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Abstract. We consider the long time behavior of solutions to a nonlocal
reaction diffusion equation that arises in the study of directed polymers in
a random environment. The model is characterized by convolution with a
kernel R and an L2 inner product. In one spatial dimension, we extend a
previous result of the authors [arXiv:2002.02799], where only the case R = δ
was considered; in particular, we show that solutions spread according to a 2/3

power law consistent with the KPZ scaling conjectured for directed polymers.

In the special case when R = δ, we find the exact profile of the solution in
the rescaled coordinates. We also consider the behavior in higher dimensions.
When the dimension is three or larger, we show that the long-time behavior

is the same as the heat equation in the sense that the solution converges to
a standard Gaussian. In contrast, when the dimension is two, we construct a
non-Gaussian self-similar solution.

1. Introduction

In this paper, we investigate the following collection of models:

(1.1)

⎧⎪⎪⎨⎪⎪⎩
∂tg =

1
2
∆g + g (⟨R ∗ g, g⟩ −R ∗ g) in (0,∞) ×Rd,

g = g0 on {0} ×Rd,

where R ∗ g refers to convolution in the spatial variables only and the brackets ⟨⋅, ⋅⟩
denote the L2 inner product in the spatial variables. We always assume that

(1.2) ∫ g0(x)dx = 1 and 0 ≤ g0 ∈ Cc(Rd),
which implies that, for all t > 0,

(1.3) ∫ g(t, x)dx = 1;

thus, (1.1) describes the evolution of a probability density. Here, either R is the
delta distribution δ or R is a continuous, nonnegative function such that ∫ Rdx = 1.
In the latter case, we assume that there is a continuous even function φ ≥ 0 such
that

(1.4) R(x) = φ ∗ φ(x), and ∫ φ(x)dx = 1.

The connection to directed polymers. The equation arises from our study of directed
polymers in a random environment, and we discuss the model below. For a Gaussian
random field {V (t, x) ∶ (t, x) ∈ Rd+1} and an independent Brownian motion B ={Bt ∶ t ≥ 0}, consider the Gibbs measure associated with the Hamiltonian Ht(B) =
∫ t

0
V (s,Bs)ds:

µt(dx) = q(t, x)dx,
q(t, x) = Z−1

t EB[δ(Bt − x) exp(Ht(B))], Zt = EB[exp(Ht(B))].
1
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Here EB is the expectation only with respect to the Brownian motion B, with the
random Gaussian field fixed. Thus, µt(dx) can be viewed as the endpoint distribution
of the Brownian motion “reweighted” by the random environment, through the factor
exp(Ht(B)), which is to model the polymer path in a heterogeneous environment.
The properties of q(t, ⋅), in particular how the x-variable scales with respect to
time, is a notoriously difficult problem in probability and statistical physics. It is
conjectured that, in d = 1 and if V is sufficiently short-range correlated, we should
have ∫ ∣x∣pq(t, x)dx ≈ t2p/3 for large t, i.e., the endpoint of the polymer path is
superdiffusive with an exponent 2/3, which falls into the KPZ universality class. So
far the conjecture is only proved for a few specific models with certain integrable
structures, and the proof is very much model-dependent. In d ≥ 2, much less is
conjectured and known, and even the correct superdiffusive exponent is unclear. We
refer to the monograph [8] and the survey [10] for results and discussions in this
direction.

Our interest is in the averaged density Q1(t, x) ∶= E[q(t, x)], where E is now taken
with respect to the Gaussian field V , and the ultimate goal is to study the asymptotic
behavior of Q1 by a robust analytic approach that covers all possible correlation
structures of V . For example, in d = 1 one would like to prove a universality result
saying that ∫ ∣x∣pQ1(t, x)dx ≈ t2p/3 for t≫ 1. As Q1 is the averaged density of the
endpoint of a random path, it is tempting to try to derive a PDE for its evolution,
similar to the Fokker-Planck equations associated with diffusion processes. This
motivated the study in [14]. For a large class of Gaussian fields V , which has zero
mean and is white in time and possibly colored in space, with the covariance function

E[V (t, x)V (s, y)] = δ(t − s)R(x − y)a,
we find that, instead of solving a single Fokker-Planck equation, what governs the
evolution of Q1 is a hierarchical system: define the n−point correlation function

Qn(t, x1, . . . , xn) ∶= E[ n

∏
j=1

q(t, xj)],
then Q1 solves the equation

(1.5)
∂tQ1(t, x) = 1

2
∆Q1(t, x) −∫ Q2(t, x, y)R(x − y)dy

+∫ Q3(t, x, y, z)R(y − z)dydz.
In fact, for any n ≥ 1, the equation of Qn contains Qn+1 and Qn+2. The nonlocal
terms in (1.5) describe the mutual intersection of multiple polymer paths as they
wander in the random environment to maximize the collected energy, and the kernel
R corresponds to how the paths’ intersection is measured. The hierarchical PDE
system is similar to the BBGKY hierarchy in kinetic theory. Inspired by the molecular
chaos assumption there, we assume that in large time Qn can be approximately
factorized: Qn(t, x1, . . . , xn) ≈∏n

j=1Q1(t, xj), and this helps to reduce (1.5) to (1.1).
Therefore, the equation we study in this paper, can be viewed as an approximation
of the hierarchical system which describes the actual evolution of the polymer
endpoint density. While it is unclear at the moment how to justify the factorization
assumption used to link the true evolution (1.5) with the “approximate” evolution
(1.1), the results in [14] already show an intriguing connection, which we discuss in
greater detail below. Despite this simplification, we expect (1.1) to retain several
key features of the original equation (1.5), and furthering our understanding of (1.1)
may also help with the study of the hierarchy. This motivates the current study.

aSince R is the spatial covariance function, there exists a function φ so that (1.4) holds, and
the construction can be found in [14, Page 2].
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Rough description of the main results. In [14, Theorem 1.3], we examined the special
case of (1.1) in which R = δ and d = 1, which corresponds to the situation when the
Gaussian environment is also white in space. Here, we showed that the KPZ scaling,
x ∼ t2/3 is exhibited in the sense that, ∥g(t)∥∞ = O(t−2/3) and, for any p ≥ 1, the pth

moment of g is bounded from above and below by t2p/3, up to a constant, i.e.,

(1.6) ∫ ∣x∣pg(t, x)dx ≈ t 2p
3 , for t ≥ 1.

As a result, it follows that g ≈ t−2/3 for any ∣x∣ ≤ O(t2/3) and g ≪ t−2/3 for any∣x∣≫ t2/3

Our focus in this paper is in generalizing and refining the above result in one
dimension and in investigating the behavior of g in higher dimensions. Roughly, we
establish the following properties of (1.1).

(1) When R is continuous and d = 1, we show that the KPZ-scaling, x ∼ t2/3,
conjectured for the full polymer model is exhibited by g. In particular, we
prove that ∥g(t)∥∞ = O(t−2/3) and, for any p ≥ 0, the pth moment of g is

bounded above and below by t2p/3, as in (1.6). This extends the results of [14,
Theorem 1.3], and can be viewed as a universality result as the scaling exponent
2/3 does not depend on the detailed expression of R. As discussed below,
significant difficulties arise in generalizing the proof from the case R = δ to the
present one.

(2) When R = δ and d = 1, we establish more precise estimates on the long-time

behavior of g. Specifically, we identify the limit of t2/3g(t, xt2/3) as t →∞ to
be, up to a multiplicative constant, the indicator function of an interval. In
other words, if we let Xt be a random variable with the density g(t, ⋅), with

(1.6) we have E[∣Xt∣p] ≈ t2p/3, and here we further prove that t−2/3Xt converges
to a uniform distribution, as t→∞.

(3) When d ≥ 2, the behavior is quite different, as expected for the directed polymers.

In all cases, the diffusive scaling x ∼ t1/2 and g ∼ t−d/2 holds. When d ≥ 3, we
show that g, under this scaling, converges to a standard Gaussian. This is
exactly the behavior of the heat equation; in other words, the effect of the
nonlinearity is negligible. The result is consistent with the diffusive behaviors
of directed polymers in high temperatures in d ≥ 3 [4, 16] b. On the other hand,
when d = 2, there are solutions g of (1.1) that, in the same diffusive scaling,
do not converge to a Gaussian. Thus, d = 2 is the critical dimension for (1.1),
another feature of the polymer model.

We note that the local well-posedness (small time existence and uniqueness)
of (1.1) with initial data in, say, L1(Rd) ∩L2(Rd) is straightforward because it is a
semilinear equation where the nonlinear terms are “relatively smooth” in g. On the
other hand, the a priori estimates that we obtain in the course of this work show
that blow-up cannot occur and (unique) solutions can be extended for all time. In
other words, a proof of global well-posedness is straightforward using the estimates
we establish below. Hence, we omit it.

1.1. Main Results. We now state our results more precisely.

bThe polymer model actually depends on a parameter β which is the inverse temperature, and
it goes into our approximate model (1.1) only as a multiplicative constant of the nonlinear terms
(see [14, Equation (1.10)]). As it does not play a role in our analysis, we do not specify it here.
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1.1.1. Decay consistent with the conjectured scaling for directed polymers. Our first
theorem is the extension of the results in [14, Theorem 1.3] on the growth of moments
to the setting where R is continuous.

Theorem 1.1. Let d = 1. Suppose that g solves (1.1) with g0 satisfying (1.2) and
with R satisfying (1.4) or R = δ. Then, for any p > 0,

(1.7) (∫
R

∣x∣pg(t, x)dx)1/p
≈ t

2
3 for all t ≥ 1.

As a consequence, we have lim inf
t→∞

t2/3∥g(t)∥∞, t2/3∥g(t)∥22 > 0. The bounds here

depend only on supp(g0).
In the statement of the above theorem, a ≈ b means C−1b ≤ a ≤ Cb for some

constant C > 0. Similarly, we will use a ≲ b if a ≤ Cb. We collect the precise meaning
of all other notations in Section 1.4 below.

