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Engineering quasi-steady-state correlations in uncorrelated thermal states using stochastic driving
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Nonequilibrium quantum dynamics can give rise to the emergence of novel steady states. We propose a scheme
for driving an initially uncorrelated thermal state to generate customized correlation functions by determining
and reverse engineering the steady-state two-point functions for a class of Markov processes. We also extend the
formalism to the calculation of four-point functions. We then apply our method to generating power-law
correlated fermionic Green’s functions. Furthermore, we find that the power-law patterns emerge at much
shorter times than the convergence to the steady state, at which point the disorder in the two-point correlations
disappears. On the other hand, the density-density correlations exhibit steady-state disorder while following a
power-law trend line. These ideal steady states appear as intermediate-time quasi-steady states in the presence of

perturbations.
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I. INTRODUCTION

There has been significant progress in driving nonequi-
librium quantum matter to prepare desired quantum states,
particularly in the context of quantum simulations [1,2].
While the objective is often creating states with equilib-
rium counterparts, such as the ground state of interacting
Hamiltonians [3,4], it has been realized that quantum driving
may give rise to the emergence of states without equilib-
rium counterparts. Floquet engineering, i.e., controlling the
evolution by periodic driving, has been a fertile ground for
generating such states [5-7]. Furthermore, dissipation engi-
neering has been similarly effective for open systems [8—13].

In this paper, we focus on stochastic drives [14—-18] corre-
sponding to pure dephasing for noninteracting fermions [19],
with formal similarities to open systems [20—23]. We propose a
scheme for creating almost arbitrary two-point correla-tion
functions starting from uncorrelated thermal states. Our
method utilizes a single temporally uncorrelated noise source
coupled to a fixed drive Hamiltonian, resulting in spatially
correlated noise. The Lindblad master equation governing the
dynamics only contains one double commutator, analogous to a
fully dissipative open system.

We show that, with this scheme, we can engineer a broad
class of custom-ordered equal-time two-point Green’s func-
tions (also known as the single-particle density matrix [24]).
Long-range couplings [25-27] are necessary for creating
long-range power-law correlations in the shortest possible
time for a drive Hamiltonian with a fixed norm (see Ref. [28]
for general results on limitations of creating critical correla-
tions in open systems). As two-point correlations do not fully
characterize a quantum system’s many-body wave function,
we also calculate the long-time limit of the four-point density-
density correlation function to further investigate the nature of
the steady states. We find that while the steady-state two-point
function decays as a clean power law, the density-density
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correlator remains highly disordered but follows a power-law
trend line with a different exponent.

Under ideal conditions, our pure dephasing dynamics al-
low the system to escape the generic fate of a noise-driven
quantum state; namely, a featureless infinite-temperature fixed
point originating from a noise-induced heating rate that
constantly deposits energy into the system [17,29,30]. This
scheme relies on the predominance of a single noise source,
engineered using high-frequency pulse control. To achieve
pure dephasing, we need to eliminate other noise sources or
nonstochastic contributions to the Hamiltonian. In practice,
however, even if we engineer our spatially correlated noise to
have the largest energy scale, perturbations will ultimately
force the system to flow to the infinite-temperature fixed point.
However, for infinitesimally small perturbations (compared
with the energy scale of the engineered noise, which can be
made as large as possible within the experimental constraints),
the timescales associated with the engineered noise and the
perturbations separate. Thus, the steady states predicted in this
paper for the ideal case are expected to emerge as slightly per-
turbed quasi-steady states at intermediate timescales before
the system heats up to infinite temperature at much longer
evolution times.

A noise term dominating the dynamics can only be gen-
erated in a controllable synthetic platform, with a strong
random signal driving the system and naturally occurring
noise sources reduced as much as possible. Two experimental
platforms are potential candidates for our proposed corre-
lation engineering method: cold fermionic atoms in optical
lattices and digitized quantum processors with pulse level con-
trol. For a short-range drive Hamiltonian, fermionic atoms are
the most convenient but creating direct long-range couplings
is challenging with cold atoms. However, there has been re-
cent progress in simulating long-range hopping with temporal
driving [31-33]. On the other hand, general-purpose digitized
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devices can incorporate nonlocal couplings (either directly
designed into the hardware or by using swap gates). Al-
though qubits in these devices are not fermionic, the fermionic
exchange statistics can be implemented through Jordan-
Wigner or Braviy-Kitaev mappings [34-38].

