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ARTICLE INFO ABSTRACT

Keywords: Counterfeiting in manufacturing is a crucial problem that has the potential to cause economic losses to both
Voronoi tessellation small and large businesses, including the aerospace, automotive, and medical industry. Existing techniques
Topology change for preventing counterfeiting are based on external modification of the manufacturing process which incurs
Authentication extra cost, and limits their use in everyday applications. In our work, we take advantage of the inherent
Counterfeiting

characteristics of the machine configuration (machine and process parameters) to identify whether a given part
is manufactured by a certain machine or class of machines. Each machine configuration has a unique coordinate
error distribution which is indicative of its precision and bias. The overarching idea is to differentiate between
error distributions of two machine configurations in order to determine whether the positional errors in a
given part come from the same distribution as that of the machine configuration. To be able to differentiate
between two machine configurations robustly, we propose a novel topological transformation technique based
on the principle of Voronoi tessellation that exaggerates the difference between their error distributions. We
present a methodology for authentication of machined parts and validate it numerically and experimentally
through the example of additive manufacturing. This research work also offers various opportunities of further
exploration in terms of part design, algorithm of SplitCode, imaging and post processing methods and statistical
variations.

Coordinate error distributions
Additive manufacturing

1. Introduction notion of secure manufacturing. We specifically focus on counterfeit-
ing and introduce a methodology for quantitative assessment of part
authenticity.

Counterfeiting is a significant problem that is not only prevalent
in consumer goods, but also in high-end manufactured products. The

problem affects all manufacturing sectors, including the automotive,

1.1. Broader context and motivation

Ensuring security in manufacturing systems is among the central
challenges within the purview of cyber-physical production systems
(CPPS). The seamless integration of software and hardware components
and increased use of networking capabilities has also resulted in a
wide variety of avenues for attacks and threats on CPPS. Much of
the discussion regarding secure manufacturing focuses primarily on
information-related breaches and the potential approaches, such as
decentralized computing and block-chains, for addressing them [1].

aerospace, defense, and pharmaceutical industries. Counterfeiting in
the automotive sector, for example, is a lucrative business, estimated
to generate billions of dollars in sales in the US every year [2-4].
Counterfeit mechanical parts, such as engine mounts, seat-belts, brakes,
fasteners, bearings, valves, and springs not only result in lost cor-

However, we posit that security in CPPS additionally requires the
integration of both computational and physical sub-systems of CPPS.
In this paper, our aim is to present an embodiment of this integrated

porate revenue and lost taxes for the government, but also increase
the likelihood of accidents and even fatalities [5-7]. Further, IBM has
consistently shown that the manufacturing industry has been facing
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Fig. 1. To find if the test part is manufactured by the reference machine, we compare the machine’s reference error distribution and the test part’s error distribution to see if

they belong to the same distribution.

high security attack rates over the years, with being the second most-
attacked industry and experiencing the most data theft attacks (33% of
all data theft attacks) in 2020 [8].

While there has been significant research in counterfeit prevention
in electronic parts, research on counterfeit prevention of non-electronic
hardware and materials is still in its infancy [9]. Existing approaches
for counterfeit mitigation include standards to provide guidance for
acquisition of authentic materials (e.g., SAE AS6174 [10]), attachment
of RFID tags [11,12], chemical and DNA tagging [13,14], watermark-
ing [15], and information embedding in additively manufactured (AM)
parts [16-18]. These approaches for ensuring the authenticity of parts
rely on modifying the manufacturing process.

An alternate approach is to take advantage of the inherent ran-
domness of manufacturing processes, and unique characteristics of
materials, and manufacturing equipment to assess whether or not a
part is authentic. The idea of using statistical properties of manufac-
tured components is widely used in physically unclonable functions
(PUFs) [19,20] for electronic parts. Commonly used PUFs involve eval-
uating integrated circuit (IC) responses to a given challenge [20]; the
responses are chosen such that they vary randomly between instances
of the IC even under identical manufacturing conditions. Examples
include measuring the spatially varying capacitance of a coating or the
delay between different gates of an IC [21]. In this paper, we apply
the underlying principle of leveraging randomness in manufacturing
configuration (machines and processes) to non-electronic parts. To do
so, we introduce a novel methodology to encode the distribution of
process errors in part instances manufactured with different parameters
on a single machine, and across multiple machines.

1.2. Problem

Broadly, the problem of part authentication may refer to several
distinct cases such as verifying whether a part was created on a (1)
uniquely identifiable machine and process parameters or (2) uniquely iden-
tifiable “class” of machines and process parameters. We consider coun-
terfeiting scenarios where a given part is either manufactured with a
different class of machines than intended, or using different process pa-
rameters than those prescribed, or a combination of the two. Therefore,
given a manufactured part, the problem we seek to address is to deter-
mine whether this part was manufactured using a given manufacturing
configuration (class of machine, process, and parameters).

Any combination of machine, process, and process parameters leads
to coordinate errors in the tool-tip caused due to the intrinsic build of
the machine, vibrations during the process, inherent coordinate biases
etc. These errors manifest in the manufactured part in the form of
geometric deviations with respect to the designed CAD model. There-
fore, each part carries unique characteristics (similar to a fingerprint)
associated with its corresponding manufacturing configuration.
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We hypothesize that the geometric deviations across multiple in-
stances of a given part manufactured using the same manufactur-
ing configuration belong to some common underlying error distribu-
tion that is unique to the manufacturing configuration. Consider a
“reference” error distribution for a given manufacturing configuration
that is determined by evaluating geometric deviations for multiple
instances of a given part with some geometric features. Given a “test”
part with the same features, our technical problem (Fig. 1) translates
to determining the statistical similarity between the reference and test
distributions.

1.3. Challenge & approach

Consider a part that has been designed with a specific set of geomet-
ric features (e.g. holes of different sizes and shapes) to be manufactured
using a specific combination of machine, process, and process param-
eters. One can measure and characterize the manufacturing error by
computing the geometric deviations of such features with respect to
the ideal (CAD) model. For instance, one could estimate center-to-
center distances for a circular hole or corner-to-corner deviations for
polygonal holes, etc. Measurements of these features (corners, centers,
etc.) could be performed using a variety of methods (e.g. photography,
photogrammetry, scanning, CMM etc.) depending on the type (shape,
material, etc.) of the part. The key challenge here is that the coordinate
error distributions of two similar but distinct manufacturing configu-
rations can be indistinguishable making authentication prohibitively
difficult. Furthermore, the process of measuring geometric deviations
(from imaging or other means) adds additional errors to the distribution
that may be inseparable from the manufacturing errors.

One possible way to view this problem is that of creating discrimi-
natory features from two given distributions and it may be possible to
use feature engineering techniques from machine learning. However,
such techniques are limited because of the need for fine tuning learning
parameters and inherent lack of explainability. We propose a robust and
novel geometric methodology that exaggerates the differences between
error distributions of two machines. Our methodology is based on the
application of Voronoi tessellation [22] to transform coordinate errors
of the tool-tip into a topologically-induced error distribution [23,24].
The idea behind our approach is that Voronoi tessellation of sites
arranged in rectangular grids admits a 4-valency vertex configuration
that is extremely sensitive to any noise in the location of the sites.
Specifically, any perturbation to the Voronoi sites in a rectangular grid
results in the splitting of the 4-valency vertex into an edge—hence
the name SplitCode. This interesting property, when viewed from a
statistical standpoint, leads to a unique method for exaggerating the
coordinate error distributions. As such, this approach is general in
that it can be applied to any type of manufacturing process with any
machine and process parameters.
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1.4. Contributions

The prime purpose of our work is to authenticate parts printed
with different manufacturing configurations. For that, we want to be
able to measure the deviations resulting from the mechanical struc-
ture of machines and process parameters, and to model the connec-
tion between deviations from different manufacturing configurations
and the manufactured parts. To achieve this, we make the following
contributions:

1. Our primary contribution in this work is to introduce a new
concept that we call topologically transformed error distribu-
tion, which is defined as a statistical exaggeration of differences
between two coordinate distributions.

. Our second contribution is to apply this new concept to manufac-
turing problems by developing a novel algorithm, which we call
SplitCode. By using the well-known principle of Voronoi tessella-
tion, SplitCode successfully exaggerates the differences between
the coordinate error distributions of different manufacturing
configurations.

. Our third contribution is a part authentication scheme based
on SplitCode by identifying the geometric representations that
lead to the maximum exaggeration between two coordinate error
distributions.

To evaluate our methodology, we present a numerical validation of
our scheme by investigating the effect of different known distributions
on the authentication method. As such, the proposed method is uni-
versally applicable to authentication with any type of a manufacturing
process. However, to demonstrate our approach in action, we specifi-
cally present an experimental case study with additive manufacturing.
A comparative analysis of our topological transformed error distribu-
tions with respect to direct coordinate error demonstrates the efficacy
of our approach.

2. Background and related work

Given that we investigate our approach through additive man-
ufacturing (AM), we will review relevant research specific to AM
as the domain of application in terms of the potential threats and
authentication methods explored in literature.