As alluded to above, the proof of (1.7) when R = δ is exactly the content of [14,
Theorem 1.3]; however, the lower bound on the rescaled L∞ and L2 norms of g are
new. These are not difficult to prove after the other moment bounds have been
established, but are stated here as these lower bounds are an essential ingredient in
the establishing the precise behavior of g (see Theorem 1.3).

The main new content of Theorem 1.1 are the moment bounds in the case where
R is continuous. The key step in proving this is the following L∞ bound on g.

Proposition 1.2. Under the assumptions of Theorem 1.1, for all t ≥ 0,

∥g(t)∥∞ ≲min{t−1/2, t−2/3}.
While the connection between Proposition 1.2 and Theorem 1.1 is analogous to

that in the case R = δ, the proof of Proposition 1.2 is significantly more difficult,
which we discuss now.

The proof in the case R = δ contained in [14, Theorem 1.3] relies on several exact
identities that are no longer available. In fact, the first step when R = δ is noticing
that (1.1) yields

d

dt
∥g(t)∥∞ ≤ ∥g(t)∥∞(⟨R ∗ g, g⟩ −R ∗ g) = ∥g(t)∥∞(∥g∥22 − ∥g(t)∥∞).

The inequality follows from the fact that ∆g is nonpositive at a maximum, and the
equality follows from using that R = δ. By Hölder’s inequality and the fact that
g(t) is a probability measure, the right hand side is clearly nonpositive. It is then a
matter of quantifying this non-positivity (cf. [14, Lemma 4.3]). Unfortunately, when
R is continuous, the above equality does not hold. In fact, it is not even clear if∥g(t)∥∞ is decreasing with respect to t.

To overcome this difficulty, we may try to work, instead, with the L2-norm of
g(t, ⋅). When multiplying (1.1) by g, and integrating by parts, we obtain

(1.8)
1

2

d

dt
∥g(t)∥22 + 1

2
∫ ∣∇g∣2dx = ∥g∥22⟨R ∗ g, g⟩ −∫ g2R ∗ g dx.

When R = δ, the right hand side has the form ∥g∥42 − ∥g∥33, which, using Hölder’s
inequality, one easily sees is nonpositive. However, when R is continuous, it is no
longer clear that the right hand side is even nonpositive. Again, it may not be.

Given the convolution term R ∗ g appearing in (1.1), a better approach is to
multiply the equation by R ∗ g and integrate by parts. Then (1.1) becomes

1

2

d

dt
⟨g,R ∗ g⟩ + 1

2
∫ ∇g ⋅ ∇(R ∗ g)dx = ⟨R ∗ g, g⟩2 −∫ g(R ∗ g)2dx.
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The right hand side is once again nonpositive. The goal of the proof is to establish
a lower bound on

(1.9)
1

2
∫ ∇g ⋅ ∇(R ∗ g)dx + [−⟨R ∗ g, g⟩2 +∫ g(R ∗ g)2dx] .

After, we then must relate ⟨g,R ∗ g⟩ back to ∥g∥2 and ∥g∥∞.

The main tool in the analysis is the local-in-time Harnack inequality (see Propo-
sition 2.5) that was first established in [5]. This inequality, which quantifies how
spread out the level sets of g(t, ⋅) are, allows us to show that, roughly, either g is
flat, in which case the bracketed terms in (1.9) are large, or g is not flat and the
gradient term in (1.9) is large.

Interestingly, while the functional inequalities used in [14] to bound (1.9) from
below in the R = δ case held for any H1 function, the lower bound on (1.9) in the
case where R is continuous relies strongly on the regularizing effect of the heat
equation, seen through the local-in-time Harnack inequality. In some sense we are
showing that the key functional inequality [14, Lemma 4.3] (see also [9, Lemma 2])
is stable with respect to convolutions as long as the function is suitably regular.

The proofs of Theorem 1.1 and Proposition 1.2 are contained in Section 2.

1.2. Long time dynamics in one dimension. Restricting to the case R = δ, we
investigate the behavior of g under the t2/3 scaling. In particular, Theorem 1.1
suggests that we may see non-trivial limiting behavior of t2/3g(t, xt2/3) as t →∞.
We establish that here.

In order to describe the long-time behavior, we define two important constants:

(1.10) ccrit = (3

2
)2/3
= 1.31037... and θcrit = ( 1

18
)1/3
= .38157...

Notice that 2θcritccrit = 1. The precise meaning of ccrit and θcrit is touched on below
and then described in detail in Section 3.1. We now state our main results.

Theorem 1.3. Suppose that g solves (1.1) with initial data g0 satisfying (1.2) and
R = δ. Suppose further that g0 is even and radially decreasing. Then

lim
t→∞

t2/3∥g(t)∥22 = lim
t→∞

t2/3∥g(t)∥∞ = θcrit.

Further, for all x ≠ ±ccrit,

lim
t→∞

t2/3g(t, xt2/3) = θcrit1[−ccrit,ccrit](x),
where the limit holds uniformly for x away from ±ccrit.

Informally, Theorem 1.3 implies that, for large t, we may write

g(t, x) = θcrit

t2/3 1[−ccritt2/3,ccritt2/3](x) + o(t−2/3).
It is clear that this is consistent with the results in Theorem 1.1.

We note that the convergence of the (rescaled) L2- and L∞-norms is almost
equivalent to the convergence of the profile. Indeed, since g is a probability density,
its L2- and L∞-norms can only be equal when the Hölder’s inequality is an equality,
which corresponds to functions that are a multiplicative constant of an indicator
function. Using then the symmetry and monotonicity of g, it follows that g converges
to the indicator function of an interval up to a multiplicative constant (though
we note that this does not yield the exact constants ccrit and θcrit). Of course, we
never have exact equality and thus, the above heuristics hinge on understanding the
“stability” of Hölder’s inequality.
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We believe that the assumption that g0 is even and decreasing is purely technical
and can be removed at the expense of a significantly more involved proof. As the
proof is already quite complicated even with these assumptions, we opt to use them.
Throughout the proof of Theorem 1.3, we indicate where and how these assumptions
are applied.

A key step in the proof of Theorem 1.3 are the following bounds, which do not
require these symmetry and monotonicity assumptions.

Proposition 1.4. Suppose that g solves (1.1) with initial data g0 satisfying (1.2).
Then

(i) lim inf
t→∞

t2/3∥g(t)∥22, lim inf
t→∞

t2/3∥g(t)∥∞ ≤ θcrit;

(ii) θcrit ≤ lim sup
t→∞

t2/3∥g(t)∥22, lim sup
t→∞

t2/3∥g(t)∥∞.

The results in Proposition 1.4 show that t2/3∥g(t)∥∞ and t2/3∥g(t)∥22 get arbitrarily
close to θcrit infinitely often; however, they do not rule out the possibility that
these quantities make non-trivial oscillations around θcrit. We recall the discussion
following Theorem 1.3 that indicates the importance of the L2- and L∞-norms in
understanding the profile of g.

The intuition behind the constants θcrit and ccrit comes from various rescalings
of the equation in which a non-local Fisher-KPP type equation arises. Finding and
heuristically interpreting the correct rescalings is a subtle issue and so is covered
in detail in Section 3.1. A discussion of the strategy of the proof and the major
difficulties encountered is also contained there as it is best placed in the setting of
the rescaled equations.

We note that a major difficulty in extending Theorem 1.3 to the case when R ≠ δ
is that the comparison principle no longer holds for (1.1) when R ≠ δ.

The proofs of Proposition 1.4 and Theorem 1.3 are contained in Section 3 and
Section 4 respectively.

1.3. Long time dynamics in higher dimensions. We now discuss the behavior
in higher dimensions. Our first result is about the time decay of the moments of g,
as well as the L2- and L∞-norms of g.

Theorem 1.5. Suppose d ≥ 2, R = δ or R satisfies (1.4), and g solves (1.1) with
initial data g0 satisfying (1.2). Then, for any p > 0

(∫
R

∣x∣pg(t, x)dx)1/p
≈ t

1
2 for all t ≥ 1.

In addition, we have

∥g(t)∥∞, ∥g(t)∥22 ≈ t− d
2 for all t ≥ 1.

The proof of Theorem 1.5 uses classical techniques based on the Nash inequality,
which, in its original form relates the L1, L2, and Ḣ1 norms of a function, in order
to bound ⟨g,R ∗ g⟩. In fact, we slightly extend the Nash inequality to apply to the
quantities ⟨g,R ∗ g⟩ and ⟨∇g,R ∗∇g⟩ in place of the L2 and Ḣ1 norms, though the
proof is analogous to the usual one. To understand why these convolved macroscopic
quantities are more useful than the L2 and Ḣ1 norms, we refer to the discussion
around (1.8) and (1.9).
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To bootstrap the bound on ⟨g,R ∗ g⟩ to one on the moments of g, we construct a
barrier function g such that, if g and g were to touch, at the touching point

∂tg −
1

2
∆g − g (⟨g,R ∗ g⟩ −R ∗ g) > 0,

which rules out any touching points.

We now investigate the self-similar behavior of g for large times. We show that,
when d ≥ 3, the nonlinear terms are asymptotically negligible and g has the same
Gaussian behavior as the usual heat equation. On the other hand, when d = 2, we
show that this need not be true by constructing solutions of (1.1) that do not have
a Gaussian profile in rescaled variables.

Theorem 1.6. Suppose that R = δ.

(i) If d ≥ 3, g solves (1.1) with g0 satisfying 0 ≤ g0(x) ≤ Ae−∣x∣2/B for some A,B > 0

and all x ∈ Rd and ∫ g0 dx = 1, then

lim sup
t→∞

trd ∥td/2g(t, x√t) − 1(2π)d/2 e− ∣x∣
2

2 ∥
∞

<∞

where rd = 1 if d > 3 and rd is any element of (0,1) if d = 3.
(ii) If d = 2, there exists 0 ≤ G ∈ C∞(R2) such that, letting

g(t, x) = 1

t
G( x√

t
) ,

the following holds: G is not a Gaussian (that is, G(x) ≠ e−∣x∣2/2σ2/(2πσ2) for

any σ > 0), g solves (1.1), there exist A,B > 0 such that G(x) ≤ Ae−∣x∣2/B for
all x ∈ R2, and

∫ g(t, x)dx = ∫ G(x)dx = 1 for all t > 0.

