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ABSTRACT. We consider the long time behavior of solutions to a nonlocal
reaction diffusion equation that arises in the study of directed polymers in
a random environment. The model is characterized by convolution with a
kernel R and an L? inner product. In one spatial dimension, we extend a
previous result of the authors [arXiv:2002.02799], where only the case R = ¢
was considered; in particular, we show that solutions spread according to a 2/3
power law consistent with the KPZ scaling conjectured for directed polymers.
In the special case when R = §, we find the exact profile of the solution in
the rescaled coordinates. We also consider the behavior in higher dimensions.
When the dimension is three or larger, we show that the long-time behavior
is the same as the heat equation in the sense that the solution converges to
a standard Gaussian. In contrast, when the dimension is two, we construct a
non-Gaussian self-similar solution.

1. INTRODUCTION

In this paper, we investigate the following collection of models:

09 =309+9((R*g,9) - Rxg) in (0,00) xRY,

1.1
(1.1) g=4go on {O}de,

where R * g refers to convolution in the spatial variables only and the brackets (-, -)
denote the L? inner product in the spatial variables. We always assume that

(1.2) f go(@)dz=1  and  0<goeCu(RY),

which implies that, for all ¢ > 0,

(1.3) fg(t,x)dx: 1;

thus, (1.1) describes the evolution of a probability density. Here, either R is the
delta distribution § or R is a continuous, nonnegative function such that [ Rdz = 1.
In the latter case, we assume that there is a continuous even function ¢ > 0 such
that

(1.4) R(z)=¢*¢(x), and f o(x)dr =1.

The connection to directed polymers. The equation arises from our study of directed
polymers in a random environment, and we discuss the model below. For a Gaussian
random field {V(¢,z) : (t,#) € R¥!} and an independent Brownian motion B =
{B; :t >0}, consider the Gibbs measure associated with the Hamiltonian Hy(B) =
[Ot V (s, Bs)ds:

pe(dx) = q(t,z) dr,

q(t,x) = Z; 'Ep[6(B; - x) exp(He(B))], Zy = Eplexp(Hy(B))].
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Here Ep is the expectation only with respect to the Brownian motion B, with the
random Gaussian field fixed. Thus, p;(dx) can be viewed as the endpoint distribution
of the Brownian motion “reweighted” by the random environment, through the factor
exp(H;(B)), which is to model the polymer path in a heterogeneous environment.
The properties of ¢(t,-), in particular how the z-variable scales with respect to
time, is a notoriously difficult problem in probability and statistical physics. It is
conjectured that, in d =1 and if V' is sufficiently short-range correlated, we should
have [ |z[Pq(t,z)dx ~ t*"/> for large t, i.e., the endpoint of the polymer path is
superdiffusive with an exponent 2/3, which falls into the KPZ universality class. So
far the conjecture is only proved for a few specific models with certain integrable
structures, and the proof is very much model-dependent. In d > 2, much less is
conjectured and known, and even the correct superdiffusive exponent is unclear. We
refer to the monograph [8] and the survey [10] for results and discussions in this
direction.

Our interest is in the averaged density Q1 (¢, z) := E[¢q(¢,z)], where E is now taken
with respect to the Gaussian field V', and the ultimate goal is to study the asymptotic
behavior of Q1 by a robust analytic approach that covers all possible correlation
structures of V. For example, in d = 1 one would like to prove a universality result
saying that [ |z[PQ1(t,x)dx ~ t?P/3 for t > 1. As Q; is the averaged density of the
endpoint of a random path, it is tempting to try to derive a PDE for its evolution,
similar to the Fokker-Planck equations associated with diffusion processes. This
motivated the study in [14]. For a large class of Gaussian fields V', which has zero
mean and is white in time and possibly colored in space, with the covariance function

E[V(t,2)V(s,y)] =0(t-s)R(z -y)*,

we find that, instead of solving a single Fokker-Planck equation, what governs the
evolution of @)y is a hierarchical system: define the n—point correlation function

Qn(tﬂ Liseeey mn) = E[H Q(t7xj):|7
j=1
then 1 solves the equation
0Qu1(t,2) = 18Q: (12) = [ Qultiz.y)R(z-y) dy

+ f Q3(t7 z,y, Z)R(y = Z) dydz.

In fact, for any n > 1, the equation of @, contains Q,+1 and Q2. The nonlocal
terms in (1.5) describe the mutual intersection of multiple polymer paths as they
wander in the random environment to maximize the collected energy, and the kernel
R corresponds to how the paths’ intersection is measured. The hierarchical PDE
system is similar to the BBGKY hierarchy in kinetic theory. Inspired by the molecular
chaos assumption there, we assume that in large time @, can be approximately
factorized: Q. (t,71,...,7,) ~1}_; Q1(t,x;), and this helps to reduce (1.5) to (1.1).
Therefore, the equation we study in this paper, can be viewed as an approximation
of the hierarchical system which describes the actual evolution of the polymer
endpoint density. While it is unclear at the moment how to justify the factorization
assumption used to link the true evolution (1.5) with the “approximate” evolution
(1.1), the results in [14] already show an intriguing connection, which we discuss in
greater detail below. Despite this simplification, we expect (1.1) to retain several
key features of the original equation (1.5), and furthering our understanding of (1.1)
may also help with the study of the hierarchy. This motivates the current study.

(1.5)

%Since R is the spatial covariance function, there exists a function ¢ so that (1.4) holds, and
the construction can be found in [14, Page 2].
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Rough description of the main results. In [14, Theorem 1.3], we examined the special
case of (1.1) in which R =§ and d = 1, which corresponds to the situation when the
Gaussian environment is also white in space. Here, we showed that the KPZ scaling,
x ~ 12/ is exhibited in the sense that, | g(t)e = O(t~#3) and, for any p > 1, the pth
moment of ¢ is bounded from above and below by t2?/3 up to a constant, i.e.,

(1.6) / |z|Pg(t, z)dx ~ t%p, for t > 1.

As a result, it follows that g ~ ¢t™2/3 for any |z| < O(t*/?) and g « ¢t~/ for any
|z > 213

Our focus in this paper is in generalizing and refining the above result in one
dimension and in investigating the behavior of g in higher dimensions. Roughly, we
establish the following properties of (1.1).

(1) When R is continuous and d = 1, we show that the KPZ-scaling, z ~ 1213,
conjectured for the full polymer model is exhibited by g. In particular, we
prove that |g(t)]e = O(t"2%) and, for any p > 0, the pth moment of g is
bounded above and below by t2?/3, as in (1.6). This extends the results of [14,
Theorem 1.3], and can be viewed as a universality result as the scaling exponent
2/3 does not depend on the detailed expression of R. As discussed below,
significant difficulties arise in generalizing the proof from the case R =4 to the
present one.

(2) When R =4 and d = 1, we establish more precise estimates on the long-time
behavior of g. Specifically, we identify the limit of t*/2g(t, zt*/%) as t - oo to
be, up to a multiplicative constant, the indicator function of an interval. In
other words, if we let X; be a random variable with the density g(t,-), with
(1.6) we have E[|X,|P] ~ t?’/3, and here we further prove that ¢~2/3X; converges
to a uniform distribution, as t — oo.

(3) When d > 2, the behavior is quite different, as expected for the directed polymers.
In all cases, the diffusive scaling = ~ t'/2 and g ~ t~%? holds. When d > 3, we
show that g, under this scaling, converges to a standard Gaussian. This is
exactly the behavior of the heat equation; in other words, the effect of the
nonlinearity is negligible. The result is consistent with the diffusive behaviors
of directed polymers in high temperatures in d > 3 [4, 16] ®. On the other hand,
when d = 2, there are solutions g of (1.1) that, in the same diffusive scaling,
do not converge to a Gaussian. Thus, d = 2 is the critical dimension for (1.1),
another feature of the polymer model.

We note that the local well-posedness (small time existence and uniqueness)
of (1.1) with initial data in, say, L'(R%) n L?(R?) is straightforward because it is a
semilinear equation where the nonlinear terms are “relatively smooth” in g. On the
other hand, the a priori estimates that we obtain in the course of this work show
that blow-up cannot occur and (unique) solutions can be extended for all time. In
other words, a proof of global well-posedness is straightforward using the estimates
we establish below. Hence, we omit it.

1.1. Main Results. We now state our results more precisely.

bThe polymer model actually depends on a parameter 8 which is the inverse temperature, and
it goes into our approximate model (1.1) only as a multiplicative constant of the nonlinear terms
(see [14, Equation (1.10)]). As it does not play a role in our analysis, we do not specify it here.
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1.1.1. Decay consistent with the conjectured scaling for directed polymers. Our first
theorem is the extension of the results in [14, Theorem 1.3] on the growth of moments
to the setting where R is continuous.

Theorem 1.1. Let d=1. Suppose that g solves (1.1) with go satisfying (1.2) and
with R satisfying (1.4) or R=4§. Then, for any p>0,

1/p
(1.7) ([ |x|pg(t,x)dx) ~ s for allt>1.
R

As a consequence, we have litminftQ/BHg(t)||<x,,t2/3|\g(t)\|§ > 0. The bounds here

depend only on supp(go)-

In the statement of the above theorem, a ~ b means C~'b < a < Cb for some
constant C' > 0. Similarly, we will use a < b if a < Cb. We collect the precise meaning
of all other notations in Section 1.4 below.

As alluded to above, the proof of (1.7) when R = § is exactly the content of [14,
Theorem 1.3]; however, the lower bound on the rescaled L* and L? norms of g are
new. These are not difficult to prove after the other moment bounds have been
established, but are stated here as these lower bounds are an essential ingredient in
the establishing the precise behavior of g (see Theorem 1.3).

The main new content of Theorem 1.1 are the moment bounds in the case where
R is continuous. The key step in proving this is the following L* bound on g.

Proposition 1.2. Under the assumptions of Theorem 1.1, for allt >0,
lg(t) oo § min{t=/2 ¢72/3Y,

While the connection between Proposition 1.2 and Theorem 1.1 is analogous to
that in the case R = §, the proof of Proposition 1.2 is significantly more difficult,
which we discuss now.

The proof in the case R = ¢ contained in [14, Theorem 1.3] relies on several exact
identities that are no longer available. In fact, the first step when R = ¢ is noticing
that (1.1) yields

%Hg(t) loo < N9l ({R * 9,9) = R 9) = [g(®) oo (lg]5 = |9 (t) |c)-

The inequality follows from the fact that Ag is nonpositive at a maximum, and the
equality follows from using that R = . By Holder’s inequality and the fact that
g(t) is a probability measure, the right hand side is clearly nonpositive. It is then a
matter of quantifying this non-positivity (cf. [14, Lemma 4.3]). Unfortunately, when
R is continuous, the above equality does not hold. In fact, it is not even clear if
g(t) | is decreasing with respect to t.

To overcome this difficulty, we may try to work, instead, with the L?-norm of
g(t,-). When multiplying (1.1) by g, and integrating by parts, we obtain
1d 1
Sala®B+5 [ 1Vl =gl3(R xg.9) - [ g*R+gda.
When R = §, the right hand side has the form |g[3 - |lg|3, which, using Hélder’s

inequality, one easily sees is nonpositive. However, when R is continuous, it is no
longer clear that the right hand side is even nonpositive. Again, it may not be.

(1.8)

Given the convolution term R * g appearing in (1.1), a better approach is to
multiply the equation by R * g and integrate by parts. Then (1.1) becomes

1d 1
Sorlo Reg)+ 5 [ Vg 9(Rxg)du=(Rxg.9) - [ g(R+g)d,
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The right hand side is once again nonpositive. The goal of the proof is to establish
a lower bound on

(1.9) %ng'V(R*g)dx+ [—(R*g7g)2+fg(R*g)2dx].

After, we then must relate (g, R * g) back to ||g]2 and ||¢]c-

The main tool in the analysis is the local-in-time Harnack inequality (see Propo-
sition 2.5) that was first established in [5]. This inequality, which quantifies how
spread out the level sets of g(¢,-) are, allows us to show that, roughly, either g is
flat, in which case the bracketed terms in (1.9) are large, or g is not flat and the
gradient term in (1.9) is large.

Interestingly, while the functional inequalities used in [14] to bound (1.9) from
below in the R = § case held for any H' function, the lower bound on (1.9) in the
case where R is continuous relies strongly on the regularizing effect of the heat
equation, seen through the local-in-time Harnack inequality. In some sense we are
showing that the key functional inequality [14, Lemma 4.3] (see also [9, Lemma 2])
is stable with respect to convolutions as long as the function is suitably regular.

The proofs of Theorem 1.1 and Proposition 1.2 are contained in Section 2.

1.2. Long time dynamics in one dimension. Restricting to the case R =9, we
investigate the behavior of g under the t2/3 scaling. In particular, Theorem 1.1
suggests that we may see non-trivial limiting behavior of t2/3g(t, xt2/3) as t - oo.
We establish that here.

In order to describe the long-time behavior, we define two important constants:

3 2/3 1
(1.10) ccrit:(i) ~1.31037...  and 0”“(?8

Notice that 20;itcerit = 1. The precise meaning of cepir and 6,44 is touched on below
and then described in detail in Section 3.1. We now state our main results.

1/3
) =.38157...

Theorem 1.3. Suppose that g solves (1.1) with initial data go satisfying (1.2) and
R =0. Suppose further that go is even and radially decreasing. Then

Jim (1)) = Jim 3] g(t) o = Ocit-
Further, for all x # £Ceyit,
tlil’g t2/3g(t, $t2/3) = ecrit ]1[*Ccrit JCerit ] (37),

where the limit holds uniformly for x away from +cepit .

Informally, Theorem 1.3 implies that, for large ¢, we may write

Ocrit —2/3
g(t,l‘) = t;;lg ﬂ[—ccr;tﬁ/?’,ccr;ttz/B] (Z‘) + O(t / )
It is clear that this is consistent with the results in Theorem 1.1.

We note that the convergence of the (rescaled) L?- and L*°-norms is almost
equivalent to the convergence of the profile. Indeed, since g is a probability density,
its L?- and L*-norms can only be equal when the Hélder’s inequality is an equality,
which corresponds to functions that are a multiplicative constant of an indicator
function. Using then the symmetry and monotonicity of g, it follows that g converges
to the indicator function of an interval up to a multiplicative constant (though
we note that this does not yield the exact constants ceiy and Ocyit). Of course, we
never have exact equality and thus, the above heuristics hinge on understanding the
“stability” of Holder’s inequality.



6 YU GU, CHRISTOPHER HENDERSON

We believe that the assumption that gy is even and decreasing is purely technical
and can be removed at the expense of a significantly more involved proof. As the
proof is already quite complicated even with these assumptions, we opt to use them.
Throughout the proof of Theorem 1.3, we indicate where and how these assumptions
are applied.

A key step in the proof of Theorem 1.3 are the following bounds, which do not
require these symmetry and monotonicity assumptions.

Proposition 1.4. Suppose that g solves (1.1) with initial data go satisfying (1.2).
Then

(i) limint £/ g(¢) |3, liminf £ g(t) oo < feris
(i6) Oer < limsup £ |g(1) 3. limsup /g (1))

The results in Proposition 1.4 show that t/3||g(t)] e and %3] g(t)||? get arbitrarily
close to B infinitely often; however, they do not rule out the possibility that
these quantities make non-trivial oscillations around 6..;;. We recall the discussion
following Theorem 1.3 that indicates the importance of the L?- and L*-norms in
understanding the profile of g.