2.1. Potential threats in additive manufacturing

Additive manufacturing (AM), commonly known as 3D Printing,
is the process of manufacturing 3D parts in a layer-by-layer fashion
based on a computer-aided design (CAD) file [25,26]. It is a multi-step
process combining both automated and manual workflows. The process
begins with designing a computer-aided model of the part to be printed
and storing design in a format compatible with 3D printers, such as
STereoLithography (STL), Additive Manufacturing File (AMF) and 3D
Manufacturing Format (3MF). The information stored is used to create
a G-code with commands to control the position of the printing nozzle
and the bed. The G-code is optimized based on different parameters,
such as machine specification, material, support structure, layer height,
and printing speed. After printing, the part is post processed to obtain
a finished product. Yampolskiy et al. [25,27] discuss in their work how
various elements in this process can be compromised and manipulated
depending on their role in the 3D printing process.

For AM, major threats have been categorized into three main
groups—theft of technical data, sabotage, and illegal part manufac-
turing [28]. Technical data includes part specification, printing and
post-processing parameters, which could be comprised through theft
or reverse engineering [29-32]. Few examples of sabotage targets
include: the CAD model, G-code, printing material, printing equip-
ment, manufactured part or the printing environment [25,33-35]. The
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third major threat, unauthorized part manufacturing, arises due to the
large availability of 3D digital blueprint files online and increasing
accessibility of high quality AM equipment [36,37].

These cyber—physical attacks adversely affect the AM industry and
parts, resulting in slow adaptation of the technology, economical losses,
and immature failure of additively manufactured parts [33], along
with endangering human lives [27,36]. These attacks give rise to
counterfeiting of 3D printed parts, which has disrupted key indus-
tries, including aerospace, automotive, and medical industries [38-40].
Researchers have extensively explored this problem and introduced
several authentication methods, which are discussed in the following
section.

2.2. Authentication methods in additive manufacturing

Many authentication methods utilize external appearance of parts
by surface tagging [15,16,41,42] while others take advantage of the
inner structure [43-46]. Depending on the where the information, or
“tag”, is located, different equipment can be used for capturing this
information for authentication, such as cameras [16], scanners [15],
micro-computed tomography (micro-CT) scanner [43], or infrared (IR)
cameras [47].

The technique proposed by Harrison et al. [48] is an example of
surface tagging. They present barcodes in the form of physical notches
on the surface of the printed part which when swiped by fingernails
produce a unique sound wave, which is captured using a microphone.
Such methods affect the appearance of the 3D printed parts. Gupta
et al. [49] propose a method where additional features are introduced
in the CAD model because of which the quality of the part is maintained
only when specific printing conditions are met and in all other cases
produce lower quality parts. The disadvantage of this method is that
poor quality of 3D printed parts cannot be measured directly but is only
detected on premature failure of the part. Chen et al. [43] discuss em-
bedding of QR codes in multiple layers to eliminate the effect of codes
on mechanical properties of the 3D printed part. This method requires
usage of costly micro-CT equipment for authentication, increased effort
in designing, and high infill percentage of parts. Recently, Brandman
et al. [50] propose the notion of physical hash for detecting if a part
being 3D printed is according to design specifications in real-time. Their
idea is to print a QR code derived as a hash string from the nominal
process parameters and tool-path and print it alongside the original
geometry for in situ measurement.

To address the issue of authentication in low infill parts, Kubo
et al. [44] present a method of using resonant properties of objects.
3D printed parts are assigned unique resonant properties by changing
their internal structure and can be differentiated even if they have
similar appearance. The change in the internal structure is captured
with acoustic sensing. Kubo et al. extend their work by varying the
infill patterns during slicing to create unique resonant properties, which
reduces the effort of 3D modeling [45]. Sandborn et al. [51] propose a
method for detecting counterfeiting by measuring impedance identity
of a part using piezoelectric sensors.

Li et al. make an important argument [52] that 3D printers possess
unique fingerprints resulting from its hardware imperfections. In their
work, they model a connection between the fingerprints and the texture
on the 3D printed parts. Dogan et al. [42] also utilize the patterns
appearing on the 3D printed objects due to slicing instead of adding
extra features to the part. Their method differentiates between patterns
that inherently arise from varying the slicing parameters. Similarly,
Delmotte et al. [15] and ElSayed et al. [41] locally vary printing
parameters (layer height and printing speed, respectively) to introduce
subtle changes on parts’ surfaces for authentication. Taking inspiration
from these works, we propose a method called SplitCode to address
some of the existing challenges.



R.R. Adhikari et al.

L]
oo o \4valence e o e o . o e I e
Voronoi ;
) /vertices o ofe [oSPlt e/, .

<« edges

(a)Voronoi sites arranged in
a grid resulting in a grid of
quad Voronoi cells

(b)Splitting of 4 valence vertices into
edges on displacement of Voronoi sites
from their original location in the grid
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2.3. Our work

The premise of our proposed approach is that authentication of parts
is intimately linked with the part quality which embeds the natural
randomness of the manufacturing process itself. However, it is the
quantification of part quality that poses a technical challenge. To our
knowledge, there is no benchmark or competing methodology other
than semi-manual quality checks of manufactured parts. On the other
hand, digital methods proposed in previous works either simply apply
standards, or involve new hardware additions (such as RFID), or require
one to modify a given manufacturing process (i.e. may not scale to dif-
ferent types of manufacturing processes). In contrast, our work presents
a systematic methodology for tackling part counterfeiting. Because the
methodology is purely based on applying statistical transformation to
geometric information to assess quality of token parts, it is independent
of the manufacturing process.

3. Conceptual preliminaries

Our authentication methodology entails the statistical comparison
of geometric deviations of a test part with a reference distribution
that characterizes a given manufacturing configuration. Therefore, our
authentication approach relies on the ability to better distinguish dis-
tributions coming from two different manufacturing configurations
(i.e. two different combinations of machine, process, and parameters).
To achieve this, we utilize the concept of Voronoi tessellation to
transform the original coordinate distributions such that the difference
between two distributions coming from two different configurations is
exaggerated thereby enabling robust authentication. Here, we discuss
the key concepts underlying our methodology.

3.1. Voronoi tessellation

A Voronoi tessellation of some given spatial domain is a way
to partition the domain with seed geometric entities (called Voronoi
“sites”) into mutually exclusive and exhaustive regions (called Voronoi
cells) such that each region contains exactly one generating site and
every point in a given region is closer to its generating site than to
any other. As such, the sites can take any form (points, lines, curves,
simplicial complexes, etc.). However, if the Voronoi sites are points in
Euclidean space, the Voronoi cells are always convex. We specifically
consider 2D Euclidean domains wherein each Voronoi cell is a convex
polygon with Voronoi edges (the edges of the polygon) and Voronoi
vertices (the corners of the polygon). In particular, we are interested
in the topology of the Voronoi tessellation as captured by the number
of edges incident on (i.e. the valency of) a given Voronoi vertex in the
tessellation.
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Fig. 3. Topological transformation of two coordinate error distributions results in
exaggeration between them.

3.2. Topological transitions in Voronoi cells

While it is obvious that the locations of the sites dictate the cell
geometry, the interesting aspect of the tessellations that is relevant
to us is that the site locations also affect the cell topology through
edge collapses and vertex splits. Consider a special case wherein the
sites are arranged in an infinite rectangular grid on the plane. For
this site configuration, the tessellation results in an infinite rectangular
grid (Fig. 2a)—each cell is a rectangle and each vertex has valency of
four.! Now note that any perturbation in even one of the sites results
in at least one vertex to split into an edge. For the rectangular site
arrangement, this topological shift is guaranteed to occur (Fig. 2b). It
is this sensitivity to the sites that we leverage to exaggerate the error
distribution.

3.3. Topologically transformed error distribution

Based on the principle of topological sensitivity, we can design
a transformation that enables us to distinguish two seemingly indis-
tinguishable error distributions. To perform such a transformation,
consider a 2D Euclidean domain comprised of four Voronoi sites located
at the corners of a square (without loss of generality). As noted earlier,
the Voronoi tessellation for this arrangement is a single 4-valency
vertex at the center with four edges extending to point at infinity. Now,
perturbing each of the four sites using a given coordinate error distribu-
tion results in a new distribution of the split edge at the center (Fig. 3).
Based on this principle, any coordinate error distribution is transformed
into an equivalent statistical distribution of the split edge resulting from
the topological change. It is this topological transformation that leads
to the exaggeration of the difference between two coordinate error
distributions. We call this new distribution the topologically transformed
error distribution.

4. SplitCode: Algorithm

The process of computing topologically transformed error distribu-
tion from the original reference and test error distributions comprises
of the following steps:

Step 1. We start with four Voronoi sites arranged along the vertices
of a square inside a 2D Euclidean square domain (Fig. 4a). These
four points represent the ideal locations of the geometric features in
a manufactured part.

Step 2. We compute the Voronoi tessellation for this arrangement
which results into an exhaustive grid of quad cells with a 4-valency
vertex at the center. We refer to this vertex as the center point.

! This is not the only arrangement that results in a 4-valency vertex. There
is at least one more arrangement that results in a trapezoidal tessellation with
all 4-valency vertices. However, an exhaustive listing of such arrangements is
out of scope of this paper.
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Fig. 4. SplitCode: Algorithm.

Step 3. We then consider a coordinate error distribution (Fig. 4c)
that characterizes (gives us an estimate of precision and bias for) a
particular manufacturing configuration.

Remark: In a real-world scenario, the coordinate error distribution
would typically by obtained from manufacturing sample parts and
computing feature errors with respect to the ideal (image of the CAD
part). Here, a feature could be a geometric entity such as a point,
edge, corner, etc and the deviation of the measured locations of
these features from their ideal locations is the distribution (example:
Fig. 4c).