The first step in proving Theorem 1.6 is to convert to the self-similar coordinates
suggested by its statement. Letting g̃ be g in these new coordinates (τ, y) =(log t, x√

t
), and g̃(τ, y) = e d

2
τg (eτ , eτ/2y), we see that

(1.11) ∂τ g̃ = [1
2

∆g̃ +
y

2
⋅ ∇g̃ +

d

2
g̃] + e− d−2

2
τ g̃ (∥g̃∥22 − g̃) .

The difference between d = 2 and d ≥ 3 is clear from the above equation. When d ≥ 3,
the last term is exponentially decaying and we proceed by analyzing the spectrum
of the operator in brackets, which is well-understood.

When d = 2, the last term is non-negligible. The construction then proceeds by
finding a steady solution of (1.11). To begin, we pose the problem on a ball of
radius r and examine the local (and slightly less nonlinear) problem where ∥g̃∥22 is
replaced by a constant E. After finding a solution g̃E to this problem, we show
that there is a critical value of E where ∥g̃E∥22 is equal to E. A difficulty with this
is that the dependence of g̃ on E is monotonic; that is, the larger E is, the larger
g̃E is. Hence, it is difficult to simply look at small and large E and show that the
ordering of E and ∥g̃E∥22 switches. We overcome this by showing that the operator
in brackets in (1.11) induces sufficient decay away from x = 0 to limit the growth of∥g̃E∥22 as E is increased. After finding this critical E value, the proof is concluded
by taking r →∞.

We make two comments on the limitations of Theorem 1.6. First, we do not
handle the case when R is continuous. In Theorem 1.6 (i), it is trivial to extend
our proof to that case since the nonlinear terms are exponentially decaying in the
self-similar variables. We believe that Theorem 1.6 (ii) can also be extended to the
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case when R is continuous albeit with more technical proofs using elliptic regularity
theory. However, our construction of G is already quite involved and we opt instead
for a clearer, more succinct construction.

Second, we do not address the stability of G; that is, we do not have a convergence
result of g̃ to G when d = 2 as we do in Theorem 1.6 (i) with the Gaussian. The
spectral theory based argument of part (i) does not apply to the stability of G when
d = 2 because, as shown in (1.11), the nonlinear term plays a crucial role in the
equation, thus, any stability result must use the nonlinearity in an essential way.
The initial difficulty in establishing the stability of G is that ∥G∥2 is unknown and,
it is not clear why ∥g̃(τ)∥2 converges to a constant (and that that constant is ∥G∥2).
Indeed, multiplying (1.11) by g̃ and integrating by parts yields

1

2

d

dτ
∥g̃(τ)∥22 = −1

2
∥∇g̃(τ)∥22 + 1

2
∥g̃(τ)∥22 + ∥g̃(τ)∥42 − ∥g̃(τ)∥33.

Unfortunately, it is not clear that this would yield convergence of the L2-norm of g̃.
For example, there is no obvious monotonicity of ∥g̃(τ)∥2 imparted by the equation
above. Until a better understanding of the fluctuations or convergence of ∥g̃(τ)∥2 is
gained, stability remains open, although we believe that G is stable.

The proofs of Theorem 1.5 and Theorem 1.6 are contained in Section 5.

Connection (or lack thereof) with the nonlocal Fisher-KPP equation. One might
think that (1.1) appears, on its face, to be similar to the non-local Fisher-KPP that
has considered in a huge number of works (e.g., [1, 3, 7, 15] and articles referencing
these):

(1.12) ∂τu =D∆u + u(r − φ ∗ u),
for some non-negative function φ and constants D,r > 0. However, there is very
little connection one can draw between them.

Most obvious is the fact that their qualitative behavior is extremely different.
For example, the L1 norm of solutions g of (1.1) is conserved, while there are no
conserved quantities for solutions u of (1.12). From a larger perspective, one sees
that the main questions regarding each model are very different: (1.12) is a model for
front propagation leading to questions about the existence, stability, and qualitative
properties of traveling wave solutions (solutions of (1.12) made up of a fixed profile
in x being translated at a constant speed), while the main questions for (1.1) are
about quantitative Lp and moment bounds as well as self-similar behavior.

Finally, the mathematical techniques applied to each are necessarily unrelated.
As with the standard (local) Fisher-KPP equation, the basic behavior of solutions u
of (1.12) can be obtained by linearizing the equation around 0, in which case the
nonlocal term disappears. In this sense, the large scale features of u are linearly
determined. On the other hand, a linearization of (1.1) around zero yields the heat
equation, which does not yield the conclusions of the main theorems Theorem 1.1
and Theorem 1.3. In this sense, the dominant behavior of (1.1) is nonlinearly
determined.

1.4. Notation. Throughout the manuscript we use the notation ≲ for the following:
A ≲ B if there exists C > 0 such that A ≤ CB, where C is any constant that does
not depend on g (except for possibly on supp(g0)). We write A ≈ B to mean that
A ≲ B and B ≲ A.
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All Lp norms are taken with respect to the spatial variable only unless explicitly
indicated. Hence, ∥g∥p and ∥g(t)∥p both refer to

(∫
Rd
g(t, x)p dx)1/p

,

when p ∈ [1,∞). The analogous notation is used when p =∞.

Various quantities play a special role in our analysis. We adopt the following
notation: for any measurable function f ∶ [0,∞) ×Rd

→ [0,∞), we denote

Ef(t) = ⟨f(t),R ∗ f(t)⟩ = ∥φ ∗ f(t)∥22,
Df(t) = ⟨∇f(t),∇R ∗ f(t)⟩ = ∥∇φ ∗ f(t)∥22, and

Mf(t) = ∥f(t)∥∞,
(1.13)

where we used (1.4) to get the relationship between the first and second characteri-
zations of Ef and Df (this also uses that convolutions can pass between functions
in the L2-inner product; see (2.9)). We point out that, when R = δ, Ef = ∥f(t)∥22
and Df = ∥∇f(t)∥22.

When writing lim, lim inf, and lim sup, we often omit the notation regarding the
variable when no confusion will arise. For example, the conclusion of Proposition 1.4
(i) can be written

lim inf t2/3∥g∥22 = lim inf t2/3∥g∥∞ ≤ θcrit.

We use Br(x) to mean a ball of radius r > 0 centered at x in the spatial variables.
When the ball is centered at the origin, we simply write Br in place of Br(0).

2. The 2/3 power law when R is continuous.

Before beginning the proof, we notice that, due to Hölder’s inequality

(2.1) Eg ≤Mg,

since ∫ R∗g = 1, which comes from the assumption ∫ R = 1 and the fact that ∫ g = 1.
In addition, by Young’s inequality for convolutions,

(2.2) Eg ≤ (∥g∥2∥φ∥1)2 = ∥g∥22.
A key aspect of the proof is understanding the precise relationship between g,

φ ∗ g, and R ∗ g. As such, it is useful to define more succinct notation for the latter
two functions. Let

(2.3) u = φ ∗ g and w = φ ∗ φ ∗ g = R ∗ g.

We first show how to deduce Theorem 1.1 from Proposition 1.2 in the following
subsection. Afterwards, in Section 2.2 and the following subsections, we prove
Proposition 1.2. This is where the bulk of the work is undertaken.

We note that, even when not explicitly mentioned, we assume that d = 1 and R

is continuous and satisfies (1.4) throughout this section.

2.1. The proof of Theorem 1.1 from Proposition 1.2. We establish the bounds
on the moments via arguments very similar to [14, Theorem 1.3]; however, the
slight alterations in the method here allows us to reduce the dependence of the
estimates on g0 to only on supp(g0). When possible, we defer to the arguments in
[14, Theorem 1.3] and omit them here.
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Proof of Theorem 1.1. First, we obtain a pointwise upper bound on g. We have,
from Proposition 1.2, that

g(t, ⋅) ≲ t−2/3;

however, we require estimates on g when ∣x∣ ≳ t2/3. To this end, let L > 0 be such
that supp(g0) ⊂ [−L,L], and define

g(t, x) = e∫ t
0

Eg(s)dsh(t, x),
where h is the solution of⎧⎪⎪⎨⎪⎪⎩

ht =
1
2
∆h in (0,∞) ×R,

h = g0 on {0} ×R.
It is straightforward to check that

(2.4) ∂tg =
1

2
∆g +Egg.

While (1.1) does not enjoy the comparison principle, (2.4) does. In addition, the
non-negativity of g and (1.1) ensure that g is a subsolution of (2.4). Thus, the
comparison principle implies that g ≤ g. We deduce that, for all t > 0,

g(t, x) ≤ g(t, x) = e∫ t
0

Eg(s)ds ∫
supp(g0)

1√
2πt

e−
(x−y)2

2t g0(y)dy
≤ e∫

t
0

Eg(s)ds ∫
supp(g0)

1√
2πt

e−
x2

4t
+

y2

t g0(y)dy
≤
e∫

t
0

Eg(s)ds−x2

4t
+

L2

t√
2πt

∫
supp(g0)

g0(y)dy = e∫ t
0

Eg(s)ds−x2

4t
+

L2

t√
2πt

.

(2.5)

In the first equality, we used the kernel representation of solutions to the heat
equation, and in the second inequality, we used Young’s inequality in the exponent.

Applying Proposition 1.2 and the fact that Eg ≤Mg, we find C > 0 such that, if

t ≥ 1, then ∫ t

0
Egds ≤ Ct

1/3. Using this in (2.5) yields, for any ∣x∣ ≥√8Ct2/3,

g(t, x) ≲ eCt1/3
−

x2

8t
−

x2

8t
+

L2

t ≤ eCt1/3
−

∣√8Ct2/3∣2
8t

−
x2

8t
+

L2

t = e−
x2

8t
+

L2

t .

Using this and Proposition 1.2, we obtain the crucial estimate:

g(t, x) ≲ ⎧⎪⎪⎨⎪⎪⎩
t−2/3 if ∣x∣ ≤√8Ct2/3,
e

L2

t
−
∣x∣2
8t otherwise.