The intuition behind the constants 6.y and ceq; comes from various rescalings
of the equation in which a non-local Fisher-KPP type equation arises. Finding and
heuristically interpreting the correct rescalings is a subtle issue and so is covered
in detail in Section 3.1. A discussion of the strategy of the proof and the major
difficulties encountered is also contained there as it is best placed in the setting of
the rescaled equations.

We note that a major difficulty in extending Theorem 1.3 to the case when R # §
is that the comparison principle no longer holds for (1.1) when R # 6.

The proofs of Proposition 1.4 and Theorem 1.3 are contained in Section 3 and
Section 4 respectively.

1.3. Long time dynamics in higher dimensions. We now discuss the behavior
in higher dimensions. Our first result is about the time decay of the moments of g,
as well as the L2- and L*-norms of ¢.

Theorem 1.5. Suppose d >2, R =0 or R satisfies (1.4), and g solves (1.1) with
initial data go satisfying (1.2). Then, for any p>0

1/p
([R|x|pg(t,az)dx) ~E

In addition, we have

[N

for allt >1.

d
2

l9()loos lg(0) 15 ~ for allt>1.

The proof of Theorem 1.5 uses classical techniques based on the Nash inequality,
which, in its original form relates the L', L2, and H' norms of a function, in order
to bound (g, R * g). In fact, we slightly extend the Nash inequality to apply to the
quantities (g, R * g) and (Vg, R * Vg) in place of the L? and H' norms, though the
proof is analogous to the usual one. To understand why these convolved macroscopic

quantities are more useful than the L? and H' norms, we refer to the discussion
around (1.8) and (1.9).
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To bootstrap the bound on (g, R * g) to one on the moments of g, we construct a
barrier function g such that, if g and g were to touch, at the touching point

_ 1, _
Btg—5A9—9(<g,R*9)—R*g)>0,

which rules out any touching points.

We now investigate the self-similar behavior of g for large times. We show that,
when d > 3, the nonlinear terms are asymptotically negligible and g has the same
Gaussian behavior as the usual heat equation. On the other hand, when d = 2, we
show that this need not be true by constructing solutions of (1.1) that do not have
a Gaussian profile in rescaled variables.

Theorem 1.6. Suppose that R =§.
(i) Ifd >3, g solves (1.1) with go satisfying 0 < go(z) < Ae”11B for some A, B >0
and all z € RY and [ godx =1, then
L
(27‘-)(1/26 _

where rqg =1 if d >3 and rq is any element of (0,1) if d = 3.
(i3) If d = 2, there exists 0 < G € C*(R?) such that, letting

1 T
t,z)=-G|—|,
o) =5 (\/E )
the following holds: G is not a Gaussian (that is, G(x) # 6_‘9”‘2/2‘72/(27T02) for

any o >0), g solves (1.1), there exist A, B >0 such that G(z) < Ae” /B for
all z € R?, and

fg(t,l”)dflf=fG($)d:E:1 for all t > 0.

limsup ™ ||t¥%g(t, /1) - < 00

t—>o0

The first step in proving Theorem 1.6 is to convert to the self-similar coordinates
suggested by its statement. Letting ¢ be g in these new coordinates (7,y) =

(logt, %), and g(7,y) = et7g (eT, eT/Qy), we see that

5 1., v __. d. _d=2 -
(1.11) 8Tg=[§Ag+§-Vg+§g]+€ =7g(1g13-9) -

The difference between d = 2 and d > 3 is clear from the above equation. When d > 3,
the last term is exponentially decaying and we proceed by analyzing the spectrum
of the operator in brackets, which is well-understood.

When d = 2, the last term is non-negligible. The construction then proceeds by
finding a steady solution of (1.11). To begin, we pose the problem on a ball of
radius r and examine the local (and slightly less nonlinear) problem where | |3 is
replaced by a constant E. After finding a solution gg to this problem, we show
that there is a critical value of E where ||gg|3 is equal to E. A difficulty with this
is that the dependence of § on E is monotonic; that is, the larger E is, the larger
g is. Hence, it is difficult to simply look at small and large E and show that the
ordering of E and |gg||3 switches. We overcome this by showing that the operator
in brackets in (1.11) induces sufficient decay away from x = 0 to limit the growth of
lgz|3 as E is increased. After finding this critical E value, the proof is concluded
by taking r - oo.

We make two comments on the limitations of Theorem 1.6. First, we do not
handle the case when R is continuous. In Theorem 1.6 (i), it is trivial to extend
our proof to that case since the nonlinear terms are exponentially decaying in the
self-similar variables. We believe that Theorem 1.6 (ii) can also be extended to the
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case when R is continuous albeit with more technical proofs using elliptic regularity
theory. However, our construction of G is already quite involved and we opt instead
for a clearer, more succinct construction.

Second, we do not address the stability of G; that is, we do not have a convergence
result of § to G when d = 2 as we do in Theorem 1.6 (i) with the Gaussian. The
spectral theory based argument of part (i) does not apply to the stability of G when
d = 2 because, as shown in (1.11), the nonlinear term plays a crucial role in the
equation, thus, any stability result must use the nonlinearity in an essential way.
The initial difficulty in establishing the stability of G is that |G|z is unknown and,
it is not clear why [|g(7)]2 converges to a constant (and that that constant is |G|2).
Indeed, multiplying (1.11) by g and integrating by parts yields

1d 1 1, _ )
5193 = =5 1va() 3 + S13(D3 + 13(7) ]2 = 1a(7) 13-
2 dr 2 2

Unfortunately, it is not clear that this would yield convergence of the L?-norm of §.
For example, there is no obvious monotonicity of ||g(7)|2 imparted by the equation
above. Until a better understanding of the fluctuations or convergence of |§(7)]2 is
gained, stability remains open, although we believe that G is stable.

The proofs of Theorem 1.5 and Theorem 1.6 are contained in Section 5.

Connection (or lack thereof) with the nonlocal Fisher-KPP equation. One might
think that (1.1) appears, on its face, to be similar to the non-local Fisher-KPP that
has considered in a huge number of works (e.g., [1, 3, 7, 15] and articles referencing
these):

(1.12) O-u=DAu+u(r-¢*u),

for some non-negative function ¢ and constants D,r > 0. However, there is very
little connection one can draw between them.

Most obvious is the fact that their qualitative behavior is extremely different.
For example, the L! norm of solutions g of (1.1) is conserved, while there are no
conserved quantities for solutions u of (1.12). From a larger perspective, one sees
that the main questions regarding each model are very different: (1.12) is a model for
front propagation leading to questions about the existence, stability, and qualitative
properties of traveling wave solutions (solutions of (1.12) made up of a fixed profile
in z being translated at a constant speed), while the main questions for (1.1) are
about quantitative LP and moment bounds as well as self-similar behavior.

Finally, the mathematical techniques applied to each are necessarily unrelated.
As with the standard (local) Fisher-KPP equation, the basic behavior of solutions u
of (1.12) can be obtained by linearizing the equation around 0, in which case the
nonlocal term disappears. In this sense, the large scale features of u are linearly
determined. On the other hand, a linearization of (1.1) around zero yields the heat
equation, which does not yield the conclusions of the main theorems Theorem 1.1
and Theorem 1.3. In this sense, the dominant behavior of (1.1) is nonlinearly
determined.

1.4. Notation. Throughout the manuscript we use the notation g for the following:
A g B if there exists C > 0 such that A < CB, where C is any constant that does
not depend on g (except for possibly on supp(go)). We write A ~ B to mean that
A< Band BSA.
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All L? norms are taken with respect to the spatial variable only unless explicitly
indicated. Hence, |g|, and |g(t)|, both refer to

(fRd g(t,z)? d:c)l/p,

when p € [1,00). The analogous notation is used when p = co.

Various quantities play a special role in our analysis. We adopt the following
notation: for any measurable function f : [0, 00) x R% — [0, o), we denote

Ep(t) = (f(t), R* (1)) = |¢* F(D)]2,
(1.13) Dy(t) = (VF(t), VR * f(t)) = [V * f(H)|3, and

M(t) = [ £ ()] o
where we used (1.4) to get the relationship between the first and second characteri-
zations of Ey and Dy (this also uses that convolutions can pass between functions

in the L2-inner product; see (2.9)). We point out that, when R =4, Ey = | f(t)|3
and Dy = [V£(1)[3-

When writing lim, liminf, and lim sup, we often omit the notation regarding the
variable when no confusion will arise. For example, the conclusion of Proposition 1.4
(i) can be written

liminf 23| g|2 = liminf >3] o < Oexit-

We use B,.(x) to mean a ball of radius r > 0 centered at x in the spatial variables.
When the ball is centered at the origin, we simply write B, in place of B,.(0).

2. THE 2/3 POWER LAW WHEN R IS CONTINUOUS.

Before beginning the proof, we notice that, due to Holder’s inequality
(2.1) E, < M,,

since [ R*g =1, which comes from the assumption [ R =1 and the fact that [ g =1.
In addition, by Young’s inequality for convolutions,

(2.2) By < (lgl2l¢11)* = lgl.

A key aspect of the proof is understanding the precise relationship between g,
¢+ g, and R *g. As such, it is useful to define more succinct notation for the latter
two functions. Let

(2.3) u=¢*rg and w=¢xpxg=Rx*g.

We first show how to deduce Theorem 1.1 from Proposition 1.2 in the following
subsection. Afterwards, in Section 2.2 and the following subsections, we prove
Proposition 1.2. This is where the bulk of the work is undertaken.

We note that, even when not explicitly mentioned, we assume that d =1 and R
is continuous and satisfies (1.4) throughout this section.

2.1. The proof of Theorem 1.1 from Proposition 1.2. We establish the bounds
on the moments via arguments very similar to [14, Theorem 1.3]; however, the
slight alterations in the method here allows us to reduce the dependence of the
estimates on gg to only on supp(go). When possible, we defer to the arguments in
[14, Theorem 1.3] and omit them here.
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Proof of Theorem 1.1. First, we obtain a pointwise upper bound on g. We have,
from Proposition 1.2, that

g(t7 ) S t_2/3;

however, we require estimates on g when || 2 t>/3. To this end, let L > 0 be such
that supp(go) c [-L, L], and define

G(t,x) = elo Ba()dspy oy,
where h is the solution of

hy = %Ah in (0,00) xR,
h=go on {0} xR.

It is straightforward to check that
1
(2.4) 0ig = §A§ +FE.g.

While (1.1) does not enjoy the comparison principle, (2.4) does. In addition, the
non-negativity of g and (1.1) ensure that g is a subsolution of (2.4). Thus, the
comparison principle implies that g <g. We deduce that, for all ¢ > 0,

t 1 _ (z— )2
1) $i,2) = i B0 [ 2 )
g(t,r) <g(t,x)=e cupp(on) VE g0(y) dy
(2.5) SefotEﬂS)de T go(y) dy
: supp(go) /27t
o By(s) ds—22 422 o By(s) ds—25 + £

N N
In the first equality, we used the kernel representation of solutions to the heat
equation, and in the second inequality, we used Young’s inequality in the exponent.
Applying Proposition 1.2 and the fact that £y < My, we find C > 0 such that, if
t > 1, then fot Eqyds < Ct/3. Using this in (2.5) yields, for any |z| > /8Ct*/3,

22 22, 12

g(t,x) < ectl/a_g_§+T <l —el P
Using this and Proposition 1.2, we obtain the crucial estimate:

{t‘2/3 if 2| < V/8Ct?/3,

9(t,z) $§ L2 w2 .

et s otherwise.

A direct computation using this upper bound yields the upper bounds on [ |z[Pg(¢, x) dz
for any p > 0 and ¢ > 1. The proof of the lower bound is exactly as in [14, The-
orem 1.3] (that is, it uses the upper bound and a variational argument, see [14,
Lemma 4.2]). As such, we omit the details.

The last step is, thus, to obtain lower bounds on the L?- and L*-norms of g(t,").
By Hélder’s inequality, |g(t)[3 < |g(t)| (recall that |g(t)[1 = 1). Hence, it is
sufficient to find a lower bound on |g(¢)|2 in order to finish the claim.

To this end, we utilize the previously-established moment bounds. Fix L > 0 to
be determined. Then

LeEf? Jaf®
1:fg(t,w)dm£f g(t,x)da:+f[Lt2/3 Leais]e L2t4/3g(t x)dx

SV2LE2B|g(t) |2 + ——= L2t4/3 f lz[g(t, z) de.
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where, in the second inequality, we used Holder’s inequality. Choosing L sufficiently
large, the last term is smaller than 1/2 by the moment bounds above. Thus,
/3] g(t) |2 is bounded below, as desired. This concludes the proof. O

2.2. The decay of M,: proof of Proposition 1.2. Although Proposition 1.2
and (2.1) yields that E,(t) $t2/3, we, in fact, must establish the decay of E, before
proving Proposition 1.2 as the decay of Ey is a crucial element in its proof. This is
in contrast to the proof in [14] for the case R = §, where we deduced the decay of
M, directly and then used this to establish the decay of E,. We state this main
ingredient in the following proposition.

Proposition 2.1. When d =1 and R is continuous and satisfies (1.4), we have,
for all t,
1 1
<min{ —, —
Ey(t) S rmn{\/i7 T }

In addition, we require the following lemma, allowing us to show that, in some
sense, ¢, u, and w cannot be “too different.”

Lemma 2.2. When d=1 and R is continuous and satisfies (1.4), we have, for all
t>1,

(2.6) My (t) < My(t) < Mgy(t) S My(t).
Furthermore, for any (t,z) € [1,00) xR,
(2.7) 9(t,2)° Sw(t,z),u(t,z).

M,(2)
Finally, we also have a small time bound on M,.

Lemma 2.3. When d=1 and R is continuous and satisfies (1.4), we have, for all
te[0,1],
1
E,(t) < M,(t) s —.
g( ) 9( ) \/2-‘;
The implied constant in the above inequality does not depend on supp(go).
We establish Proposition 2.1 in Section 2.3 up to a technical lemma. The technical
lemma is proved in Section 2.4, and relies as well on Lemma 2.2. The latter is
proved in Section 2.4.1. Finally, Lemma 2.3 has an elementary proof, that relies on

the identity (2.12) established at the beginning of Section 2.3, which describes the
evolution of E.

To reiterate the dependencies outlined above, we use all three results (Propo-
sition 2.1, Lemma 2.2, and Lemma 2.3) to prove Proposition 1.2. The proofs
of Lemma 2.2 and Lemma 2.3 do not depend on Proposition 2.1. The proof of
Proposition 2.1, however, does depend on Lemma 2.3 .

We now prove Proposition 1.2 assuming Proposition 2.1 and Lemmas 2.2 and 2.3.

Proof of Proposition 1.2. The bound for ¢t < 1 follows directly from Lemma 2.3.
Hence, we need only address the case ¢t > 1. By evaluating (1.1) at the location of a
spatial maximum (¢, x;), we find

(2.8) My < My(E, - w(t, ;).
Using Proposition 2.1 and Lemma 2.2 in (2.8) yields, for some C > 0,
C Mg)

ity <04y g5 -
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Let M(t) = At™2/® for A to be determined. By Lemma 2.3, if A is sufficiently large,
M(1) > My(1). In addition, we have

(€ WY 2a a1 ocy

“Y\eE T )T Tsen s (O - A) s

where the last inequality holds as long as A is sufficiently large. The comparison
principle implies that, for all £ > 1,

My(t) < M(t).