Step 4. Given a coordinate error distribution (Fig. 4c), we simply
copy it to each of the four Voronoi sites. Here, by copying, we
mean that the error distribution, whose mean is the origin, is trans-
lated such that the mean is a given Voronoi site. Thus, we get four
translated distributions with same standard deviation but different
mean locations, all referring to the same manufacturing configuration
(Fig. 4d).

Remark: Therefore, the image in Fig. 4d is essentially a set of four
copies of the image in Fig. 4c with the means centered at the four
Voronoi sites.

Step 5. We then sample one point each from all the four translated
distributions giving us four new Voronoi sites that could be imagined
to be the actual location of features in a manufactured part and hence,
shifted from the original Voronoi sites (Fig. 4e,f).

Step 6. In the final step, we again compute the Voronoi diagram
for the newly sampled Voronoi sites. As the new sites are randomly
located in the domain, the domain gets decomposed into four unequal
Voronoi cells as oppose to a grid of quad cells (Fig. 4g). Consequently,
the four valence center point in the grid splits into a line with three
valence endpoints when the Voronoi sites are displaced. This line is
known as the Split Edge.

Through this process we transform the error resulting from a man-
ufacturing configuration into a split edge. It is important to note here
that even small changes in the location of the Voronoi sites (small man-
ufacturing error) can be very easily detected and accurately captured
in the resulting Voronoi tessellation. This is possible because of the
topology change occurring as the center point, a four valence vertex
splits into the split edge. Hence, we utilize the split edge as our leading
point for further work.

4.1. Split edge representation

Note that a topologically transformed error distribution essentially
represents the probability of a set of line segments (the split edges)
in 2D-space. Given that a line segment can be defined in more than
one way (e.g. two end-points, length-angle-midpoint, etc.), there is
no unique way to compute the distribution. We consider two different
ways to represent the split edge (Fig. 5) and thereby the error distribu-
tion. The first representation is in terms of the length of the edge (/,), its
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Fig. 5. Split Edge can be represented either by its length, angle, and location of the
midpoint or by the location of its two endpoints.

angle (6,) with respect to the horizontal axis, and the polar coordinates
(I, 6,) of the midpoint (m ) The second representation is simply the
Cartesian coordinates of the two end-points of the edge ((x;,y,) and
(%, ¥,)). We experiment with these two combinations of parameters
to select the representation that best differentiates between reference
distributions coming from two different manufacturing configurations.

In both split edge representations, we require four parameters to
fully define the split edge i.e. either (/,,0,,/,,6,) or (x,y;, x5, ). In
other words, the topologically transformed error distribution is a 4-
variate distribution. However, we note that there is a natural separation
of the parameters into two bi-variate distributions. In the first case,
we get one bi-variate distribution from the length and angle of the
edge (/,,0,) and another from the mid-point coordinates (/,,6,). In
other words, one distribution depicts the probability of occurrence of a
split edge with a specific length and angle and the second probability
distribution represents the probability of occurrence of a split edge
with its midpoint at a specific location. Similarly, for the second
representation, the location of each of the end points provides a bi-
variate representation. Here, the first probability distribution gives the
probability of occurrence of split edge with its first endpoint at a
specific location and the second distribution exhibits probability of
occurrence of split edge with its second endpoint at a specific location.

Regardless of how we represent the split edge, the two bi-variate
probability distributions resulting from the split edges can be mapped
to the original coordinate error distribution and are called topologically
transformed error distributions (Fig. 6). It is entirely possible that a
given split edge representation may lead to better exaggeration while
another may lead to indistinguishable results. Therefore, a necessary
step in the design of our authentication scheme is to systematically
investigate different edge parametrizations and their corresponding
ability to differentiate between similar coordinate error distributions.

5. Design of authentication scheme

Our authentication scheme is predicated upon the ability to dis-
tinguish two distributions coming from two different manufacturing
configurations. In simpler terms, we wish our scheme to be able to
tell apart two distinct combinations of machines, processes, and pro-
cess parameters. As a concrete example, suppose we produce multi-
ple instances {i;,i,,...,i,} using manufacturing configuration I and
{ji»Jas---»Jjm) Produced using manufacturing configuration J. Note that
each of these part instances result in an error distribution, namely
Py = {(P'(iy), P2(i1)), ..., (P'(i,), P2(i,))} and Py = {(P'(iy), P2(i))), ...,
(P'(i,), P%(i,))}. Here, (P!(.), P?(.)) signify the two bi-variate distribu-
tions we get from the split edge.

Our goal is to determine the representation of the split edge such
that the sets P, and P, admit two separable clusters. In other words,
instance distributions coming from configuration I should be clustered
together and should be separable from the cluster generated from the
instance distributions of configuration J. To select the right split edge
representation, we conducted a simulated experiment as detailed in the
following sections.



R.R. Adhikari et al.

Midpoint

L\

X2,Y2
= [

Representation 1 Representation 2

Length, Angle Midpoint Endpoint 1 Endpoint 2

Fig. 6. When multiple sets of 4 Voronoi sites are sampled from an error distribution,
multiple split edges are generated. Length, angle, midpoint, and endpoints of these split
edges are represented through bi-variate probability distributions called topologically
transformed error distributions.

5.1. Mapping part instances to the distribution space

In order to select the right split edge representation, we need a
method that maps a set of instance distributions to a common space —
a distribution space — so as to observe whether instances produced by a
given manufacturing configuration cluster together and whether differ-
ent configurations lead to separable clusters. Given a pair (P! (i), P2(i))
of the two bi-variate distributions from some part instance i, we can
map this to an ordered pair (Dg; (P'(i) || Q). Dg;(P?(i) || Qy)). Here,
Dy (A||B) is the Kullback-Leibler divergence (also known as the statis-
tical distance or relative entropy) of a probability distribution B from
A. In our case, we choose Q; and Q, as two uniform distributions that
span the maximum intervals for the corresponding variables as follows:

1. For split edge representation 1:
The variables for O, are 0 </, < V2 (length of diagonal of the

unit square) and 0 < 6, < 2z. Therefore the height A(Q,) = 4;

2
The variables for Q, are 0 < I, < - (half-length of diago\r{:;l
of the unit square) and 0 < 0, < 227;. Therefore the height
hQy) = r
. For split edge representation 2:
The variables for O, and Q, are —0.5 < x|, y, x5, ,,< 0.5 (the
min and max coordinates in the unit square). Therefore the

heights £(Q;) = h(Q,) = 3.

For a given manufacturing configuration I with distributions P; =
{((P'(i)), P2(i))), ..., (P'(i,), P(i,))}, this results in a set of points where
each pair {(P'(iy), P*(i\))} maps to (Dg 1 (P (i) || Q1), Dg (P2(iy) || Q)
in the distribution space for 1 < k < n (Fig. 7). In the first representation
method, we use Dg; to map the probability distributions generated
from length-angle of the split edges and the midpoint to the distribution
space. In the second representation, we map the two probability dis-
tributions generated from the two endpoints of split edges. Therefore,
we can use this process to compute two different mappings of the
same set of part instances. Our goal in subsequent sections is to
design a series of experiments to compare which representation enables
better differentiation between part instances produced by two different
manufacturing configurations.

610

Journal of Manufacturing Systems 65 (2022) 605-621

Midpoint

/ “Coordinate error Length & Angle \
distribution KL Divergence plot
——

Reference uniform
distribution

Several topologically transformed
error distributions
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the ordered pair (D, (P' || Q). Dg,(P? || Q,)) where P! is the bi-variate distribution
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coordinates of the mid-point of the edge.
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Fig. 8. Dy, Plots generated from length, angle, midpoint and two endpoints of split
edges for error distributions with same mean and varying standard deviation.

5.2. Experiment design for split edge representation

If we know the function of error distribution generated from a
given manufacturing configuration I, we can create multiple instances
{i;,iy,...,i,} of the same manufacturing configuration by randomly
sampling points from the original error distribution. Error distribution
of each instance leads to two bi-variate distributions (P!(i), P2(i)) which
can be further mapped to a distribution space in terms of an ordered
pair (Dg(PY() || Q1) Dgr(P*() || Q). To find the representation
of split edge that consequently gives rise to separable clusters of
ordered pairs (Dgy (P! || Q)), Dg(P? || Q,)) for each manufacturing
configuration, we simulate error distributions resulting from different
manufacturing configurations. Application of SplitCode on these simu-
lated error distributions generates two different mappings as a result of
two representations of the split edge. These mappings can be compared
to find the representation of the split edge that simplifies differentiation
between error distributions of different manufacturing configurations.
For these simulations, we assume coordinate error distributions to be
bi-variate normal distributions with a specific mean and standard devi-
ation value. We perform comparison between the two representations
of the split edge for the following two groups of coordinate error
distributions:

1. Bi-variate normal distributions with same mean and vary-
ing standard deviation - In the first group, we generate seven
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Fig. 9. Dy, Plots generated from length, angle, midpoint and two endpoints for error
distributions with varying mean and same standard deviation.

bi-variate normal distributions with their mean at the origin and
standard deviation as 0.01, 0.011, 0.02, 0.03, 0.05, 0.06 and
0.08. The co-variance for these distributions is zero. All seven
distributions consist of 5000 points. This group of coordinate error
distributions imitates the scenario where different manufacturing
configurations produce part instances with different precision.