A direct computation using this upper bound yields the upper bounds on ∫ ∣x∣pg(t, x)dx
for any p > 0 and t ≥ 1. The proof of the lower bound is exactly as in [14, The-
orem 1.3] (that is, it uses the upper bound and a variational argument, see [14,
Lemma 4.2]). As such, we omit the details.

The last step is, thus, to obtain lower bounds on the L2- and L∞-norms of g(t, ⋅).
By Hölder’s inequality, ∥g(t)∥22 ≤ ∥g(t)∥∞ (recall that ∥g(t)∥1 = 1). Hence, it is
sufficient to find a lower bound on ∥g(t)∥2 in order to finish the claim.

To this end, we utilize the previously-established moment bounds. Fix L > 0 to
be determined. Then

1 = ∫ g(t, x)dx ≤ ∫ Lt2/3

−Lt2/3 g(t, x)dx +∫[−Lt2/3,Lt2/3]c
∣x∣2
L2t4/3 g(t, x)dx

≤

√
2Lt2/3∥g(t)∥2 + 1

L2t4/3 ∫ ∣x∣2g(t, x)dx.
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where, in the second inequality, we used Hölder’s inequality. Choosing L sufficiently
large, the last term is smaller than 1/2 by the moment bounds above. Thus,

t1/3∥g(t)∥2 is bounded below, as desired. This concludes the proof. ◻

2.2. The decay of Mg: proof of Proposition 1.2. Although Proposition 1.2

and (2.1) yields that Eg(t) ≲ t−2/3, we, in fact, must establish the decay of Eg before
proving Proposition 1.2 as the decay of Eg is a crucial element in its proof. This is
in contrast to the proof in [14] for the case R = δ, where we deduced the decay of
Mg directly and then used this to establish the decay of Eg. We state this main
ingredient in the following proposition.

Proposition 2.1. When d = 1 and R is continuous and satisfies (1.4), we have,
for all t,

Eg(t) ≲min{ 1√
t
,

1

t2/3} .
In addition, we require the following lemma, allowing us to show that, in some

sense, g, u, and w cannot be “too different.”

Lemma 2.2. When d = 1 and R is continuous and satisfies (1.4), we have, for all
t ≥ 1,

(2.6) Mw(t) ≤Mu(t) ≤Mg(t) ≲Mw(t).
Furthermore, for any (t, x) ∈ [1,∞) ×R,

(2.7)
g(t, x)2
Mg(t) ≲ w(t, x), u(t, x).

Finally, we also have a small time bound on Mg.

Lemma 2.3. When d = 1 and R is continuous and satisfies (1.4), we have, for all
t ∈ [0,1],

Eg(t) ≤Mg(t) ≲ 1√
t
.

The implied constant in the above inequality does not depend on supp(g0).
We establish Proposition 2.1 in Section 2.3 up to a technical lemma. The technical

lemma is proved in Section 2.4, and relies as well on Lemma 2.2. The latter is
proved in Section 2.4.1. Finally, Lemma 2.3 has an elementary proof, that relies on
the identity (2.12) established at the beginning of Section 2.3, which describes the
evolution of Eg.

To reiterate the dependencies outlined above, we use all three results (Propo-
sition 2.1, Lemma 2.2, and Lemma 2.3) to prove Proposition 1.2. The proofs
of Lemma 2.2 and Lemma 2.3 do not depend on Proposition 2.1. The proof of
Proposition 2.1, however, does depend on Lemma 2.3 .

We now prove Proposition 1.2 assuming Proposition 2.1 and Lemmas 2.2 and 2.3.

Proof of Proposition 1.2. The bound for t ≤ 1 follows directly from Lemma 2.3.
Hence, we need only address the case t ≥ 1. By evaluating (1.1) at the location of a
spatial maximum (t, xt), we find

(2.8) Ṁg ≤Mg(Eg −w(t, xt)).
Using Proposition 2.1 and Lemma 2.2 in (2.8) yields, for some C > 0,

Ṁg ≤Mg ( C
t2/3 −

Mg

C
) .
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Let M(t) = At−2/3 for A to be determined. By Lemma 2.3, if A is sufficiently large,

M(1) ≥Mg(1). In addition, we have

˙
M −M ( C

t2/3 −
M

C
) = − 2A

3t5/3 +
A2

t4/3 ( 1

C
−
C

A
) > 0,

where the last inequality holds as long as A is sufficiently large. The comparison
principle implies that, for all t ≥ 1,

Mg(t) ≤M(t).
This concludes the proof. ◻

2.3. A differential equation for Eg. Before we embark on the proof, we note a
useful identity for convolutions that is applied often in the sequel. By the symmetry
of R (recall (1.4)),

(2.9) ∫ (R ∗ f1)f2 dx = ∫ f1(R ∗ f2)dx for any f1, f2.

We begin our proof by deriving a differential equation for Eg. Convolving (1.1)
with R, we find

(2.10) ∂tw −
1

2
∆w = wEg −R ∗ (gw).

Multiplying by g and integrating yields

∫ g∂twdx +
1

2
Dg = E

2
g −∫ gR ∗ (gw)dx.

Notice that

Ėg = ∫ (∂tgw + g∂tw)dx
and

∫ g∂twdx = ∫ gR ∗ (∂tg)dx = ∫ (R ∗ g)∂tg dx = ∫ w∂tgdx.

Above we used (2.9). Hence

∫ g∂twdx =
1

2
Ėg.

Thus, the above becomes

(2.11)
1

2
Ėg +

1

2
Dg = E

2
g −∫ gR ∗ (gw)dx.

We now derive a simplified form for the right hand side of (2.11). First, using (2.9)
a second time, we find

∫ gR ∗ (gw)dx = ∫ (R ∗ g)gw dx = ∫ gw2 dx.

Recalling that g is a probability measure and Eg = ⟨g,w⟩, we obtain

E2
g −∫ gw2 dx = −∫ g(w2

−E2
g)dx = −∫ g(w2

− 2wEg +E
2
g)dx

= −∫ g(w −Eg)2 dx.
Putting this together with (2.11), we find

(2.12) Ėg +Dg = −2∫ g(w −Eg)2 dx.
We note that (2.12) implies that Eg is decreasing. However, this is not sufficient
for Proposition 2.1, and, instead, it is required to bound the integral term on the
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right hand side away from zero. Before proceeding with this proof, we show how to
conclude Lemma 2.3.

We now establish the (much simpler) bound on Eg and Mg for small times.

Proof of Lemma 2.3. The bound on Eg follows from a general argument that
works in all dimensions that is based on a generalization of the Nash inequality. As
this decay is the focus of Theorem 1.5 and the one dimensional result is simply a
side-effect of the analysis, we postpone it until Section 5. The bound is given in
Proposition 5.1. We note that the bound in Proposition 5.1 is weaker than that
of Proposition 2.1 and its proof is independent of Proposition 2.1. Hence, as we
noted above, the proof of Lemma 2.3 is independent of Proposition 2.1, which is
important because we use Lemma 2.3 to prove Proposition 2.1. Hence, to finish the
proof we need only derive the bound for Mg from the bound for Eg.

Let C be such that Eg(t) ≤ Ct−1/2. Define h to be the solution of ∂th = (1/2)∆h
with h(0, ⋅) = g0. Let G be the heat kernel; that is,

G(t, x) = 1√
2πt

e−
x2

2t .

Then h = G(t) ∗ g0.

We now define our barrier function

g(t, x) = e∫ τ
0

Eg(s)dsh(t, x).
Notice that g solves

(2.13) ∂τg =
1

2
g +Egg.

By (1.1) and the non-negativity of g, we see that g is a subsolution of (2.13). Hence,
the comparison principle implies that g ≤ g. Thus, for all t ∈ [0,1],

Mg(t) ≤Mg(t) = e∫ t
0

Eg(s)dsMh(t) ≤ e2CtMh(t)
≲ ∥G(t) ∗ g0∥∞ ≤ ∥G(t)∥∞∥g0∥1 ≲ 1√

t
,

which concludes the proof. ◻

Having finished the proof of the bounds for small time, we focus on the case t ≥ 1

for the remainder of the section. To that end, we seek to bound the integral term
on the right hand side of (2.12) away from zero. We establish this in the following
lemma.

Lemma 2.4. When d = 1 and R is continuous and satisfies (1.4), we have, for
every t ≥ 1,

E5
g

Dg

≲ ∫ g(w −Eg)2 dx.
Ideally, to prove Lemma 2.4, we would apply similar methods as were used to

establish the lower bound on ∫ g(M − g)dx in [14, Lemma 4.3] for the case R = δ.
This is, in spirit, possible; however, it is complicated by the fact that the right hand
side of (2.12) involves both g and w = R ∗ g, which take different values when R ≠ δ.
As a result, the proof of Lemma 2.4 is significantly more technical than the proof
of its counterpart in [14]. In fact, it is in the proof of this inequality that almost
all of the difficulty lies. We delay its proof until Section 2.4. We now show how to
conclude the upper bound on Eg assuming Lemma 2.4.
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Proof of Proposition 2.1. We first note that Lemma 2.3 yields a bound on Eg(1).
This can be extended to a bound on [1,2] since Eg is decreasing (recall (2.12)).
Hence, we need only establish an upper bound on [2,∞).

We begin by applying (2.12) and Lemma 2.4 to find, for t ≥ 1 and some C > 0,

Ėg +Dg +
1

C

E5
g

Dg

≤ 0.

Applying Young’s inequality, we have

2√
C
E5/2

g = 2
√
Dg

¿ÁÁÀ E5
g

CDg

≤Dg +
1

C

E5
g

Dg

.

Combining the two above inequalities, we find

Ėg +
2√
C
E5/2

g ≤ 0.

Solving this differential inequality yields, for all t ≥ 1,

Eg(t) ≲ 1(t − 1)2/3 .
This concludes the proof of the upper bound for all t ≥ 2, which finishes the proof.
◻

2.4. A lower bound on the integral term. We begin by stating a key lemma
related to the spatial regularity of g. This is the “local-in-time Harnack inequality.”
While this was introduced in [5], we use the more precise statement of [6] as we
require the flexibility in the parameter t0 in the sequel.