This concludes the proof. O

2.3. A differential equation for E,. Before we embark on the proof, we note a
useful identity for convolutions that is applied often in the sequel. By the symmetry
of R (recall (1.4)),

(2.9) f(R*fl)de:c:ffl(R*h)da: for any f1, fo.

We begin our proof by deriving a differential equation for E,. Convolving (1.1)
with R, we find

(2.10) Oyw — %Aw =wE, - R * (gw).
Multiplying by ¢g and integrating yields
f gOyw d + %Dg - B2- f gR * (gu) dz.
Notice that
E, = [(atgw + goyw) dx
and
f gorwdx = f gR * (0yg) dx = f(R * q)Oyg dr = f wogdz.
Above we used (2.9). Hence
f gOoyw dx = %Eg.
Thus, the above becomes

1. 1
(2.11) §Eg+ §Dg :Eﬁ—ng*(gw) dx.

We now derive a simplified form for the right hand side of (2.11). First, using (2.9)
a second time, we find

ng*(gw)d:c:f(R*g)gwdx:fngdx.

Recalling that g is a probability measure and E4 = (g, w), we obtain
E;—fngdx:—fg(w2—E;)dx:—fg(wQ—QwEg+E§)dx
=- [ g(w - E,)?dz.
Putting this together with (2.11), we find
(2.12) E,+ D, =2 f g(w - E,) da.

We note that (2.12) implies that E; is decreasing. However, this is not sufficient
for Proposition 2.1, and, instead, it is required to bound the integral term on the
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right hand side away from zero. Before proceeding with this proof, we show how to
conclude Lemma 2.3.

We now establish the (much simpler) bound on E, and M, for small times.

Proof of Lemma 2.3. The bound on E, follows from a general argument that
works in all dimensions that is based on a generalization of the Nash inequality. As
this decay is the focus of Theorem 1.5 and the one dimensional result is simply a
side-effect of the analysis, we postpone it until Section 5. The bound is given in
Proposition 5.1. We note that the bound in Proposition 5.1 is weaker than that
of Proposition 2.1 and its proof is independent of Proposition 2.1. Hence, as we
noted above, the proof of Lemma 2.3 is independent of Proposition 2.1, which is
important because we use Lemma 2.3 to prove Proposition 2.1. Hence, to finish the
proof we need only derive the bound for M, from the bound for E,.

Let C be such that E,(t) < Ct"'/2. Define h to be the solution of d;h = (1/2)Ah
with h(0,-) = go. Let G be the heat kernel; that is,

N

G(t,x) = \/;_ﬂ_te_%.

Then h = G(t) * go.
We now define our barrier function
G(t, ) = eJo Fa)dsp(y g,

Notice that g solves

_ 1 _
(2.13) 09 = §g+Egg.
By (1.1) and the non-negativity of g, we see that g is a subsolution of (2.13). Hence,

the comparison principle implies that g <g. Thus, for all ¢ € [0,1],
Mq(t) < Mg(t) = efot Ey(s) dsMh(t) < eQCch(t)

1
SIG(E) * golleo < 1G(8) [0l g0]1 < 7
which concludes the proof. O

Having finished the proof of the bounds for small time, we focus on the case t > 1
for the remainder of the section. To that end, we seek to bound the integral term
on the right hand side of (2.12) away from zero. We establish this in the following
lemma.

Lemma 2.4. When d =1 and R is continuous and satisfies (1.4), we have, for
everyt>1,

E5
D—Z s | g(w-E,)?dx.

Ideally, to prove Lemma 2.4, we would apply similar methods as were used to
establish the lower bound on [ g(M - g)dz in [14, Lemma 4.3] for the case R = 4.
This is, in spirit, possible; however, it is complicated by the fact that the right hand
side of (2.12) involves both g and w = R * g, which take different values when R # 0.
As a result, the proof of Lemma 2.4 is significantly more technical than the proof
of its counterpart in [14]. In fact, it is in the proof of this inequality that almost
all of the difficulty lies. We delay its proof until Section 2.4. We now show how to
conclude the upper bound on E,; assuming Lemma 2.4.
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Proof of Proposition 2.1. We first note that Lemma 2.3 yields a bound on E,4(1).
This can be extended to a bound on [1,2] since E,; is decreasing (recall (2.12)).
Hence, we need only establish an upper bound on [2, o).

We begin by applying (2.12) and Lemma 2.4 to find, for ¢ > 1 and some C > 0,

. 1
E;+Dg+ —

5
-2 <.
C D,

Applying Young’s inequality, we have

2 ES 1 E;
——FE? =9/ DA\| =+ <Dy +—=—-2.
N Y\ CcD, "’ CD,

Combining the two above inequalities, we find

. 2
E,+ —E>? <.
g \/5 g
Solving this differential inequality yields, for all ¢ > 1,
1
< -
Eg(t) ~ (t _ 1)2/3 .
This concludes the proof of the upper bound for all ¢ > 2, which finishes the proof.
O

2.4. A lower bound on the integral term. We begin by stating a key lemma
related to the spatial regularity of g. This is the “local-in-time Harnack inequality.”
While this was introduced in [5], we use the more precise statement of [6] as we
require the flexibility in the parameter ¢y in the sequel.

Proposition 2.5. [6, Proposition 1.2] Fizx any t > tg > 0. Let e € (0,1). There
exists C., depending only on &, such that, for any x,y € R,

C C C€|x B y|2 1-¢ €
g(t,x) < Ccexp sHQHLw([t—to,t]xR)to + T 9(t,y) HgHL‘”([t—to,t]xR)'

The main difference between Proposition 2.5 and the standard parabolic Harnack
inequality is the fact that we do not require a “shift” in time; that is, the g terms
on the right and left are both evaluated at the same ¢ (up to the |g||5, error term).
We use Proposition 2.5 often in the sequel.

2.4.1. How the maxima evolve. We now establish a preliminary upper bound on
¢ and use it, along with the local-in-time Harnack inequality (Proposition 2.5) to
establish the comparison between ¢, u, and w (Lemma 2.2).

We first show that the maxima of g, u, and w are bounded independent of ¢ > 1.
This allows us to obtain regularity of g that is uniform in ¢t as t - oo.

Lemma 2.6. Suppose that d =1 and R is continuous and satisfies (1.4). For all
t>1/4,
My(t) s 1.

Proof. Fix any to > 1/4 we establish a bound of My(¢). Let §(¢,z) = g(t + (to —
1/4),z). Since (1.1) is an autonomous equation, § satisfies (1.1) with initial data
G(0,-) = g(to - 1/4,-) and [ (0,-) = 1. Applying Lemma 2.3, we find

My (to) = Mz(1/8) S e $1,

which concludes the proof. O
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We next require that, over finite time intervals, the M, does not change too
much. This allows us to apply Proposition 2.5 in such a way that we can replace
the HgHL""([t—tO,t]xR) term by Mg(t)~

Lemma 2.7. For all t1 > 1 and to € [0,1/2], we have
My(t1) S My(t1 —to) S My(t1).

Proof. Fix t; > 1 and tg € [0,1/2]. Let h be the solution to

he = AR in (t; —3/4,00) x R,
h=g(t; —3/4,") on {t; —3/4} xR.
Recall that My(t) is bounded above by Lemma 2.6 for ¢ > 1/4. Let
(2.14) A= sup My(t) < oo
t>1/4

and define g(t,z) = e =173/ (¢, 2) and g(t, ) = e A3 (¢, 2). We claim
that

(2.15) g(t,x) <g(t, ) <g(t,z),
for all t € [t1 — 3/4,t1], and that
(2.16) My (t1) € My (t1 —to) S Mp(t1)-

We prove this in the sequel. Let us momentarily assume both (2.15) and (2.16) are
true and conclude the proof.

Indeed, then we have that
My(t1) <€ Mg(ty) = 32 My, (81) < A My (1 - to)
= 34N (eA(3/4_t°)Mg(t1 - to)) < eA(g/Q_tO)Mg(tl —tg) < e?’A/zMg(tl —to),
and, similarly,
My (ty —to) < Mg(ty —to) = AN, (11— to) 5 BT M, (1)
- oA3/4-to) (egA/4M2(t1)) < 63A/2Mg(t1).

This establishes the claim up to proving (2.15) and (2.16).

We first establish (2.15). We show only the first inequality as the second is proved
similarly. Indeed, by the fact that d;g = %Ag - Ag, we have

1
3tg—§Ag—g(Eg—R*g):—g(A+Eg—R>eg).

Since A+ E, > M, by (2.14) and M, > R * g, g is a subsolution of (1.1). Hence, by
the comparison principle, g < g on [t; —3/4,00) x R, as claimed.

Now we establish (2.16). The first inequality follows from the maximum principle;
that is, the maximum of a solution to the heat equation is decreasing in time. The
second inequality follows indirectly from the parabolic Harnack inequality. Indeed,
let x,, be the location of a maximum of h(t; — 1/2,-) = g(¢t; — 1/2,-). Then the
parabolic Harnack inequality implies that

Mh(tl - 1/2) = sup h(tl - 1/2,.%‘) pS inf h(tl,x) pS Mh(tl).
zeB1(Tm) zeB1 (T )
Using the maximum principle again, we find My (t; —to) < Mp(t; — 1/2) since
to € [0,1/2]. Combining this with the above inequality, establishes (2.16). This
concludes the proof. O
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We are now able to utilize Proposition 2.5 to show that g, u, and w are comparable;
that is, we prove Lemma 2.2.

Proof of Lemma 2.2. The first and second inequalities in (2.6) are immediate by
Young’s inequality for convolutions: for all (¢,x),

w(t,x) = ¢+ ult,z) < [Pl fult,)]e = Mu(t).
The proof of the second inequality is the same and is thus omitted.

Finally, we point out that the third inequality in (2.6) follows directly from (2.7)
(when applied at (¢,2;) that is the location of a spatial maximum of g(¢,-)). In
addition, the proof of (2.7) is the same for either right hand side (w or u). Thus,
we show it only for wu.

Fix t > 1 and any = € R. Letting I(r) = [5 ¢, we see that I is continuous,
I(0) =0, and I(o0) = 1. Hence, the intermediate value theorem implies the existence
of rg > 0 such that

1
dy = —.
Sy, oWy =
Fix any y € B,,. By Proposition 2.5 with ¢ = 1/2 and ¢, = 1/2, we have
)1/2 > g(tv‘z)z )
eXP(CSUPse[tfl/Q,t] Mg(s) + TS) SUPge[t-1/2,t] Mg(3)1/2

g(t,x -y

Using Lemma 2.6, the exponential term in the denominator is bounded. In addition,
Lemma 2.7 implies that

sup  Mg(s) S My(t).
se[t-1/2,t]

Hence, we find, for all y € B,

g(t,x)*
My(t)

(2.17) g(t,z-y) 2

We now use this inequality to conclude. Recalling the definition of u and
applying (2.17) yields

g(t,z)?
My(t)

_g(t2)?
200,(1)’

o(y)dy

ut.o)z [ o(wg(ta-y)y

0 70

which concludes the proof. O

2.4.2. The lower bound on the integral term: the proof of Lemma 2.4. Having
established the relationship between w, u, and g, we are now in a position to prove
the main technical lemma in the proof of Proposition 1.2 apart from one final
technical lemma. This lemma shows that if g(¢,z1) is sufficiently small compared to
g(t, o), then w(t,z1) and u(t,z1) will be also be small compared to g(t,z9). We
state this lemma now and prove it in the sequel.

Lemma 2.8. Suppose that d =1 and R is continuous and satisfies (1.4). For all

2
th2 1, if #% is sufficiently large, depending only on R and Mg (t)/g(t,z0),
then

1
w(t,xl),u(t,xl) < 59(t7$0)~

‘We now prove Lemma 2.4.

Proof of Lemma 2.4. Since time plays no role here, except to allow us to apply the
lemmas in Section 2.4.1, we omit ¢ > 1 notationally for the remainder of the proof.
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FIGURE 1. A cartoon depicting the relationship of x;, B;, and g.

We let A > 1 be a constant to be determined. There are two cases to consider, and
A is determined in the second case.

Case one: M, < AE,. The constant A does not play a role in this case, and, as
such, we absorb it into the constants in the < notation.

Fix 1 = By < By < B3 < By to be determined. We may find 1 < x5 < x3 < x4 such
that

E
g(z;) = ﬁ for each i € {1,2,3,4},
E, .
(2.18) g(z) < B for all z € [x;,24] and each i € {1,2}
E, .
g(z) > B for all x € [x1,2;] and each i € {3,4}
This can be achieved by making the choices
zy =sup{z eR:g(x) = E;} xy =inf{zx > 1 : g(x) = Ey/Ba}
xo =sup{z <x4:g(x) = Eg/Ba} xzg =inf{z >z : g(x) = E4/Bs}.

Roughly, x1 and xs are the “last times” ¢ takes the values E;/B; and Ey/Bs,
respectively, while x3 and x4 are the “first times” after x5 that g takes the values
E,/Bs and E,/By, respectively. See Figure 1.

Fix any z € [x2,24]. Applying Lemma 2.8, we have that, choosing Bs so that
g@)® By B
g(@)My  g(z)My — A

is sufficiently large, depending only on M,/g(x¢) = My/E4 < A, then
w(x) < 9() = Ly

2 2
We conclude that E, —w > E;/2. Hence,
N s B F? E3
2.19 [ B w)tde> [ e = ey - ol 2 B - ol
(2.19) . 9(Eg —w) dx b Ba 2@ 4B4|3734 To| 2 Bylrs — w9
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Here we used that g > E,/B4 on [22,24]. On the other hand, we have

T4 2 T4
[u(zo) — u(zy)|* = ([ 8$ud:1:) < |zq — 24| [ |0 ul*da

(2.20)
< |wy — o] f |0y ul?dx = |24 — x| Dy.

We now seck a lower bound on |u(x2) —u(zs)|. Using Lemma 2.2 to bound u(z2)
from below, we find

(372)2: E§ S E,
M, MQBS N ABS'

Choosing now Bs to be AB3 multiplied by a universal constant, we have

(2.21) u(zs) 2 2

(2.22) u(za) > g—z.

Next, we again apply Lemma 2.8 to conclude that, choosing By so that
9(3)” By By 1B
g(z4)M, M, B3~ AB?
is sufficiently large, depending only on M,/g(x3) < ABs, then
g9(x3) _ By
2 2B;"
Putting the bounds (2.22) and (2.23) together, we find

(2.23) u(zy) <

E
u(z2) ~u(z)] 2 52

Including the above inequality in (2.20), we find
(2.24) E? $|wy - 22| Dy,

where we have absorbed the dependence of the B; into the $ notation. Combin-
ing (2.19) and (2.24) finishes the proof in case one. Note that, while the estimate
above depends on A, in the second case, we choose A to be a fixed large number
depending only on R and independent of F,.

Case two: M, > AE,. The argument in this case is similar; however, instead of
bounding w above by E,4/2, we bound it below by 3E4/2. Indeed, let 1 = By < By < Bg
and find 1 < x9 < x3 such that

M
g(z;) = B? for each i € {1,2,3},
M
g(x) < B—g for all z € [x2,73], and
2
M
g(x) > B—g for all x € [x1,23].
3

Note that Bl < B2 < B3.
Arguing exactly as in (2.20) in the previous case, we find
(1) —u(zs)]? < |z3 - 21| Dy.
From Lemma 2.2, we have

g(z1)?
(2.25) u(xy) 2 =—— = M,.