2. Bi-variate normal distributions with same standard de-
viation and varying mean - Second group comprises of bi-
variate normal distributions with a standard deviation of 0.05
and varying means. The co-variance value of these distributions
is zero and they too consist of 5000 points each. This group
talks more about the difference in bias resulting from different
manufacturing configurations.

The location of mean for these distributions are selected in three
categories. In category 1, we first select few locations in the first
quadrant along the line defined by equation x y, at an in-
creasing distance from the origin such as (0.01,0.01), (0.011,0.011),
(0.1,0.1), (0.2,0.2), (0.21,0.21) and (0.22,0.22). The goal here is to
understand how the nature of bi-variate distributions change with
increasing distance of mean location from origin. In the second
category, we select mean locations in the first quadrant along a
line with slope of 0.5 such as (0.1, 0.05), (0.2,0.1) and (0.25,0.125).
This is to investigate the variation in bi-variate distributions with
the change in the slope of the line along which mean location
is chosen. Finally, we select some locations in all four quadrants
equidistant from the center and the two axes in the third category.
In this category, the means of error distribution are located at
(0.1,0.1), (-0.1,0.1), (=0.1,—-0.1) and (0.1,—0.1). This would help
us to understand how bi-variate distributions change with the
quadrants in which mean is located.

We generate 20 instances for each manufacturing configuration
which gives rise to 20 pairs of bi-variate distributions and thus, a
set of 20 points in each mapping in the distribution space. Detailed
comparison between mappings obtained from two representations of
the split edge for the aforementioned groups is given in the following
section.

5.3. Selection of the split edge representation

5.3.1. Same mean and varying standard deviation

We observe that for this group of error distributions, when bi-
variate distributions generated from the length, angle, and midpoint
of split edge are mapped to the distribution space, we get clusters of
points belonging to instances generated with the same manufacturing
configuration (Fig. 8). In addition to that, clusters belonging to different
manufacturing configurations are clearly separable. On the other hand,
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Fig. 10. Dy, generated for the length and angle, and the midpoint of the split edges
are shown for error distributions with varying standard deviation and varying mean
respectively.

when endpoints are used to represent split edges, points belonging
to one manufacturing configuration forms a close cluster. However,
these clusters cannot be clearly separated for different manufacturing
configurations as they overlap each other (Fig. 8). Thus, part in-
stances produced with different manufacturing configurations resulting
in error distributions with same mean but varying standard devia-
tion can be better distinguished by using length, angle, and midpoint
representation of the split edge.

We note that for distributions with same mean, as the standard
deviation of the error distribution increases, location of the sampled
Voronoi sites move farther from the center point. As a result, we see a
clear variation in the length of the split edge with increasing standard
deviation but not in its location. Consequently, we observe a monoton-
ically decreasing behavior in the (D (P! || Q,)) value obtained from
the length and angle bi-variate distribution as the deviation in the error
distribution increases (Fig. 10a). The median (Dg (P! || Q,)) value for
error distribution with lowest deviation of 0.01 is 48.1490 and the
(Dgr(P! || @) for the highest deviation distribution is 25.8009. In
between these two distributions, the (Dg (P! || Q,)) value decreases
to 47.7912, 43.3260, 38.6587, 32.4051, and 29.0111 for coordinate
error distributions with a standard deviation of 0.011, 0.02, 0.03,
0.05, and 0.06 respectively. However, we do not observe much varia-
tion in the (D (P? || Q,)) values generated from midpoint bi-variate
distributions across all coordinate error distributions (Fig. 8).

5.3.2. Same standard deviation and varying mean
Mappings obtained for distributions in this group tell us that, when
split edge representation 1 (length, angle, midpoint) is used, bi-variate
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Fig. 11. Authentication procedure: SplitCode is applied on error distributions of a manufacturing configuration and the test part to obtain topologically transformed error distributions
(reference and test distribution). Reference and test distribution are compared with a uniform distribution in terms of KL divergence and are mapped to a distribution space as
(Dg, (P! ]| Q))). Later (Dg, (P! || Q,)) values obtained from reference and test distributions are tested against each other through a one variable KS test to find if the test part

is printed with the given manufacturing configuration.

distributions of instances coming from one manufacturing configura-
tion map to points in a close separable cluster in the distribution space
(Fig. 9). However, bi-variate distributions resulting from the second
representation of the split edge are randomly mapped to points in
the distribution space. We do not get separable cluster for each man-
ufacturing configuration. Instances produced with all manufacturing
configurations contribute to one common cluster in the distribution
space making differentiation between different manufacturing con-
figurations difficult (Fig. 9). Thus, for part instances produced with
different manufacturing configurations resulting in error distributions
with varying mean but same standard deviation, length, angle, and
midpoint representation of the split edge offers better differentiation.

When the location of the mean of error distributions with same
standard deviation change, location of the split edge is affected. No
difference is observed in the length of the split edge. Hence, in this case
the midpoint of the split edge is more important than its length. Thus
for distributions with same mean but varying standard deviation, we
observe a pattern in the (Dg;(P? || Q,)) values generated from mid-
point bi-variate distributions (Fig. 10b). The median (D (P? || Q,))
value for distributions with their mean at (0.01,0.01) and (0.011,0.011)
is 15.4593 and 16.9105 respectively. Then as the distance of the
mean of error distributions from the origin increases such as for error
distributions with their mean at (0.1,0.1), (-0.1,0.1), (—0.1,-0.1) and
(0.1,-0.1), the median (D (P? || Q,)) value also increases to 33.8169,
33.7143, 32.8356 and 34.3296 respectively. After this we observe a
drop in (D (P? || Q,)) values as the error distributions move further
from the origin. We get a median (Dg(P? || Q,)) value of 28.3907,
28.3804, 28.7866, 27.2097, 28.1860, 27.9994 for error distributions
with their mean at (0.2,0.2), (0.21,0.21), (0.22,0.22), (0.1, 0.05), (0.2,0.1),
(0.25,0.125) respectively.

This shows that even after the first drop, (Dg,(P? || Q,)) contin-
ues to increase with increasing distance of the mean from the origin
(Fig. 10b). We also note that (Dg;(P? || Q,)) values for error dis-
tributions that are equidistant from the origin and axes in all four
quadrants lie in a very close range and (D (P? || Q,)) does not change
significantly with the slope of line on which mean of error distributions
are located (Fig. 10b). However, not much variation was observed
in the (Dg (P! || Q,)) values across all coordinate error distributions
(Fig. 9).

5.3.3. Analysis

Our numerical simulations show that the length and angle (/,,6,) of
the split edge and the coordinates of the midpoint (/,, 6,) exhibit exag-
geration to distinguish between coordinate error distributions of differ-
ent manufacturing configurations. Not only that, a direct comparison
of the original coordinate error distributions results in a near constant
value (31.2792) of the KL-divergence making it prohibitively difficult
to perform authentication. Therefore, we get better characterization
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of manufacturing configurations using our topologically transformed
error distributions specifically with the length, angle, and midpoint of
the split edge. This consequently shows that by applying topological
transformation enabled by SplitCode, we can successfully distinguish
part instances and their error distributions produced with different
manufacturing configurations.

A more important observation to make is that each of these pa-
rameter pairs (length-angle vs. midpoint) exaggerate different types
of properties between distributions. Specifically, the length and angle
(I;,0,) of the split edge responds well to the standard deviation of
the coordinate error distribution (Fig. 10(a)). On the other hand, the
midpoint (/,,0,) responds better to the location of the mean of the
original coordinate error distributions (Fig. 10(b)). For a focused in-
vestigation of our approach, we will consider distributions that differ in
their spreads (i.e. standard deviation). This case signifies manufacturing
configurations with different precision. In the rest of the paper, we will
focus on the distribution space populated based on the length and angle
(I;,0,) of the split edge.

5.4. Overview of authentication procedure

Our authentication scheme is formulated as a statistical comparison
between the topologically transformed error distribution of a test part,
i.e. the test distribution, with a reference distribution that character-
izes a given manufacturing configuration (class of machine, process,
and parameters) (Fig. 11). The reference error distribution is defined
for a combination of a part geometry and a given manufacturing
configuration and is obtained as follows:

1. Manufacture multiple instances of the part geometry with the
given manufacturing configuration.
2. For each manufactured instance,

(a) Measure the geometric deviations. For example, if the
part geometry consists a set of circular holes, the devia-
tions could be the difference between the estimated hole
center with the ideal center (as defined in the CAD model
of the part).

(b) Generate the coordinate error distribution by combining
all deviations into one sample.

3. Combine the coordinate error distributions for all the manufac-
tured instances into a single distribution.

4. Apply the SplitCode algorithm to generate the topologically
transformed error distribution. This final distribution is called
the reference distribution.



R.R. Adhikari et al.

©
@

(a) na= Ky (b) na# wp, (©) o= Hp, (d) mg= .
Ggq 7 Op» Gq = Op; Ga# Op» Gaq = Op;
Ga12=0p12=0  Ga12=0p12=0  Ga12 =0p12 #0 Ga12 # Ob12

Fig. 12. SplitCode was numerically validated for four types of known distributions—
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Distributions with same mean, non-zero co-variance, varying standard deviation, (d)
Distributions with same mean, same standard deviation, varying co-variance.

