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Item factor analysis (IFA), also known as Multidimensional Item Response Theory (MIRT), is a
general framework for specifying the functional relationship between respondents’ multiple latent traits
and their responses to assessment items. The key element inMIRT is the relationship between the items and
the latent traits, so-called item factor loading structure. The correct specification of this loading structure
is crucial for accurate calibration of item parameters and recovery of individual latent traits. This paper
proposes a regularized Gaussian Variational Expectation Maximization (GVEM) algorithm to efficiently
infer item factor loading structure directly from data. The main idea is to impose an adaptive L1-type
penalty to the variational lower bound of the likelihood to shrink certain loadings to 0. This new algorithm
takes advantage of the computational efficiency of GVEM algorithm and is suitable for high-dimensional
MIRT applications. Simulation studies show that the proposed method accurately recovers the loading
structure and is computationally efficient. The new method is also illustrated using the National Education
Longitudinal Study of 1988 (NELS:88) mathematics and science assessment data.

Key words: latent variable selection, multidimensional item response theory, variational inference,
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1. Introduction

Full Information Item factor analysis (IFA), known as factor analysis of ordered categorical
(such as binary) item-level data, has been a useful tool to explore the latent structure underlying
educational and psychological tests (Bock, Gibbons, & Muraki, 1988). IFA provides a wealth of
information regarding the characteristics of the items and tests, which are important to ensure
reliability and validity of a measure. As IFA deals with item-level responses, it is also considered
as multidimensional item response theory (MIRT) (Embretson & Reise, 2000; Reckase, 2009)
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The widely used multidimensional 2-parameter logistic (M2PL) model assumes item
response function of the i th individual to the j th item as

P(Yi j = 1 | θ i ) = exp(α�
j θ i − b j )

1 + exp(α�
j θ i − b j )

, (1)

where there are N subjects who respond to J items independently with binary response variables
Yi j , for i = 1, . . . , N and j = 1, . . . , J . α j denotes a K -dimensional vector of item discrim-
ination parameters for the j th item and b j denotes the corresponding item difficulty parameter.
θ i denotes the K -dimensional vector of latent ability for student i . α j may contain structural 0’s
implying that item j does notmeasure (hence not load on) certain factors.When bothα j and θ i are
unidimensional, the 2PL model and one-factor categorical factor analysis model are mathemat-
ically equivalent (Takane & De Leeuw, 1987; Wirth & Edwards, 2007). Another popular MIRT
model that is often suitable for multiple-choice binary response items is the multidimensional
3-parameter logistic (M3PL) model. It includes an additional parameter c j to quantify guessing
probability of the j th item. Hence, the item response function is expressed as

P(Yi j = 1 | θ i ) = c j + (1 − c j )
exp(α�

j θ i − b j )

1 + exp(α�
j θ i − b j )

. (2)

Although the inclusion of the guessing parameter makes the model more flexible, it no longer
belongs to the exponential family and its estimation becomes much more challenging (Thissen &
Wainer, 1982; Yen, 1987).

In an exploratory IFA, the item factor loading structure that is reflected by the systematic 0’s
in α j is unknown. Identifying the loading structure, which is equivalent to the sparsity structure of
α j , is crucial not only for accurate calibration of item parameters and recovery of individual latent
traits, but also for understanding the construct validity of a measure. Traditional approaches for
identifying item factor loading structure proceed in two steps: (1) allowing all item factor loadings
to be freely estimated, subject to identifiability constraints; and (2) conducting a post-hoc rotation
(Browne, 2001a). Most software packages use varimax (Kaiser, 1958) for orthogonal rotation
or promax (Hendrickson & White,1966) for oblique rotation by default. Other popular methods
include, for instance, the CF-Quartimax rotation (Browne, 2001a). While these rotation methods
intend to produce a near-simple structure, an arbitrary cutoff for the rotated factor loadings is often
needed. Rotation methods that encourage sparse solutions have also been developed in Jennrich
(2004; 2006) using the component loss functions for orthogonal and oblique rotations.

To avoid setting subjective cutoffs, Sun, Chen, Liu, Ying, and Xin (2016) recently pro-
posed to formulate the problem of estimating the loading structure in MIRT as a latent variable
selection problem. Specifically, for each item, a set of latent traits influencing the distribution
of the responses are selected by the L1-regularized regression. The L1-regularized regression,
also known as the constrained least absolute shrinkage and selection operator (Lasso) (Tibshi-
rani, 1996), has received much attention for solving variable selection problems for both linear
and generalized linear models (Friedman, Hastie, & Tibshirani, 2010). The principle idea is to
penalize the factor loadings toward zero if the corresponding latent traits are not associated with
an item. This leads to correctly estimating an optimal nonzero factor loading structure, instead of
setting subjective cutoffs. This approach also has the advantage over the information criterion-
based model selection methods in terms of the computational cost because it simultaneously
estimates both loading structure and model parameters. Despite its appeal, the computation is still
quite challenging in MIRT model due to its intractable marginal likelihood function that involves
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high-dimensional integration. For parameter estimation, Sun et al. (2016) used direct numerical
approximation of the likelihood in the iterative expectation-maximization (EM) procedure, which
can be computationally inefficient especially in higher dimensions. Specifically, they showed that
the computation time for the latent variable selection with dimension K = 3 is about 30 minutes
for the first penalization tuning parameter λ and additional 10 minutes for the subsequent λs.
Considering that multiple λs have to be used for the latent variable selection via regularization, it
can take a few hours to estimate a test structure for a single dataset with high dimensions.

Indeed, developing efficient estimation algorithms forMIRT parameter estimation has always
been a productive research topic. A number of methods have been proposed to deal with the com-
putational challenge (Rabe-Hesketh, Skrondal, & Pickles, 2005; von Davier & Sinharay, 2010).
The first one is the adaptive Gaussian quadrature method. Although the number of quadrature
points per dimension could be small, the total number of quadrature points still increases exponen-
tially with the number of dimensions. Moreover, an extra step is needed to compute the posterior
mode and variance of latent factors in each iteration, which adds additional computation costs
(Pinheiro & Bates, 1995). The second one is the Monte Carlo techniques. This family of meth-
ods include, for instance, the Monte Carlo EM algorithm (McCulloch, 1997; C. Wang & Xu,
2015), stochastic EM algorithm (von Davier & Sinharay, 2010; S. Zhang, Chen, & Liu, 2020), or
Metropolis-Hastings Robbins-Monro algorithm (Cai, 2010b; 2010a). These methods circumvent
intractable integrations by sampling from the posterior distributions; however, they may be still
computationally intensive for complicated high-dimensional models, as a largeMonte Carlo sam-
ple size is typically needed and the posterior distributions usually do not have a closed form. Fully
Bayesian estimation methods, such as Markov chain Monte Carlo (MCMC) (Albert, 1992; Patz
& Junker, 1999), is equally computationally intensive, even though it is preferable with smaller
sample sizes. It usually needs a long chain to converge for complex models. In addition, Chen,
Li, and Zhang (2019) and H. Zhang, Chen, and Li (2020) studied the joint maximum likelihood
estimation by treating the latent abilities as fixed effect parameters instead of random variables;
though computationally efficient, such joint likelihood based estimation approaches may be less
statistically efficient than the marginal likelihood estimation (e.g., Cho, Wang, Zhang, and Xu
(2021)).

Most recently, a variational approximation approach to themarginal likelihoodwas proposed,
namely the Gaussian Variational EM (GVEM) algorithm (Cho et al., 2021). GVEM adopts a vari-
ational lower bound of the intractable likelihood within the EM framework. The carefully con-
structed variational lower bound allows one to derive closed-formupdates for allmodel parameters
in the iterative EM steps, making the algorithm computationally efficient. Cho et al. (2021) also
proposed a stochastic version of GVEM to further improve its computational efficiency when both
the number of subjects, N , and the number of test items, J , are large. The idea is to stochastically
optimize the variational approximation in the E step, i.e., subsample data to form noisy estimate
of the variational lower bound and iteratively update the estimate with a decreasing step size
(Hoffman, Blei, Wang, & Paisley, 2013). The combined advantage of having simple closed-form
updates and stochastic optimization makes the GVEM algorithm appealing to high-dimensional
MIRT models. Additionally, it was shown that GVEM works well in complex M3PL models
compared to the existing methods.