M, g
The constant above does not depend on A or on any of the B;’s. Hence, we may

select By such that g(xs) < u(xy).
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Then, after increasing B3 such that

g(x2)® By
g9(z3)M, B

is sufficiently large, depending only on M,/g(z2) = B2, Lemma 2.8 implies that

g(az) u(a1)

u(xs) < 5 < 5
Using this and (2.25), we conclude that
2
(2.26) M? g “(;’1) < [u(zs) —u(z1)|? < s - 21|D,.

Applying Lemma 2.2, we have that, for = € [z1, 23],

9(95)2 N M,

’LU(.’L')Z < 5o
M, — B}

In the second inequality we used that g > M,/Bs on [z1,23]. Since E, < My/A,
then, choosing A such that A/B? is sufficiently large, we have w(z) - E, 2 M, for
all x € [x1,23]. Thus, we find

(2.27) f " g(EBy - w)?dw 2 MP|ay - s

x

Combining (2.27) and (2.26) yields

M5
2
fg(Eg-h) dz 2 D—Z.
The proof is finished in this case by using the fact that M, > AE,. Thus, we have
concluded the proof in all cases. O

We now finish this section by proving the final lemma, Lemma 2.8. The idea
behind this proof is that, by Proposition 2.5, if the ratio g(zo)?/g(x1)M, is large
enough, then g is closer to g(x1) than g(zo) on a large set. Plugging this into the
convolutions defining u and w yields the result.

Proof of Lemma 2.8. We show the result for w. The proof is exactly the same for
u and, hence, we omit it. We assume without loss of generality that xo < z; =0
since the equation is invariant by reflection and translation. We suppress the time
dependence in the proof as t plays no role.

Let
0)M,
(2.28) = M.
9(xo)
We may assume that € < 1/4. Define
r=sup{s>0:g(y) < @ for all y € [-s,s]}.

From (2.28) and the fact that £ < 1/4, g(0) < g(z¢)/4, we conclude that r > 0
and g < g(x0)/4 on [-r,r]. In addition, by continuity, either g(r) = g(z¢)/4 or
g(-r) = g(x¢)/4. We assume the former, although the proof is similar in the latter
case.
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Using this, we estimate the below directly:

= 9(x0)
(2.29) w(o)_/ R(_y)g(y)dygf[_r,r] R(=y) 40 dy + f[_m]cR(—y)Mgdy

< @JrQMQ'/TOOR(y)dy.

The final inequality follows from the fact that R is symmetric®.

We seek an estimate on the second term on the last line of (2.29). Indeed, we
wish to show that the integral term is small, which corresponds to r being large. In
order to conclude this, we appeal to Proposition 2.5 with & = 1/2 and ¢y = 1/2, along
with Lemma 2.7, to find

11 gw) __ g(r)
We  4/g(0)M,  /g(0)M,

The last line follows from Lemma 2.6. Choosing ¢ sufficiently small, makes r
sufficiently large that

< exp{C(Mg + rz)} S exp {C’r2}.

/Too R(y)dy < 98(]\309)'

Plugging this into (2.29), we conclude that w(0) < L;O), which finishes the proof.
i

3. LONG TIME DYNAMICS IN ONE DIMENSION

For technical reasons that become clear in the sequel, we notice that, since (1.1)
is autonomous, we may shift the initial data in time and assume that g(1,-) = go €
C.(R) without losing generality. In addition, recall that here we make the choice
R = § whence (1.1) becomes

{gt=§Ag+g(Eg—g) in (1,00) xR,

(3:1) g=go on {1} xR.

We begin with a heuristic argument that motivates the constants 6.,y and cepis
defined in (1.10). This argument also yields the main rescalings and objects of study
for us and allows to outline our strategy and the main difficulties encountered in
the proof.

3.1. The rescalings and the heuristic argument. We appeal to two different
scalings revealing different features of the dynamics. One suggests that g, properly
rescaled, converges to a constant multiple of an indicator function while the second
unveils the exact constant involved. We call the rescaled functions, respectively, h
and u. Importantly, and somewhat surprisingly, u satisfies an equation reminiscent
of the Fisher-KPP equation.

We begin with the new variables 7 ~ t'/% and y ~ x/t2/3; that is, define
(3.2) h(ry) = (1 +1)%9((7+1)%,y(7 +1)%).
Notice that this respects the scaling in x and the decay of g shown in Theorem 1.1

and Proposition 1.2. Thus, we have that C~! < My, Ej, < C. We see that

3
(33) 87—h = mAh + 3h(Eh - h) +

—] (h+yoyh).

¢Symmetry is not necessary for this result, but it simplifies the notation in the proof.
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The meaning of the time shift of the initial conditions to be defined at ¢ = 1, above,
is now clear: (3.3) does not degenerate as 7 N\ 0 and the initial data of h is defined
at 7=0.

Notice that, heuristically, this indicates that if h(7,y) - H(y) as 7 — oo, then
H(Ey - H) = 0, implying that H has to be of the form |A|™'14 for some set A
(recall that g is a probability measure and, hence, h is one too). Of course, we
expect A = [—¢, c] for some ¢ > 0.

Unfortunately, as the Laplacian term in (3.3) degenerates as 7 — oo, we cannot
lean on compactness in order to obtain convergence of h. Instead we need to obtain
sharp estimates on h away from the boundary points y = ¢, which leads us to the
next scaling.

We pull apart the dynamics of g near ct?/® (i.e., h near c) to see the transition
between (2¢)™1t7/3 and 0. Since the coefficient in front of the Laplacian is O(772),
we expect that this transition layer has width O(771). Hence, for any c € R, we let

(3.4) ue(7,2) = h(r, e+ 2(t+1)7).
Using (3.3), we find

2
(3.5) Orue = %Auc +3uc(Ep — ue) + 2¢0,uc + muc + TTazuc.

We expect that, as 7 - oo, Ep(7) — 0 for some 6 > 0 and h(7,y) > H(y) =
(2¢)7'1[_¢,¢). For these to be consistent, we have 6 = (2¢)”'. In addition, looking
at (3.5) with 7 = co, we formally find

—cO,ue = §Auc + %uc (1 - E) .
4 2 0

This is the equation for a traveling wave solution (of speed ¢) of the Fisher-KPP
equation. Although there is a family of traveling wave solutions, whose speeds make
up an infinite half-line, we expect the correct long-time dynamics to correspond
to the minimal speed wave because our initial data is compactly supported (see,
e.g. [11, 17]). The minimal speed is given by a formula in terms of the coefficients
(see, e.g., [20, (1.25)]), which, in our setting, yields

330 3
=n/2- 2= V.
c S ﬁf

Recalling that 6 = (2¢)7!, the unique solution to the two equations is (c,6) =
(Cerits Ocrit ), Where cerig and Oy are defined in (1.10).

We now discuss the difficulties in establishing the above heuristics for u.. The
first issue is a subtle one. While the last two terms (3.5) appear to be error terms,
this is only true for the last term with the correct choice of ¢, that is, only in the
correct moving frame. Indeed, the coefficient of last term is approximately z/7. If
the transition from 6 to 0 occurs at ¢r with ¢ # ¢, then non-trivial behavior for
u. occurs at z ~ (¢ - c¢)7. In this case, both d,u. and z/(7 + 1) are non-trivial at
(¢ - ¢)7. Thus, if we have changed to the “incorrect” moving frame,

lim inf

T—>00

>0,

= _d.u,
1 o

T+

and, hence, the heuristics above are no longer useful. It is, thus, crucial to work in
the frame with ¢ = cepit.

Although the equation (3.5) is a non-local Fisher-KPP type equation similar to
that considered in [1, 3, 7, 15], which takes the form

(3.6) Oru=DAu+u(r—¢*u),
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for some non-negative function ¢ and some constants D, r > 0, there is an important
difference that prevents us from using techniques developed for (3.6) to study (3.5):
while ¢ *u(x) ~ u(z) for each z (when appropriately interpreted), Ej, ¢ u.(z) (recall
that Ej, is independent of  and is expected to converge to a constant). As such, the
role of the nonlocality in the two equations is quite different. On a more technical
level, this difference is manifested in the following way. The spreading speed in (3.6)
is identified using the linearization of the equation around zero 0,u = DAu + ru, in
which the nonlocal term does not appear. On the other hand, the spreading speed of
u. will be almost entirely determined by the long time behavior of the nonlocal term
E},. As a result, we are not able to draw inspiration from the techniques introduced
in the previous work to deal with the nonlocal term of (3.6).

The next complication is due to the coupling between Ej and u.. Their code-
pendence makes it impossible to first show convergence of E} and then analyze u.
when 7> 1 and FE}, is almost constant. On the other hand, one might be tempted
to consider Ey, to be a time dependent prescribed coefficient; however, there is little
robust theory on how the front of a reaction diffusion equation depends on the
coeflicients when their oscillations have no specific structure such as periodicity.
This is in part because one can construct coefficients to have a diverse range of
fronts if the coefficients oscillate in a complicated manner [2]. Indeed, there are even
quite simple settings where there is no defined spreading speed due to oscillations
of the coefficients [12].

To overcome this, we derive a differential inequality that shows that E; can
only increase slowly (although we do not rule out it decreasing arbitrarily quickly).
Focusing our analysis on the resulting long upslopes, we can work with an almost
constant Ej term. In this case, if Ej is too large, it will have been too large for
a large time interval beforehand. Then the front, on that time interval, will move
too quickly due to the large Ej, term in (3.5). This corresponds to h having wide
support and contradicts the fact that the integral of h is one. Similarly, if Fj, is
too small, it will be small for a long time afterwards. Then the front, on that time
interval, will move too slowly, corresponding to h having too narrow of support and
contradicting the fact that the integral of h is one.

Before proceeding with the proof, we note that the rescalings above, combined
with Proposition 1.2 and the fact that [ gdx = [ hdy = 1, yield the following bounds,
used often below.

Lemma 3.1. For any ce€ R, We have, for all T > 1,

1S Ep(r) < Mp(7) =M, (1) s 1.

3.2. The weak bounds: proof of Proposition 1.4. A key step in establish-
ing the strong bounds in Theorem 1.3 is first establishing the weaker bounds in
Proposition 1.4. We show this argument here.

3.2.1. The lower bound on the limsup. We begin with the lower bound on the lim
sup. We require a simple relationship between M and FE for large times, proved at
the end of this section.

Lemma 3.2. We have limsup M}, (7) = limsup Ep (7).

T—00 T—>00

The need for this lemma is the following. We argue by contradiction, assuming
that limsup Fj, is small. Lemma 3.2 implies that M, is eventually small as well.
However, to be consistent with the requirement that [ hdy = 1, this forces h to
be nontrivial near some ¥y > ceit- Using the connection to (3.5), this corresponds
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to front propagation of speed yq starting from compactly supported initial data;
however, yo is greater than the speed 2./(3/4) - (3E,,/2) = 24/9E}/8 of the minimal
speed traveling wave, which is known to be impossible. The last step is achieved by
constructing a supersolution that is typical in studying Fisher-KPP.

We now show how to conclude Proposition 1.4.(ii) using Lemma 3.2.

Proof of Proposition 1.4.(ii). We prove this by contradiction, assuming that, for
some € > 0,
lim sup Fp (1) < Oerig — €.
T—00
Then, by Lemma 3.2, limsup M}, < 0.4 — €, and, hence, there exists 73 such that
En(1), Mp(7) < Oerit — /2 for all 7 > 7.

First we show that, for any ¢ and 7y, there exists D, > 0, depending on 7y and c,
such that

2
(3.7 ue(70,2) SDCCXp{—;}.
Notice that, by inverting the change of variables relating u. and h, it is enough to
show this for ¢ = 0. The bound of u.-¢ of the form in (3.7) follows from changing
variables from g to u.-¢ and using (2.5).

Fix A >0 to be chosen. Let ¢ = cerit, A = 2¢/3, and let
T (T,2) = Ae™7.

We aim to show that u. <. on [19,00) x R.

First, we consider the domain [7p,00) x (=00,0]. By Lemma 3.1, u, is uniformly
bounded above, and @, > A for any z < 0. Hence, if A is sufficiently large, then we
have that @, > u, on [79,00) x (=00, 0].

Next we show that @, > u. on [19,00) x (0,00). We do so via the comparison
principle. The first step is to show that @, is a super-solution of (3.5) on (79, 00) x
(0,00). Indeed,

2 z

0,1, — §Aﬂc - 3TUe(Ey - Ue) - 260,Tp — ——Te — —— 0. T
2 T+1 T+1

ﬂc(—§)\2—3Eh+3ﬂc+20)\— 2,2 z)
2 T+1 7+1

_f 3.2 2 _ (22 2
>Ue | —= A" = 3(Ocrit — 2+2)\——): el — —3(0crit —€/2) - .
u(z (Beriv = £/2) + 2eA = 3 “(3 (tg/)r-i—l)
By our choice of ¢, it is clear that, up to increasing 7y if necessary, the last line is
non-negative and, thus, %, is a supersolution of (3.5).

In order to apply the comparison principle, we address the parabolic boundary.
First, we have u. <%, on [79, 00)x{0}, as established above. Second, up to increasing
A, we have, via (3.7),

22

5 } < Deexp{DcA? - Az} < Ae™ for all z > 0.

C

ue(70,2) < D, exp{

Hence, u. <%, on {m9} x (0, 00).

We conclude that u. < @, on the parabolic boundary of (79, 00) x (0,00) and
that . is a supersolution of (3.5). We can, thus, apply the comparison principle,
which implies that %, > u. on (79, 00) x R. This concludes the proof that u. < @, on
[70,00) x R.
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From the definition of ., it is clear that, for any ¢’ > c,

lim su f h(7,y) dy =limsu uc(7,2)dz
7——>oop y>c’ ( y) Y T—>oop T+1 Z>(C’—C)(T+1) ( )
< lim sup Ue(T,2)dz =0.

7o T+ 1 Jzs(e/-c)(7+1)

A similar argument as above can be used to obtain a supersolution of u_. and bound
the integral for y < —c’. Thus, we find

lim sup h(7,y)dy = 0.
T—>00 \y\>c’
In addition, we notice that
lim sup ” h(7,y) dy < limsup 2¢' M, (7) = 2¢' limsup Ex (1) < 2¢/ (0cris — €).
T—00 y|<c! T—00 T—00

Here we used Lemma 3.2.

On the other hand, [ h(7,y)dy =1. Combining all above estimates, we have

1 < limsup h(7,y) dy + lim sup [l h(7,y) dy < 2¢' (Ocrit — €)-
’ yl<e!

T—00 \y\>c T—00

Since this is true of all ¢ > ¢ = cqyt, it follows for ¢’ = g, in the limit. Hence,
1< 2Ccrit(eclrit - 6)-

Recall that 2ccpitfcris = 1. It follows that the right hand side is strictly less than one.
This is a contradiction, which concludes the proof. O

We now prove Lemma 3.2.

Proof of Lemma 3.2. Since My (7) > Ey(7) for all 7, it is enough to establish
only the “<” in the claim above. For notational reasons, let 8;; = limsup M}, and
O =limsup Ep,.

There are two cases. Either M), is eventually monotonic in 7 or not. Consider
first the latter case.

