.397 £ 0.027 0.297 £ 0.035 0.084 + 0.008 1.00
Within MCEM 0.898 £ 0.056 0.751 £ 0.165 0.057 = 0.006 1.00
MHRM 0.378 £ 0.036 0.461 + 0.027 0.017 % 0.002 0.40
IWVAE 0.547 £ 0.032 0.302 = 0.040 0.084 = 0.010 1.00

Factors are correlated. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.

models under single and double asymptotic regimes. Again, we
observed similar results from IWVAE to MCEM and MHRM in
terms of success times and RMSE, indicating the advantage of
the proposed IWVAE method.

We finally analyzed the fitting time of IWVAE and MCEM
and reported averaged time with stand error (in shadow) in
Figure 1 (M3PL) and Figure 2 (M4PL). We combined different
factor settings (independent and correlated), and item structures
(between and within) for every pair of sample size N and item
size J. Each point contains 80 trials. As MHRM could not fit
MA4PL and its convergence results under M3PL were not stable,
here, we do not report their results. From Figures 1, 2, compared
to MCEM, IWVAE required significantly lower fitting time.
Unlike MCEM, IWVAE had a much more stable fitting time
across different data sizes, which was also observed in Urban
and Bauer (2021) for estimating M2PL. As in Urban and Bauer
(2021), we also note that the computational time of IWVAE
appeared not to increase with N and J, which may be due to that
VAE-based models are more difficult to train on small data sets.
Similarly, in some cases, the computational time of MCEM also
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dropped when N increased to 10, 000, which may also be because
of the easier convergence of the algorithm for the larger datasets.
Moreover, we observed that fitting time of MCEM under M4PL
depended more on the choices of initialization, revealed by the
width of empirical intervals in Figure 2.

4. Real data analysis

In this section, we evaluated the performance of IWVAE,
MCEM, and MHRM on the multistage testing (MST) dataset
from the National Assessment of Education Progress (NAEP).
The data is from the 2011 grade 8 math assessment study.
The NAEP MST design takes a two-stage form: in the routing
stage, a block of items with medium difficulty is administered.
Then in the second stage, there are three targeted blocks with
varying difficulty—blocks of easy, medium, and hard items.
Based on a person’s performance in the routing block, one
of the three targeted blocks is assigned in the second-stage
accordingly. Because the assignment in stage II depends on
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TABLE 8 Mean and SE of RMSE of M, estimate on M3PL models under double regime setting, best results are in bold.

10.3389/fpsyg.2022.935419

N,J Item structure Model rot(A) b c Success rates
o000
2= Between MCEM 9.137 £ 0.396 12.034 £ 0.799 0.192 £ 0.012 1.00
MHRM 0.331 £ 0.040 0.441 £ 0.062 0.077 £ 0.006 0.05
IWVAE 0.659 £ 0.020 0.411 £ 0.029 0.081 =£ 0.008 1.00
Within MCEM 7.644 + 0.465 7.291 £ 0.612 0.153 £0.011 1.00
MHRM 0.492 £ 0.048 0.364 £ 0.054 0.064 £ 0.005 0.45
IWVAE 0.733 £ 0.020 0.440 £ 0.038 0.073 £ 0.008 1.00
(=3
% Between MCEM 4.662 £ 0.200 7.364 + 0.410 0.220 £ 0.010 1.00
MHRM / / / 0.00
IWVAE 0.512 £ 0.014 0.329 £ 0.022 0.080 £ 0.006 1.00
Within MCEM 2.233£0.171 2.294 £ 0.266 0.104 £ 0.006 1.00
MHRM / / / 0.00
IWVAE 0.670 £ 0.014 0.318 £ 0.020 0.080 £ 0.005 1.00
(=3
8% Between MCEM 0.576 £ 0.017 0.450 £ 0.048 0.101 £ 0.006 1.00
wnen
MHRM / / / 0.00
IWVAE 0.450 £ 0.012 0.263 £+ 0.016 0.084 £ 0.005 1.00
Within MCEM 0.728 £ 0.013 0.215 £+ 0.017 0.050 £ 0.003 1.00
MHRM / / / 0.00
IWVAE 0.624 £ 0.013 0.290 £ 0.018 0.082 £ 0.005 1.00
(=3
80 Between MCEM 0.571 £0.012 0.720 £ 0.049 0.089 £ 0.004 1.00
SO
- MHRM / / / 0.00
IWVAE 0.451 £ 0.011 0.246 £ 0.013 0.086 £ 0.004 1.00
Within MCEM 0.858 £ 0.018 1.411 4 0.087 0.065 £ 0.002 1.00
MHRM / / / 0.00
IWVAE 0.587 £ 0.011 0.267 £0.014 0.085 + 0.004 1.00
Factors are correlated. Between item structure: each item depends on 1 factor. Within item structure: each item depends on 2 factors.
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FIGURE 1
Fitting times for IWVAE and MCEM with M3PL model under the single (different sample sizes N and fixed item dimension J) and double [different
(N, J)] asymptotic regimes. Vertical bar areas mark empirical 95% intervals.
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FIGURE 2
Fitting times for IWWVAE and MCEM with M4PL model under the single (different sample sizes N and fixed item dimension J) and double [different
(N, J)] asymptotic regimes. Vertical bar areas mark empirical 95% intervals.