The outline of this paper is as follows. In Sec. II, we
extend the results of Ref. [30] on the steady-state two-point
functions to steady-state four-point functions under stochastic
dephasing dynamics. In Sec. III, we present our method for
reverse engineering the drive to provide the desired matrix of
fermionic equal-time Green’s functions. In Sec. IV, we
apply our method to the case of power-law correlated Green’s
functions. In Sec. V, we examine the steady-state density-
density correlation functions for the drive used in engineering
the Green’s function. Finally, we present our conclusions in
Sec. VI.

II. STEADY-STATE TWO- AND FOUR-POINT FUNCTIONS
FOR FULLY STOCHASTIC QUADRATIC DRIVING

Here we present the theoretical framework for stochastic
dynamics capable of generating customized noise-averaged
correlations in fermionic systems, initially in an uncorrelated
thermal state. For a system of N spinless fermions, where the
creation/annihilation operators satisfy the anticommutation
relation {cj, cj} = 06ij, consider a quadratic Hamiltonian that
stochastically fluctuates around zero. We write H(¢) as

X
H(t)= &)W, V= Jic'e;, t>0. (1)
ij

Here, J is an N x N Hermitian matrix, and £(¢) is Gaussian
white noise with £(¢) = 0 and £()E(t°) = w?6(¢ - 1°). The
overline symbol represents averaging over the realizations of
noise. The noise strength w sets the equilibration timescale
associated with this noise term, but does not affect the nature
of the steady state in the absence of perturbations. Although
the couplings J;; are general, fixing the geometry is necessary
for engineering correlations decaying as a power law of the
distance between sites. We assume the sites as arranged on a
one-dimensional line.

The evolution by H(¢) describes an isolated system with
a vanishing average Hamiltonian driven by temporally un-
correlated and spatially correlated noise, with J encoding
the spatial correlations. The system will reach a steady-state
density matrix in the long-time limit # - o, given by

plt > )= lim e 2HOp(0)e oHENT],  (2)

where p(0) is the initial density matrix. Since the
Hamiltonians at different times commute, time ordering is not
necessary. We can view the dynamics as a Markov process
described by a stochastic Schrodinger equation. The long-
time limit of the dynamics can be alternatively viewed as a
time average over random evolution times after a quench to
Hamiltonian V', as the white noise is simply creating a random
walk for the total evolution time with V.

The equation of motion for the density matrix is then a
Lindblad master equation 0;0(¢) = - %wz[[p, V1, V1. Similar
to Ref. [30], we write a Heisenberg-picture analog of the mas-

ter equation for a noise-averaged Heisenberg operator O(¢) as
9:0(1) = = 5W[[0@), V], V]. 3)

Our analysis is focused on the unperturbed evolution above.
However, in general we can have both stochastic and non-
stochastic perturbations to H (¢), WhiC}}J give rise to d,0(¢) =

=2 [0(), VL, V1+ 4lH, O]+ 500), Vil Vi,

where Hi is nonstochastic and ?; are the strengths of other
noise terms. These perturbations introduce a longer timescale
than the timescale associated with w, in which the system
generically flows to the infinite-temperature fixed point with
a density matrix proportional to the identity. In the remainder
of this paper, we assume our timescales are shorter than
the time needed to reach infinite temperature, neglect the
perturbations, and analyze the problem using the ideal master
equation (3). We also set w to 1, which amounts to a simple
rescaling of evolution time.

An important observation is that under evolution with
Eq. (3), generic quadratic (quartic) operators remain quadratic
(quartic). In contrast, the evolution can spread operators
into nontrivial linear combinations of other quadratic (quar-
tic) operators. The above observation follows from the fact
that in the commutator of two-quadratic forms, the quartic
t%rms cancel outpand we are left with another quadratic form [

go Aascles,  Bijcle= " (4, Blasclcs [39].