If M, is not eventually monotonic, then we may select 7, that are local maxima
of My, such that My(7,) — 6. It follows that u.-o has local maxima at (7, 2,)
for some z,. Using the equation (3.5), we find, at (75, 25),

3 2
Osa‘r c= --A =0 = 3Ue=0 | En(Tn) — Ue= o7 a4y Ue=0]-
Ue=0 5 Ue—g = U 0( W(Th) —u 0+3(Tn+1)u 0)
Taking a limit as n - oo and using the fact that we-o(7y,2,) = M(7,) = 05 and
limsup Ey,(1,) < 0g, we find

(38) 0<30n (QE—HM)

Since 87 > 0 by Theorem 1.1, it follows that ), < 8, which concludes the proof in
this case.

We now consider the case where M}, is eventually monotonic. The case where
Mj, is eventually nonincreasing and the case where it is eventually nondecreasing
are handled similarly, so we show only the argument for when it is eventually
nonincreasing. In this case, we can select 7, tending to infinity such that 0, My (7,) —
0 as n — oo, since, otherwise, 0, M} is uniformly negative, which implies that
My (1) - —o0 as 7 — oo, a contradiction. Since M} is eventually monotonic,
My (7)) = 6 as n — oo. Note that Aue—g(7n,2,) <0 when z,, is the location of the
spatial maximum of w.-o(7,,-). Using the equation (3.5), we find, at (7, z5,),

2

3
0<--A c= =3 c= E n) — Uc= o7 o Ue=
5 Ue=0 U ()( h(’T) Uu 0+3(Tn+1)u 0

) - (9Tuc=0 .
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Taking a limit as n — oo and using the fact that we-o(7n,2n) = M (1) — O,
limsup Ep(1,) € 0g, and lim 0;u.-o = 0, we find, again, (3.8) in this case. The proof
is then concluded in the same way as in the previous case. O

3.2.2. The upper bound on the liminf. We begin by stating the proposition that is
the crucial step. It roughly states that if Fj; remains large enough (depending on
¢) for long enough, then u, grows up to Ej. This is shown by approximating from
below by solutions of the Fisher-KPP equation.

Proposition 3.3. Fiz any 19, 71, R, 1, €, 9, and c. Suppose that
Uc(70,-) 2 plp, and 18Ex(T) - 42> 6 for all T € [19,71].

If 1y is sufficiently large, depending only on & and e, then there exists T, depending
only on p, R, €, and §, such that, if 1 — 79 > 7, then

ue(11,0) 2 Ep(11) — €.

A crucial point is that 7 does not depend on ¢; that is the lower bound is uniform
over all admissible ¢. We prove Proposition 3.3 in Section 4.3. We show how to
conclude Proposition 1.4.(i) assuming Proposition 3.3.

Proof of Proposition 1.4.(i). We prove this by contradiction. Assume that
liminf Ej, > 0.t + € for some £ > 0. We may find 79 > 0 such that Ep,(7) > 0t +€/2
for all 7 > 7.

Notice that, for 7 > 7,

18E,(7) = 4c2 5 2 18(Beris +€/2) — 4¢P, = 180cris + 9 — 4(2060¢) ™2 = 9e.

crit =
In the last line we used that 1862, = 1. Thus, a straightforward application of
Proposition 3.3 yields
(3.9 liminf inf A(7y)=liminf inf w.(7,0) > Ot + /4.

700 |y|<cerit 700 |c[<cerit

Using (3.9) and that 2¢eitOcrit = 1, we find

Ceri

¢ h(7,y) dy > 2¢crit (Ocrit +€/4) =1+ %

—Ccrit

1 = liminf f h(7,y)dy > lim inf

This is clearly a contradiction, which concludes the proof. O

4. THE STRONG BOUNDS WITH RADIAL SYMMETRY

We now show the significantly stronger bounds under the assumption that gq is
even and radially decreasing. There are two major steps here. First, we show that
E}, converges as 7 — oco. Then we use that to obtain convergence of h. The first
step is restated in the following proposition:

Proposition 4.1. If g solves (3.1) with initial data 0 < go € C.(R) satisfying
[ godx =1 that is even and radially decreasing, then

lim Ep(7) = lim My(7) = Ocrit-
T—>00 T—>00
We perform these steps in reverse order. First, in Section 4.1, we show that h

converges as claimed assuming that Ej, and M} do; that is, Proposition 4.1 holds.
Then, in Section 4.2 we prove Proposition 4.1.
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4.1. Convergence of h given convergence of F; and M;. We now show how
to conclude Theorem 1.3 via Proposition 4.1. While we use radial symmetry in this
step, it is not required and is only used here to simplify the proof. Indeed, a close
inspection of the arguments reveals how to construct explicit sub- and supersolutions
of u. (and, therefore, h) in order to obtain such pointwise bounds without using
radial symmetry.

A main idea in the proof is that, by Holder’s inequality, M) and Ej can only
be equal if A is an indicator function. Since h is even and radially decreasing, this
implies that h = 01[_. ) for some 6§ and ¢, which must be 0. and ceis by the
rescalings described in Section 3.1. Of course, for all finite ¢, M} and Ej are not
exactly equal, so we must understand the stability of Holder’s inequality in our

setting. This is encoded in the following general lemma, which essentially yields
that if My, ~ By, then h ~ 9]].[_076].

Lemma 4.2. Fiz deN, and let wg be the volume of the unit ball in RY. Suppose
that f : R — [0,00) is a rotationally symmetric and radially decreasing function
with [ fdx=1. Then, for every r>0:

(i) if xo € By and [p fdx <1,

E
VJ;_[BdeI

B

(i) if xo ¢ Br,
Fla) <m0

" wa(lwol® = r4)”

Notice that if |f||3 = Ef = My = | f|leo, we find f(x) > My in (i) for all |z| <
(def)’l/d. Then, using this with the constraint [ fdz =1, we see that f(z) = My
for all |z < (waM;) V4 and f(x) = 0 for all |z > (waM;) 9. Hence, f is an
indicator function, which is the only function for which Hoélder’s inequality is an
equality:

Ep= [ f2dw<|fllfls =My [ o=y

This is why we describe Lemma 4.2 as a stability estimate for Holder’s inequality.
We note that when E; < My, both (i) and (ii) are necessary to obtain precise bounds
on f. This is in contrast to the special case described above of Fy = M where only
(i) is used.

Lemma 4.2 is proved in Section 4.3. We now show how to deduce Theorem 1.3
using the above results.

Proof of Theorem 1.3. First, we notice that Proposition 4.1 yields the claim about
the long time limits of F, and M, after suitable rescaling. Next, we notice that the
claim about the profile of g in long times is equivalent to showing that

(4.1) R(T,y) = Ocrit L[—corie com] as T — 00,
which we now show.
Fix any € > 0. Applying Lemma 4.2.(i) and using Proposition 4.1, we see that

liminf min  A(7,y) > Ocit,
T |y|<cerit—€

and, recalling that h is even and radially decreasing,

limsup max h(7,y) <limsuph(7,0) = limsup Mp(7) = Ocrit.

T—00 \y <Ccrit—€ T—00 T—00
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The last equality follows by Proposition 4.1. Thus we have established (4.1) in the
case where |y| < cerit-

We now investigate the upper bound. Applying Lemma 4.2.(ii), we have
1-— [_Ccrit h(T, yl)dy/

Ccrit

2¢e

From the lower bound established above, we have that lim f_i“c‘t h(T,y)dy - 1 as
7 — o0. Thus, we conclude that

h(T, Cerit + €) <

(T, cerit +€) = 0 as T — oo.
Since h is even and radially decreasing, we find

limsup sup h(r,y) =0,

T—=00 |y|>cerig+E

which concludes the proof by the arbitrariness of . O

4.2. The convergence of E; and M. In order to provide clearer references and
to more closely mirror the structure of the proof, we split this into two separate
propositions.

Proposition 4.3. Under the assumptions of Proposition 4.1,

limsup Ep,(7) = limsup Mp(7) = Ocrit.-

Proposition 4.4. Under the assumptions of Proposition 4.1,
liminf Ep, (7) = liminf Mp(7) = Ocyit.
T—>00 T—>00

Clearly Propositions 4.3 and 4.4 imply Proposition 4.1. Hence, we focus on
proving each of the above propositions in turn in Sections 4.2.2 and 4.2.3, respectively.
Interestingly, the proof of Proposition 4.4 uses Proposition 4.3, and, hence, the order
in which these propositions are proved is important.
4.2.1. Technical lemmas. We begin by stating and proving two crucial lemmas.

Lemma 4.5. For any 7’ > 7 >0,

"+1
E, () <| L
h(T)_(7'+1

2
) Eh(T).

Proof. Multiplying (3.3) by h and integrating by parts implies that Ej, < %Eh.
L2
Solving this differential inequality yields the claim: Ep(7") < (T—”) En(7). O

T+1

Lemma 4.6. For any 7' >7>0,

"+1
M, () < | L
h(T)_(T+1

2
) Mh(T).

The proof of this fact is exactly as in Lemma 4.5, though using the comparison
principle in place of energy estimates, so we omit its proof.

We require another technical lemma; however, its proof is quite involved and so
we postpone it until Section 4.3.
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Lemma 4.7. Fiz any € > 0. There exists 7. > 0 and Tshite, depending only on ¢,
such that if T > 7, then

Mh(T + Tshift) < (1 + E)Eh(T).
Moreover, there exists a sequence T, tending to infinity such that

lim My(7,) = lim Ey(7,) = liminf E}, = liminf M.

Roughly, we require this, in conjunction with the two previous lemmas, to find
large time intervals on which M} and E} take approximately the same value.

4.2.2. The upper bound on limsup Fp and limsup My, : Proposition 4.3.

Proof of Proposition 4.3. By Lemma 3.2, limsup M}, = limsup E}; hence, for the
remainder of this proof, we focus our attention only on limsup Ej. We prove the
bound on Ej by contradiction. Suppose that
limsup Ep(7) =6 > Ocyit.-
T—00

The main idea is the following. First, find a large time interval where Ej, transitions
between 6. to 8. When Ej, » 0., the closeness of M} and Ej forces h to be
O(1) near cqi (recall Lemma 4.2). Then, as Ej, grows to be approximately 6, so
does h, at least on the set [—Cerit, Cerit ] It follows that the integral of h is at least
approximately 20cqit > 20critCerit = 1, which is a contradiction.

Before beginning we set two parameters. Fix

60— Gcrit Cerit
4.2 0,———— d =
(42) EE( 100(1+9Cm)) R S
such that
(4.3) 2(c-¢e)(0-2¢) > 1.

The above is possible since 0 > 0.5y and 20t Cerit = 1.
Step 1: a large time interval in which FEj transitions from 6. to 6.
Let 7 > 0 be a large time to be determined. By Proposition 1.4, we have that
liminf E}, < 0. Hence, we can find 7 < 7y < 75 such that

(44) Ep(71) =0ait(1+¢), Ep(r)=0-c, and Ep(7)e€[Ouit(l+e),0-¢]

for all 7 € [7,72]. By Lemma 4.5,

~ 0—¢
22T ey

We note that, by the choice of £ (4.2), the coefficient of 7; is greater than 1 so that
79 > (1+2p)7 for some p > 0. We note that p can be chosen independent of ¢ over
all e satisfying (4.2).

Using Lemma 4.7 and increasing 7 if necessary, we find a universal constant 7gp;f;
such that
1+2¢
1+e

(45) Mh(%l + 7-shift) < Eh(%l) = (1 + 25~)9c:rit-

Let 71 = 71 + Tsnire. Up to increasing 7 in a way depending only on p, we have that
(1 + p)Tsnite < p71 and, hence

(4.6) (L+p)11 = (14 p)(T1 + Tenite) < (1 +p)71 + pT1 = (1+2p)71 < To.
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Combining (4.5) with the fact that Ep(71) > Oerit (1 + ) by (4.4), we deduce the
two following inequalities:

Eh(Tl) S 1+e

4.7 M, < Oopie (142 d > .
(47) n(m1) o(1+22) an My(r1) = 1+2

Step 2: h=0(1) near cui;. In this step, we obtain a preliminary bound on h
so that we may apply Proposition 3.3.

Applying Lemma 4.2.(i), we find

Eh(’rl) _[2 hd

My (r) _J-c"%Y
48 h(r.c) > My (r) el _J=e 777
(4.8) (11,¢0) n(T1) 1[5 hdy

In order to obtain a lower bound on the right hand side above, we define the following
auxiliary function. For any s < Ej, /My <1, let

Eh(‘rl) _

S
o(s) = P —.
-8

Notice that ¢ is decreasing on its domain. In addition, recalling the definition of

My, the choice of ¢ (4.2), the fact that 2ceitferit = 1, and the bounds on M), and
Eh/Mh (47)7 yields

< Cerit
hdy < 2cM =2————M,
[9 y < 2eMi () (1+2¢)? w(r)

Cerit 1 1+¢ Eh(Tl)
<2 crit = < .
1+ 2 142 142~ Mp(m)

Thus, f_gc hdy < 1/(1 +2¢) and both quantities are in the domain of ¢. Hence,

Ep (1) c Ep (1) 1
M) ~ ey _¢(f£hd )>¢( 1 )_ My () ~ o2
1- < hdy VA VI ™) A PR W
Using this in (4.8) and applying (4.7) yields
En(m) _ _1 l+e 1
™ ~ T2 M,
h(ri,€) 2 M) TR s g, () 132~ Tz M)
1- 1+2¢ 1- 1+2¢

By Lemma 3.1 and the fact that h is radially decreasing, we conclude that
(4.9) minh(ry,2) = h(m,c) 2 1.

|z|<c

Step 3: h grows up to 6. Up to increasing 7, which also increases 7 — 7y
(see (4.6)), we now apply Proposition 3.3 to conclude that

ue(12,0) 20— 2¢

for all c € [0,c—¢€]. Here it was crucial that the lower bound (4.9) on h was O(1)
and uniform over all x € [-¢, ¢]. Thus, we find

[ee) Cc—€
1:[ h(TQ,c)dczf’ Ue(72,0)de > 2(c - £)(8 - 22).
—o0 —cte

However, 2(c-¢)(f —2¢) > 1 by (4.3). This is a contradiction, concluding the proof.
O
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4.2.3. Lower bound on liminf. We now prove Proposition 4.4, which completes the
proof of Proposition 4.1. As in the previous section, we note that we do not directly
use the symmetries of gg in a strong way here. It only arises in this section through
Proposition 4.3, which was established using the symmetry.

A useful quantity in the sequel is the time average of Ej,. In general, given a
function f:[0,00) = R, we define its time average to be, for any 7 > 0,

i == [T e)as.

The main heuristic of the proof is the following. If Fj, oscillates below 6.
by a fixed amount at a large time, then so does M}, by Lemma 4.7. Hence, on
[—Cerit, Cerit ], 1 has to be smaller than 6., which implies that

Ugpy < Oorit  for z <0.

On the other hand, using Proposition 4.3, the “accumulated reaction” 3 fOT E(s)ds =
37E,(7) can be no larger than 376, plus a small correction due to the difference
in time domains between the integral and the interval on which FE}, is small. Heuris-
tically, this means the front u._, in (3.5) cannot exceed the speed 0 in the moving
frame (speed cqit in the physical variables). This yields

Ue,,,, =0(1)  for z>0.