Proposition 2.5. [6, Proposition 1.2] Fix any t > t0 > 0. Let ε ∈ (0,1). There
exists Cε, depending only on ε, such that, for any x, y ∈ R,

g(t, x) ≤ Cε exp

⎧⎪⎪⎨⎪⎪⎩Cε∥g∥L∞([t−t0,t]×R)t0 +
Cε∣x − y∣2

t0

⎫⎪⎪⎬⎪⎪⎭g(t, y)
1−ε∥g∥εL∞([t−t0,t]×R).

The main difference between Proposition 2.5 and the standard parabolic Harnack
inequality is the fact that we do not require a “shift” in time; that is, the g terms
on the right and left are both evaluated at the same t (up to the ∥g∥ε

∞
error term).

We use Proposition 2.5 often in the sequel.

2.4.1. How the maxima evolve. We now establish a preliminary upper bound on
g and use it, along with the local-in-time Harnack inequality (Proposition 2.5) to
establish the comparison between g, u, and w (Lemma 2.2).

We first show that the maxima of g, u, and w are bounded independent of t ≥ 1.
This allows us to obtain regularity of g that is uniform in t as t→∞.

Lemma 2.6. Suppose that d = 1 and R is continuous and satisfies (1.4). For all
t ≥ 1/4,

Mg(t) ≲ 1.

Proof. Fix any t0 ≥ 1/4 we establish a bound of Mg(t0). Let g̃(t, x) = g(t + (t0 −
1/4), x). Since (1.1) is an autonomous equation, g̃ satisfies (1.1) with initial data
g̃(0, ⋅) = g(t0 − 1/4, ⋅) and ∫ g̃(0, ⋅) = 1. Applying Lemma 2.3, we find

Mg(t0) =Mg̃(1/8) ≲ 1√
1/8 ≲ 1,

which concludes the proof. ◻
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We next require that, over finite time intervals, the Mg does not change too
much. This allows us to apply Proposition 2.5 in such a way that we can replace
the ∥g∥L∞([t−t0,t]×R) term by Mg(t).
Lemma 2.7. For all t1 ≥ 1 and t0 ∈ [0,1/2], we have

Mg(t1) ≲Mg(t1 − t0) ≲Mg(t1).
Proof. Fix t1 ≥ 1 and t0 ∈ [0,1/2]. Let h be the solution to⎧⎪⎪⎨⎪⎪⎩

ht =
1
2
∆h in (t1 − 3/4,∞) ×R,

h = g(t1 − 3/4, ⋅) on {t1 − 3/4} ×R.
Recall that Mg(t) is bounded above by Lemma 2.6 for t ≥ 1/4. Let

(2.14) A = sup
t≥1/4

Mg(t) <∞
and define g(t, x) = eA(t−(t1−3/4))h(t, x) and g(t, x) = e−A(t−(t1−3/4))h(t, x). We claim
that

(2.15) g(t, x) ≤ g(t, x) ≤ g(t, x),
for all t ∈ [t1 − 3/4, t1], and that

(2.16) Mh(t1) ≤Mh(t1 − t0) ≲Mh(t1).
We prove this in the sequel. Let us momentarily assume both (2.15) and (2.16) are
true and conclude the proof.

Indeed, then we have that

Mg(t1) ≤Mg(t1) = e3A/4Mh(t1) ≤ e3A/4Mh(t1 − t0)
= e3A/4 (eA(3/4−t0)Mg(t1 − t0)) ≤ eA(3/2−t0)Mg(t1 − t0) ≤ e3A/2Mg(t1 − t0),

and, similarly,

Mg(t1 − t0) ≤Mg(t1 − t0) = eA(3/4−t0)Mh(t1 − t0) ≲ eA(3/4−t0)Mh(t1)
= eA(3/4−t0) (e3A/4Mg(t1)) ≲ e3A/2Mg(t1).

This establishes the claim up to proving (2.15) and (2.16).

We first establish (2.15). We show only the first inequality as the second is proved
similarly. Indeed, by the fact that ∂tg =

1
2
∆g −Ag, we have

∂tg −
1

2
∆g − g (Eg −R ∗ g) = −g(A +Eg −R ∗ g).

Since A +Eg ≥Mg by (2.14) and Mg ≥ R ∗ g, g is a subsolution of (1.1). Hence, by

the comparison principle, g ≤ g on [t1 − 3/4,∞) ×R, as claimed.

Now we establish (2.16). The first inequality follows from the maximum principle;
that is, the maximum of a solution to the heat equation is decreasing in time. The
second inequality follows indirectly from the parabolic Harnack inequality. Indeed,
let xm be the location of a maximum of h(t1 − 1/2, ⋅) = g(t1 − 1/2, ⋅). Then the
parabolic Harnack inequality implies that

Mh(t1 − 1/2) = sup
x∈B1(xm)

h(t1 − 1/2, x) ≲ inf
x∈B1(xm)

h(t1, x) ≲Mh(t1).
Using the maximum principle again, we find Mh(t1 − t0) ≤ Mh(t1 − 1/2) since
t0 ∈ [0,1/2]. Combining this with the above inequality, establishes (2.16). This
concludes the proof. ◻
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We are now able to utilize Proposition 2.5 to show that g, u, and w are comparable;
that is, we prove Lemma 2.2.

Proof of Lemma 2.2. The first and second inequalities in (2.6) are immediate by
Young’s inequality for convolutions: for all (t, x),

w(t, x) = φ ∗ u(t, x) ≤ ∥φ∥1∥u(t, ⋅)∥∞ =Mu(t).
The proof of the second inequality is the same and is thus omitted.

Finally, we point out that the third inequality in (2.6) follows directly from (2.7)
(when applied at (t, xt) that is the location of a spatial maximum of g(t, ⋅)). In
addition, the proof of (2.7) is the same for either right hand side (w or u). Thus,
we show it only for u.

Fix t ≥ 1 and any x ∈ R. Letting I(r) = ∫Br
φ, we see that I is continuous,

I(0) = 0, and I(∞) = 1. Hence, the intermediate value theorem implies the existence
of r0 > 0 such that

∫
Br0

φ(y)dy = 1

2
.

Fix any y ∈ Br0
. By Proposition 2.5 with ε = 1/2 and t0 = 1/2, we have

g(t, x − y)1/2 ≳ g(t, x)
exp(C sups∈[t−1/2,t]Mg(s) + Cr2

0

1/2 ) sups∈[t−1/2,t]Mg(s)1/2 .
Using Lemma 2.6, the exponential term in the denominator is bounded. In addition,
Lemma 2.7 implies that

sup
s∈[t−1/2,t]

Mg(s) ≲Mg(t).
Hence, we find, for all y ∈ Br0

,

(2.17) g(t, x − y) ≳ g(t, x)2
Mg(t) .

We now use this inequality to conclude. Recalling the definition of u and
applying (2.17) yields

u(t, x) ≥ ∫
Br0

φ(y)g(t, x − y)dy ≳ ∫
Br0

g(t, x)2
Mg(t) φ(y)dy =

g(t, x)2
2Mg(t) ,

which concludes the proof. ◻

2.4.2. The lower bound on the integral term: the proof of Lemma 2.4. Having
established the relationship between w, u, and g, we are now in a position to prove
the main technical lemma in the proof of Proposition 1.2 apart from one final
technical lemma. This lemma shows that if g(t, x1) is sufficiently small compared to
g(t, x0), then w(t, x1) and u(t, x1) will be also be small compared to g(t, x0). We
state this lemma now and prove it in the sequel.

Lemma 2.8. Suppose that d = 1 and R is continuous and satisfies (1.4). For all

t ≥ 1, if g(t,x0)2
g(t,x1)Mg(t) is sufficiently large, depending only on R and Mg(t)/g(t, x0),

then

w(t, x1), u(t, x1) ≤ 1

2
g(t, x0).

We now prove Lemma 2.4.

Proof of Lemma 2.4. Since time plays no role here, except to allow us to apply the
lemmas in Section 2.4.1, we omit t ≥ 1 notationally for the remainder of the proof.
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Figure 1. A cartoon depicting the relationship of xi, Bi, and g.

We let A > 1 be a constant to be determined. There are two cases to consider, and
A is determined in the second case.

Case one: Mg ≤ AEg. The constant A does not play a role in this case, and, as
such, we absorb it into the constants in the ≲ notation.

Fix 1 = B1 < B2 < B3 < B4 to be determined. We may find x1 < x2 < x3 < x4 such
that

(2.18)

g(xi) = Eg

Bi

for each i ∈ {1,2,3,4},
g(x) ≤ Eg

Bi

for all x ∈ [xi, x4] and each i ∈ {1,2}
g(x) ≥ Eg

Bi

for all x ∈ [x1, xi] and each i ∈ {3,4}
This can be achieved by making the choices

x1 = sup{x ∈ R ∶ g(x) = Eg} x4 = inf{x ≥ x1 ∶ g(x) = Eg/B4}
x2 = sup{x ≤ x4 ∶ g(x) = Eg/B2} x3 = inf{x ≥ x1 ∶ g(x) = Eg/B3}.

Roughly, x1 and x2 are the “last times” g takes the values Eg/B1 and Eg/B2,
respectively, while x3 and x4 are the “first times” after x2 that g takes the values
Eg/B3 and Eg/B4, respectively. See Figure 1.

Fix any x ∈ [x2, x4]. Applying Lemma 2.8, we have that, choosing B2 so that

g(x1)2
g(x)Mg

=
E2

g

g(x)Mg

≥
B2

A

is sufficiently large, depending only on Mg/g(x0) =Mg/Eg ≤ A, then

w(x) ≤ g(x1)
2
=
Eg

2
.

We conclude that Eg −w ≥ Eg/2. Hence,

(2.19) ∫
x4

x2

g(Eg −w)2dx ≥ ∫ x4

x2

Eg

B4

E2
g

4
dx =

E3
g

4B4

∣x4 − x2∣ ≳ E3
g ∣x4 − x2∣.
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Here we used that g ≥ Eg/B4 on [x2, x4]. On the other hand, we have

∣u(x2) − u(x4)∣2 = (∫ x4

x2

∂xudx)2

≤ ∣x4 − x2∣∫ x4

x2

∣∂xu∣2dx
≤ ∣x4 − x2∣∫ ∣∂xu∣2dx = ∣x4 − x2∣Dg.