TABLE 9 Comparison of estimated Ry from different models on MST dataset.

Model IWVAE MCEM MHRM
M1 ] M1 ]
0.624 1. 0.628 1.
M4PL 0571 051 1. 0.616 0.604 1. /
0.695 0.625 0.551 1. 0.595 0.599 0.543 1.
| 0.53 0.521 0.457 0.546 1.] 10.655 0.655 0.621 0.626 1.
M1 T M1 T 1.
0585 1. 0.465 1. 0.581 1.
M3PL 0.557 0.699 1. 0.669 0.363 1. 0.52 0.589 1.
0.531 0.671 0.653 1. 0.712 0.449 0.662 1. 0.565 0.689 0.582 1.
| 047 0.52 0.521 0.496 1.] 10.668 0.43 0.603 0.665 1. 0.48 0.586 0.494 0.61 1.
M1 T 1. 1.
074 1. 0264 1. 0.518 1.
M2PL 0.622 0.628 1. 0.422 0469 1. 0.593 0.584 1.
0.58 0.529 0.515 1. 0.479 0.564 0.709 1. 0.548 0.548 0.618 1.
1 0.594 0.593 0.507 0.451 1. 0.435 0.479 0.625 0.69 1. 0.551 0.601 0.624 0.638 1.

the observed student performance in stage I, the MST design
essentially generates a unique missing-at-random pattern. Due
to the prevalence of MST design in large scale assessments,
it would interesting to evaluate how the different estimation
methods fare with such a design.

The data set contains N = 3,344 respondents and 74 items
in total. The routing block contains two parallel forms with 17
items in each form. The three blocks in stage II contain 14, 13,

Frontiersin Psychology

15

and 13 items, respectively. Each person responded to 31 or 30
items out of 74. The items cover 5 different content domains,
i.e., number properties and operations, measurement, geometry,
data analysis statistics and probability, and algebra. The break
down of items from each content domain in each form is
presented in Table 8 by Wang et al. (2020). The content coverage
is pretty balanced, which suggests a five-dimensional model
to be appropriate. Hence, five-dimensional exploratory M2PL,

frontiersin.org


https://doi.org/10.3389/fpsyg.2022.935419
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Liu et al.

10.3389/fpsyq.2022.935419

TABLE 10 Mean and SE of train and held-out accuracy/log-likelihood on MST dataset (over 5 replications).

Method Model Train accuracy Held-out accuracy Train log-likelihood Held-out log-likelihood
M4PL 0.707 £ 0.001 0.704 £ 0.002 —0.531 £ 0.001 —0.539 4 0.001
IWVAE M3PL 0.707 £ 0.000 0.706 =+ 0.002 —0.530 & 0.000 —0.537 £ 0.000
M2PL 0.706 £ 0.001 0.703 £ 0.001 —0.531 4+ 0.001 —0.539 4+ 0.001
M4PL 0.764 £ 0.001 0.693 + 0.002 —0.481 4+ 0.001 —0.603 £ 0.001
MCEM M3PL 0.761 =£ 0.000 0.697 £ 0.001 —0.482 4 0.000 —0.599 £ 0.000
M2PL 0.759 £ 0.001 0.697 £ 0.001 —0.485 4 0.001 —0.589 4 0.001
M4PL / / / /
MHRM M3PL 0.612 £ 0.003 0.613 £ 0.002 —0.682 4 0.003 —0.683 £ 0.003
M2PL 0.622 £ 0.003 0.623 £ 0.002 —0.662 4 0.003 —0.664 £ 0.003
I IWVAE I MCEM I MHRM
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FIGURE 3
Predicted log-likelihood on held-out items using different methods (IWVAE, MHRM, MCEM) to fit different MIRT models on MST data from a
randomly selected trial. Outlier predictions are removed.

M3PL, and M4PL models were fitted to the MST data using
IWVAE, MHRM, and MCEM. We used the same algorithm,
architecture, hyper-parameters, and stop criteria on IWVAE as
in the simulation study except that we use a larger learning rate
of 0.1 for ¢, A, b and 0.01 for ¢, d.