In this paper, we propose to extend the GVEM algorithm by adding a regularization penalty
to simultaneously estimate item factor loading structure and model parameters. Our study differs
from Sun et al. (2016)’s in the following aspects: (1) we use GVEM as the estimation algorithm
instead of the quadrature-based EM algorithm, hence the new method is more suitable to tackle
high-dimensional challenge; (2) we consider both Lasso and adaptive Lasso (Zou, 2006), the
latter of which produces more accurate loading structure recovery; (3) we apply the new method
to both the M2PL and M3PL models.
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The rest of the paper is organized as follows. Section 2 briefly introduces theGVEMalgorithm
for the MIRT models. Section 3 presents the general regularized variational algorithm. Sections
4 and 5 illustrate the performance of the proposed methods with simulation studies and real data
analysis, respectively. Section 6 discusses potential future studies, and the supplementary material
includes the derivations of the estimation procedures and additional data analysis results.

2. Variational Estimation for MIRT

In this section, we will briefly present the key idea of variational approximation discussed in
Cho et al. (2021). The exposition will be based on the M3PLmodel, but it can be easily simplified
to the M2PL model. For conciseness, let us denote the model parameters for the MIRT models by
A = {α j , j = 1, . . . , J }, B = {b j , j = 1, . . . , J }, and C = {c j , j = 1, . . . , J }. Also, denote the
responses Y = {Yi , i = 1, . . . , N } where Yi = {Yi j , j = 1, . . . , J } is the i th subject’s response
vector. Due to the typical local independence assumption in IRT, the log-marginal likelihood of
A, B, and C in M3PL model given the responses Y is

l(A, B,C;Y) =
N∑

i=1

log P(Yi | A, B,C) =
N∑

i=1

log
∫ J∏

j=1

P(Yi j | θ i , A, B,C)φ(θ i )dθ i (3)

where N is the total number of respondents and J is the total number of items in the test.
Similarly this holds for the M2PLmodel with model parameters A and B. Here, φ denotes the K -
dimensional Gaussian distribution of θ with mean 0 and covariance�θ . The maximum likelihood
estimators of the model parameters are then obtained from maximizing the marginal likelihood
function, which is often intractable under MIRT.

From here onwards, Mp is used to denote all model parameters for simplicity. Following
Cho et al. (2021), the variational approximation of (3) can be derived as follows. First, for any
arbitrary probability density function qi (·), we can rewrite the log-marginal likelihood in Eq. 3
as

l(Mp;Y) =
N∑

i=1

∫

θ i

log P(Yi | Mp) × qi (θ i )dθ i

=
N∑

i=1

∫

θ i

log
P(Yi , θ i | Mp)

P(θ i | Yi , Mp)
× qi (θ i )dθ i

=
N∑

i=1

∫

θ i

log
P(Yi , θ i | Mp)

qi (θ i )
× qi (θ i )dθ i + K L{qi (θ i )‖P(θ i | Yi , Mp)},

where K L{qi (θ i )‖P(θ i | Yi , Mp)} = ∫
θ i
log qi (θ i )

P(θ i |Yi ,Mp)
× qi (θ i )dθ i denotes the Kullback–

Leibler (KL) distance between the distributions qi (θ i ) and P(θ i | Yi , Mp). Then, since
K L{qi (θ i )‖P(θ i | Yi , Mp)} ≥ 0, we have a lower bound of the marginal likelihood as

l(Mp;Y) ≥
N∑

i=1

∫

θ i

log P(Yi , θ i | Mp) × qi (θ i )dθ i −
N∑

i=1

∫

θ i

log qi (θ i ) × qi (θ i )dθ i . (4)



APRIL E. CHO ET AL.

Note that the equality in (4) holds if and only if qi (θ i ) = P(θ i | Yi , Mp) for i = 1, . . . , N .
Thus, to use the lower bound in (4) to approximate the marginal likelihood l(Mp;Y), the posterior
distribution P(θ i | Yi , Mp) gives the best choice of the variational distribution function qi (θ i ).
However, such a choice of qi (θ i ) is not practically applicable as the posterior distribution P(θ i |
Yi , Mp) is unknown. Alternatively, we could choose qi (θ i ) as a tractable approximation of P(θ i |
Yi , Mp). One example is the EM algorithm, which can be viewed as choosing qi (θ i ) as the
estimated posterior P(θ i | Yi , M̂p) with M̂p from a previous EM step estimate. However, in the
MIRT model, it is known that the expectation in E-step with respect to the posterior distribution
of θ i , i.e., the first term in (4) with qi (θ i ) being the estimated posterior P(θ i | Yi , M̂p), does not
have an explicit form and often is challenging to compute.

Different from the EM algorithm, the variational inference method uses alternative choices of
the qi (θ i )’s to have a computationally more efficient estimation of the lower bound in (4). Since
the posterior distribution P(θ i | Yi , Mp) for the MIRT model can be well approximated by a
Gaussian distribution as the number of items J increases, following (Cho et al. 2021), we choose
qi (θ i ) from a family of Gaussian distributions and estimate the model parameters by the GVEM
algorithm. In particular, in the E-step, qi is estimated within the Gaussian family to minimize
the KL distance between qi (θ i ) and P(θ i | Yi , Mp), and we then evaluate the expectation of
the likelihood lower bound with respect to the estimated qi (θ i ). In the M-step, the expectation is
maximized to update all model parameters. Carefully chosen qi yield closed-form updates for all
model parameters (Cho et al., 2021), making the algorithm computationally efficient.

3. Regularized Estimation of Loading Structure

In this paper, ourmain interest is to estimate a sparse loading structure, denoted as QA = (q jk)

where q jk = I (α jk �= 0). Similar to Sun et al. (2016), we cast the problem of sparsity estimation
as a latent variable selection problem and solve it using the regularized regression via L1–type
penalization. One main contribution is to apply variational approach to avoid directly calculating
intractable marginal likelihood while solving the regularization problem.

Although Lasso regularization is a popular technique for simultaneous model estimation and
efficient variable selection, there has been some arguments against the Lasso oracle statement. For
instance, Zou (2006) argued that there exist nontrivial conditions for the Lasso variable selection to
be consistent and thusLasso rarely enjoys oracle properties.Although the computational efficiency
of Lasso is appealing for the estimation problems in high-dimensional MIRT models, the bias
of the Lasso may prevent consistent variable selection and model estimation. On the other hand,
adaptive Lasso is shown to enjoy oracle properties if the regularization parameters are chosen to
be data-dependent (Zou, 2006). Since it is a convex optimization problem, its global optimizer can
be efficiently solved. Additionally, adaptive Lasso is a simple extension of Lasso, which makes
it easy to implement with the existing algorithm for the Lasso and is computationally efficient
as well. Hence, adaptive Lasso is a good candidate as a penalization method for identifying item
factor loading structure in MIRT. Specifically for parameter estimation, we solve the following
optimization problem;

(Âλ, B̂λ, Ĉλ) = argmaxA,B,Cl(A,B,C;Y) − Pλ(A) (5)

where

Pλ(A) = λ

J∑

j=1

K∑

k=1

ŵ jk |α jk |
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with ŵ jk = 1/|α̂(0)
jk |γ , α̂

(0)
jk an initial estimator of α jk without the regularization penalty, and

γ > 0 and λ > 0 the tuning parameters. In the adaptive Lasso penalization, we use adaptive
penalization weights for each parameter α jk , instead of a constant penalization parameter λ as in

Lasso. The penalization weight for α jk is λŵ jk = λ/|α̂(0)
jk |γ . Thus, α̂(0)

jk < 1 will get penalized

more than the bigger values such as α̂
(0)
jk > 1. The weight is chosen to be dependent on data to

satisfy the regulatory conditions discussed in Zou (2006). Particularly, Zou (2006) recommended
three values, 0.5, 1, and 2, for the γ parameter, and the selection of the λ parameter will be
discussed in Sect. 3.2.

To ensure identifiability, we impose certain constraints on the a K × K sub-matrix of QA.
For the remaining part of the A matrix, we do not assume any pre-specified zero structure but
instead, the appropriate penalization is imposed to shrink α jk’s to recover the true zero structure,
Q∗

A. Below are two different constraints on the A matrix. Note that the second constraint is more
flexible; hence, it is more challenging estimation wise. Except for adding constraints on QA, we
also fix the diagonals of �θ at 1. Similar to Sun et al. (2016), we will compare the performance
of these two constraint settings in the simulation study.
Constraint 1 To ensure identifiability, we designate one item for each latent factor and this item
is associated with only that factor. That is, we set a K × K sub-matrix of QA to be an identity
matrix, IK . Together with the constraints on the variance of �θ , we have K 2 constraints in total.
Constraint 2 Instead of setting all off-diagonals of a K × K sub-matrix of QA to be zero, we
keep the sub-matrix of QA to be a triangular matrix with the diagonal being ones. That is, there
are test items associated with each factor for sure and they may be associated with other factors
as well. Nonzero entries except for the diagonal entries of QA are penalized during the estimation
procedure. Although this constraint is muchweaker than the Constraint 1, it still ensures empirical
identifiability when proper regularized likelihood such as (5) is used for themodel estimation (Sun
et al., 2016).