5.4.1. Authentication test

Given the reference and test distributions, we begin by mapping
them to the distribution space (Fig. 11). As highlighted in our design
of scheme, both the reference and test distributions are computed
based on the length and angle of the split edge. Recall that these are
both bi-variate distributions and result in a uni-variate set of points in
the distribution space (after mapping using KL divergence) (Fig. 11).
Subsequently, we perform one-variable Kolmogorov—Smirnov (KS) test
in order to determine whether the test distribution comes from the same
manufacturing configuration as the reference distribution (Fig. 11).
The p— value of the KS test quantifies whether the reference and test
samples come from the same underlying distribution function (the null
hypothesis).

We accept the null hypothesis (the two distributions come from a
common underlying distribution) if the p > p, where p, is a significance
threshold for the reference manufacturing configuration. Typically, p <
0.05 is considered statistically significant to reject the null hypothesis in
most statistical tests. For instance, in our case, p < 0.05 would mean that
the test instance was produced using a manufacturing configuration
different from the one represented by the reference. In other words,
if p < 0.05, then the test instance is not authentic. However, we
note that a constant significant threshold is not suitable for comparing
an arbitrary pair of distributions. The threshold may be different for
different manufacturing configurations. Therefore, given a reference
distribution for a manufacturing configuration under question, our
authentication scheme additionally prescribes steps to determine its
intrinsic threshold as discussed below.

5.4.2. Significance threshold

Significance threshold is the threshold value that helps us to de-
cide if a particular part is manufactured with a given manufacturing
configuration or not. Every manufacturing configuration has a different
significance threshold just as it leads to a different error distribution.
To find significance threshold for a given manufacturing configuration,
we follow a simple procedure. We simply perform a statistical (KS)
test between a reference and a test error distribution where the test
is known to be generated using the same manufacturing configuration
as the reference. The p— value (p,) resulting from this test is used
as the significance threshold for the reference error distribution. The
basic idea behind this is that when a test error distribution of a part
produced with a different manufacturing configuration are statistically
compared with the reference error distribution, the p— value for the KS
test should be lower than (p,) as the two distributions in consideration
do not belong to the same distribution. Hence, (p,) obtained by sta-
tistically comparing reference error distribution and known test error
distribution of the same manufacturing configuration is considered as
the significance threshold (p,) for that manufacturing configuration.
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6. Numerical validation of authentication with SplitCode

Our first objective for validating the SplitCode authentication
scheme is to understand its ability to authenticate a test instance with
respect to a reference. To achieve this objective, we conducted a series
of comparative experiments wherein we consider two manufacturing
configurations A and B. We then numerically simulate reference and
test distributions for each of these configurations.

6.1. Experimental approach

We follow the following experimental approach:

+ Authentication without SplitCode: We generate coordinate error
distributions A7, = Af, s B = and B;,, in the original space of
geometric deviations in 2D Euclidean space. We then conduct
pairwise comparisons between the reference and test distributions
using a two-variable KS test.

Similar to our approach in SplitCode, we first find the significance
thresholds, namely Py for A o Pip for B, - Our experiment
(cross test) is then to compute Pig and Ppas which are the p—
values obtained from comparing Bj,, with respect to A%, ; and
vice-versa respectively.

Authentication with SplitCode: Here we use our authentication
scheme (Section 5.4) after topological transformation of the errors
to obtain A/, Ay By.s, and By, in the distribution space using
KL-divergence for length and angle (/; and ;). We then conduct
pairwise comparisons between the reference and test distributions
using a one-variable KS test.

We first find the significance thresholds, namely p,, for 4,,, p,p
for B,, s Our experiment (cross test) is then to compute p,p and
P, Which are the p— values obtained from comparing B,,,, with
respect to A,,, and vice-versa respectively.

Here, Ajef, and A}, have the same mean, standard deviation and
co-variance. Similarly, B, o and B;,, have the same mean, standard
deviation and co-variance. A7, 7 and B* , comprise of 5000 points
whereas, A}, , and B}, consist of 500 points. The difference in the
number of points between reference and test error distributions is to
emulate the scenario that reference error distribution is captured from
multiple instances whereas a test error distribution is captured from
one.

For every cross test that gives a p— value less than the significance
threshold for the reference distribution in consideration, we say that we

get one true negative result (for example when p%, , < Piys Ppa < Plp

before transformation or p,p < po4, Pps < P,p after transformation).
Given two manufacturing configurations, when both the cross test
results are true negative, we can assert that authentication is perfectly
possible for that case. If any one or both cross tests result in p— value
greater than or equal to their corresponding significance threshold, we
get one or two false positive results respectively. In such a situation,
we state that the authentication has failed.

6.2. Experiment design

We perform numerical experiments for four cases of bi-variate
normal distributions as follows:

Case 1 (Fig. 12a): Same means (4, = pu,), different standard
deviations (o, # 0,), and zero co-variances (6,;, = 641, = 0).
Case 2 (Fig. 12b): Different means (u, # p;), same standard
deviations (¢, = 6,), and zero co-variances (o1, = 0}, = 0)
Case 3 (Fig. 12c¢): Same means (u, = p,;), different standard
deviations (o, # 0,), and non-zero equal co-variances (c,, =
6p12 # 0)

Case 4 (Fig. 12d): Same means (4, = y,), same standard devia-
tions (o, = 0,), and different co-variances (o,, # 6,5)
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Table 1
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Authentication results for numerically validated distributions is shown. Rows 1-4 represent the four cases illustrated in Fig. 12.

Before Transformation After Transformation
Category of L L L
Do Condition Cases Significance Cross Test Possibility of Significance Cross Test Possibility of
Threshold Results Authentication Threshold Results Authentication
) _ Pia=0.5522 | piz =0.5982 Pea=0.9050 | pap=09239
Same Mean, Varying Ha=Hp 05 =04~ 00001 | 3" 05520 | pg, = 04633 No Pop=0.1794 | pgs=03112 No
B o s w7 24=05522 | pyp=0.0501 0.9050 0.00002
Zero Co-variance Ga12 =0p12 =0 e Psa=0- Pap = . Psa=0. Pap =0
Az mEz 05-0a=0.001 | 2" 05525 | pi,=0.0505 3 Pop =0.0626 | ppa=0.0199 Y&
L pia=0.5522 | php=0.5295 Psa=0.0463 | pup=0.0463
SamelStandard Ha# Hp M- #a= 0001 |0 05522 | i, = 03280 Yes Psp =0.0034 | ppa=0.0034 No
Deviation, Varying o4 % 1=05522 | pig=0.0005 0.0012 0.0463
Mean, Zero Co-variance | G413 =0p12 =0 e Psa=0. Pap = U Psa =V Pap =0.
Az EB2 Hp=Ba =001 10 05522 | pp, = 10705 e Pes =0.0001 | pga=10"07 B
) o Pia=0.2975 | pip=0.2591 Pea=0.0410 | pup=0.0410
SIS W, Wi Ha=Hp o804 = 0000 | 002742 | pj,=03580 No Psp =0.0656 | ppa=0.1535 No
Suandard Deviation R 24=02975 | pip=0.0516 0.0410 0.0001
Non-zero Co-variance | 6415 = 0g12 #0 PR Psa= Y- Pap = . Psa =V Pap =V
Az oEz 05 =04 =001 | 201091 | pa=0.0009 3 Pop=04333 | ppa =0.0006 R
St Llem, e Ha=Hp 01z — G2 = | Pia=05522 | pip=0.1635 Pea=0.0248 | pap =0.0146
Standard Deviation, Gy =0p . = Yes _ _ No
S o pip=02742 | pps=0.1769 Pop =0.0656 | ppa=0.0656

The aforementioned cases are selected to explore authentication be-
tween possible pairs of manufacturing configurations with varying
error distributions. Two manufacturing configurations can either vary
in their precision, bias or both. In statistical terms, coordinate error
distributions of two manufacturing configurations can have different
means, standard deviations or co-variances. In terms of physical inter-
pretation, the first and third cases (Figs. 12a,c) essentially represent a
scenario with two machines that have different precision. An example
could be two 3D printers of the same make (or even the same 3D
printer) and model but one printing at a higher speed than the other.
The second case (Fig. 12b) represents a scenario with two machines of
the same make and model working at same speeds but with different
biases (which may be caused due to different initialization or calibra-
tion errors). The final fourth case (Fig. 12d) represents a scenario with
completely different machines, printing at possibly different speeds.
These scenarios are investigated to develop a deeper understanding of
the feasibility of SplitCode for authentication.

6.3. Results: Case 1 (p, = pp, 6, # Opy Oq1p = Op1p =0)

In this category we will study if topological transformation is re-
quired for comparing two coordinate error distributions with same
bias but different precision. Here we study two different cases. Dis-
tributions with higher standard deviation signify error distribution
of manufacturing configurations producing part instances with less
precision.

All error distributions considered in this category have their mean
at (0,0) and have zero co-variance. In the first case, we have AY and
A}, with a standard deviation of 0.01 and a B}, and By, with a
standard deviation of 0.0101. The difference in the standard deviations
of A and B is 10~*. Before topological transformation, as the p— value
(pj‘3 A) for cross test is less than the significance threshold for B:‘e ; (p;k B),
we get one true negative result (Table 1). However, the p— value @)
is greater than the significance threshold for A’r‘e . (pj A) which gives us
one false positive result (Table 1). Hence, authentication is not possible
for this case without topological transformation. After performing topo-
logical transformation, results of both the cross tests (p, 5, pg4) turn out
to be greater than their corresponding significance threshold (Table 1)
and thus, leads to two false positive results. Hence, when the difference
in standard deviation of two distributions with same co-variance and
their mean at the origin is 104, authentication is not possible both
before and after performing topological transformation.