We now consider a gene){al quadratic operator

o) = Ous(t)ccs, )
a8

where O is an N x N matrix. In terms of the N x N matrix J
[see Eq. (1)], we can then write the solution of the master
equation (3) )e(ls [30]

Ous(t) = Uao UAZ e~ (1/2)(Ds-D1)*t U;,]UV/\OFIV 0), (5)
oAny

where column 7 of the unitary matrix U is the eigenvector of
J with eigenvalue D;. In other words,

J = U diag(Dy, Da,...,Dy)U ™. (6)

We note that although all derivations in the paper are for
white noise, the nature of the long-time limit also applies to a
wider class of noise spectra with finite zero-frequency spectral
power, e.g., the Ornstein-Uhlenbeck process effectively only
rescales the evolution time compared to white noise [17].
Assuming J has a nondegenerate spectrum, we can then
write the long-time limit of the noise-averaged Heisenberg
operator fort - oo asA

X

Oag(>°) = UarUpbUph Upa Ogy(0). ()

ny A

We now extend this formalism to quartic operators. Of
particular interest are density-density correlation functions.
To find the steady-state correlation functions, again we use
the Heisenberg-picture approach. Due to the cancellation of
the sextic terms in the commutator of a quartic form and a
quadratic from V' = =, J,-_/c:fcj, we find

X L s
Raﬁvé(f)CJCBCJC& Vo= Sasys(t)cqcac,cs, (8)
aBys aByb
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where

sa3y6 =
J

(Rasy jJjs = Rasjstyj+ Rajystie = RjsysJaj). )

Therefore, all quartic operators of the form above retain this structure when evolving with the master equation (3). By using
Eq. (9) twice, we can write the equation of motion for the tensor R as

— _ VZw
oR aByé — 2 Q;m,,s
xXyzw

where

Xyzw_
Qa6y6 -

- JanyG(syzath + JaxéyBJyzdwti -

ZWX

wxy wxyz
6y6a y5a6 + Qéagy Xyzws (10)

Jax8y68y 2Jws + J2.6,66y:6u5. (11)

We now use the diagonalization of J [Eq. (6)] to find an exact solution to the equation above. We write the Kronecker deltas

as elements of U TU to obtain

Rasys(t) =

xyzw,abcd

UaaUypUy e Usae™ 172/ PotPPi=00% Y Fy T LU fRiyen (0). (12)

In the absence of any accidental vanishing of the exponent, we can calculate the long-time limit of the R tensor by noting that we
must have either b= aand d = cor b= c and d = a (which double counts the case with a = b= ¢ = d) [40,41]. Thus we find

X X . P
Ra3V5(°°) = UaaUchchTjax(UyaUwcucéruaé

xXyzw ac

For the density-density correlator nin; = c; cic
i
nyzw(o) = 6xi5yi(szj5Wj-

However, we need to work with the more general tensors
above as they appear in the Heisenberg-picture operator.

;Cj» We have

III. ENGINEERING STEADY-STATE GREEN’S
FUNCTIONS IN UNCORRELATED THERMAL STATES

An important class of correlation functions, i.e., the equal-
time single-particle Green’s functions, are given by the
expectation values

Gij(t) = hdeji= t[p(t)cie;l, (14)
where p(¢) is the density matrix of the system at time ¢. We
can collect these correlators into an N x N Hermitian matrix
G, with elements Gj; = G,

Let us consider a system initially prepared in a trivial
thermal state at inverse temperature 8 with the density matrix

X

Wit i, (15)
with the partition function Z = tr[exp(-68Ho)]. As Ho is di-
agonal in the occupation-number basis, the different sites are

uncorrelated in the thermal state above and we can write the
initial Green’s function as

Gij(0) = f(u;)bij =

p(0)= exp (-6Ho)/Z, Ho=

s 6, 17 (16)
where f represents the Fermi-Dirac function.

Suppose we drive this system by a stochastic quadratic
Hamiltonian as in Eq. (1). Can we engineer custom-ordered
Green’s functions in the steady state of the system that

+ U}’c Uwa Uagucﬁr) -

X
—
UaaUyaU,, 0, UyaUwaU, U, § "Reyzw(0).
a

(13)

(

emerges in the long-time limit? More precisely, suppose our
goal is choosing u; and J;; such that

lim t[U(npoU*(t)c]e1= Gy, (17)

for given (perhaps even arbitrary) Hermitian correlation
matrix G and initial inverse temperature 8.