3.1. Additional Penalty for M3PL

The parameter estimation for M3PL in practice often gets more challenging due to the inclu-
sion of guessing parameters. To tackle this challenge and improve the accuracy of the parame-
ter estimation in M3PL, we propose to impose additional constraints on the model parameters,
B = {b j ; j = 1, . . . , J } and C = {c j ; j = 1, . . . , J } in addition to the parameter matrix A.
Specifically for parameter estimation, we solve the following optimization problem where P(·)
denotes a penalty function on model parameters:

(Âλ, B̂λ, Ĉλ) = argmaxA,B,C l(A,B,C;Y) − Pλ(A) + P(B) + P(C) (6)

where P(B) = ∑J
j=1 log N (b j |μb, σ

2
b ), and P(C) = ∑J

j=1 log Beta(c j |αc, βc) for some dis-

tribution parameters μb, σ 2
b , αc, and βc. These penalty functions are chosen to satisfy the ranges

of values on which the parameters are defined. For instance, since the guessing parameters C
naturally satisfy the constraint {0 < c j < 1; j = 1, . . . , J }, we can assume a “prior” distribution
of c j ∼ Beta(αc, βc). Similarly, we can assume a “prior” distribution of b j ∼ N (μb, σ

2
b ). The

penalty on b j and c j are essentially a L2-type and Laplace penalization, respectively. By imposing
these additional penalties on model parameters B and C, the parameter estimation becomes more
stable and robust.

The approach of imposing additional penalty on model parameters B and C with the chosen
distributions is similar to the Bayes modal estimation presented by Tierney and Kadane (1986).
That is, an augmented optimization objective is employed that includes the likelihood and some
prior beliefs on the item parameters. These priors can be used to prevent deviant parameter
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estimates and help the algorithm to produce more accurate estimation in complex M3PL models.
Essentially, Bayes modal estimation can be seen as a regularization on maximum likelihood
estimation where maximum likelihood estimation is a special case of Bayes model estimation
that assumes uniform prior distributions.

The amount of penalization can be flexibly controlled using the distribution parameters. For
instance, one can use non-informative priors on C such as Beta(1, 1), which is equivalent to flat
uniform distribution on [0, 1]. Additionally, one can similarly choose non-informative normal
prior with high variance σb for B. This suggests that although additional penalization functions
are added, the algorithm also allows the flexible estimation with essentially no penalty with the
choice of non-informative distributions. The advantage of this is that practitioners can adjust the
amount of prior knowledge they would like to impose on the model. The less prior knowledge
one uses, the more flexible the estimation is and the results will be based more on the observed
data. With these prior-like penalties, our algorithm yields more precise parameter estimates for
the M3PL model.

3.2. Computation via GVEM

This section introduces the main estimation algorithm to obtain the estimate ( Âλ, B̂λ, Ĉλ)

via (6) using GVEM algorithm. As introduced in Sect. 2, we will use a variational lower bound
to approximate the intractable marginal log-likelihood l(A,B,C;Y) in (6).

To derive a lower bound for easy estimation of the M3PL parameters, instead of directly
working with (4), we employ an equivalent representation of the M3PL model with auxiliary
latent variable Zi j , which is an indicator function of whether the i th individual answers the j th
item based on the latent ability or guesses it correctly (von Davier, 2009). Specifically Zi j = 1
if the i th individual solves item j based on his/her ability, and Zi j = 0 if he/she guesses item j
correctly. The distribution of Yi j given the latent variables θ i and Zi j is then

P(Yi j |Zi j , θ i ) =
{[ exp(α�

j θ i − b j )

1 + exp(α�
j θ i − b j )

]Yi j [ 1

1 + exp(α�
j θ i − b j )

]1−Yi j
}Zi j

I (Yi j = 1)1−Zi j ,

where we define 00 = 1, and it can be seen that this new model with auxiliary variable Z is equiv-
alent to the M3PL model (von Davier, 2009, Cho et al., 2021). Denote Zi = {Zi1, Zi2, . . . , Zi J }
and its distribution as p(Zi ) = ∏J

j=1 p(Zi j ). Then the complete data likelihood of the i th subject
can be written as

log P(Yi , θ i , Zi | A, B,C)

= log P(Yi | θ i , Zi , A, B,C) + logφ(θ i ) + log p(Zi )

=
J∑

j=1

{
Yi j Zi j (α

�
j θ i − b j ) + Zi j log

1

1 + exp(α�
j θ i − b j )

+ (1 − Zi j ) log I (Yi j = 1)

}

+ logφ(θ i ) + log p(Zi ), (7)

where φ denotes the normal probability density function for latent variable θ . Here, without loss
of generality, we focus on the i th subject’s likelihood function due to the independence of different
subjects.

With the above representation, for any variational distribution functions qi and ri j (to be
estimated later) of the latent variables θ i and Zi j , similar to the derivation in Sect. 2, we have the
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following variational lower bound, which generalizes (4),

log P(Yi | A, B,C) ≥
∫

θ i

∑

Zi

log P(Yi , θ i , Zi | A, B,C) × qi (θ i )ri (Zi )dθ i (8)

−
∫

θ i

∑

Zi

log
(
qi (θ i )ri (Zi )

) × qi (θ i )ri (Zi )dθ i , (9)

where ri (Zi ) = ∏J
j=1 ri j (Zi j ). Since (9) doesn’t depend on parameters A, B and C , we focus

on (8) for the derivation of the lower bound. For (8), note that log P(Yi , θ i , Zi | A, B,C)

takes the form of (7). To obtain a closed form lower bound expression for (8), we further
use a local variational method (Bishop, 2006; Jordan, Ghahramani, Jaakkola, & Saul, 1999).
Particularly, define ξi, j as a variational parameter indexed by i and j , and let η(ξi, j ) =
(2ξi, j )−1[eξi, j /(1 + eξi, j ) − 1/2]. Let ξ i = (ξi, j , j = 1, · · · , J ) denote the i th subject’s varia-
tional parameters for the J items. Then following the local variational method (Bishop, 2006),
we have

log P(Yi , θ i , Zi | A, B,C) ≥ l(A, B,C, ξ i ; Yi , θ i , Zi ),

where l(A, B,C, ξ i ; Yi , θ i , Zi ) is defined as

l(A, B,C, ξ i ; Yi , θ i , Zi )

=
J∑

j=1

Zi j log
eξi, j

(1 + eξi, j )
+

J∑

j=1

Zi jYi j (α
�
j θ i − b j ) +

J∑

j=1

1

2
Zi j (b j − α�

j θ i − ξi, j )

−
J∑

j=1

Zi jη(ξi, j ){(b j − α�
j θ i )

2 − ξ2i, j }

+
J∑

j=1

{
(1 − Zi j ) log I (Yi j = 1)

} + logφ(θ i ) + log p(Zi ), (10)

and it gives a lower bound of log P(Yi , θ i , Zi | A, B,C) in (8). We then have the following
expression for the variational lower bound of the marginal likelihood of all observed responses
in (6),

l(A,B,C;Y) =
N∑

i=1

log P(Yi | A, B,C) ≥ E(A, B,C, ξ),

with the lower bound E(A, B,C, ξ) defined as

E(A, B,C, ξ) =
N∑

i=1

∫

θ i

[ ∑

Zi

l(A, B,C, ξ i ; Yi , θ i , Zi ) × ri (Zi )

]
× qi (θ i )dθ i . (11)

Appropriate choices of the variational distributions will lead to a closed form expression of
the lower bound in (11). Particularly, following the derivations in Cho et al. (2021), the above
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likelihood function implies that an optimal choice of qi is qi (θ i ) ∼ N (θ i | μi , �i ) where the
mean and covariance are

μi = �i ×
J∑

j=1

{
2η(ξi, j )b j + Yi j − 1

2

}
(1 − Yi j + Er (Zi j )Yi j )α

�
j , (12)

�−1
i = �−1

θ + 2
J∑

j=1

(1 − Yi j + Er (Zi j )Yi j )η(ξi, j )α jα
�
j , (13)

and the variational distributions ri j (Zi j ) are ri j (Zi j ) ∼ Bernoulli(si j ), where si j = 1 if Yi j = 0,
and otherwise

s−1
i j = 1 + c j

1 − c j

1 + eξi, j

eξi, j
exp

{
− Yi j (α

�
j Eqi [θ i ] − b j ) +

1

2
(b j − α�

j Eqi [θ i ] − ξi, j ) − η(ξi, j ){Eqi [(b j − α�
j θ i )

2] − ξ2i, j }
}
. (14)

With the above chosen qi ’s and ri j ’s, we aim to estimate model parameters A, B and C,
together with the introduced local variational parameters ξ , by maximizing the variational lower
bound of the marginal likelihood, E(A, B,C, ξ) in (11), with the proposed penalties in (6), that
is,

(Âλ, B̂λ, Ĉλ, ξ̂) = argmaxA,B,C,ξ E(A, B,C, ξ) − Pλ(A) + P(B) + P(C) (15)

The corresponding solution (Âλ, B̂λ, Ĉλ) gives the our GVEM estimators for the penalized like-
lihood in (6).