We increase the difference in the standard deviations of A and
B to 1073 in case 2. In this case, we have A and Ay, with a
standard deviation of 0.01 and B}, ; and B}, , with a standard deviation
of 0.011. Here p— value obtained for the two cross tests (p}, 5, P} 45
Pap> Ppa) are lower than their corresponding significance thresholds
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both before and after topological transformation (Table 1). This gives
us a perfect authentication case as we get two true negative results
before transformation as well as after. Thus, we observe that for man-
ufacturing configurations resulting in parts with different precision,
when the difference between the standard deviation of their error
distributions is as low as 10~ authentication is not possible with or
without topological transformation. However, when the difference in
the two standard deviation values is in the range of 10~3 or maybe
higher, we can successfully authenticate 3D printed parts both before
and after topological transformation.

6.4. Results: Case 2 (u, # ty, 64 = 0p, G412 = 6p1p =0)

In this category we study two cases where the difference in the mean
locations of two error distributions in the first case is lower than the
second. Here, we have error distributions with different biases where
distributions with their mean locations closer to the origin resemble
manufacturing configurations generating lesser error and error distri-
butions with mean locations farther from the origin showcase higher
error. Particularly for this category of distributions, we focus on the
distribution space populated based on the midpoint (/,, 6,) of the split
edge as the two manufacturing configurations have different bias.

We have Ar*e and AL with their means at (0.01,0.01) and B;‘e ; and
By, , with their means at (0.0101,0.011) in the first case. The difference
in the location of means of A and B is 1073. In the second case, the

difference in the mean location of A, o Ay, and B, o B}, increases
to 1072 as for the same A* ., A* , the means of B* ., B* _ are shifted
re test ref test

to (0.11,0.11). All distributions in this category have same standard
deviation of 0.05 and a co-variance of zero in both directions.

Before topological transformation, we observe that the cross tests
give p— values (p%, ,, p}; ) that are lower than their significant threshold
values in both the cases (Table 1). As a result, authentication is possible
before transformation when the difference in the mean location of dis-
tributions generated from two different manufacturing configurations
is 1073 or 1072. However, after performing topological transformation
we notice that for case one, p— value (p,p, pg4) for both cross tests are
same as their corresponding significance threshold values giving us two
false positive results (Table 1). Similarly, on increasing the difference
in the mean locations for A and B, we get one false positive and one
true negative results as in the second case cross test result p, 5 is greater
than the significance threshold for 4,,, (p,,) and cross test result (pg,)
is less than the significance threshold for B,, 7 (psp) (Table 1). Thus,
when two manufacturing configurations give rise to coordinate error
distributions with same standard deviation but varying mean locations,
authentication is only possible before applying SplitCode.
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6.5. Results: Case 3 (u, = py, 6, # 6py Gq1p = 0p1p # 0)

This category is a variation of the first category. These error dis-
tributions have a different bias than the error distributions in the first
category as they have a non-zero co-variance in both directions. They
form an elliptical shape as oppose to circular distributions in the first
two categories. Similar to the first category, error distributions with
lower standard deviation here refer to manufacturing configuration
resulting in lesser error.

Here also we consider two cases. For both cases we generate A7,
and A*

test

A
with a standard deviation of 0.05. Then we generate B’ ; and

By, , with a standard deviation of 0.051 in the first case and 0.06 in the
second case respectively. Thus, the difference in standard deviation of A
& B increases from 103 to 10~2 as we move from the first to the second
case. All error distributions considered in this category have their mean
at the origin and a co-variance of 0.0004.

In the first case where difference in the standard deviation of A & B
is 1073, the cross test result (1’,*4 B) is lower than the significant threshold
for A;‘e y (p:' A) but the other cross test result (p’g A) is greater than its
corresponding significant threshold (p},). As a result, we get one true
negative and one false positive result before transformation (Table 1).
Whereas after transformation, we get two false positive results as (p, )
is same as (p,4) and (pp,) is greater than (p,). Hence, authentication is
not possible before or after topological transformation in this particular
case. When the difference in the standard deviation of A & B increases
to 1072, not only before transformation but also after transformation
all cross tests give p— values that are lower than their corresponding
significant thresholds (Table 1). We get two true negative results before
transformation as well as after transformation for the second case.
Hence, when two manufacturing configurations result in coordinate
error distributions that have same bias but a difference of 10~2 in their
precision, authentication is not possible before or even after application
of SplitCode. However, when the difference in their precision increases
to 10~2, authentication is possible before transformation as well as after
transformation.

6.6. Results: Case 4 (p, = pp, 6, = Cp, Cq12 £ Op12)

Finally, in the last category we compare two error distributions with
same mean, same standard deviation and different co-variance, which
means that the two manufacturing configurations associated with these
error distributions result in part instances with same precision but

different bias. We consider AY ; and A7, with a co-variance of zero.

Then we have another pair of B, . and Bj,, error distributions B that
have a co-variance of 0.0004 in both the directions. All four error
distributions have their means at the origin (0,0) and have a standard
deviation of 0.051. In this case, we have a circular distribution A and
an elliptical distribution B.
On testing A’ ; against B},  before transformation and 4,,, against
By, after transformation we get p— values (p},, and p,p) that are
lower than their corresponding significance threshold values for A7, .
(pj A) and 4,, 7 (p,4) respectively. Thus, we get one true negative before
transformation, as well as after transformation (Table 1). When we
perform a KS test between B:‘e and 47, ,, we get (p’l“; A) lower than the
significance threshold for B:‘e y (p;‘ B) before transformation (Table 1).
Now we have two true negative results before transformation. How-
ever, after transformation we get a p— value (pp,) which is same as
the significance threshold for B,,, (p,p) (Table 1). We consider this
result as a false positive which takes our total to one true negative
and one false positive after transformation. From these results, we can
see that for error distributions with same mean and standard deviation
but a difference of 0.0004 in the co-variance, authentication is possible

before transformation but not possible after transformation.

615

Journal of Manufacturing Systems 65 (2022) 605-621

Fig. 13. The printed part was placed on a rotating table in a photo studio light box
and multiple images of the part at different orientations are captured.

7. Experimental validation of authentication with SplitCode

From the results gathered during numerical simulations, we un-
derstand that the performance and accuracy of SplitCode depends on
the nature of relative coordinate error distributions and the difference
between them. We observe that SplitCode enables authentication in
some cases where two reference coordinate error distributions have
same biases but different precision. We also notice that for certain
coordinate error distributions with different biases, authentication is
possible before application of SplitCode but fails after the topological
transformation. To check if we get similar results for actual manu-
factured parts, we perform some physical experiments using additive
manufacturing process. These experiments provide insight on the na-
ture of possible coordinate error distributions that one can get for
various printer configurations. In this section, we describe about the
experiments conducted in detail and present their results.

For these experiments, we assume that error measured with respect
to the CAD model of the design in multiple prints printed with a given
printer configuration, contribute to the reference error distribution of
that printer configuration. Similarly, if we have a test print printed
with an unknown printer configuration, error measured in the test print
gives us the test error distribution.

7.1. Experimental setup

We first started with 3D printing the parts which were then imaged,
pre-processed, and registered and were used for computing reference
and test error distributions. We used three different printers in our
experiments. These printers, their slicing software, and the printing
parameters used for fabricating the parts are reported in Table 2. All
parts were printed using a PLA (polylactic acid) filament and imaged
using Canon EOS 60D DSLR camera with an EF 17-40 mm F/4 USM
lens (Fig. 13). In order to remove bias from imaging at a specific
part orientation, each part was imaged 15 times, on an average, after
rotating it by 24° after each capture. Additionally, we utilized a photo
studio light box (Fig. 13) to further remove any discrepancies that could
be introduced by variation in the lighting and shadows.

7.2. Design of parts

We used two types of part designs in our experiments which are as
follows:-
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Table 2
Printers, parts, and their printing parameters used for experiments.

Journal of Manufacturing Systems 65 (2022) 605-621

Printer Parts Slicer Layer height (mm) Nozzle (bed) temperature (C)  Perimeter (infill) printing speed (mm/s) Infill density (%)
. a. 4 parts 0.16 200 (60) 37.5 (75) 100
1. Creality Ender 3 () g Cura 480 0.16 200 (60) 18.75 (37.5) 100
2. LulzBot TAZ 6 c. 4 parts  Cura LulzBot edition 0.16 200 (60) 37.5 (75) 100
. d. 2 parts . 0.10 210 (60) 40 (80) 100
3. Prusa i3 MK3S e. 2 parts PrusaSlicer 2.3.3 0.07 210 (60) 30 (40) 100

(a) Captured images

i %

(b) Pre-processed images

(c) Registered images

Fig. 14. Images of ideal CAD model and the printed part when (a) captured, (b) pre-processed and (c) registered.