First, we studied the estimates of the covariance matrix X,
and the comparison between the three methods. Due to the
identifiability issue, in all models we assumed that covariance
matrix of latent factors is ¥ = I and conducted the promax
rotation to estimate the correlation matrix R. After rotation,
we adjusted the sign of the correlation depending on the sign
of post-hoc transformed A" as in the previous section. In
particular, we flipped the sign of each column in A’ if its sum
was negative, and did the same to the corresponding columns
and rows in the R. Table 9 shows estimated matrices under
M4PL, M3PL, and M2PL, respectively. Under all settings, the
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correlation matrix recovered by IWVAE was similar to those
from MCEM and MHRM, and a bit even closer to MHRM than
MCEM did on M3PL and M2PL models.

Next, given that the true parameters are unknown, we
evaluated the predictive performances of the three methods
using a held-out validation. That is, we randomly marked
20% of items as missing, which played the role of held-out
data, and used the remaining data to estimate our person and
item parameters. That is, we used the estimated parameters
to produce model-based predicted responses, compared them
with the observed responses, and computed their consistency
as a measure of accuracy. We computed such accuracy on
both training data and held-out data. Higher accuracy indicates
more alignment between model prediction and observed data.
Meanwhile, we also used the estimated model parameters to
compute log-likelihood, with a higher likelihood implying the

frontiersin.org


https://doi.org/10.3389/fpsyg.2022.935419
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Liu et al. 10.3389/fpsyg.2022.935419
s WVAE B MCEM I MHRM
T T T
0 - -
_2 = T SeeeegEeeeees -
3t ' T
o
£
2
S 5 L .
] ¢
Q
2-10 | e
T
=12 = -
L
¢
_14 - -
$
1 1 1
M4PL M3PL M2PL
Model
FIGURE 4
Predicted log-likelihood on held-out items using different methods (IWVAE, MHRM, MCEM) to fit different MIRT models on MST data from a
randomly selected trial. Outlier predictions are kept.

estimated parameters may be better reflective of unknown
truth. We reported accuracy and log-likelihood predicted by
different methods on the training and held-out data in Table 10.
To eliminate potential randomness in generating observed
responses, 5 replications were done for each model, and we
generated a different train and held-out data in each replication.

Table 10 summarizes the averaged accuracy and log-
likelihood (of each item) on the train and held-out sets, where
values in parentheses are stand errors across 5 replications.
In this experiment, IWVAE achieved the highest held-out
accuracy and log-likelihood. Figures 3, 4 further showed the
corresponding log-likelihood values of each item. First, we
observed that IWVAE had much fewer outliers than MCEM;
after removing outliers, IWVAE achieved the highest log-
likelihood on three MIRT models. Moreover, among the three
models, the held-out accuracy, training data log-likelihood, and
held-out log-likelihood from IWVAE were the best for M3PL.
This is expected in that the operational model for NAEP analysis
is indeed 3PL.

5. Discussions

In this article, we extend a variational autoencoder
estimation method (Urban and Bauer, 2021) for the parameter
estimation of the M3PL and M4PL models. By approximating
the intractable log-likelihood with variational techniques, it
provides a computationally efficient and scalable method for
the estimation of large-scale assessment data. Simulation studies
demonstrate that the proposed method outperforms the widely
used MHRM and MCEM methods in terms of parameter
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recovery and computation time in both M3PL and M4PL. The
proposed method is also more robust with many fewer issues
of convergence. That said, we do want to caution readers that
a robust algorithm cannot compensate for a lack of data. For
M3PL and M4PL to be estimated well, there needs to be enough
data at the two extreme ends of the latent trait scales to help
estimate the lower and upper asymptote adequately.

Although this study focuses on the exploratory item factor
analysis, the proposed algorithm can be easily applied to
the confirmatory item factor analysis, where certain entries
of the loading matrix are set to be 0 by users. Such
structural restrictions can be naturally incorporated into the
estimation. In addition, it would be also of interest to further
estimate the sparsity loading structure from the responses.
This can be achieved by adding a lasso-type regularization
term into the loss function (the marginal log-likelihood
function), which would induce sparse estimation results from
the regularized algorithms.

Finally, a few interesting problems are left for future
investigations. Very recent works suggested that some aspects
of our training strategy can be improved; for instance,
Collier et al. (2021) revealed that the missing data can
be handled better than zero-imputation; and Wang et al
(2021) indicated a possible direction of understanding and
solving the posterior collapse, which was solved by a KL
annealing stage in our proposed method. Moreover, this
work does not directly study the estimation uncertainty of
the VAE estimation procedure. It is interesting to further
develop valid statistical procedures to make inferences for
the corresponding estimation results. Such an important
problem, however, still remains unaddressed for VAE and
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related deep learning methods in the machine learning and
statistics literature.
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