To estimate (A,B,C), we use the coordinate descent algorithm (Friedman, Hastie, Höfling,
& Tibshirani, 2007; Friedman et al., 2010), which solves the target optimization problem by
successively minimizing along each coordinate direction of (A,B,C). For each item j , there are
one difficulty parameter b j , one guessing parameter c j , and K discrimination parameters α j .
The coordinate descent algorithm updates each of the K + 2 variables according to the following
updating rule. (Please see Appendix for a detailed derivation of the updating rule.) Note that the
derivation of the below soft-thresholding update rule of a jk can be viewed as from the proximal
gradient descent algorithm (Beck & Teboulle, 2009). Define a function S to be a soft threshold
operator such that

S(δ, λ) = sign(δ)(|δ| − λ)+, (16)

where for any real number x , sign(x) denotes the sign of x and x+ denotes max{0, x}. The model
parameters, α j ’s, b j and c j are updated using Equations (17), (18), and (19), respectively,

α jk =
[ N∑

i=1

(1 − Yi j + si j Yi j )

(
2η(ξi, j )[�i + (μi )(μi )

�]k,k
)]−1

×S

( N∑

i=1

(1 − Yi j + si j Yi j )
{
(Yi j − 1

2
)μi,k + 2b jη(ξi, j )μi,k
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−2η(ξi, j )
∑

l �=k

α jl [�i + (μi )(μi )
�]l,k

}
,

λ

|α̂(0)
jk |γ

)
(17)

b j =
∑N

i=1(1 − Yi j + si j Yi j )
[ 1
2 − Yi j + 2η(ξi, j )α

�
j μi

] + μb

σ 2
b

2
∑N

i=1(1 − Yi j + si j Yi j )η(ξi, j ) + 1
σ 2
b

, (18)

c j =
∑N

i=1 Yi j (1 − si j ) + α − 1

N + α + β − 2
. (19)

where α̂
(0)
jk is the initial estimator of α jk by the GVEM algorithm without including the penalty

terms in (15). Additionally, the variational parameter ξ ’s are updated as

ξ2i, j = b2j − 2b jα
�
j μi + α�

j [�i + μiμ
�
i ]α j , (20)

and the covariance can be updated as

�θ = 1

N

N∑

i=1

[�i + μiμ
�
i ]. (21)

To choose the constant sparsity parameter λ, we can apply popular information criteria, such
as Akaike Information Criterion (AIC), Bayesian information criterion (BIC) and generalized
information criterion (GIC) (Nishii, 1984; Y. Fan & Tang, 2013). We estimate the information
criteria by substituting the log-likelihood with the variational lower bound from the GVEM algo-
rithm. The sparsity parameter thatminimizes these information criteriawill be considered optimal.
Our pilot study shows that the GIC method proposed for high-dimensional model selection in Y.
Fan and Tang (2013) performs better than AIC and BIC, and hence GIC is used throughout the
study.

The detailed algorithm of the regularized estimation of the loading structure via adaptive
Lasso penalization is illustrated in Algorithm 1.

Algorithm 1
Regularization with Adaptive Lasso Penalization (M2PL as an example)

1: Set a range of λ. Choose γ > 0.
2: Use GVEM algorithm to conduct EFA+rotation assuming all items load on all factors to initialize model

parameters A0, B0, �0 and obtain Âw := [α̂(0)
jk ]J×K

3: for each λ starting from smallest do
4: Update A, B, according to (17), (18), respectively. Update ξ and �θ as in (20) and (21). Iterate until

convergence.
5: Estimate ˆGIC with recent updates.
6: Set Âλ,B̂λ as the initial values for next step.
7: end for
8: Find λ∗ that minimizes the information criteria. Calculate the evaluation criteria and save Q̂λ.
9: Re-estimate A, B,C, and �θ according to confirmatory factor analysis with Q̂λ as the factor loading

matrix.
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Algorithm 2
Regularization with Lasso Penalization (M3PL as an example)

Set a range of λ.
2: Use GVEM algorithm to conduct EFA+rotation assuming all items load on all factors to initialize model

parameters A0, B0, C0, �0.
for each λ starting from smallest do

4: Update A, B,C according to (17) with λ/|α̂(0)
jk |γ in (17) replaced by λ. Update B and C according to

(18) and (19). Update ξ and �θ as in (20) and (21). Iterate until convergence.
Re-estimate A, B,C, and �θ according to confirmatory factor analysis with most recent updates (i.e.
Q̂λ) as the factor loading matrix.

6: With re-estimated A, B, C , and �θ , estimate ˆGIC .
Set Âλ,B̂λ, Ĉλ as the initial values for next step.

8: end for
Find λ∗ that minimizes the information criteria. Calculate the evaluation criteria.

Remark 1. In addition to our choice of adaptive Lasso for Pλ(A) in (6), there are generally other
methods of penalization. For instance, J. Fan and Li (2001) showed that the Lasso penaliza-
tion problem is suboptimal to their proposed method called smoothly clipped absolute deviation
(SCAD) penalty as Lasso produces biased estimates for the large coefficients. They showed that
the SCAD penalization enjoys asymptotic normality and oracle properties with proper choice of
regularization parameters. Due to its solid theoretical properties, SCAD has been widely applied
in variable selection problems (T.Wang, Xu,&Zhu 2012; Liu, Yao,&Li, 2016; Breheny&Huang
2011). Additionally, Minimax Concave Penalty (MCP) has been presented as a fast, continuous
and nearly unbiased method of penalization and hence claimed to be a good alternative to Lasso
(C. H. Zhang 2010). Truncated Lasso is also another popular penalization method (Shen, Pan, &
Zhu, 2012; Xu & Shang, 2018); however, penalty function for these methods is non-convex and it
makes local solutions to be nonunique in general, which is computationally challenging to solve
as well. On the other hand, adaptive Lasso uses a convex penalty and it is computationally effi-
cient, which makes it a good candidate for regularization problem under complex MIRT models.
Hence, we choose adaptive Lasso for solving our regularized problem.

4. Simulation Study

4.1. Design

A simulation study was conducted to evaluate the performance of the regularized GVEM
algorithm in identifying true item factor loading structure with both M2PL and M3PL models.
Three manipulated factors were considered: (1) the number of dimensions was fixed at 3 and
5 (i.e., K = 3, 5); (2) the correlations among factors were fixed at either 0.1, 0.3, or 0.7; and
(3) both between-item and within-item multidimensional structures were considered. The sample
size was fixed at 2000 (i.e., N = 2000) and 100 replications were run.1

For the between-item MIRT model, the test length was 45, with 15 items loaded onto each
factor. The true item parameters were selected from the 2013NAEP item bank (combined national
and state assessments) for grade 8. For the within-itemMIRT, the true item discrimination param-
eters were simulated from Uni f (0.75, 2), and the difficulty parameters were drawn from the

1In our pilot study, we varied the sample size (i.e., N =2000 or 3000) and the number of replications (i.e., 100 or 500
replications) and noted that results were stabilized with 100 replications, and relative performance of different methods
under different conditions was the same between two sample size settings. Hence, all results reported in the paper were
based on N = 2000 and 100 replications.