(2.20)

We now seek a lower bound on ∣u(x2)−u(x3)∣. Using Lemma 2.2 to bound u(x2)
from below, we find

(2.21) u(x2) ≳ g(x2)2
Mg

=
E2

g

MgB
2
2

≳
Eg

AB2
2

.

Choosing now B3 to be AB2
2 multiplied by a universal constant, we have

(2.22) u(x2) ≥ Eg

B3

.

Next, we again apply Lemma 2.8 to conclude that, choosing B4 so that

g(x3)2
g(x4)Mg

=
Eg

Mg

B4

B2
3

≥
1

A

B4

B2
3

is sufficiently large, depending only on Mg/g(x3) ≤ AB2, then

(2.23) u(x4) ≤ g(x3)
2
=
Eg

2B3

.

Putting the bounds (2.22) and (2.23) together, we find

∣u(x2) − u(x4)∣ ≥ Eg

2B3

.

Including the above inequality in (2.20), we find

(2.24) E2
g ≲ ∣x4 − x2∣Dg,

where we have absorbed the dependence of the Bi into the ≲ notation. Combin-
ing (2.19) and (2.24) finishes the proof in case one. Note that, while the estimate
above depends on A, in the second case, we choose A to be a fixed large number
depending only on R and independent of Eg.

Case two: Mg ≥ AEg. The argument in this case is similar; however, instead of
bounding w above by Eg/2, we bound it below by 3Eg/2. Indeed, let 1 = B1 < B2 < B3

and find x1 < x2 < x3 such that

g(xi) = Mg

Bi

for each i ∈ {1,2,3},
g(x) ≤ Mg

B2

for all x ∈ [x2, x3], and

g(x) ≥ Mg

B3

for all x ∈ [x1, x3].
Note that B1 < B2 < B3.

Arguing exactly as in (2.20) in the previous case, we find

∣u(x1) − u(x3)∣2 ≤ ∣x3 − x1∣Dg.

From Lemma 2.2, we have

(2.25) u(x1) ≳ g(x1)2
Mg

=Mg.

The constant above does not depend on A or on any of the Bi’s. Hence, we may
select B2 such that g(x2) ≤ u(x1).
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Then, after increasing B3 such that

g(x2)2
g(x3)Mg

=
B3

B2
2

is sufficiently large, depending only on Mg/g(x2) = B2, Lemma 2.8 implies that

u(x3) ≤ g(x2)
2
≤
u(x1)

2
.

Using this and (2.25), we conclude that

(2.26) M2
g ≲ ∣u(x1)

2
∣2 ≤ ∣u(x3) − u(x1)∣2 ≤ ∣x3 − x1∣Dg.

Applying Lemma 2.2, we have that, for x ∈ [x1, x3],
w(x) ≳ g(x)2

Mg

≥
Mg

B2
3

,

In the second inequality we used that g ≥ Mg/B3 on [x1, x3]. Since Eg ≤ Mg/A,
then, choosing A such that A/B2

3 is sufficiently large, we have w(x) −Eg ≳Mg for
all x ∈ [x1, x3]. Thus, we find

(2.27) ∫
x3

x1

g(Eg −w)2dx ≳M3
g ∣x1 − x3∣.

Combining (2.27) and (2.26) yields

∫ g(Eg − h)2dx ≳ M5
g

Dg

.

The proof is finished in this case by using the fact that Mg ≥ AEg. Thus, we have
concluded the proof in all cases. ◻

We now finish this section by proving the final lemma, Lemma 2.8. The idea
behind this proof is that, by Proposition 2.5, if the ratio g(x0)2/g(x1)Mg is large
enough, then g is closer to g(x1) than g(x0) on a large set. Plugging this into the
convolutions defining u and w yields the result.

Proof of Lemma 2.8. We show the result for w. The proof is exactly the same for
u and, hence, we omit it. We assume without loss of generality that x0 < x1 = 0

since the equation is invariant by reflection and translation. We suppress the time
dependence in the proof as t plays no role.

Let

(2.28) ε̄ =
g(0)Mg

g(x0)2 .
We may assume that ε̄ < 1/4. Define

r = sup{s > 0 ∶ g(y) ≤ g(x0)
4

for all y ∈ [−s, s]}.
From (2.28) and the fact that ε̄ < 1/4, g(0) < g(x0)/4, we conclude that r > 0

and g ≤ g(x0)/4 on [−r, r]. In addition, by continuity, either g(r) = g(x0)/4 or
g(−r) = g(x0)/4. We assume the former, although the proof is similar in the latter
case.
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Using this, we estimate the below directly:

w(0) = ∫ R(−y)g(y)dy ≤ ∫[−r,r]R(−y)g(x0)
4

dy +∫[−r,r]c R(−y)Mgdy

≤
g(x0)

4
+ 2Mg ∫

∞

r
R(y)dy.(2.29)

The final inequality follows from the fact that R is symmetricc.

We seek an estimate on the second term on the last line of (2.29). Indeed, we
wish to show that the integral term is small, which corresponds to r being large. In
order to conclude this, we appeal to Proposition 2.5 with ε = 1/2 and t0 = 1/2, along
with Lemma 2.7, to find

1

4
√
ε
=

1

4

g(x0)√
g(0)Mg

=
g(r)√
g(0)Mg

≲ exp{C(Mg + r
2)} ≲ exp{Cr2} .

The last line follows from Lemma 2.6. Choosing ε̄ sufficiently small, makes r
sufficiently large that

∫
∞

r
R(y)dy ≤ g(x0)

8Mg

.

Plugging this into (2.29), we conclude that w(0) ≤ g(x0)
2

, which finishes the proof.
◻

3. Long time dynamics in one dimension

For technical reasons that become clear in the sequel, we notice that, since (1.1)
is autonomous, we may shift the initial data in time and assume that g(1, ⋅) = g0 ∈

Cc(R) without losing generality. In addition, recall that here we make the choice
R = δ whence (1.1) becomes

(3.1)

⎧⎪⎪⎨⎪⎪⎩
gt =

1
2
∆g + g (Eg − g) in (1,∞) ×R,

g = g0 on {1} ×R.
We begin with a heuristic argument that motivates the constants θcrit and ccrit

defined in (1.10). This argument also yields the main rescalings and objects of study
for us and allows to outline our strategy and the main difficulties encountered in
the proof.

3.1. The rescalings and the heuristic argument. We appeal to two different
scalings revealing different features of the dynamics. One suggests that g, properly
rescaled, converges to a constant multiple of an indicator function while the second
unveils the exact constant involved. We call the rescaled functions, respectively, h
and u. Importantly, and somewhat surprisingly, u satisfies an equation reminiscent
of the Fisher-KPP equation.

We begin with the new variables τ ∼ t1/3 and y ∼ x/t2/3; that is, define

(3.2) h(τ, y) = (τ + 1)2g((τ + 1)3, y(τ + 1)2).
Notice that this respects the scaling in x and the decay of g shown in Theorem 1.1
and Proposition 1.2. Thus, we have that C−1 <Mh,Eh < C. We see that

(3.3) ∂τh =
3

2(τ + 1)2 ∆h + 3h(Eh − h) + 2

τ + 1
(h + y∂yh) .

cSymmetry is not necessary for this result, but it simplifies the notation in the proof.
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The meaning of the time shift of the initial conditions to be defined at t = 1, above,
is now clear: (3.3) does not degenerate as τ ↘ 0 and the initial data of h is defined
at τ = 0.

Notice that, heuristically, this indicates that if h(τ, y) → H(y) as τ →∞, then
H(EH −H) ≡ 0, implying that H has to be of the form ∣A∣−1

1A for some set A
(recall that g is a probability measure and, hence, h is one too). Of course, we
expect A = [−c, c] for some c > 0.

Unfortunately, as the Laplacian term in (3.3) degenerates as τ →∞, we cannot
lean on compactness in order to obtain convergence of h. Instead we need to obtain
sharp estimates on h away from the boundary points y = ±c, which leads us to the
next scaling.

We pull apart the dynamics of g near ct2/3 (i.e., h near c) to see the transition

between (2c)−1t−2/3 and 0. Since the coefficient in front of the Laplacian is O(τ−2),
we expect that this transition layer has width O(τ−1). Hence, for any c ∈ R, we let

(3.4) uc(τ, z) = h(τ, c + z(τ + 1)−1).
Using (3.3), we find

(3.5) ∂τuc =
3

2
∆uc + 3uc(Eh − uc) + 2c∂zuc +

2

τ + 1
uc +

z

τ + 1
∂zuc.

We expect that, as τ → ∞, Eh(τ) → θ for some θ ≥ 0 and h(τ, y) → H(y) =(2c)−1
1[−c,c]. For these to be consistent, we have θ = (2c)−1. In addition, looking

at (3.5) with τ =∞, we formally find

−c∂zuc =
3

4
∆uc +

3θ

2
uc (1 − uc

θ
) .

This is the equation for a traveling wave solution (of speed c) of the Fisher-KPP
equation. Although there is a family of traveling wave solutions, whose speeds make
up an infinite half-line, we expect the correct long-time dynamics to correspond
to the minimal speed wave because our initial data is compactly supported (see,
e.g. [11, 17]). The minimal speed is given by a formula in terms of the coefficients
(see, e.g., [20, (1.25)]), which, in our setting, yields

c = 2

√
3

4
⋅
3θ

2
=

3√
2

√
θ.

Recalling that θ = (2c)−1, the unique solution to the two equations is (c, θ) =(ccrit, θcrit), where ccrit and θcrit are defined in (1.10).