For the cjc_,— operator, we have Opy, (0) = 6,6, ;, which
leads to the following matrix elements when inserted in

Eq. (5):

X
Oaﬁ(t) = Uq
oA

o U;Ee_(l/z)(Da—D/\)ztUjinA. (18)

Since we are engineering the matrix J, we can require it to
have a nondegenerate spectrum. Thus, analogously to Eq. (7),
the Heisenberg-picture matrix corresponding to the long-time
limit of the cch '/ operator is given by

X
UaaU, U, U;a. (19)
A

Ous (oo) =

The above expressions lead to the relationships below
between the time-dependent and steady-state correlation
functions and the initial correlation functions through the
eigenvectors of J:

X
Gij(1) = UjaU Gag(0)e™ D@20 Yoo T, (20)
aBAo A I
X
Gij = Gij(e=) = Uja
A aB

UybGas(0)Uar U,l.  (21)
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The above equation implies that GT = U A U T, where A
is a diagonal matrix with

X
Ao = 80 U, 4'Gas (0)Uar. (22)
aB

Two conditions follow immediately: (i) G’ and J must have
the same eigenvectors since the same unitary operator U diag-
onalizes both of them, and (ii) the eigenvalues go of G” are the
diagonal elements of A and related to the initial correlation
functions as follows:

X
8 = |Uao |2f(/4a) = Woaf(Ha), (23)

o

where the matrix W of transition probabilities is defined
through

Woa = |Uao |~ (24)

We have inserted Eq. (16) into Eq. (22) to obtain the condition
(23). The matrix W is a doubly stochastic (it has non-negative
elements and the sum of every row and cyery colulipn is equal
to unity), which implies the sum rule IE-CI 1 (Ua).
Given a matrix G of desired steady-state correlators, we can
find go and U by diagonalizing G. The matrix W can then be
explicitly constructed. For a given initial inverse temperature

B, we can then write the chemical potentials in the initial
Hamiltonian as ~

A !
wi= tmoe L 1, (25)
6 ngg 8o

The columns of t]ae matrix U = (|gii, |g2i...) are eigen-
vectors |gqi of G = . & | gaihga |. The matrix J can then be
any linear combination

X
J= dalg[xlhgql (26)

a

as long as the eigenvalues {d.} are nondegenerate.

It may appear that the Hermitian matrix G can be com-
pletely arbitrary, and we can create any correlation functions
we choose. Hermiticity is not the only requirement of a phys-
ical matrix of Green’s functions, however. For example, all
diagonal elements are the occupation number of a site and
must be between 0 and 1, so creating states with nonphysical
occupation numbers should be impossible. Furthermore, the
method fails for many physically allowed Green’s functions,
as discussed below.

First, the matrix W must be invertible, which is not guar-
anteed. Indeed we have found that ' tends to be singular for
uniform systems, and some disorder in the occupation num-
bers is necessary for its invertibility. Second, the Fermi-Dirac
functions are bounded as 0 6 f(uq) 6 1, which is equivalent to
the condition that the chemical potentials written in Eq. (25) are
real numbers. Therefore, the eigenvalues and eigenvectors of G
must be consistent with the following constraint:

X
06 W;,'go61 27
o
for all j. The constraint of Eq. (27) is not too restrictive if we
are only interested in a pattern of correlations between differ-
ent sites (off-diagonal elements of G) without simultaneously

specifying on-site occupation numbers (diagonal elements of
G). This observation is because we can change the eigenval-
ues of G by adding a multiple of the identity matrix to G,
which only changes the occupation numbers, or multiplying
G by a constant, which only rescales the Green’s functions,
without changing their overall pattern. More specifically, sup-
pose for some matrix G, a = min(" , Wy'gs) < 0 and b =