PSYCHOMETRIKA

standard normal distribution. Additionally in M3PL, the guessing parameters were fixed at 0.2.
The generated item parameters resemble the item parameters in Table 6.1 of (Reckase, 2009)
closely. When the dimension was 3, about 60% of the items were loaded onto one factor, about
25% were loaded onto two factors, and the rest were loaded onto all three factors, whereas for
the 5-dimension conditions, about 60% , 20%, 20% of the items were loaded onto one, two, and
three factors, respectively. In all cases, the latent traits θ were simulated from MV N (0, �θ ) with
variance 1, where r = 0.1, 0.3 or 0.7.

Six methods were compared in the study, and they are (1) traditional exploratory item fac-
tor analysis followed by the CF-Quartimax rotation. This method is denoted as “Rotation” in
all results. For this method, during estimation, we did not assume any constraint on the item
discrimination parameter but fixed the population covariance matrix to an identity matrix, i.e.,
�θ = I . The GVEM algorithm was used for model estimation. The final discrimination param-
eters were transformed to standardized factor loadings, the value of which was compared to
0.3 (Henson & Roberts, 2006; Costello & Osborne, 2005). We used ψ j = U−1α j , where

U�U =
(
I + (α�

j α j )�̂θ

)
to obtain the standardized factor loadings. If |ψ jk | exceeds 0.3,

the item is assumed to load on the corresponding factor. This transformation function worked for
all simulated conditions except for the within-item structure, r = 0.7, K = 3, M2PL and M3PL.
In these two conditions, we transformed the true discrimination parameters to standardized factor
loadings, and found some values were smaller than 0.3. Under these two conditions, we set the
cutoff values as 0.75 instead, as the true values were generated from Uni f (0.75, 2). Setting a
different cutoff will certainly affect the results, and this, to some extent, implies the subjectivity
in the traditional EFA rotation method. (2) Exploratory item factor analysis with fixed anchors,
and it is denoted as “Fixed Anchors” in all results. For this method, we imposed constraint 1 on
the QA such that post-hoc rotation is no longer needed. We used the same transformation formula
to calculate standardized factor loadings. This method was considered to ensure a direct and fair
comparison to the regularization methods. (3) Lasso with constraint 1 and 2; and (4) adaptive
Lasso with constraint 1 and 2. For the regularization methods, the tuning parameter λ was chosen
by GIC. The GIC was computed as follows:

GIC = log(log(N )) × log(N ) × k − 2 × E(A, B,C, ξ),

where N refers to the sample size, k refers to the number of parameters estimated by the model,
E(A, B,C, ξ) refers to the lower bound.

In additional to the two constraints for the model ability, we truncated α̂ jk to 0 if |α̂ jk | <

0.001. As to γ in adaptive Lasso, Zou (2006) recommended three values, 0.5, 1, and 2. A few
pilot trials were conducted to decide on the optimal γ , and γ = 2 was used for all conditions
except a few conditions in which case γ = 1 was used. These conditions are within-item M2PL,
r = 0.7, k = 5, constraint 1 and 2, as well as between-item M2PL, r = 0.7, k = 5, constraint 2
only.

As the main objective of this section is to estimate relationship between test items and latent
traits, we used the correct estimation rate of A matrix (eq. (22)). It measures how well the sparsity
of the A matrix is estimated by the regularized estimation. Notice that we only calculated correct
rate for entries excluding the first K by K sub-matrix since we fixed this part to have identity
matrix as a zero structure to ensure identifiability.

CR = 1

K × J

∑

1≤ j<J,1≤k≤K

I (Q̂ jk = Qtrue
jk ) (22)
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We also compared the performance of Lasso and adaptive Lasso penalization using two
measures: sensitivity and specificity. In our context, sensitivity is the probability of correctly
identifying nonzero entries among true nonzero entries. Specificity is the probability of correctly
identifying zero entries among true zero entries. In other words, sensitivity measures the true
negative rate, while specificity illustrates the true positive rate. Naturally, a test with both high
sensitivity and high specificity is desired, although there is always a trade-off.

Other criteria include the average relative bias and root mean squared error (RMSE). The
parameter recovery for �θ is calculated by taking differences between each freely estimated
entries of the true �θ and estimated �̂θ . Relative bias and RMSE were obtained for each nonzero
model parameter across all items within a condition first and then averaged over 100 replications.

4.2. Simulation Results

In this section, we first present the simulation results under various settings in M2PL and
M3PL with boxplots to show the distribution of correct estimation rates, sensitivities, and speci-
ficities. Among the three information criteria, GIC showed the best performance at selecting the
optimal result as it favors the models that penalizes more on the number of parameters; thus, we
present the simulation results with GIC selection criteria in figures in this section.

Figures 1 and 2 show the recovery of item factor loading structure in terms of correct rates,
sensitivity and specificity underM2PL andM3PL, respectively. All sixmethods were presented in
the same order under eachmanipulated condition in Figures 1, 2, 3, 4, 5, 6. ForM2PL, the adaptive
Lasso method is consistently the best-performing method under all conditions, except when
r = 0.1, K = 5, item structure is within-item M2PL, and when r = 0.3, K = 5, item structure
is between-item M2PL. Under these two conditions, EFA rotation method performs slightly
better than the adaptive Lasso method. The EFA with fixed anchors and Lasso regularization
methods, on the other hand, performs a lot worse. When K = 3, and within-item M2PL is used,
EFA rotation method performs considerably worse than EFA with fixed anchors and adaptive
Lasso methods. Between the two constraint settings, constraint 2 yields more free parameters and
hence it is harder to handle than constraint 1. Therefore, it is not surprising that adaptive Lasso
with constraint 1 performs slightly better than with constraint 2 in more challenging scenarios
(i.e., higher correlation, larger K , and within-item multidimensionality), whereas the difference
between the two types is almost negligible in simpler scenarios.

When M3PL is the data generating model, the recovery of item factor loading structure is
generally worse than that fromM2PL, with a decrement of correct rate, sensitivity, and specificity
in the range of 5% to 20%. The general trend of the manipulated factors on the results stay
the same as compared to M2PL. That is, increasing factor correlation or allowing item cross-
loadings makes the recovery of factor structure harder, although adaptive Lasso still performs
the best among the six methods in all conditions except when r = 0.7, K = 5 and test exhibits
between-item multidimensional structure. In this case, EFA rotation method tends to excel.

Figure 3 presents the relative bias ofmodel parameters underM2PL.When the test has 5 latent
factors and r = 0.1 or 0.3, although relative bias vary slightly differently for different parameters,
the results from the six methods are almost indistinguishable. In a between-item structure with
3 factors, the relative bias for b has more variability across replications. It is because the true
parameters of some items are close to 0. The relative bias vary more for the within-item condition
in general. In a within-item structure, the two regularization methods appear to produce less bias
than the EFA rotation method especially for�θ . Under K = 3, r = 0.1 or 0.7, within-itemM2PL
conditions, the relative bias values for �θ estimated by EFA rotation fall outside of the range.
Figure 4 presents the RMSE of model parameters under M2PL. Again, all six methods produce
comparable RMSE when r = 0.1 under between-item condition. When the factor correlation
increases, the EFA rotation method generates larger RMSE for α and �θ . The same trend holds
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Figure 1.
Correct estimation rates of item factor loading structure under M2PL.
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Figure 2.
Correct estimation rates of item factor loading structure under M3PL.
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under the within-itemM2PL conditions, although adaptive Lasso method seems to generate large
RMSE for some conditions. Under the most difficult condition of r = 0.7, K = 5, one can see
a lot of variability of RMSE across replications. In this case, the two Lasso methods seem to
produce smaller median RMSE for majority of the parameters than EFA rotation method and
EFA with fixed anchors method. The better performance of Lasso methods compared to adaptive
Lasso may be because of two reasons: (1) we computed bias and RMSE only on those parameters
whose true values were nonzero. Hence, even if the Lasso method fails to shrink some true zero
loadings to zero, they will not count toward bias or RMSE. (2) Initial values play an important
role in adaptive Lasso to determine an adaptive penalty weight. We used the results from EFA
rotation methods as initial values, and other better initial values could be explored in the future,
such as the SVD method in H. Zhang et al. (2020).

Figures 5 and 6 show the relative bias and RMSE of model parameters under M3PL. The
inclusion of the guessing parameter, unsurprisingly, makes the model parameter recovery much
harder, as shown in larger bias and RMSE as well as more variability across replications. The
overall pattern observed from M2PL results continued to hold. That is, increasing factor corre-
lation and using within-item factor structure not only increase relative bias and RMSE, but also
yield more instability across replications. The EFA rotation method produces the largest average
absolute bias and mean RMSE in almost all conditions, followed by EFA with fixed anchors
method, although results from regularization methods seem to have more variability when the
factor correlation is high.