We now discuss the difficulties in establishing the above heuristics for uc. The
first issue is a subtle one. While the last two terms (3.5) appear to be error terms,
this is only true for the last term with the correct choice of c, that is, only in the
correct moving frame. Indeed, the coefficient of last term is approximately z/τ . If
the transition from θ to 0 occurs at c̃τ with c̃ ≠ c, then non-trivial behavior for
uc occurs at z ≈ (c̃ − c)τ . In this case, both ∂zuc and z/(τ + 1) are non-trivial at(c̃ − c)τ . Thus, if we have changed to the “incorrect” moving frame,

lim inf
τ→∞

∥ z

τ + 1
∂zuc∥

∞

> 0,

and, hence, the heuristics above are no longer useful. It is, thus, crucial to work in
the frame with c = ccrit.

Although the equation (3.5) is a non-local Fisher-KPP type equation similar to
that considered in [1, 3, 7, 15], which takes the form

(3.6) ∂τu =D∆u + u(r − φ ∗ u),
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for some non-negative function φ and some constants D,r > 0, there is an important
difference that prevents us from using techniques developed for (3.6) to study (3.5):
while φ∗u(x) ∼ u(x) for each x (when appropriately interpreted), Eh /∼ uc(x) (recall
that Eh is independent of x and is expected to converge to a constant). As such, the
role of the nonlocality in the two equations is quite different. On a more technical
level, this difference is manifested in the following way. The spreading speed in (3.6)
is identified using the linearization of the equation around zero ∂τu =D∆u + ru, in
which the nonlocal term does not appear. On the other hand, the spreading speed of
uc will be almost entirely determined by the long time behavior of the nonlocal term
Eh. As a result, we are not able to draw inspiration from the techniques introduced
in the previous work to deal with the nonlocal term of (3.6).

The next complication is due to the coupling between Eh and uc. Their code-
pendence makes it impossible to first show convergence of Eh and then analyze uc

when τ ≫ 1 and Eh is almost constant. On the other hand, one might be tempted
to consider Eh to be a time dependent prescribed coefficient; however, there is little
robust theory on how the front of a reaction diffusion equation depends on the
coefficients when their oscillations have no specific structure such as periodicity.
This is in part because one can construct coefficients to have a diverse range of
fronts if the coefficients oscillate in a complicated manner [2]. Indeed, there are even
quite simple settings where there is no defined spreading speed due to oscillations
of the coefficients [12].

To overcome this, we derive a differential inequality that shows that Eh can
only increase slowly (although we do not rule out it decreasing arbitrarily quickly).
Focusing our analysis on the resulting long upslopes, we can work with an almost
constant Eh term. In this case, if Eh is too large, it will have been too large for
a large time interval beforehand. Then the front, on that time interval, will move
too quickly due to the large Eh term in (3.5). This corresponds to h having wide
support and contradicts the fact that the integral of h is one. Similarly, if Eh is
too small, it will be small for a long time afterwards. Then the front, on that time
interval, will move too slowly, corresponding to h having too narrow of support and
contradicting the fact that the integral of h is one.

Before proceeding with the proof, we note that the rescalings above, combined
with Proposition 1.2 and the fact that ∫ g dx = ∫ hdy = 1, yield the following bounds,
used often below.

Lemma 3.1. For any c ∈ R, We have, for all τ ≥ 1,

1 ≲ Eh(τ) ≤Mh(τ) =Muc
(τ) ≲ 1.

3.2. The weak bounds: proof of Proposition 1.4. A key step in establish-
ing the strong bounds in Theorem 1.3 is first establishing the weaker bounds in
Proposition 1.4. We show this argument here.

3.2.1. The lower bound on the limsup. We begin with the lower bound on the lim
sup. We require a simple relationship between M and E for large times, proved at
the end of this section.

Lemma 3.2. We have lim sup
τ→∞

Mh(τ) = lim sup
τ→∞

Eh(τ).
The need for this lemma is the following. We argue by contradiction, assuming

that lim supEh is small. Lemma 3.2 implies that Mh is eventually small as well.
However, to be consistent with the requirement that ∫ hdy = 1, this forces h to
be nontrivial near some y0 > ccrit. Using the connection to (3.5), this corresponds
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to front propagation of speed y0 starting from compactly supported initial data;

however, y0 is greater than the speed 2
√(3/4) ⋅ (3Eh/2) = 2

√
9Eh/8 of the minimal

speed traveling wave, which is known to be impossible. The last step is achieved by
constructing a supersolution that is typical in studying Fisher-KPP.

We now show how to conclude Proposition 1.4.(ii) using Lemma 3.2.

Proof of Proposition 1.4.(ii). We prove this by contradiction, assuming that, for
some ε > 0,

lim sup
τ→∞

Eh(τ) ≤ θcrit − ε.

Then, by Lemma 3.2, lim supMh ≤ θcrit − ε, and, hence, there exists τ0 such that
Eh(τ),Mh(τ) ≤ θcrit − ε/2 for all τ ≥ τ0.

First we show that, for any c and τ0, there exists Dc > 0, depending on τ0 and c,
such that

(3.7) uc(τ0, z) ≤Dc exp{− z2

Dc

} .
Notice that, by inverting the change of variables relating uc and h, it is enough to
show this for c = 0. The bound of uc=0 of the form in (3.7) follows from changing
variables from g to uc=0 and using (2.5).

Fix A > 0 to be chosen. Let c = ccrit, λ = 2c/3, and let

uc(τ, z) = Ae−λz.

We aim to show that uc ≤ uc on [τ0,∞) ×R.

First, we consider the domain [τ0,∞) × (−∞,0]. By Lemma 3.1, uc is uniformly
bounded above, and uc ≥ A for any z ≤ 0. Hence, if A is sufficiently large, then we
have that uc ≥ uc on [τ0,∞) × (−∞,0].

Next we show that uc ≥ uc on [τ0,∞) × (0,∞). We do so via the comparison
principle. The first step is to show that uc is a super-solution of (3.5) on (τ0,∞) ×(0,∞). Indeed,

∂τuc −
3

2
∆uc − 3uc(Eh − uc) − 2c∂zuc −

2

τ + 1
uc −

z

τ + 1
∂zuc

= uc (−3

2
λ2
− 3Eh + 3uc + 2cλ −

2

τ + 1
+

λ

τ + 1
z)

≥ uc (−3

2
λ2
− 3(θcrit − ε/2) + 2cλ −

2

τ + 1
) = uc (2c2

3
− 3(θcrit − ε/2) − 2

τ + 1
) .

By our choice of c, it is clear that, up to increasing τ0 if necessary, the last line is
non-negative and, thus, uc is a supersolution of (3.5).

In order to apply the comparison principle, we address the parabolic boundary.
First, we have uc ≤ uc on [τ0,∞)×{0}, as established above. Second, up to increasing
A, we have, via (3.7),

uc(τ0, z) ≤Dc exp{− z2

Dc

} ≤Dc exp{Dcλ
2
− λz} ≤ Ae−λz for all z ≥ 0.

Hence, uc ≤ uc on {τ0} × (0,∞).
We conclude that uc ≤ uc on the parabolic boundary of (τ0,∞) × (0,∞) and

that uc is a supersolution of (3.5). We can, thus, apply the comparison principle,
which implies that uc ≥ uc on (τ0,∞) ×R. This concludes the proof that uc ≤ uc on[τ0,∞) ×R.
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From the definition of uc, it is clear that, for any c′ > c,

lim sup
τ→∞

∫
y>c′

h(τ, y)dy = lim sup
τ→∞

1

τ + 1
∫

z>(c′−c)(τ+1) uc(τ, z)dz
≤ lim sup

τ→∞

1

τ + 1
∫

z>(c′−c)(τ+1) uc(τ, z)dz = 0.

A similar argument as above can be used to obtain a supersolution of u−c and bound
the integral for y < −c′. Thus, we find

lim sup
τ→∞

∫∣y∣>c′
h(τ, y)dy = 0.

In addition, we notice that

lim sup
τ→∞

∫∣y∣≤c′
h(τ, y)dy ≤ lim sup

τ→∞
2c′Mh(τ) = 2c′ lim sup

τ→∞
Eh(τ) ≤ 2c′(θcrit − ε).

Here we used Lemma 3.2.

On the other hand, ∫ h(τ, y)dy = 1. Combining all above estimates, we have

1 ≤ lim sup
τ→∞

∫∣y∣>c′
h(τ, y)dy + lim sup

τ→∞
∫∣y∣≤c′

h(τ, y)dy ≤ 2c′(θcrit − ε).
Since this is true of all c′ > c = ccrit, it follows for c′ = ccrit in the limit. Hence,

1 ≤ 2ccrit(θcrit − ε).
Recall that 2ccritθcrit = 1. It follows that the right hand side is strictly less than one.
This is a contradiction, which concludes the proof. ◻

We now prove Lemma 3.2.

Proof of Lemma 3.2. Since Mh(τ) ≥ Eh(τ) for all τ , it is enough to establish
only the “≤” in the claim above. For notational reasons, let θM = lim supMh and
θE = lim supEh.

There are two cases. Either Mh is eventually monotonic in τ or not. Consider
first the latter case.

If Mh is not eventually monotonic, then we may select τn that are local maxima
of Mh such that Mh(τn) → θM . It follows that uc=0 has local maxima at (τn, zn)
for some zn. Using the equation (3.5), we find, at (τn, zn),

0 ≤ ∂τuc=0 −
3

2
∆uc=0 = 3uc=0 (Eh(τn) − uc=0 +

2

3(τn + 1)uc=0) .
Taking a limit as n → ∞ and using the fact that uc=0(τn, zn) =M(τn) → θM and
lim supEh(τn) ≤ θE , we find

(3.8) 0 ≤ 3θM (θE − θM) .
Since θM > 0 by Theorem 1.1, it follows that θM ≤ θE , which concludes the proof in
this case.