Thus, after suitably quantifying everything, we obtain the contradiction:

1 ° 1 °
5= f h(r,y)dy = - f Ueoy, (T,2) dz
0

0 T Cerit (T+1)

1 1 e 1
< — f Ocrit dz + — f 0(1)dZ % Ocrit Cerit = -
T J—cerit (T+1) T JO 2

N
h<Ocrit ON [~Cerit,Corit ] Uegyy, 18 small

beyond the front

Proof of Proposition 4.4.  Recall that Ej, < Mj, and hence that liminf E} <
liminf M},. By Proposition 4.3, we have that limsup M}, = 6., Hence, if we prove
that liminf E}, = 6,4, we may conclude that liminf M}, = 6.,5;. As such, we consider
only liminf E}, for the remainder of the proof.

We proceed by contradiction. Assume that liminf Fj, < 0.. By Lemma 4.7,
there exists 7,, tending to infinity such that

lim My (7,), lim Ep(7,) < Ocrit.

Define E,(7) = max{Ey(7),0crit}. We note that E,(7) 2 feig for all 7 and
that im EF, = 0. The lattgr follows from the fact that, by Proposition 4.3,
limsup E} = 0.4t- Recall that E, was defined as the time average of E,.

We now construct a super-solution of uc,,,, on the parabolic domain P = (0, 00) x
(0,00). Indeed, for A >0 to be determined and any (7,z) € P, let

! 2 o 2Ceri 2
U(Taz):A(T+1)exp{3f0 E.(s)ds - C;)mT_ C;) tZ_Q(TZ+1)}~

The first three factors in the exponential are typical of supersolutions for Fisher-KPP.

The last factor is to cancel the contributions due to the 50, term in (3.5).

Define the parabolic domain P = (0, c0) x (0, 00). We aim to use the comparison
principle to bound u._,, from above by u on P. To that end, we first check that
U > U, on the parabolic boundary of P. There are two components to check:
when 7 =0 and when z = 0. In the former case, this is clearly satisfied by choosing
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A sufficiently large as u._,, (7 = 0,-) = go(cerit + ) € C.(R). In the latter case, we
note that

02. .
u(7,0) = A(T + 1) exp {T (3E+(7') - 23““)} =A(T+ 1)exp{37 (Ei(r) - Ocrit)}.

where the second equality follows by the definition of Oy and ceit (see (1.10)).
Since, by construction, E, > 0, it follows that u(7,0) > A for all 7 > 0. By
Theorem 1.1 and its definition, u.,, is bounded above uniformly for all 7. Hence,
there is some A such that w(7,0) > wu,.,(7,0) for all 7 > 0. We conclude that
U > U, on the parabolic boundary of P.

The last step is to check that @ is, in fact, a supersolution of (3.5) in P. We
compute:

2 z

Uy — §AH— 3u(Ep —u) — 2¢eit0,U — —— U — —— 0,1
2 +1  T+1

2 2 ) 2
_ 1 L3E, - 2¢t,4 . z ~ 3 [ 2¢erit L 1
T+1 3 2(r+1)2 2 3 (r+1) T+1

2ccrit+ z ) 2 . 2Cerit 2 . 22
3 7+1) 7+1 3(r+1) (7+1)2

- 3E;, + 3u + 2¢erit (

=Uu

1 2Ccritz —
— ~  _43(E,-E 37| >0.
(2(7+1)+ (B —Bh)+ 0 u)

In the inequality, we used that E. > Ej and uw > 0. Hence u is a supersolution
of (3.5).
Combining all the work above, we apply the comparison principle and conclude
that @ > u,,,,, on P.
We now conclude the proof. Let
1 1

c= : > = Ccrit
ecrit + lim Mh (Tn) ecrit + ecrit

Using that [ hdy =1 and that h is even, we have that

%=f0mh(y)dy=fogh(y)dy+

o)

Ue... (T,2)dz
7_+1 (E_Ccrit)(T‘Fl) Ccrlt( b )

<eMyp(T) + u(r,z)dz
n(7) T4+ 1 J(@corit)(7+1) (7.2)

(4.10) ~ ST(E+— 22, ) oo 2eers 22

=¢Mp(7) + Ae ? / e 3 T dz
(E_Ccrit)(7-+1)
A - 2 2. 2 cri +1
<eMp(T) + exp4 3T E+—ﬂ—g(6—ccm)7—— .
Cerit 9 9 T

Recall that im E, = Ocy = 2c§m /9 and € > cqpi¢. Evaluating the above at 7, and
taking n to infinity, we find

lim My, (7,) 1
Ocrit + im My, (7,) 2’

1
3 <elim My (1,) +0=

where the last inequality follows because lim M}, (7,,) < Ocri¢- This is a contradiction.
Hence, the proof is complete. O

4.3. Proof of technical lemmas.
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4.3.1. The proof of Lemma 4.2. There are two parts to prove. We show them in
order.

Proof of Lemma 4.2.(i). Fix r as in the statement of the lemma. We abuse notation
by denoting f(r) = f(«) for any |z| = r. We compute:

Efng f2dx+/}39f2dx§MffB fdx+f(r)/Bffdx
:MffBrfdx+f(r)(1—/Bdex).

Recall that |, g, fdz <1. Thus, rearranging the above yields

E
wy e fde By - M [y fde
T1-f, fdo 1- [, fdz

This completes the proof. O

< f(r).

Proof of Lemma 4.2.(ii). First we compute:

1:ffdx2fB fdx+fB

The last inequality uses the fact that f is rotationally symmetric and radially
decreasing. The proof is concluded by rearranging the above inequality. O

fda> [ fdoswalleol’ -1 (xo).

o> Br

4.3.2. The proof of Lemma 4.7.

Proof. We begin with the first claim. Fix 7. and 7ghiy to be determined. In order
to prove this, we first note that Ej cannot stray too far above Fj (7). Indeed, by
Lemma 4.5, we have

14

En(r') < (TT) En(r).

Hence, there is u. > 0 such that if 7qpigy < pe7 then Ep(7") < (1 +¢/4)Exp(7) for all
7" € [T, 7T + Tsnire]. Notice that u. depends only on e.

We now construct a simple super-solution that “pushes” M} down to Ej,. Indeed,
for 7' > 7, let

e = (12 2) e+ (1) ),

where v > 0 is a constant to be determined. Notice that h(7,y) > My (7) > h(7,y)
for every .

We next show that h is a supersolution of (3.3). Indeed, for any 7’ € [T, 7 + Tenist ],

0rF 57y - () - T) - T,2+ (7 y0,7)
=v(1+¢/2)En(r) +3h (h - % - En(7') - ?)(T,QH))

>v(1+¢/2)Ep(T) + Sh(h— % _ (1 n Z)Eh(T) B 3(7-82+1))
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In the last step, we used that £ (7") < (1+&/4)Ey(7) for all 7/ € [7, 7+ Tsnire ] Recall
that My, (7) > Ep(7). Thus, h > (1 +¢/2)E),(7), and we find

- 3 - o P 2 - —
drh - mAh—fﬂh(Eh(T Y-h)- ] (h+yoyh)
27(1+g/2)Eh(T)+3h(ZEh(T)-g-3(72”)).

From Theorem 1.1, there exists C' > 0 such that C~! < Ej,(7) < M, (1) < C for all
7 > 1. Thus, choosing v = £/(24C') and increasing 7. if necessary, we find

3

Orh— ——
2(r' +1)2

o _ 2 _
Ah - 3h(Ex(7") - h) - -1 (h+ydyh) > 0.
It follows from the comparison principle that h(7',-) > h(7',-) for all 7/ € [1,7 +
Tenift |- Thus, we conclude that

My (7 + Tenise) < B(T + Tanige, 0) < (1 +¢/2)Ce e Thite 4 (14 ¢/2) Ep (7).
It is clear that if 7ghf is chosen large enough, depending only on &, then the right

hand side above is bounded by (1 +¢)Ep(7), as desired. This finishes the proof of
the first claim.

We now prove the second claim. First note that liminf E} < liminf M), since
E;, < My,. Hence, if we find the sequence 7, in the statement of the lemma, then
it follows that liminf E} = liminf M}, and the proof is concluded. In order to find
such a sequence, it is enough to establish the following claim:

for every e, 79 > 0, there is 71 > 79 such that My, (1), En(71) < (1 +¢)? liminf Ej.

It is clear that the procedure used to establish the first claim yields the desired
71. Indeed, after choosing, in the notation above, 7. > 79, 7 > 7. such that Fy(7) <
(1+¢)liminf Ey, and letting 71 = 7 + Tgpige, we find

My (1) < (1+e)Ep(1) < (1 +¢)*liminf E;,  and
En(n)<(1+e/4)Er(7) < (1+e/4)(1 +¢)liminf Ej,.

This concludes the proof. O

4.3.3. The proof of Proposition 3.3. We break this proposition into two smaller
lemmas. The first (Lemma 4.8) shows that u. remains locally uniformly bounded
below over the entire time interval [79,71], while the second (Lemma 4.9) shows
that u. grows from this initial weak lower bound to the claimed value E (1) — € over
a terminal boundary layer [71(1 - 8¢), 1] for Se ~ . In this final step, it is crucial
that E; grows “slowly” as in Lemma 4.5. We state these lemmas here and then
show how to use them to conclude Proposition 3.3. Afterwards, we prove them.

Our first lemma is below. Similar results exist in the literature (see, e.g., a very
general work of Berestycki, Hamel, and Nadin [2]); however, we are unable to find
one that, applied out-of-the-box, yields the result below with the uniformity in all
parameters and allows for the particular assumptions that we require. As such, we
provide a proof below, although the ideas are standard.

Lemma 4.8. Fiz any Ty <11, w, 9, and c. Suppose that R> 1+ 107r/\/5 and

(411) {&u = 3Au+3u(f(7) - u) +2c0.u +a(T,2)d.u in (Ty,T1) x Bag,
u>ulp, on {Ty} x Bag(0),

where [ and a are continuous and [ satisfies

(4.12) 18f(1) —4c* > 6§ for all T € [Ty, T1].
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If @] e (1o, 1,1xBar) 8 sufficiently small depending only on § and c, then there
ezists Cs, ¢, depending only on 6 and | f|e, and T, depending only on | |, @] oo,
w, 8, and R, such that, if T € [To+T,T1], then

in u(r,2) > —
min u(7,2) > —.
z2€BRr C&,f

The heuristic of Lemma 4.8 is that if the reaction f, advection a, and speed ¢
satisfy a sub-minimal speed condition (4.12) in a uniform way, then u propagates at
speed c in the sense that it remains O(1) regardless of the particular fluctuations of
f and g. We note that it is crucial for our estimates that this is uniform in ¢ and f.

Our next lemma is the following.

Lemma 4.9. Fix any 19, 71, i, R, p, €, 0, and c. Suppose that u solves

dru=3Au+3u(p-u)+20.u+ 2su+ 250.u in (10,71) x Bg,
u=p on {10} x BR,
u=0 on (710,71) x OBpR

and 18p—4c® > 6. If o and R are sufficiently large, depending only on & and €, then
there exists T, depending only on u, €, and §, such that, if 7, — 79 > T, then

u(71,0) 2 p—ec.

The main difference between the following and Lemma 4.8 is that the lower bound
at the final time is much stronger at the cost of having a constant reaction term 3p.
In particular, as long as the sub-minimal speed condition (18p —4c? > §) is satisfied
and 7 is sufficiently large that the last two terms in (3.5) are negligible, then v must
grow to the carrying capacity p uniformly among all speeds.

We first show how to conclude Proposition 3.3 from Lemmas 4.8 and 4.9.
Proof of Proposition 3.3. First we notice that, by Lemma 4.5, there is f. € (0, 1),
depending only on ¢, such that

1
1_75Eh(7');
2Eh,(71)

Tl+1
E <
n(m) (T+1

2 1
) Eh(T) < mEh(T) <

for all 7€ [71(1-:),71]. Recall that Ej, () is bounded uniformly above and below
by Theorem 1.1, and, hence, 8. can be chosen independent of Ej,(71). Thus,

(4.13) Eh(T)th(ﬁ)—g for all 7€ [11(1 - B.), 7]

Fix R>1+ 107T/\/(_5 large enough such that Lemma 4.9 can be applied with the
choice
e 1
4.14 = min E, (' (2 max{E ) — =, —})
(4.14) P= i n(7') (m-35
and the ¢ in Lemma 4.9 taking the value of £/2 in the current proof. As 18E},—4c? > §,
by assumption, it follows that 18p — 4c? > 6.

Fix an intermediate time it € [71(1 — B:),71] to be determined. Applying
Lemma 4.8 on the time interval [79,7int], we find that, up to increasing 7o if
necessary (to make the coefficients in (3.5) sufficiently small) and choosing Tint — 7o
sufficiently large, there is C5 > 0 such that

1
(4.15) Ue(Tint (1 = Be), 2) > roR for all z € Bp.
5
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‘We now let v be the solution of

Oru=3Au+3u(p-u)+2c0u+ 2qu+ Z70.u,  in (Ting, ) x Bg,

1
u= Cs> on {Tint} X BR,
u=0 on (Tint, 00) x OBR.

By (4.15), u < ue on {7int} x Br. By the choice of boundary conditions u < u. on
[Tint, 71] x OBR. By our choice of p and by (4.13), w is a subsolution of (3.5). Thus,
the comparison principle implies that u < u,. on [7in, 71 ] X Bg.

Up to increasing 7 — 79 (recall that 7, has already been fixed relative to 1), we
have that 71 — Tint, the length of the time interval [7in, 71], is sufficiently large to
apply Lemma 4.9 and conclude that

E(r)-c<p- g <u(r1,0) < ue(r1,0).

The first inequality is by (4.14), the second by Lemma 4.9, and the third by the
ordering u < u, outlined in the previous paragraph. This concludes the proof. O

We now prove the two lemmas.

Proof of Lemma 4.8. Let p = 1071'/\/3. By assumption R+p+1 < 2R. By the Harnack
inequality, there exists u, depending only on Hf||Lm[TD)T1], ”gHL“([To,Tl]XBgR)a 78
and p, such that

w(To+1,7) 2 plpyg,,.

In particular, we have the bound u(Tp +1,-) > plp, (z) for any zo € Bg. Our goal
is to obtain a lower bound on u(T}, zg9) via the construction of a subsolution u on
[To + 1,T1] x B,(20). For notational ease, we assume zo =0 and Ty + 1 = 0 for the
remainder of the proof since all arguments are translation invariant.

We now construct u. Let A >0 and ¢: [0,71] - R be a constant and function
determined, respectively. Then let

2
u(r,2) = Me—k(mz)e/(; B(s)ds (g (;l) .
- P

Up to decreasing p, we can choose ¢ in the sequel such that

0
(416) u< ﬁ on [O,T]_] X Bp.

Notice that u < u < on {0} x B,. Moreover, u < u on 9B, since u is positive.
Hence, we need only check that u is a subsolution of (4.11) in order to conclude,
via the comparison principle, that v <u on [0,T1] x B,,. To this end, we compute
that, using (4.16),

Oru — gAy =3u(f-u) - (2c+a)d.u

27\ e—A(p+z)+f07 P(s)ds 2 6—A(p+z)+f0" ¢(s)ds
< ou - §()\2g + H cos sin + E 5 (sin2 - cosz) )
2 p 2p
s ﬁue—k(p+z)+fof #(s)ds
—3y(f——)+(20+a) Au+ — cossin
100 p

sin (2c+a-3\)7  sin? 72

:—(3;\2+3f—35—7T2—(20+a)/\—¢)+u

u —.
100 2p? cos p ~cos? 2p?
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We now select A = 2¢/3. Using this choice of A and condition (4.12) to find

Oru — gAg— 3u(f-u) - (2c+a)d,u

§ m 2ca sin am2c sin? 72
o) +u— —U—— o
cos 3p cos? 2p?
Next, see that, by Young’s inequality

sin ar2¢  sin® 7% 2a%c?