In summary, the adaptive Lasso method outperforms EFA rotation method under almost all
conditions regarding item factor loading structure recovery. There are only 3 exceptions: when
r = 0.1, K = 5, item structure is within-item M2PL, when r = 0.3, K = 5, item structure
is between-item M2PL, and r = 0.7, K = 5, item structure is between-item M3PL. In these
three conditions, EFA rotation method performs better than the adaptive Lasso method by a
small margin. Under some simple scenarios (i.e., low-correlation or medium-correlation and
K = 3, item structure is between-item M2PL), there is no appreciable difference between the
EFA rotation method and the adaptive Lasso method with either type of constraints. As for item
parameter recovery, the adaptive Lasso method outperforms EFA rotation method for all of the
high-correlation scenarios in M2PL. For small-correlation, between-item M2PL conditions, the
results of adaptive Lasso and EFA rotation method appear to be indistinguishable. In M3PL, the
adaptive Lasso method produces more accurate results compared to EFA rotation method under
all conditions. Only under between-itemM3PL conditions, EFA rotation generates smaller RMSE
values and relative bias with less variability for �θ , but it produces larger RMSE and relative bias
for other parameters.

5. Real Data Analysis

In this section, the proposed regularization method was applied to the National Education
Longitudinal Study of 1988 (NELS:88) data, and resultswere comparedwith those fromEFA rota-
tion method. NELS:88 was collected from a nationally representative sample of students whose
performance on different cognitive batteries were tracked from 8th to 12th grade (the first three
studies) in years 1988, 1990, and 1992. In this study, we focused on the science and mathematics
test data where the multidimensional factorial structure has been previously investigated (e.g,
Kupermintz & Snow, 1997; Nussbaum, Hamilton, & Snow, 1997). Table 1 shows an example
of the content of the questions in science test. For the science subject, there are 25 items and
four factors were found from the data collected in 1988: “Elementary science (ES)”, “Chemistry
knowledge (CK)”, “Scientific reasoning (SR)” and “Reasoning with knowledge (RK)”. For the
math subject, there are 40 items in 1988 and two factors emerged. They are “Mathematical reason-
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Figure 3.
Relative bias of model parameter estimates under M2PL.
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Figure 4.
RMSE of model parameter estimates under M2PL.
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Figure 5.
Relative bias of model parameter estimates under M3PL.



PSYCHOMETRIKA

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 b g Σθ

R
M

S
E

r=0.1,k=3,Between M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 b g Σθ

R
M

S
E

r=0.3,k=3,Between M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 b g Σθ

R
M

S
E

r=0.7,k=3,Between M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 α4 α5 b g Σθ

R
M

S
E

r=0.1,k=5,Between M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 α4 α5 b g Σθ

R
M

S
E

r=0.3,k=5,Between M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 α4 α5 b g Σθ

R
M

S
E

r=0.7,k=5,Between M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 b g Σθ

R
M

S
E

r=0.1,k=3,Within M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 b g Σθ

R
M

S
E

r=0.3,k=3,Within M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 b g Σθ

R
M

S
E

r=0.7,k=3,Within M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 α4 α5 b g Σθ

R
M

S
E

r=0.1,k=5,Within M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 α4 α5 b g Σθ

R
M

S
E

r=0.3,k=5,Within M3PL

0.00

0.25

0.50

0.75

1.00

α1 α2 α3 α4 α5 b g Σθ

R
M

S
E

r=0.7,k=5,Within M3PL

Rotation Fixed Anchors Lasso+Constraint1

Lasso+Constraint2 Adaptive Lasso+Constraint1 Adaptive Lasso+Constraint2

Figure 6.
RMSE of model parameter estimates under M3PL.
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Table 1.
NELS:88 science items and descriptions were adopted from Rock et al. (1991).

Item 8th grade 10th grade Description

S01 1 Infer geologic history from facts about limestone deposits
S02 2 Identify components of solar system
S03 3 2 Read a graph depicting solubility of chemicals
S04 4 3 Choose an improvement for an experiment on mice
S05 5 4 Choose a statement about source of moon’s light
S06 6 5 Identify the example of a simple reflex
S07 7 Choose viable way of communicating on moon
S08 8 Select statement about position of sun, moon, earth in diagram
S09 9 Identify source of oxygen in ocean water
S10 10 1 Choose the property used to classify a list of substances
S11 11 Explain lower freezing temperature of ocean water
S12 12 6 Answer question about the earth’s orbit
S13 13 Infer use of oxygen from description of condition of aquarium
S14 14 7 Estimate temperature of a mixture
S15 15 8 Select a statement about the process of respiration
S16 16 9 Read a graph depicting digestion of a protein by an enzyme
S17 17 10 Explain location of marine algae
S18 18 11 Choose best indication of an approaching storm
S19 19 12 Choose the alternative that is not a chemical change
S20 20 13 Infer statement from results of an experiment using a filter
S21 21 14 Explain reason for late afternoon breeze from the ocean
S22 22 15 Select basis for a statement about a food chain
S23 23 16 Interpret symbols describing a chemical reaction
S24 24 17 Differentiate statements based on a model or an observation
S25 25 18 Describe color of offspring from a guinea-pig cross
S26 19 Calculate a mass given density and dimensions
S27 20 Locate the balance point of a weighted lever
S28 21 Interpret a contour map
S29 22 Identify diagram depicting path of light through camera lens
S30 23 Calculate grams of a substance given its half life
S31 24 Read population graph; identify equilibrium point
S32 25 Identify cause of fire from overloaded circuit

S stands for Science items, and item descriptions were adopted from.

ing (MR)” and “Mathematical knowledge (MK)”. We pooled together data from both domains,
resulting in 65 items and a complete sample size of N = 13, 488.

In the previous analysis of NELS:88 by Cho et al. (2020), the GVEM approach was used
to empirically estimate the optimal number of latent traits from this data set. The result suggests
there exists six latent traits measured by NELS:88. This finding is consistent with what the
previous literature implies (e.g, Kupermintz & Snow, 1997; Nussbaum et al., 1997). Thus, we fix
the dimension of latent factors as six for this analysis. Also, Kupermintz and Snow (1997) and
Nussbaum et al. (1997) analyzed the latent traits required by each test item based on the content
of the questions. Based on their findings, we chose 6 questions that only associate with each one
of latent factors and performed our proposed regularized estimation under Constraint 1.

Both the EFA rotation (with the CF-Quartimax rotation) and adaptive Lasso methods with
M2PL andM3PLwere fitted to the data set. EFA rotation assumed all items load on all factors. For
the adaptive Lasso method, we assumed all items load on all factors and hence penalty is added on
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Table 2.
GIC comparison from two methods and two models (AL stands for adaptive Lasso).

M2PL M3PL

EFA AL EFA AL
1.20 × 106 0.73 × 106 1.28 × 106 1.81 × 106

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education
Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up”.

every element in the loading matrix except for the constraints. Note that we also consider another
version of adaptive Lasso which assumes math items only load on the two math factors, and
science items only load on the four science factors, hence there are structural 0’s in the loading
matrix that we neither estimate nor add penalty on. The results of this version are reported in
the online supplementary materials to save space. Given the large sample size and test length
(65 items in total), stochastic version of GVEM algorithm was used for M3PL. Specifically we
used a stochastic sampling of 200 at each iteration and initially sampled 3000 for more stable
convergence. For models with penalty, only adaptive Lasso was considered at it was shown to
perform better than Lasso penalty under majority conditions in the simulation studies. The penalty
parameter γ was fixed at 3 in adaptive Lasso. This is because the item factor loading structure is
more complex (as compared to simulation study), hence, heavier penalization (i.e., higher γ ) was
used to produce a nicer sparse structure. Table 2 shows that the M2PL in general yields smaller
GIC than M3PL. For the same model, adaptive Lasso produces the smaller GIC compared to the
EFA rotation method. The fact that M2PL is preferred over M3PL implies that guessing may not
play a big role on the performance in NELS:88 math and science assessments. Moreover, larger
GIC from EFA rotation method implies that the factor loading structure obtained from it may not
reflect the true item factor relationship as closely as the adaptive Lasso method.