1. Square part with 25 square holes

We designed a square part of dimensions 55 x 55 X 1.2 mm
with 25 square holes on it (Fig. 17). This design was created
in SOLIDWORKS 2019. The centers of these square holes were
arranged in a 5 x 5 grid and the length of their sides were selected
randomly from 3 mm, 3.5 mm, 4 mm 4.5 mm and 5 mm. For this
part design, we measured manufacturing error at the vertices of
the square holes in the images of printed parts with respect to
their ideal locations in the CAD image. The error calculated was
then utilized to generate coordinate error distributions.

2. Square part with 25 circular holes

We designed another square part of dimensions 50 x 50 X 1.2 mm
in SOLIDWORKS 2019 which contained 25 circular holes of vary-
ing diameters on it. We chose five different diameters for the
circular holes—2 mm, 2.5 mm, 3.5 mm, 4 mm, and 5 mm (Fig. 17).
The centers of the holes were arranged in 5 x 5 grid such that
in every alternate row starting from the first one, the circular
holes were arranged in the increasing order of their diameter from
left to right and in the remaining rows they were arranged in
the decreasing order of the diameters from left to right. Such an
arrangement of holes is chosen to check if the diameter and the
location of hole affects the error in printing that hole. For this
design, we compute error at the centers of the circular holes in
the printed part images with respect to their ideal locations in
the CAD image and generate coordinate error distributions.

7.3. Image processing

Given that we captured an average of 15 images per print with dif-
ferent orientations, we must register each captured image to its ‘“ideal”
CAD image to calculate the deviations and error distributions (Fig. 14).
To achieve this, we utilize MATLAB’s Image Processing Toolbox version
R2020b.? First, we pre-process (Fig. 14b) the captured images and
the “ideal” render by applying a global threshold to binarize using
Otsu’s method [53]. We then apply a morphological erosion followed
by a dilation to remove noise while maintaining the hole features.
Finally, we align (Fig. 14c) each captured image with the “ideal”
one using phase correlation [54] and register them using MATLAB’s
Intensity-Based Automatic Image Registration technique.®

2 Available: https://www.mathworks.com/products/image.html.
3 Overview: https://www.mathworks.com/help/images/ref/imregister.
html.
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7.4. Error measurement and computation of coordinate error distribution

For parts with circular holes, all holes in both the print image and
the CAD image were detected using circle detection function (imfind-
circles) in MATLAB and each hole in the captured image of the print
is mapped to its corresponding hole in the image of the CAD model
(Fig. 15). We then find out the centers of the two holes. We finally
measure the length and angle of the line joining the centers of the
two holes in the printed part image and CAD image. Thus, we get
the errors introduced while printing that particular hole with a given
printer configuration. In the same manner we compute error for all the
25 holes in all images of the print and use that to create the coordinate
error distributions of the print. It was observed that parts with circular
holes led to elliptical or circular coordinate error distributions (Fig. 17).

For parts with square holes, a corner detection function (detectHar-
risFeatures) was used in MATLAB to detect all the corners of the holes
in the captured images. At this stage, multiple factors come into picture
in the error computation process. Firstly, because of the noise in the
captured images, we do not get straight line edges for the square holes
when we process the images in MATLAB (Fig. 16a). As a result, multiple
points are detected in the images by the corner detection function
(Fig. 16b). We map all the detected points on the ideal CAD image and
find the points that are closest to the actual corners of the square holes
on the CAD image. An important point to note here is that, because of
the fundamental nature of printing and the thickness of the printing
filament, as the printing direction changes by 90° we do not get a
sharp corner. Instead we get fillets. Secondly, when we take images
of these prints, shadows increase the probability of detecting a fillet in
the location of a corner.

Because of the above two reasons, the points detected by the corner
detection function often lie on the edges that are incident on the corner
(Fig. 16¢). Naturally, points that are closest to the corners in the CAD
image also lie on one of the two incident edges. As a result, we get a
diamond-shaped (Fig. 17) error distribution for parts with square holes.

7.5. Design of physical experiment

In our experiments we focus mainly on the following two problems:-

1. Application of topological transformation to perform authenti-
cation between parts printed on two different printers (either at
same or different speeds).

2. Application of topological transformation to identify parts
printed on the same printer but with different speed and preci-
sion.

In total, we perform three experiments as described below (Fig. 17):-


https://www.mathworks.com/products/image.html
https://www.mathworks.com/help/images/ref/imregister.html
https://www.mathworks.com/help/images/ref/imregister.html
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(a) Ideal CAD
image

(b) Manufactured
part

(c) Image of
manufactured part

(d) Center of
image of manufactured part
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Ideal circle

hole detected in

04

(e) Comparison with
CAD image

(f) Error distribution

Fig. 15. Error distribution is generated by measuring the deviations in the image of the printed part with respect to the rendered ideal CAD image.

1. In the first experiment we want to understand if the exagger-
ation caused by topological transformation helps in detecting a
counterfeited print printed on a printer other than the authentic
printer at the same speed. For this, we print four prints each of
the design with circular holes on the printers Creality Ender 3
(al, a2, a3, & a4) and LulzBot TAZ 6 (b1, b2, b3, & b4). Both the
printers print at the same speed. Three prints from each printer
(al, a2, a3 & bl, b2, b3) were used to generate the reference
error distribution for the printers and the remaining prints (a4 &
b4) were used as test parts. Here we perform cross tests between
test part printed on LulzBot TAZ 6 (b4) and reference error
distribution of Creality Ender 3 (al, a2, a3). Similarly, we also
perform a cross test between test part printed on Creality Ender
3 (a4) and reference error distribution of LulzBot TAZ 6 (b1, b2,
b3).

2. For the second experiment, we use two prints (al & a2) printed
at a lower speed on Creality Ender 3 as test prints and compare
them with the four prints (b1, b2, b3, & b4) printed at a higher
speed on LulzBot TAZ 6. Design of part with circular holes is
used in this experiment. First we perform a KS test between error
distributions coming from the first three prints (b1, b2, & b3)
and the fourth print (b4) printed on LulzBot TAZ 6. This KS test
gives us the significance threshold for the printer LulzBot TAZ
6 at 37.5 mm/s. We then perform a cross test between the test
prints printed on Creality Ender 3 (al & a2) and the reference
error distribution of LulzBot TAZ 6 printer generated from b1, b2,
& b3.

3. In the last experiment our goal is to utilize topological transfor-
mation for detecting parts printed on the same authentic printer
but at different speeds. To explore this situation, we wanted to
select a design where change in error specifically due to change
in speed could be measured. We know that when the direction
of printing changes, printing speed plays an important role in
maintaining the accuracy of printing. Hence, we selected the de-
sign with square holes and measured printing error at the corners
of the square holes where the direction of printing changes. We
used printer Prusa i3 MK3S and printed two prints (al & a2) at
a lower speed and two at a higher speed (bl & b2). We first
find the significance threshold of the printer at lower speed by
performing KS test between the error distributions generated from
prints al & a2. Later, prints al & a2 together contribute to the
reference error distribution of the printer at lower speed and we
perform cross test between the reference error distribution and
error distributions of the prints printed at a higher speed (b1l &
b2).

7.6. Results

7.6.1. Experiment 1

In this experiment, coordinate error distributions for prints printed
on Creality Ender 3 have an elliptical shape (Fig. 17). These error
distributions are identical to the distributions with their mean at the
origin and non zero co-variance. Orientation of the error distributions
of these four prints roughly tell us about the possibility that they are
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(a) Uneven edges of
the holes in the
image of the print

(b) Multiple corners
detected in a hole

(c) Corners closest
to the ideal corners
in the CAD Image

Fig. 16. As a combined effect of printing, imaging and pre-processing, corners of square
holes detected in the image of printed part lie on one of the edges incident on the
actual corners in the CAD image.

all printed with the same printer configuration. On the other hand,
coordinate error distributions of prints printed on LulzBot Taz 6 have
circular shape (Fig. 17). These distributions can be related to bi-variate
normal distributions with their mean at the origin and co-variance
equal to zero. Thus, this experimental case resembles to the simulated
case where we had one elliptical and one circular reference and test
distribution.

We will consider the Creality Ender 3 as Printer A and the LulzBot
Taz 6 as printer B. Before transformation we first find the significance
threshold for printer A as 4.14 x 107% and printer B as 0.0104. With
these values as reference, we perform the cross tests. We get a p value
of 10713 for the cross test between reference error distribution A and
test error distribution B which is lower than significance threshold of
A. For the other cross test between reference error distribution B and
test error distribution A we get p = 10~'2. This value is also lower than
the significance threshold of printer B. Hence, we clearly get two true
negative results before transformation indicating that test print A is not
printed on printer B and test print B is not printed on printer A. From
these results, we can tell that authentication for this experimental case
is possible without topological transformation.

After topological transformation, we get a significance threshold of
0.0029 for printer A and 0.01 for printer B. On performing cross test
between reference distribution A and test distribution B we get p =
10712, Similarly, cross test between reference distribution B and test
distribution A also results in p = 1012, p values resulting from both
the cross tests are lower than their corresponding significance thresh-
olds. Hence, we get two true negative results after transformation too.
We can therefore say that, for this experimental case, authentication
is possible both before and after topological transformation. Hence,
if we have two printer configurations with significant difference in
the mean location of their reference error distributions (significantly
different bias), we can statistically compare reference and test error
distributions without performing topological transformation on them
for authentication.