— < — +
cos 3p T~ cos? 2p? 9
Thus,

3 )
(417) Oru~gAu-3u(f-u) - (2c+a)du< —u(lo "3 -¢-

Using the choice p = 107/v/0 and letting

0 . 100 )
¢(T) = ﬁl[O’T] (T) with T = T log (maX {].7 100“}) s

(clearly T < Ty if Ty is sufficiently large), we find

3 5 2ca 2a%c?

Oru——Au-3 —u)-(2c+9g)0u<-u|l—-—-

u-Au-3u(f ~u) - (2¢+9)0:u u(25 3 9)

Thus d-u - 3Au - 3u(f - u) - (2c + a)d.u < 0 if |a]e is sufficiently small. We
conclude, via the comparison principle, that u < u. Using the form of ¢ yields

Y
T1,0) > —e 7.
Q( 1, ) < 1006
Recall that p is given explicitly in terms of 6 and A is bounded by 3+/| f] /2 due
to (4.12). Hence u(T1,0) is bounded below in a way only depending on ¢ and | f| e,
as claimed. This concludes the proof. O

Proof of Lemma 4.9. We prove this by contradiction. Suppose there exists 7,,,
Tn, and R, < /T, all tending to infinity such that u(z,,-) > 4 on Bg, (0) and
w(T,, +Tn,0) <p-c.

Let uy,(7,2) = u(T,, + Tn + 7, 2). By the maximum principle, u < max{u, p +2/3}.
Thus u, is uniformly bounded in L*, which, using parabolic regularity theory?,
yields a uniform bound in Cﬁ;&bohc for any « € (0,1). Thus, there exists uo such

that u, — Ue locally uniformly in C? and ue solves

parabolic
3 .
Ortleo = gAum + 3Uoo (P = Uoo ) + 20, Uoo in RxR.

Applying Lemma 4.8, we have that ue > 1 on R x R for some p > 0.

Notice that
Uo0(0,0) = lim u(r,, +75,0) < p—c¢,

where the inequality follows by assumption, it follows that infrxr teo € [, €]
There are two cases to consider.

dSee, e.g., [18, Theorem 4.9, Theorem 6.9] which correspond to Schauder and De Giorgi

2+ mentioned here refers to the standard parabolic Holder

estimates, respectively. Also, Cparabolic

spaces. Roughly, this corresponds to Cclral2 regularity in t and C?*® regularity in z.
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Case one: u. achieves its minimum at a point (Tyin, Zmin). Then,
Uoo (Tmins Zmin) € [14, p — €] and, at (Tmin, Zmin), We have

3
02 0rtoo — §Au°° =200, Uoo = BUoo (P — Uso )-
This is a contradiction since oo (Tmin, Zmin ) € [H’ p—¢] and, hence, at (Timin, Zmin ),

oo (p = 1ee) > min{pu(p— 1), £(p— )} > 0.
Thus, this case cannot occur.

Case two: u., does not achieve a minimum. Here we use a fairly standard
re-centering trick. Indeed, let (7,,, z,) be a sequence such that we (75, 2, ) = Inf Ueo
as n — oco. Let

Un (T, 2) = Uoo (Tr, + T, 2 + 2) for all (7,2) e RxR.

We conclude as above that v,, - ve for some smooth function ve, solving the same
equation as Ue. In addition, ve.(0,0) = infve, € [, p—€]. At this point, the proof
proceeds exactly as in case one, leading to a contradiction.

Since we obtain a contradiction in all cases, the proof is finished. O

5. LONG TIME DYNAMICS OF SOLUTIONS IN HIGHER DIMENSIONS

We begin with the (somewhat simpler) proof of the moments estimate Theorem 1.5.
Afterwards we proceed with the construction of non-Gaussian self-similar solutions
for the equation in two dimensions.

5.1. Higher dimensional moments estimates. As in the one-dimensional case,
the key estimate to establish is an upper bound on E,. We state this here and prove
it in Section 5.1.2.

Proposition 5.1. For anyd>1 andt >0,

_d
2

Ey(t) 5 (t+ Eg(0)77)

We note that, in the course of establishing Theorem 1.5 from Proposition 5.1, we
obtain a similar bound on M.

5.1.1. Moment bounds. We show how to conclude bounds on the moments of g
using Proposition 5.1. The main difficulty is in establishing the upper bounds on
the moments as all other conclusions in Theorem 1.5 are either obtained along the
way or a simple consequence of Proposition 5.1 and the moment upper bound.

We establish these upper bounds through the construction of a supersolution. In
the one dimensional case, this was made up of a solution to the heat equation with
an exponential integrating factor depending on E,. Trying to apply this directly

here yields an issue in the 2d case: ]f E,(s)ds grows logarithmically in ¢ (it is
bounded if d > 2). As such, a simple proof mirroring the 1d proof closely can be
established in dimensions d > 3 but will not be sharp when d = 2. Thus, we mainly
focus below on the case d = 2. The key step here is to obtain and use a lower bound
on the R * g term when |z>/t = O(1).

Proof of Theorem 1.5. We begin with the proof of the upper bound on the moments
in Theorem 1.5. We claim that there exists A > 0 such that for all ¢ >0,
A __a?
(5.1) ot ) € — et
(t+1)2
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Before establishing this, we note that the proof of the upper bound follows imme-
diately via a direct computation using (5.1) (indeed, this is, up to a time change,
equivalent to the fact that the pth moment of a Brownian motion is O(t?/?)).

We now establish (5.1) via the construction of a supersolution. Let

A o?
a(t - T T 3AGHD if d=2
gt,z) = ——e ! ’
G(t,z) = Lefot By (s)ds- 2(:31> ifd>3
T = 1)y o

Again, note that the choice of g for d > 3 would yield an extra logarithmic factor
were we to use it in the case d = 2 as E,(s) ~ (s +1)™! and, hence, would not yield
the sharp asymptotics. In fact, that g is a supersolution when d > 3 is clear as it is
simply a solution to the heat equation along with an integrating factor. Thus, we
focus our efforts on the case d = 2.

Up to increasing A, we have that g > g at t = 0 since g is compactly supported
and bounded. We show that § > g on (0, 00) x R? by contradiction, taking ¢y > 0 to
be the first time that g and g “touch.” Let zy be the point at which they touch. It
follows that, at (to, o),

1 1

Our goal is to use (5.2) to obtain a contradiction.

We claim that, at (¢, zo),
1
(5.3) 8t§—§A§—§(Eg—R*g)>O.

Postponing the proof of (5.3) momentarily, we show how to conclude using it.
Indeed, at (tg,x0), we have, from (5.2), (1.1), and then (5.3),

1 1 1
3@—§A§S3t9—§A9:9(Eg_R*9) =g(Ey-Rx*g)<0ig- §A§~

This is clearly a contradicton. Hence, (5.1) follows from (5.3), which we prove now.

With arguments reminiscent of those in Section 2 (see, e.g., the proof of Lemma 2.3),
it is easy to check that, up to further increasing A, we may assume that ty > 1. Next,
using arguments exactly as in Lemma 2.2 (cf. (2.7)), there exists Cg > 0, depending
only on R, such that

202

A __2@h
5.4 R t > ————e Alto+l) |
(5.4) * g(to, o) Crorn’

The above relies on the fact that g(to,-) < g(to,*) < (1 +t9)~" and that

2
___%*0 _
e A(to+1) ,

to,xo) =q(tg,xo) =
g(to, o) = g(to, o) to+1

which hold by contradictory assumption.

Notice that, for any (¢,x),

_ 1. z? 1 1 1
8tg_2Ag—g(M(t+1)2(1—A)+t+1(—].+A))
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Hence, using Proposition 5.1 and (5.4), we find, at (¢o,zo),
_ 1. _
3t9—§A9_9(Eg_R*g)
(5.5) )

>3 9”7(1-1)+L(_1+l)_ €, Ac 2o
=9 2A(t0+1)2 A t0+1 A (t(]+1) CR(t()—f-]_)

where C' is the implied constant in Proposition 5.1.
Increasing A if necessary, we have
(5.6) A >max{2,Cr(C +1)e8C*Dy,
We consider first the case when |zo? > 4(C + 1) A(to + 1). Then (5.5) becomes

_ 1. _ . _{2(C+1) 1 C
05— ~AG-7(E, - _ _ > 0.
9= 589 -9 (E, g)>g( torl  fo+1 (t0+1))‘

On the other hand, if |zo> < 4(C + 1) A(to + 1), then (5.5) becomes

L ¢ + A e8] 5.
to+1 (t0+1) CR(to-i-l)

where the last line follows from (5.6). Thus, (5.3) follows from the two cases above.
This finishes the proof of (5.1).

The proof of the upper bound on M, follows from the fact that g < g, while the
upper bound on F is the content of Proposition 5.1. The proof of the lower bounds
on the moments and on the L2- and L*™-norms of g(t,-) follows exactly as in the
proof of Theorem 1.1 using the bounds established above. As such, we omit the
details. The proof is, thus, finished. O

_ 1 _ _ N
8tg—2Ag—g(Eg—g)>g(—

5.1.2. The upper bound on g. We now establish the key upper bound on E, on
which the previous section depends. We use classical methods based on the Nash
inequality to order to establish the ¢t~%2 decay of Ey; however, the Nash inequality
must be slightly adapted to our macroscopic quantities £, and D,. We state this
updated Nash inequality here, its proof is left until after the proof of Proposition 5.1.

Lemma 5.2. Let h e HY(R?) n LY (R?) and suppose that R satisfies (1.4) or R=4.
Then
d 4/d
B, 5 |nly Dy,

Proof of Proposition 5.1. Applying the convolved Nash inequality from Lemma 5.2,
we find that
4/d
E;+2/d S H9H1/ Dy = D,.

Using this inequality in (2.12), we have

(5.7) Ey=-Dg-2 f 9(R* g~ Eg)*de < -Dy 5 B,
Integrating this in time, we find

-d/2
(5.8) B,y () 5 (t+ B, (024"

which concludes the proof. O

We now prove Lemma 5.2. The proof given is almost exactly as in the classical
case; however, the new R terms in the Fourier transform must be addressed.

Proof of Lemma 5.2. We note that the case R =9 is the standard Nash inequality;
hence we omit its proof and focus only on the case when R is continuous and
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satisfies (1.4). We use the Fourier transform: for any function h, we denote its
Fourier transform by h. We begin with Plancherel’s identity

Eh:(h,R*h):fsz*hdg:fWQEdg.

Notice that, due to the form of R in terms of ¢ (see (1.4)), we have R = ¢* and
since ¢ is assumed to be even, it actually implies R= \q§|2 In other words, Ris
real valued and non-negative (this is not surprising, because R comes from the
covariance function of a Gaussian process so it is positive definite).

Hence, for L to be chosen, we have

7 7 £|2A2A a2 > |£|2A2A
Es[ h|?Rd f—' RIPRde < LA A2 | Rl o /—h Rd
h B, | | §+ Be 2 | | g H Hoo” H + B 12 | | f

1 1
< LY|nl3 + 73(Vh R xVh) = LYn|3 + =5 D

The proof is then finished by choosing L2 = D, /|h|?. O

5.2. Gaussian and non-Gaussian self-similar dynamics. The goal of this
section is to prove Theorem 1.6. Recall that we assumed the convolution kernel
R =6. In order to attack this problem, we begin with a few transformations of the
function g. We use self-similar variables here; that is, we define

(5.9) G(r,y) = e%Tg (eT, eT/2y)
and find that

d
=3
First, we note that, in the above equation, the linear operator %A+ %-V+% is actually
the adjoint of %A - % .V, which is the generator of an Ornstein-Uhlenbeck process

d—2,r

1
(5.10) Gy = 3G+ SAG+Ge s (HG\|§—G)+%-VG.

with the standard Gaussian invariant density (27)~%2exp(~|y[?>/2). Thus, without
the nonlinear term, the above equation is actually the Fokker-Planck equation for
the Ornstein-Uhlenbeck process which converges to its invariant density. We now
see the reason for the different behavior in d = 2: when d > 3, the nonlinear terms
are lower order terms decaying exponentially in 7, hence we get a Gaussian behavior
as expected, while when d = 2, the nonlinear terms are O(1) since, in these variables,
Theorem 1.5 yields

(5.11) IG5, 1G oo ~ 1.

5.2.1. Decay to a Gaussian in higher dimensions d > 3. We now use the above
change of variables to obtain the convergence to a Gaussian; that is, we prove
Theorem 1.6 (i). First, we make a few reductions. Up to shifting in time, we may
assume that, for 79 > 0, g(€™, ) = go(«), which yields

eT0 y2

(5.12) G(10,y) = go(e™/?y) < B A for all y € RY.

Hence, up to increasing 79 and increasing A, we may assume that
. 2
G(ro,y) < Ae™ 7 for all y e RY.
Summing up the previous reductions, we assume that G solves
_d=2

(5.13) Gr=1AG+%.VvG+4G+e T 7G(|G|}-G) in (7o, 00) x RY,
' G=Gy<Ae T on {7y} x R%,
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The above is not self-adjoint and, thus, not amenable to spectral analysis. Hence,
we define a new function

v
4

G(1,y) 1
Gy here vo(y) = Ze

with Z = (27)%* is a normalization constant chosen so that [t = 1. It is clear
that 17 is the standard Gaussian density. We note that, due to the bound on Gy
in (5.13), we have that Wy := Go /v € L*.

‘We notice that

W(T7 y) =

1 d 2 i
(514 WTZQAWW({'%)*We‘d“(an%—G)

For simplicity, we write the linear operator

2
M:—1A+ " _d .
2 8 4

We understand the behavior of G through the properties of M. First, note that
M is an unbounded, symmetric operator on L?. For each multi-index o € Ng, let
Yo =95 0070 = Ha(y)ho (),

where H,, is the o Hermite polynomial that is implicitly defined above. It is easy to

check that

o
Mg = 4.
Y=g

In addition, it is well-known® that 1, form an orthogonal basis of L?. In particular,
we conclude that if (1, 10) = 0, then

(515) (M,0) 2 S |1B.

We are now in a position to complete the proof of Theorem 1.6 (i).
Proof of Theorem 1.6 (i). We write

Wi(ry) = W(,y) - ¢o(y).
Notice that
(Wi(7),%0) = (W(T),%0) = (tho, tho) = / G(r,y)dy-1=0.
The proof proceeds by showing that W, — 0 using this orthogonality.
Multiplying (5.14) by W,, integrating, and noticing that (W, W,) = |[W,|3% by
orthogonality, yields

a-2

1 e
SO IWLE = ~(MW, W) + e F (W (G5 - G), Wi).
Next, using that MW = My + MW, = MW, and (5.15), yields

1 Caa
SO W5 =~(MW,W,)+e = (W (|GI3-G),W.)
(5.16) )

d

1 a2,
<S5+ e T (W (IG]5 - G), ).

Using the bounds in Theorem 1.5, we find
(WG3-G), W) S W2 |Wil2 < (1+[Wef2) [Wo-

®This is usually stated in the following way: the set of (rescaled) Hermite polynomials H, form
a basis of the weighted space L2(¢g). This is, however, equivalent to our statement.
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Hence, (5.16) becomes, for some C > 0,

(d—

_d=2, _d=2)
oW 3+ (1-Cem ) W3 s e 7 [ Wi,

Solving this differential inequality yields
[Wil2 s Ra(T)

where we define
J(r+1)e? if d =3,
Ra(7) = {6"7/2 it d>4.