Next, using M2PL with adaptive Lasso, Tables 3 and 4 illustrate the estimated sparse test
structure from math and science test, respectively, and Tables 5 and 6 present the results from the
EFA rotation method. Note the order of the latent traits for the EFA rotation method is arbitrary.
As shown, for the EFA rotation method, before using 0.3 as the cutoff, we observe more cross-
loadings, but after standardizing the factor loadings and using 0.3 as the cutoff, the EFA rotation
method yields more spare and close to simple structure compared to the adaptive Lasso method.
However, it appears that, in the EFA rotationmethod, bothmath and science items load dominantly
on a single factor, which contracts with the findings that 2 and 4 best reflect the underlying factor
structure. On the other hand, item factor loadings obtained from adaptive Lasso method, although
they are less sparse and contain more cross loadings, appear to be more reasonable.

Tables 7 and 8 present the estimated factor correlations for two methods. Factor correlations
obtained from EFA are in the range of 0.01 to 0.73, which are much lower than those from the
regularization method. Adaptive Lasso estimated the correlations between latent factors in the
range of 0.81 to 0.99. Such discrepancy could be explained from simulation findings. That is, the
simulation results indicate EFA rotation method appears to underestimate the factor correlation
especially when the true correlation is high and the number of factors is large. Also, GIC favors
the regularization method which implies that high factor correlations are likely present in the data.
The observed high correlation also appears to be consistent with decades of research on NELS
data that treats math and science as unitary constructs.
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Table 3.
Estimated sparse test structure for math test in NELS:88 (adaptive Lasso).

Factor MR MK ES SR CK RK

M1 0 0.768 0.923 0 0 0
M2 0 0.645 0.500 0 0 0
M3 0.899 0 0 0 0.940 0
M4 0.470 1.009 0 0 0 0
M5 0 1.484 0 0 0 0
M6 1.149 0 0 0 0.812 0
M7 1.016 0 0 0 0.263 0
M8 0 1.009 0 0 0.041 0
M9 1.373 0 0 0 1.255 0
M10 0 0 0 0 6.625 0
M11 1.182 0 0 0 1.361 0
M12 0 0 0 0 6.259 0
M13 1.466 0 0 0 0 0
M14 0 1.154 0 0 0 0
M15 3.535 0 1.345 0 0 0
M16 1.573 0 0 0 0 0
M17 0 0 0 0 5.784 0
M18 0.867 0 0 0 0 0
M19 1.459 0 0 0 0 0
M20 1.021 0 0 0 0 0
M21 1.521 0 0 0 0 0
M22 1.709 0 0.821 0 0 0
M23 0.449 0 0.496 0 0 0
M24 0.412 0 0.466 0 0 0
M25 1.456 0 0 0 0 0
M26 0.954 0 0.390 0 0 0
M27 0 0.463 0 0 0 0
M28 0.758 0 0.328 0 0 0
M29 0 0 2.903 0 0 0
M30 1.299 0 0 0 1.689 0
M31 0 0.855 0.715 0 0 0
M32 1.222 0 0 0 1.186 0
M33 0.423 0 0 0.099 0 0
M34 1.046 0 0 0 0.292 0
M35 0 0.706 0.147 0 0 0
M36 1.120 0 0 0 1.887 0
M37 0.727 0 1.049 0 0 0
M38 0 1.765 0 0 0 0
M39 0 0.475 1.460 0 0 0
M40 1.447 0 0 0 0.640 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education
Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up”.
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Table 4.
Estimated sparse test structure for science test in NELS:88 (adaptive Lasso).

Factor MR MK ES SR CK RK

S1 0 0 0 0 0.992 0
S2 0 0 0.822 0 0 0
S3 0.175 0 0.629 0 0 0
S4 0 0 0.695 0 0 0
S5 0 0 1.483 0 0 0
S6 0 0 1.338 0 0 0
S7 0 0 0 0.966 0 0
S8 0 0 0 0.741 0 0
S9 0 0 2.469 0 0 0
S10 0.238 0 0 0 0.715 0
S11 0 0 0 0.542 0 0
S12 0 0.441 0 0.787 0 0
S13 0 0 0.900 0 0 0
S14 0 0.988 0 0 0.614 0
S15 0 0 0 0 0 0.65
S16 0.351 0 0 0 0.313 0
S17 0 0 0.899 0 0 0
S18 0 0 0 0.056 1.093 0
S19 0 0 0 0 1.491 0
S20 0.164 0 0 0 0.368 0
S21 0 0 0 0 0.535 0
S22 0 0 0.563 0 0 0
S23 0 0 0 0 1.620 0
S24 0 0 0 0 0.960 0
S25 0.154 0 0 0 0.404 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education
Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up”.

6. Discussions

Exploratory factor analysis (EFA) is a popular statistical tool to gain insight into latent
structures underlying the observed data (Gorsuch, 1988; Fabrigar &Wegener, 2011). Exploratory
item factor analysis is a subset of EFA methods that deals with categorical observed data. In
exploratory IFA, the relationship among observed item responses are explained by a few number
of common factors. The naming of the common factors can be inferred from the content of the
items that load on those factors, and hence, a simple structure with items loading exclusively on
a single factor is usually preferred.

In this paper, aGaussian variational regularizationmethod is proposed for the estimation of the
sparse item-trait relationship in M2PL and M3PL models. This computationally efficient method
estimates both item factor loading structure andmodel parameters simultaneously. Both Lasso and
adaptive Lasso penalties are considered, and simulation studies demonstrate that they perform
well in correctly estimating the sparse item-trait structure for both M2PL and M3PL models.
Adaptive Lasso penalization is preferred between the two. With adaptive Lasso penalization, GIC
is used to choose the tuning parameter λ, whereas the tuning parameter γ takes one of the three
suggested values by Zou (2006). Adaptive lasso also outperforms traditional EFA rotation method
in most of the simulation conditions, and the twomethods are almost indistinguishable for simpler
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Table 5.
Estimated sparse test structure for math test in NELS:88 (EFA rotation Method).

Estimated item discrimination parameters Estimated standardized factor loadings

Factor F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6
M1 0.700 0.288 0.167 0.053 0.097 0.106 0.536 0 0 0 0 0
M2 0.671 0.252 0.091 0.187 0.087 0.147 0.528 0 0 0 0 0
M3 1.001 0.134 0.162 0 0.017 0.146 0.685 0 0 0 0 0
M4 1.454 0.135 0 0.168 0 0 0.816 0 0 0 0 0
M5 1.238 0.135 0.062 0.269 0.071 0.035 0.767 0 0 0 0 0
M6 1.162 0 0.114 0 0.015 0.044 0.751 0 0 0 0 0
M7 0.954 0.074 0.169 0.017 0.127 0.051 0.672 0 0 0 0 0
M8 0.783 0.163 0.084 0.07 0.088 0.036 0.603 0 0 0 0 0
M9 1.315 0 0.074 0 0.167 0.056 0.781 0 0 0 0 0
M10 0.392 0.127 0.919 0 0.174 0.137 0 0 0.679 0 0 0
M11 1.087 0 0.023 0 0.18 0 0.711 0 0 0 0 0
M12 0.610 0.053 0.917 0 0.163 0.111 0.301 0 0.693 0 0 0
M13 1.362 0 0.094 0 0 0.042 0.793 0 0 0 0 0
M14 1.107 0.024 0.082 0.221 0 0.022 0.734 0 0 0 0 0
M15 0.340 0.166 0 0 0.164 0.116 0 0 0 0 0 0
M16 1.733 0 0 0 0 0.002 0.860 0 0 0 0 0
M17 0.225 0.124 0.832 0.004 0.215 0.169 0 0 0.628 0 0 0
M18 0.710 0.019 0.01 0 0.220 0 0.562 0 0 0 0 0
M19 1.421 0 0 0.006 0 0 0.800 0 0 0 0 0
M20 1.071 0.017 0 0 0.039 0 0.728 0 0 0 0 0
M21 1.588 0 0 0 0.022 0.063 0.837 0 0 0 0 0
M22 0.847 0.257 0 0 0 0.206 0.602 0 0 0 0 0
M23 0.600 0.246 0.003 0 0 0.221 0.485 0 0 0 0 0
M24 0.513 0.307 0.043 0 0.018 0.112 0.431 0 0 0 0 0
M25 1.315 0.003 0.111 0 0.091 0 0.788 0 0 0 0 0
M26 0.999 0.201 0.082 0 0 0.208 0.678 0 0 0 0 0
M27 0.454 0.106 0.037 0.162 0 0 0.407 0 0 0 0 0
M28 0.882 0.147 0.029 0.030 0 0.103 0.651 0 0 0 0 0
M29 0.577 0.378 0.155 0 0 0.148 0.448 0.348 0 0 0 0
M30 1.460 0 0.214 0 0.115 0 0.802 0 0 0 0 0
M31 0.779 0.296 0.172 0.175 0.239 0.289 0.536 0 0 0 0 0
M32 1.244 0 0.173 0 0.096 0 0.759 0 0 0 0 0
M33 0.601 0.059 0 0.006 0.241 0 0.470 0 0 0 0 0
M34 1.053 0.050 0.117 0.093 0.207 0 0.704 0 0 0 0 0
M35 0.734 0.290 0 0.121 0 0 0.566 0 0 0 0 0
M36 1.355 0.079 0.316 0 0.062 0.229 0.751 0 0.304 0 0 0
M37 0.923 0.344 0.156 0.040 0.087 0.453 0.574 0 0 0 0 0.422
M38 1.542 0.132 0 0.205 0.011 0.142 0.827 0 0 0 0 0
M39 0.532 0.132 0.056 0.213 0 0.202 0.438 0 0 0 0 0
M40 1.539 0.147 0.182 0.085 0.161 0.186 0.803 0 0 0 0 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education
Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up”.
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Table 6.
Estimated sparse test structure for science test in NELS:88 (Rotation Method).