max(P s Wj’lgg) > 1. Transforming G - ﬁ(G - al)bya
shift to the diagonal elements and a rescaling guarantees the
constraint (27) is satisfied. Here, / is the identity matrix.
While the initial chemical potentials u; are uniquely de-
termined by G and 8 as shown in Eq. (25), we have many
choices for J;;. Essentially, the only constraint on J is through
its eigenvectors, and we can choose the eigenvalues at will as
long as they are nondegenerate. The absence of degeneracy is
essential for our method. For example, in the extreme case
where all eigenvalues d, are degenerate, the matrix J becomes
proportional to the identity matrix, which will not change the
initial Green’s functions. The hopping matrix J is also entirely
local in the limit of all degenerate eigenvalues. There is indeed
competition between locality and equilibration time. To speed
up the emergence of the steady state, we spread out these
eigenvalues and make the gaps dy — do as large as possible.
The timescale for the equilibration goes as

|
9% in(da - do) 2’

according to Eq. (5). Of course, we can arbitrarily shorten the
timescale if we allow the energy scale of the Hamiltonian to
run to infinity. To find an optimal J with fixed energy scale,
we set the spectral norm of J, i.e., the square root of the
largest eigenvalue of the matrix J'J to unity, ||J]| = 1, which
implies -1 6 dy 6 1. To minimize foq, we can make all the
gaps identical by choosing

(28)

de= -1+ 2N— G
While using all permutations of the above values of dy give
the same equilibration time, we have found that the smoothest
site dependence in matrix J corresponds to the case where
eigenvectors of G are ordered according to their eigenvalues,
1.e., 8a 6 Qa+l1.

a=1,...,N. (29)

IV. ENGINEERING POWER-LAW
TWO-POINT FUNCTIONS

We now consider an example of creating off-diagonal
Green’s functions
c
Gij o T (30)
for an arbitrary exponent v. An example of a target G;; for i
= j is shown in Fig. 1(a) for v = 1.5. We found that requir-
ing a uniform average density gives a singular W matrix. Thus,
to make the matrix W invertible, we choose random values
drawn from a uniform distribution for the diagonal elements
Gii (note that Gj; is the expectation value of the occupation
number of fermionic mode and must be between 0 and 1 for
any physical system). Our results on the structure of the
Hamiltonian J, the emergence of the steady-state correlations
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(a) G,'j, i+ ]

FIG. 1. (a) An example of the target Green’s function G with
power-law off-diagonal elements for a system of N = 50 sites, with ¢
= 0.02and v = 1.5 [see Eq. (30)]. Only the off-diagonal elements are
illustrated in panel (a). (b) The diagonal disordered elements of G,
i.e.,, the target steady-state occupation numbers, and the corre-
sponding initial occupation numbers f(u;) form Eq. (25).

and the behavior of the four-point functions are not sensitive to
the realization of diagonal disorder. To apply our method, we
find the eigenvalues and eigenvector of G, which in turn yield
the initial chemical potentials according to Eq. (25). As long as
the initial Fermi-Dirac functions f(u;), which only depend on
the eigenvalues and eigenvectors of G, are between 0 and 1, we
can find real chemical potential for any 8. As an example, we
show in Fig. 1(b) the f (u;) that yield the Green’s functions
shown in Fig. 1, together with the corresponding Gi;. The
initial occupation numbers f (u;) are close to the target
occupation numbers Gj; but not identical. The smallest
difference for i = 47 is 0.13%, while the largest difference
for i = 28 is 53%. We note that while the initial occupation
numbers are redistributed in the ﬁnal stea(%y state, the total
charge is conserved, and we have P G = f ().

In Fig. 2, we show the elements of the J maltrix of Eq. (26)
obtained by eigenvalues (29). We find that the elements of J
exhibit similar critical correlations as the correlations we
seek to create. We examined many different permutations of
the eigenvalues. While the J can become highly disordered, it
appears that the correlation structure does not change from
critical as long as we keep the eigenvalues separated for opti-
mal equilibration.

It is illuminating to examine the time dependence of the
two-point function as it approaches the engineered critical cor-
relations. As shown in Fig. 3, they start from zero and quickly
acquire a noisy pattern aligned with the overall power-law
dependence. The evolution continuously shifts the correlators
up in a log-log plot while reducing the noise until it converges
to the target disorder-free power law. The exponent of the
critical correlation emerges much faster than the quantitative
emergence of those correlation functions.

10-5 ; — " ; — T J
107 0 102

FIG. 2. (a) The elements of the drive Hamiltonian J. The largest
elements are local in the vicinity of the diagonal, but J exhibits
nonlocal power-law decay in off-diagonal elements. (b) The elements
of J decay with the same v exponent (in this example v = 1.5 as the
two-point function).