Returning to G, we find

il 2
f e? (G(r.y) -v5) dy s Ra(7)>.
Using parabolic regularity theory, it is standard to conclude, for any o < 1/4,

179" (G(7) = ¢2) oo § Ra(7),

which, after returning to the original variables, concludes the proof. O

5.2.2. A non-Gaussian steady state in two dimensions. In the following, we use R as
the variable for the radius of a ball, which is not to be confused with the convolution
kernel (the kernel is fixed to be ¢ in this section). We construct a steady solution
of the self-similar problem (5.13) when d = 2 that is not the Gaussian 2 from the
previous subsection. The construction occurs in multiple steps. First, we replace
the |G||3 in (5.10) with a constant term E to “localize” the equation. For any F >0
and R 2 1/V/E, we construct radial (rotationally symmetric) steady solutions G of
the localized equation on Bpr with Dirichlet boundary conditions on 0Bg. Second,
we show that, choosing E = £ well guarantees that /BR Gr(y)dy = 1. Finally, we
show that, in the limit R — oo, € - |GR[% — 0 and that G converges to a steady
solution G of (5.10) on R?,

Constructing a steady solution of the localized problem on a ball.
Lemma 5.3. Fiz F >0 and R > max{4,20/~/E}. There exists a radial function
Gp g Br—[0,E/2] such that
(5.17) AGE g+ 4 VG r+Gp r(1+E-Ggp)20 in B,
’ Gpr=0 on OBR,

and
G pdy 2 E.
Br E,RY

Proof. Let ¢:[0,R] - R be a C? cut-off function such that

() 0<é<1, #'(R)=d(R)=0, (i) ¢6=1on [o,g],

(5.18) (iii) - % < —% <&, and 6(y) > 1/2 on [g%} and
(iv) &> %, gb'(r)z—%(R—r) on [?,R].

Let

(5.19) G n(y) = 2% o(lyl):

2
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Notice that, by (5.18).(i), Gpr< E/2. Using polar coordinates, we find

1 y
_§AQE7R_§ ‘VGpp-Gpr(1+E-Ggp)
(5:20) Ee s (1 1 E
ez 2
—_ - 14 7 ! E_i -5 .
2 (2¢ +2r¢+( 2 ¢ ¢)¢)

It is clear that the last line is non-positive when r € [0, R/3] since ¢ = 1 on this
set. When r € [R/3,2R/3], we deduce, from (5.18).(iii), that

1,,1,( E_ﬁ))lo 15EE(50 2)
¢+ =+ [E-Ze = <o 2o 2 (2R
(2¢ 2r? 2T m TR T\

Since, R > max{4,20//E}, this is non-positive. Hence, the right hand side of (5.20)
is non-positive.

Finally consider the case when r € [2R/3, R]. First notice that, due to (5.18).(i)
and (iv), we have

1
o(y) 2 o5 (R-y)*.
Using this lower bound, as well as (5.18).(iv) again, yields

1 1 E _.2 1 310 E (R-y)?
521) —(=¢"+—¢ (E—— 2 ) )s—— ——(R-y)-——+"—.
(5.21) (2 Pt \Em e o)) e T R
We now use Young’s inequality and then the fact that R > 20/V/ E to find

310 225 E(R-y)* 225 E(R-y)?

310, B[Ry E(R-y?

+ <
4R R? 8ER* 2 R? 3200R? 2 R?
Plugging this into (5.21) implies that the right hand side of (5.20) is non-positive
on [2R/3, R].

Hence, in all cases, the right hand side of (5.20) is non-positive, which implies
that G, i is a subsolution; that is, it satisfies (5.17), as claimed. In addition, the
lower bound on the integral of G, » is clear by (5.18) and (5.19). O

We now use G  to construct a radial solution to the local problem on Bg.

Proposition 5.4. Suppose that E > 0 and R > max{4,20/~/E}. There exists a
radial function Gg gr:Br - [0,1+E) of

(5.22) 0=3AGpr+4 VGpr+(1+E-Gpr)Ger in B,
Ger=0 on 0Bg,

such that [p Gp rdy 2 E. This is the unique nontrivial solution of (5.22).

Proof. Let H be the solution of

H=1AH+%.VH+(1+E-H)H in (0, 00) x B,
(5.23) H=Gpp on {0} x Bg,
H=0 on [0,00) x IBR,

where G,  is from Lemma 5.3. The comparison principle immediately yields that
H<1+FE.

We claim that H; >0 for all ¢ > 0. Since G,  satisfies (5.17), then H;(0,-) > 0.
In addition, differentiating (5.23) in time yields a parabolic equation for H; that

enjoys the comparison principle and of which 0 is a solution. We conclude that
miny , H:(t,y) > 0 by applying the comparison principle to H; and 0.
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Since, for all y, H(t,y) is increasing in ¢, there exists Gg r(y) such that H(t,y) —
Gg.r(y) as t - co. In addition, we have that H(t,-) < Gg g for all ¢t. Finally we
point out that Gg r <1+ E since H <1+ E.

We also note that, by parabolic regularity theory, for any « € (0, 1), there exists
C > 0, depending only on a and F, such that

(5.24) [Hlczse, L (0.00)xB2) < Cs

parabolic

where Og;%bonc is the standard parabolic Hélder space.

We claim that |0;H(t,)|r2(B,) — 0 along some subsequence t,, — co. If not,
then there exists 0 > 0 and o > 0 such that, for all ¢ > to, |0:H (t)|2 2 ¢. Using (5.24)
and the nonnegativity of 0;H, we find, for all ¢ > ¢y,

< [ bRy <C [ ot y)dy.
Br Br
Integrating this and using that 0 < H < Gg r <1+ F, we find, for any T > 0,
82T to+T to+T
o< f OLH (1, ) dydt = f o, f H(t,y)dydt
O to Br to Br

=f H(to+T,y)dy—f H(to7y)dy3f Ge,r(y)dy <TR*(1+E).
Br Br Br

Taking T' — oo yields a contradiction. Hence, there exists a sequence t, - oo as

n — oo such that ||0;H (¢,)[2 — 0.
Up to taking a subsequence, the bounds in (5.24) and the compactness of Clzz;?abolic
in C2, apotic: imply that H(t,) - Gpr in CJ In addition, the resulting

convergence of 9;H(t,) in L* and its convergence to zero in L? implies that
O¢H (t,) - 0 in L*™. We conclude that

arabolic*®

1
0= 5AGE7R+ % 'VGE,R+ (1+E—GE,R)GE,R~

To conclude the proof, we check the various properties of Gg r. First, the
nonnegativity of Gg r follows from the fact that H is increasing in time and
H(0,")=Gp g 20.

Second, parabolic regularity theory implies that H is uniformly (in time) small
near 0Bpg, which implies that Gg r =0 on 0Bp.

Third, recall the earlier observation that Gg r <1+ E. The strong maximum
principle applied to (5.22) implies that this inequality is strict.

Fourth, the lower bound on the integral of Gg g follows from the lower bound
on Gy g = H(0,) and the fact that H is increasing.

Finally, H is radial at ¢ = 0 by construction of G p. Let M be any rotation
matrix and define Hy(¢,y) = H(t, My). It is easy to see that Hjs solves (5.23).
Thus, by the uniqueness of solutions of parabolic equations, we find Hy; = H. We
conclude that H(t,-) is radial for all ¢, from which it follows that Gg g is radial.

The last step is to check the uniqueness of Gg r. We drop the £ and R

subscripts for ease. Suppose that H is another nontrivial solution (5.22). Define
Ga(y) = AG(x). Tt is easy to verify that

1 1
0=§AGA+g-VGA+(1+E—ZGA)GA.

The Hopf maximum principle implies that the outward point normal derivative of
G is negative on 0Bg. Hence, we have that G4 > H for all A sufficiently large. We
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define

Ap=inf{A>1:G4 > H}.
If Ap =1, we conclude that G > H, which is our goal. If not, let U(y) = Ga,(y)-H (y)
for all y. We then find that

Ga,
(1)

0

1 Y 1
:iA\IJ+§.V\I]+(1+E_A70GAO)\IJ.

By the choice of Ay, we either have that there exists yo € Bg such that ¥(yy) =0
or there exists yg € 9B (0) such that yo- VG a,(Y0) = yo - VH (yo).

Consider the first case. Let % be the maximal open connected component of
Brn{Ga, < AgH} containing yo. Then ¥ >0 on 9% and U satisfies

1 Y 1
02§AW+§~V\II+(1+E—ZGAO)\I/ on X.
The strong maximum principle implies that ¥ > 0 on X, which contradicts the fact

that U(yo) = 0.

The second case proceeds similarly, except using the Hopf lemma to conclude
that yo- V¥ (yo) <0 to obtain a contradiction. We omit the details.

Above we showed that G < H. The argument used to establish this used nothing
about G from its construction; we only used that it is nontrivial. Thus, an identical
argument implies that H < G as well, which yields G = H. Hence, non-trivial
solutions of (5.22) are unique. This concludes the proof. O

We show that Gg r decays exponentially away from the origin independently of
R. We require this to show that GG, the limiting object, is exponentially decaying as
stated in Theorem 1.6.(ii) and in order to establish a relationship between the sizes
of E and [ Gg rdy in the sequel.

Lemma 5.5. For any E and R as in Proposition 5.4,

2
Ger(y) < (1+E)e! O for all [yl >4V1+E.

2
Proof. For any A >0, let 14 (y) = Ae="T. We first claim that, for |y| > 4v/1+ E,

(5.25) —%A¢—%«V¢—(1+E)w>0.
To this end, we compute:
2
—%Al/)A - % Vipa-(1+E)pa = —% (y41/)A - 1PA) - g - (—%1/)/1) -(1+E)Ya

1
= 3¥a (y* -2(2+4E)).
Hence, if y? > 16(1 + E), then we conclude (5.25).

IfA>(1+ E)eR2/4, then ¢4 > 1+ E > Gg g (recall the upper bound on Gg g
from Proposition 5.4). Thus, let

Ap = inf{A >0:94>2Ggronlye[dVl +E,R]}
is well-defined. We claim that Ay < (1+ E)e**¥) We argue by contradiction
assuming that Ag > (1 + E)et(+E),

By continuity, there exists yo such that |yo| € [4V1 + E, R] such that ¥, (yo) =
GE,R(yo). Since

Va,(AVT1+E) = Age "B 5 (14 E)>Gpr  and 4, (R)>0=Ggr(R),
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it must be that |yo| € (4v/1+ E, R). In addition, by construction, yq is the location
of a minimum of zero of ¥ 4, - G r. Hence A(Y4, - Gg.r) 20, V(¥a, —GE.r) =0,
and ¥4, (yo) = Ge,r(Yo). Hence, at yo,

1
0> —§A (Y4, - GE,R)

> (g Vs, + (1 + E)on) - (% -VGepr+(1+E- GE,R)GEJ%)

:G2E7R>0.

Here we used (5.22) and (5.25) to obtain the second inequality. This is clearly
a contradiction, so we conclude that Ay < (1 + E)e*+E) Tt follows that, for all

ly| € [4V/1 + E, R],
Ger(y)<( +E)64(1+E ol
which concludes the proof. O

Next we show that there exists £ such that Gg r has L'-norm one.

Lemma 5.6. There exists Egf ~ 1, depending only on R, such that

[, Genntidy=1.

Proof. To establish this we use the continuity of solutions of elliptic equations with
respect to their coefficients. With this in mind, we need only find F; and E5 such
that

[ Gerwdy<t  and [ Gra@)>1.
Br Br

The second inequality follows from Proposition 5.4, after taking Fo > 1.
To find the first inequality, integrate (5.22) over Bpg to find

1
VGEl,Rdy FEy [ GEl,Rdy [ G Rdy.

2 Jos, |y|
As G is positive in Bg and zero on 0 Bg, we find that the left hand side is nonnegative.
Hence,

(5.26)

G2 d<Ef Gp. rd
[BR B, RAY = Ba E;,RAY

We wish to estimate the integral on the right hand side above. Let L > 4+/1 + E}
be a constant chosen in the sequel. Then, using Holder’s inequality and Lemma 5.5,
we obtain

1/2
f G rdy < f GEl,Rdy+/ (1+ Ey) et ED~"T gy
Br BR\BL
2
<L([ G Rdy) +L2(1+E1)€4(1+E1)_LT
1/2 .
(f G Rdy) +L2(1+E1)e4(1+E1)‘T

1/2 2
SL(EI[ GEl,Rdy) +L2(1+E1)€4(1+E1)_LT.
Br

Choosing L sufficiently large and then F; sufficiently small independent of R, we
find

[ Grondy<1.
Br

fWe make a slight change in convention here using the italicized “E” in order to avoid clashing
notation with E; for the squared L2%-norm of a function f.
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This concludes the proof. O

Using Lemma 5.6, we let Gr = Gg, r denote the solution of (5.22) with mass
one. We now show that £ ~ |Gg|3 as R — 0.
Lemma 5.7. As R tends to oo, |Eg - |Gr|3] = 0.

Proof. Using (5.26), Lemma 5.6, and the fact that Gg is radial, it is sufficient to
show that

(5.27) Lr v,

2 dBr |y

Let W =e¥"/4Gp and, as in (5.14),

VGr(y)dy = -mR(GRr)r(R) > 0

1 1 g2
=AW +W|=--= - .
0 5 + (2 1 + SR GR)
Abusing notation and changing to polar coordinates, we find
1 1 1 r?
0= 3 Wert g Wor W (2‘4+5R‘GR)

We note that the reason for the change to working with W is to work with an
equation whose first order term is bounded uniformly regardless of R. Hence, we
can apply L? estimates for solutions of elliptic equations up to the boundary (see,
e.g., [13, Theorem 8.12]), we find

1 72
——-—+&r-Gr|W +|WllL2((r-2,r))-

L2%2([R-2,R])

W _1LR]) $
IWlzzqr-1.m) S| 57

Using Lemma 5.5 to bound G g and, thus, W from above and Lemma 5.6 to bound
Er from above, we see that W is uniformly bounded from above on [R -2, R] as
long as R is sufficiently large. We deduce that

W a2 ((r-1,R)) S R

Using the Sobolev embedding theorem and the relationship between Gr and W, we
find
(R-

1)2
T [Wler(r-1,r))

(rR-1)2 _(rR-1)?
T |[Wlge(ro1,r)) S RPe™ 7

|Grlcr(r-1,r)) S Re”

S Re™
This establishes (5.27), which concludes the proof. O

We now finish the construction of the steady state G.

Proof of Theorem 1.6.(ii). From Proposition 5.4, Lemma 5.5, and Lemma 5.6 we
have that

M)

_y?
Grse 1.

Using a similar argument as we did in the conclusion of Lemma 5.7 along with the
Schauder estimates for elliptic equations, we find that, for any « € (0, 1),

leV" PG R e S 1.
We thus find a subsequence R,, - 0o as n — oo, and G € C%® such that Gr, - G

uniformly in C2, and, due to the decay in g, in L* and L? as well. We conclude that
[ Gdy=1and |Gg, |3~ |G|3. From Lemma 5.7, we further have that Er, — |G|3.

Using all conclusions from the above, we find that G is a radial function satisfying

O:AG+%-VG+G(1+HG||§—G),
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which concludes the proof. O
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