Estimated item discrimination parameters Estimated standardized factor loadings

Factor F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6
S1 0.135 0.145 0.116 0.101 0.370 0.426 0 0 0 0 0.321 0.393
S2 0.092 0.145 0.096 0.093 0.235 0.399 0 0 0 0 0 0.371
S3 0.276 0.063 0.022 0 0.114 0.456 0 0 0 0 0 0.416
S4 0 0.245 0.103 0 0.164 0.322 0 0 0 0 0 0.307
S5 0.284 0.307 0.109 0.107 0.303 0.727 0 0 0 0 0 0.598
S6 0.280 0.271 0.153 0.060 0.287 0.613 0 0 0 0 0 0.529
S7 0 0.138 0 0.117 0.254 0.602 0 0 0 0 0 0.519
S8 0.014 0.144 0 0.073 0.336 0.388 0 0 0 0 0 0.363
S9 0.136 0.193 0 0.017 0.006 0.573 0 0 0 0 0 0.499
S10 0.310 0.132 0.094 0.043 0.377 0.215 0 0 0 0 0.347 0
S11 0.056 0.04 0 0.058 0.309 0.237 0 0 0 0 0 0
S12 0.426 0.168 0.027 0.198 0.301 0.420 0.325 0 0 0 0 0.391
S13 0.055 0.23 0.215 0.06 0.067 0.515 0 0 0 0 0 0.459
S14 1.007 0.159 0.091 0.303 0.307 0.170 0.656 0 0 0 0 0
S15 0.124 0 0.087 0.019 0 0.645 0 0 0 0 0 0.543
S16 0.273 0.248 0.040 0 0.332 0 0 0 0 0 0.315 0
S17 0.219 0 0 0.104 0.494 0.279 0 0 0 0 0.430 0
S18 0.278 0 0 0.193 0.507 0.311 0 0 0 0 0.436 0
S19 0.206 0.002 0.059 0.095 0.422 0.291 0 0 0 0 0.375 0
S20 0.196 0 0 0 0.392 0.114 0 0 0 0 0.363 0
S21 0.072 0.170 0 0.01 0.538 0 0 0 0 0 0.474 0
S22 0.045 0.099 0 0 0.158 0.358 0 0 0 0 0 0.337
S23 0 0.278 0.094 0 0.399 0 0 0 0 0 0.362 0
S24 0.160 0.061 0.101 0.082 0.290 0.523 0 0 0 0 0 0.465
S25 0.167 0.114 0.073 0 0.126 0.199 0 0 0 0 0 0

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education
Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up”.

Table 7.
Estimated Correlation between latent factors (Adaptive Lasso).

MR MK ES SR CK RK

MR 1.0000 0.9808 0.8465 0.7740 0.8646 0.8328
MK 0.9808 1.0000 0.9242 0.8684 0.9364 0.9119
ES 0.8465 0.9242 1.0000 0.9901 0.9968 0.9931
SR 0.7740 0.8684 0.9901 1.0000 0.9822 0.9807
CK 0.8646 0.9364 0.9968 0.9822 1.0000 0.9873
RK 0.8328 0.9119 0.9931 0.9807 0.9873 1.0000

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education
Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up”.

scenarios such as lower factor correlation and lower dimensions. Since a user specified cutoff is
needed to decide “significant” factor loadings, future studies could consider sparsity-encouraging
rotation (e.g., Jennrich, 2006) to avoid arbitrarily truncating the rotated factor loadings.
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Table 8.
Estimated Correlation between latent factors (EFA Rotation).

F1 F2 F3 F4 F5 F6

F1 1.0000 0.5784 0.7344 0.0848 0.6897 0.6780
F2 0.5784 1.0000 0.3224 0.3783 0.4007 0.7268
F3 0.7344 0.3224 1.0000 0.0067 0.4671 0.4186
F4 0.0848 0.3783 0.0067 1.0000 0.1829 0.2630
F5 0.6897 0.4007 0.4671 0.1829 1.0000 0.5051
F6 0.6780 0.7268 0.4186 0.2630 0.5051 1.0000

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education
Longitudinal Study of 1988 (NELS: 88), “Base Year Through Second Follow-up”.

The current study can also be expanded in the following directions. First, we assume the
total number of factors, K , is known in advance. However, this assumption may be freed by
varying K and use GIC as the model selection criterion to select the optimal K . This approach is
in contrast to the family of criteria based on eigenvalues of the sample tetrachoric or polychoric
correlation matrix of the observed data. Examples of this latter approach include the scree test
(Cattell, 1966), the parallel analysis (Horn, 1965), among others. Future studies on evaluating the
relative performance of these two approaches are worth pursuing. Note that because K is usually
defined as the minimum number of latent common factors that is needed to describe the statistical
dependencies in data, challenges may arise when there are additional nuisance factors, such as a
bi-factor structure.

Second, the proposed method may be generalized to other types of MIRT models, such as
the non-compensatory models (e.g., C. Wang & Nydick, 2015), which is essentially a nonlinear
item factor model. While the adaptive Lasso idea can be directly applied, more work is needed to
derive a suitable variational lower bound to enable the GVEM algorithm.

Third, it is of interest to further study the theoretical properties of the estimation and the
model selection consistency for the proposed method. As shown in Cho et al. (2021), the GVEM
algorithm (without additional penalty) can consistently estimate the model parameters of the 2-
parameter MIRT model under a global Frobenius norm evaluation and the asymptotic regime
when both N and J increase to infinity. With the additional adaptive Lasso penalty, it is expected
that a similar global consistency result would hold when the tuning parameter is properly chosen.
For instance, with the tuning parameter λ = 0, the proposed estimator becomes that in Cho et al.
(2021) and the consistency result then follows. Moreover, it would also be of interest to study the
variable selection consistency as well as the oracle properties as in Zou (2006) under the MIRT
setting.However, such a problem ismuchmore challenging due to several reasons. First, additional
work is still needed to derive the entry-wise consistency and convergence rate results under the
double asymptotic regime with N , J → ∞. In particular, to show the oracle properties, we would
need a sharp characterization of the entry-wise convergence rate of the GVEM estimators, which,
however, is a challenging problem in the high-dimensional MIRT model. Second, the theoretical
analysis of adaptive Lasso (or other penalties) is more challenging under the high-dimensional
latent variable models, such as MIRT, and the variational approximation further complicates the
problem. In fact, the frequentist consistencyproperties ofmanyvariational approximationmethods
remain unaddressed in the current literature. For such reasons, we would leave this interesting
problem for future study.

Finally, it is interesting to obtain standard errors of the proposed regularized estimators.
For variational approximations, the commonly used de-biasing technique in high-dimensional
statistics may not be directly applicable, due to the additional approximation bias induced by
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the variational method. One way to reduce such a variational bias is to perform an importance
sampling based reweighing after the variational estimation so that the likelihood function can
be better approximated (Domke & Sheldon, 2018); then a de-biasing step for the regularized
estimation could be used to obtain the standard error estimates. Another approach is to use the
bootstrap method to obtain the standard errors. As the setting of variational estimation for MIRT
differs from many of the existing works on de-biasing estimation or bootstrap, the theoretical
consistencyproperties of thesemethods are challenging and remainopenproblems in the literature.
We therefore leave this interesting problem for future study.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
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