7.6.2. Experiment 2

Error distributions generated in this experiment tells us that by
reducing the speed of printing in a cheaper printer (Creality Ender 3),
it is possible to minimize the difference between error distributions
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Fig. 17. In our experiments, we used a combination of five printer configurations to print parts with either circular or square holes, parts with circular holes generated elliptical
error distributions whereas parts with square holes resulted in pyramid-shaped error distribution.

for prints printed by a cheaper printer and the prints printed by an
expensive printer at a higher speed. Here, the significance threshold
of printer (LulzBot TAZ 6) is 0.0104 before transformation and 0.01
after transformation. We then compare each of the two test error
distributions from prints printed on Creality Ender 3 with the reference
error distribution of LulzBot TAZ 6. Before transformation, cross test
results for the two prints are p = 10712 and p = 10710 respectively.
These two values are lower than the significance threshold value before
transformation. Now after performing topological transformation, we
again perform cross tests between the two test distributions and the
reference distribution and we get p = 0.1733 and p = 4.61 x 10~% for
the two test prints. We notice that one of the two cross tests give us a
p value that is greater than the significance threshold of the reference
printer configuration and thus, we get one false positive result after
transformation. Hence, in this case where the error distributions of two
printer configurations vary only slightly in terms of precision and bias,
it is possible to authenticate parts before topological transformation but
not possible after.

7.6.3. Experiment 3

In the third experiment, we get a significance threshold of 0.0051
for the prints printed at 30 mm/s on the printer before transformation.
As soon as we get this value, we test the two prints printed at higher
speed (bl & b2) individually with the reference error distribution
generated from prints printed at lower speed. When we perform a KS
test between print bl test error distribution and the reference error
distribution, we get a p value of 0.4277. This value is higher than the
significance threshold for the printer configuration in consideration.
For the KS test between print b2 test error distribution and the reference
error distribution, we get a p value of 0.1671. This test also gives us
higher p value than the significance threshold. Thus, we get two false
positive results as they falsely indicate that prints bl and b2 are printed
with the same printer configuration (speed) as that of prints al and
a2. We can say that in this case authentication is not possible before
topological transformation.

After topological transformation, we get a significance threshold of
0.9748 for prints printed at lower speed (al & a2). The first cross test
is performed between print b1 test distribution and the reference distri-
bution. We get p = 0.0946 for this test. Similarly, we perform a cross
test between print b2 test distribution and the reference distribution.
This test gives a p value of 0.00013. Both the cross tests tell us that the
prints bl and b2 are not printed with the same printer configuration
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(same speed) as prints al and a2. Hence, we get two true negative
results and a perfect authentication case after transformation. Thus,
in this case of identifying parts with square holes that have different
error distributions due to being printed at a different speed, topological
transformation is necessary for authentication as authentication fails
before transformation.

8. Discussion
8.1. Part design

In terms of part design, currently we are using centers of circular
holes and corners of square holes for estimating error. We have already
noticed in our experiments that both the geometry of the hole and
the features used for error measurement affect the nature of error
distributions and eventually, authentication. In future, an interesting
problem is to study the effect of different geometric figures in more
detail by selecting figures like triangles, pentagons or hexagons. Exper-
imenting with different features such as centroid, edges or midpoints
of edges will give us an understanding on how the estimation of error
is affected by the features at which it is calculated. It is also possible
to arrange geometric figures in various patterns such as in a triangular
or hexagonal grid. Different arrangement of features for the same part
will give different error distributions thus, giving us a more accurate
representation of the precision and bias of printers.

In our current implementation, we demonstrated SplitCode with 2D
features such as circle centers and corners. An exciting avenue for
research is to extend these ideas to 3D shapes directly. For instance,
instead of computing error distributions from planar features that are
always on the top surface of a token part, one can measure deviations
along straight and curved edges that are spatially distributed on a part.
For this, it would also be important to compute the topological trans-
formation in 3D space. In this scenario, the split edge would essentially
become a split discrete surface (composed of multiple planar faces). A
statistical representation of this, in itself, is a challenging theoretical
and computational issue that requires a deeper investigation.

8.2. SplitCode algorithm
There is great scope of exploration within the algorithm of SplitCode.

Our algorithm is based on a simple principle of topology change in uni-
form quad grid structures. Changing this quad grid to other nonuniform
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Voronoi grid structure will generate different topologically transformed
error distributions and provide different amount of exaggeration be-
tween two error distributions. In order to increase the sensitivity of
topological transformation, arranging Voronoi sites in a circle is worth
trying. Our method assumes that imprecise tool movement is the only
cause of error in manufactured parts. But in reality, even this error
could be affected by factors like temperature of the surroundings,
temperature of the machine bed and raw material quality. In order
to properly measure error only due to inexact movement of the tool,
we could use higher dimensional Voronoi sites like straight lines or
curves. These variations in the SplitCode algorithm will provide an
understanding of which factors affect topological transformation in a
positive sense to achieve meaningful exaggeration between two error
distributions.

8.3. Statistical variations

Once exaggeration between two error distributions is achieved, the
tests used for authentication also affect the performance of authenti-
cation. In our work, we use statistical tests that allow use of only two
features of the split edge. Instead of considering probability of one split
edge to check if the reference and test error distributions belong to the
same distribution, using joint probability of a grid of split edges can
prove to be a more descriptive representation of an error distribution
and hence, improve the accuracy of authentication. Use of multiple
split edges and multiple features can be made possible by replacing
statistical tests with machine learning algorithms. Another way to get
more reliable authentication is to consider location dependent error for
a given part. Because of the hardware imperfections, machine error
can vary from one location to the other. Experimenting with location
dependent error will offer a way to differentiate between machines that
have similar overall error distribution but different error distributions
when compared location wise.

8.4. Methods for measuring deviations

Since the process of error measurement in manufactured parts start
with capturing images of the part and processing them, these processes
greatly influence the measured error. As seen in our experiments, image
processing and feature detection methods can even change the shape of
the error distribution. Hence, it is important to correctly detect the fea-
tures at which error is estimated. In future, use of better post processing
methods for RGB images will facilitate accurate detection of features.
While taking images, surrounding lights and shadows tend to sway the
measurement of error. Implementing different imaging methods like
3D scans or micro scan can help in eliminating these issues. Finally,
utilizing non imaging techniques like acoustic, vibrations or optics for
detecting features and errors is also another way to ensure that the error
measured is solely caused due to machining.

An important note here is that error distributions may or may
not change with different manufacturing processes. Depending on the
shape of error distribution we can modify the SplitCode algorithm, iden-
tify the features that offer maximum exaggeration of error, use suitable
imaging and post processing methods, and select proper statistical or
machine learning tests for authentication. We should understand here
that the overall concept and technique of authentication remains same
for all machining processes with some necessary modifications.

8.5. A note on computational complexity

In a real-world setting, the SplitCode procedure would involve two
components, namely, pre-computation of reference distribution and the
actual authentication test. Therefore, the main factor that will dictate
the time taken for our procedure would be during authentication,
which would involve: (1) imaging (which is semi-manual), (2) image
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registration, (3) coordinate error computation using feature detec-
tion, (4) topological transformation using Voronoi edge split, and (5)
Kolmogorov-Smirnov (KS) test for authentication. Image registration
and feature detection methods are now quite standard [55] and can be
done for very large image sizes within fractions of a second, especially
with GPU acceleration [56]. As for the topological transformation,
we note that the error exaggeration based on Voronoi decomposition
essentially samples exactly 4 points for each computation. Given that
the sweep-line algorithm for 2D Voronoi is O(k log(k)) [57], it is
constant in our case since k = 4. Therefore, for a sample of » points, the
time complexity for error exaggeration is simply O(n). Finally, the com-
plexity of the Kolmogorov-Smirnov for bi-variate (two-dimensional)
data is reported to be O(n?) [58,59].

9. Conclusion

We presented a technique to exaggerate differences between error
distributions of two machine configurations based on a combination
of Voronoi Tessellation with statistical analysis. Our method enables
characterization of machine configurations by characterizing their bias
and precision and thereby enables authentication of parts manufactured
with them. In contrast to machine learning approaches, our method is
principled (i.e. based on fundamental geometric reasoning) and does
not require any parameter tuning, and formulates the authentication
task in terms of a single confidence value (p— value).

Experiments showed that when the problem is to identify or authen-
ticate a part manufactured with a secondary manufacturing configu-
ration that has a different bias than the part manufactured with the
original manufacturing configuration, authentication is possible after
application of SplitCode. However, when there is significant difference
in the bias of two configurations, authentication could be achieved
even without applying SplitCode. In another scenario wherein there is
minor difference between the bias of two manufacturing configurations,
authentication is possible before applying SplitCode, but it fails after
transformation. On the other hand, in cases where the problem is
to identify a part produced with a manufacturing configuration that
varies in precision, authentication is possible both before and after
application of SplitCode if the difference between the two precision
levels is significant. When the difference between two precision levels
is less, depending on the geometry of features used, authentication is
not possible before but is possible after applying SplitCode.

Although this technique has been experimentally validated only for
3D printed parts in our work, it is applicable to any process where
some form of error distribution can be obtained either experimentally
or through modeling. Moreover, the technique could be further used
to infuse encoded information in the form of synthetic machine noise
and other means. Given the potential for extension of this technique,
we believe that this work shows initial steps toward a rich research
direction in the domain of manufacturing security and authentication.
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