V. DENSITY-DENSITY CORRELATIONS
IN THE STEADY STATE

To understand the nature of the steady state we have gener-
ated, we compute the density-density correlation functions, as
the two-point function does not fully characterize the steady
state. A widely studied class of correlation functions is the
connected density-density correlator

Rij(t) = hinji- hiihagi.

31

We treat the two terms in the above expression separately.
To find h#;i;i, we use the formalism of Sec. II to obtain the
long-time limit of the rank-4 tensor R for the density-density
operator. We can then obtain the time dependence as well as
the long-time limit of the h#;fi;i correlator in terms of the
initial four-point-function expectation values he'cge esi(oy at ¢
= 0, which using the Wick’s theorem is given by

hcichlcdi(O) =66y bas[1- f(ue)]f(Ua)

+ 6agbys/(Ha) f(1y)- (32)
100y 7
10
—t =
et = 1072
z - 1= 107!
T 40 e =10 -
=) et R
7,9 o=
= 10"
——r= I
10»10 ' L L L MR | . L L L L Lo
10° 10" 102

FIG. 3. The time-dependent approach of the two-point function
to the engineered steady-state values.
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The long-time limit for ¢+ - oo follows from Eq. (13) as
shown below:

X X

hiiftji(e) = UaaUycU,;0,;(UiaU;eU U6
aBys  ac
+UicUjaU,fUY)
#
X TR T
- UaaUyaU,; U, UiaUjaU JU T
a

X hc;fcec;ﬁcai(oy (33)
It is convenient to define column vectors F =
(f(ur), f(u2), .., f(un)), = (- fQu), 1~
fua), ..., 1= f(uw)), and matrlces Al =

U dlag(U,lUl ,U,2U2],.. U,NUN Y T, where f(ua)
is defined in Eq (16). Insertmg Eq. (32) into the above
expression, upon some matrix algebra, leads to

XOf
hiift ji(ee) =

ot6

11
Allg Al + AL A FoKs

a

+ A’;aAﬁ’B + Al A FaFg - We,WeaFoWs,; ,
(34)

where the W matrices are defined in Eq. (24). The subtrac-
tion of the background h#;ihai;i is subtle. It might appear
that each h#;i in the long-time limit is simply a diagonal
element of G. However, that is only correct if we first take
the noise average of each expectation value of density and
multiply the noise-averaged results. It is more natural to take
the quantum averages of density for various realizations of
noise first, multiply them, and then take the noise average,
keeping the noise averaging consistently in the last step. The
long-time limit can be obtained by time averaging the product
of expectation values upon a quantum quench to Hamiltonian
V. In this approach, the background term yields two terms that
are identical to terms in hanji j'(oo) We find

X
haiha ji=

A'(;D(A§16+A/’ A Fa

aB o
where the matrix F = U Tdiag(F, ..., Fy)U . Using these

expressions we calculated the long-time limit of R;; for the
same drive that produces power-law two-point functions of

W,aWia(Faa)’,

10-10 . L . L]
10° j 107 102

FIG. 4. The density-density correlation functions in the steady
state with a j~ !> Green’s function. Despite strong disorder, the
correlation decays with a trend line of j =3

Eq. (30). As shown in Fig. 4, while the long-time limit of G
has no disorder in the off-diagonal terms, the density-density
correlation functions are highly disordered. The minima in
|R;;| decay as |j- i|™ for v= 1.5. It seems that the steady
states emerging upon engineering clean x -V two-point
functions have highly disordered density-density four-point
functions with a trend line scaling as x™2¥.

VI. CONCLUSIONS

In this paper, we extended the Heisenberg-picture formal-
ism of stochastic driving to the case of fermionic four-point
functions. We then proposed a scheme of reverse engineering
the drive to generate customized fermionic two-point func-
tions from a completely uncorrelated initial thermal state.
Finally, we examined the case of generating critical correla-
tions and found that the steady state exhibits clean engineered
two-point functions and highly disordered density-density
correlation functions. Such steady states with custom-ordered
correlations provide novel examples of drive engineering.
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