We now consider the case where Mh is eventually monotonic. The case where
Mh is eventually nonincreasing and the case where it is eventually nondecreasing
are handled similarly, so we show only the argument for when it is eventually
nonincreasing. In this case, we can select τn tending to infinity such that ∂τMh(τn)→
0 as n → ∞, since, otherwise, ∂τMh is uniformly negative, which implies that
Mh(τ) → −∞ as τ → ∞, a contradiction. Since Mh is eventually monotonic,
Mh(τn)→ θM as n→∞. Note that ∆uc=0(τn, zn) ≤ 0 when zn is the location of the
spatial maximum of uc=0(τn, ⋅). Using the equation (3.5), we find, at (τn, zn),

0 ≤ −
3

2
∆uc=0 = 3uc=0 (Eh(τn) − uc=0 +

2

3(τn + 1)uc=0) − ∂τuc=0.
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Taking a limit as n → ∞ and using the fact that uc=0(τn, zn) = M(τn) → θM ,
lim supEh(τn) ≤ θE , and lim∂τuc=0 = 0, we find, again, (3.8) in this case. The proof
is then concluded in the same way as in the previous case. ◻

3.2.2. The upper bound on the liminf. We begin by stating the proposition that is
the crucial step. It roughly states that if Eh remains large enough (depending on
c) for long enough, then uc grows up to Eh. This is shown by approximating from
below by solutions of the Fisher-KPP equation.

Proposition 3.3. Fix any τ0, τ1, R, µ, ε, δ, and c. Suppose that

uc(τ0, ⋅) ≥ µ1BR
and 18Eh(τ) − 4c2

> δ for all τ ∈ [τ0, τ1].
If τ0 is sufficiently large, depending only on δ and ε, then there exists τ , depending
only on µ, R, ε, and δ, such that, if τ1 − τ0 ≥ τ , then

uc(τ1,0) ≥ Eh(τ1) − ε.
A crucial point is that τ does not depend on c; that is the lower bound is uniform

over all admissible c. We prove Proposition 3.3 in Section 4.3. We show how to
conclude Proposition 1.4.(i) assuming Proposition 3.3.

Proof of Proposition 1.4.(i). We prove this by contradiction. Assume that
lim inf Eh ≥ θcrit + ε for some ε > 0. We may find τ0 > 0 such that Eh(τ) ≥ θcrit + ε/2
for all τ ≥ τ0.

Notice that, for τ ≥ τ0,

18Eh(τ) − 4c2
crit ≥ 18(θcrit + ε/2) − 4c2

crit = 18θcrit + 9ε − 4(2θcrit)−2
= 9ε.

In the last line we used that 18θ3
crit = 1. Thus, a straightforward application of

Proposition 3.3 yields

(3.9) lim inf
τ→∞

inf∣y∣≤ccrit

h(τ, y) = lim inf
τ→∞

inf∣c∣≤ccrit

uc(τ,0) ≥ θcrit + ε/4.
Using (3.9) and that 2ccritθcrit = 1, we find

1 = lim inf
τ→∞

∫ h(τ, y)dy ≥ lim inf
τ→∞

∫
ccrit

−ccrit

h(τ, y)dy ≥ 2ccrit(θcrit + ε/4) = 1 +
ccritε

2
.

This is clearly a contradiction, which concludes the proof. ◻

4. The strong bounds with radial symmetry

We now show the significantly stronger bounds under the assumption that g0 is
even and radially decreasing. There are two major steps here. First, we show that
Eh converges as τ → ∞. Then we use that to obtain convergence of h. The first
step is restated in the following proposition:

Proposition 4.1. If g solves (3.1) with initial data 0 ≤ g0 ∈ Cc(R) satisfying

∫ g0 dx = 1 that is even and radially decreasing, then

lim
τ→∞

Eh(τ) = lim
τ→∞

Mh(τ) = θcrit.

We perform these steps in reverse order. First, in Section 4.1, we show that h
converges as claimed assuming that Eh and Mh do; that is, Proposition 4.1 holds.
Then, in Section 4.2 we prove Proposition 4.1.
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4.1. Convergence of h given convergence of Eh and Mh. We now show how
to conclude Theorem 1.3 via Proposition 4.1. While we use radial symmetry in this
step, it is not required and is only used here to simplify the proof. Indeed, a close
inspection of the arguments reveals how to construct explicit sub- and supersolutions
of uc (and, therefore, h) in order to obtain such pointwise bounds without using
radial symmetry.

A main idea in the proof is that, by Hölder’s inequality, Mh and Eh can only
be equal if h is an indicator function. Since h is even and radially decreasing, this
implies that h = θ1[−c,c] for some θ and c, which must be θcrit and ccrit by the
rescalings described in Section 3.1. Of course, for all finite t, Mh and Eh are not
exactly equal, so we must understand the stability of Hölder’s inequality in our
setting. This is encoded in the following general lemma, which essentially yields
that if Mh ≈ Eh, then h ≈ θ1[−c,c].

Lemma 4.2. Fix d ∈ N, and let ωd be the volume of the unit ball in R
d. Suppose

that f ∶ Rd
→ [0,∞) is a rotationally symmetric and radially decreasing function

with ∫ f dx = 1. Then, for every r > 0:

(i) if x0 ∈ Br and ∫Br
f dx < 1,

f(x0) ≥Mf

Ef

Mf
− ∫Br

f dx

1 − ∫Br
f dx

.

(ii) if x0 ∉ Br,

f(x0) ≤ 1 − ∫Br
f dx

ωd(∣x0∣d − rd) .
Notice that if ∥f∥22 = Ef = Mf = ∥f∥∞, we find f(x) ≥ Mf in (i) for all ∣x∣ <(ωdMf)−1/d. Then, using this with the constraint ∫ f dx = 1, we see that f(x) =Mf

for all ∣x∣ < (ωdMf)−1/d and f(x) ≡ 0 for all ∣x∣ > (ωdMf)−1/d. Hence, f is an
indicator function, which is the only function for which Hölder’s inequality is an
equality:

Ef = ∫ f2 dx ≤ ∥f∥∞∥f∥1 =Mf ∫ f dx =Mf .

This is why we describe Lemma 4.2 as a stability estimate for Hölder’s inequality.
We note that when Ef <Mf , both (i) and (ii) are necessary to obtain precise bounds
on f . This is in contrast to the special case described above of Ef =Mf where only
(i) is used.

Lemma 4.2 is proved in Section 4.3. We now show how to deduce Theorem 1.3
using the above results.

Proof of Theorem 1.3. First, we notice that Proposition 4.1 yields the claim about
the long time limits of Eg and Mg after suitable rescaling. Next, we notice that the
claim about the profile of g in long times is equivalent to showing that

(4.1) h(τ, y)→ θcrit1[−ccrit,ccrit] as τ →∞,

which we now show.

Fix any ε > 0. Applying Lemma 4.2.(i) and using Proposition 4.1, we see that

lim inf
τ→∞

min∣y∣≤ccrit−ε
h(τ, y) ≥ θcrit,

and, recalling that h is even and radially decreasing,

lim sup
τ→∞

max∣y∣≤ccrit−ε
h(τ, y) ≤ lim sup

τ→∞
h(τ,0) = lim sup

τ→∞
Mh(τ) = θcrit.
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The last equality follows by Proposition 4.1. Thus we have established (4.1) in the
case where ∣y∣ < ccrit.

We now investigate the upper bound. Applying Lemma 4.2.(ii), we have

h(τ, ccrit + ε) ≤ 1 − ∫ ccrit

−ccrit
h(τ, y′)dy′
2ε

.

From the lower bound established above, we have that lim ∫ ccrit

−ccrit
h(τ, y)dy → 1 as

τ →∞. Thus, we conclude that

h(τ, ccrit + ε)→ 0 as τ →∞.

Since h is even and radially decreasing, we find

lim sup
τ→∞

sup
∣y∣≥ccrit+ε

h(τ, y) = 0,

which concludes the proof by the arbitrariness of ε. ◻

4.2. The convergence of Eh and Mh. In order to provide clearer references and
to more closely mirror the structure of the proof, we split this into two separate
propositions.

Proposition 4.3. Under the assumptions of Proposition 4.1,

lim sup
τ→∞

Eh(τ) = lim sup
τ→∞

Mh(τ) = θcrit.

Proposition 4.4. Under the assumptions of Proposition 4.1,

lim inf
τ→∞

Eh(τ) = lim inf
τ→∞

Mh(τ) = θcrit.

Clearly Propositions 4.3 and 4.4 imply Proposition 4.1. Hence, we focus on
proving each of the above propositions in turn in Sections 4.2.2 and 4.2.3, respectively.
Interestingly, the proof of Proposition 4.4 uses Proposition 4.3, and, hence, the order
in which these propositions are proved is important.

4.2.1. Technical lemmas. We begin by stating and proving two crucial lemmas.

Lemma 4.5. For any τ ′ > τ > 0,

Eh(τ ′) ≤ (τ ′ + 1

τ + 1
)2

Eh(τ).
Proof. Multiplying (3.3) by h and integrating by parts implies that Ėh ≤

2
τ+1

Eh.

Solving this differential inequality yields the claim: Eh(τ ′) ≤ ( τ ′+1
τ+1
)2Eh(τ). ◻

Lemma 4.6. For any τ ′ > τ > 0,

Mh(τ ′) ≤ (τ ′ + 1

τ + 1
)2

Mh(τ).
The proof of this fact is exactly as in Lemma 4.5, though using the comparison

principle in place of energy estimates, so we omit its proof.

We require another technical lemma; however, its proof is quite involved and so
we postpone it until Section 4.3.



28 YU GU, CHRISTOPHER HENDERSON

Lemma 4.7. Fix any ε > 0. There exists τε > 0 and τshift, depending only on ε,
such that if τ ≥ τε, then

Mh(τ + τshift) ≤ (1 + ε)Eh(τ).
Moreover, there exists a sequence τn tending to infinity such that

lim
n→∞

Mh(τn) = lim
n→∞

Eh(τn) = lim inf
τ→∞

Eh = lim inf
τ→∞

Mh.

Roughly, we require this, in conjunction with the two previous lemmas, to find
large time intervals on which Mh and Eh take approximately the same value.

4.2.2. The upper bound on lim supEh and lim supMh: Proposition 4.3.

Proof of Proposition 4.3. By Lemma 3.2, lim supMh = lim supEh; hence, for the
remainder of this proof, we focus our attention only on lim supEh. We prove the
bound on Eh by contradiction. Suppose that

lim sup
τ→∞

Eh(τ) = θ > θcrit.

The main idea is the following. First, find a large time interval where Eh transitions
between θcrit to θ. When Eh ≈ θcrit, the closeness of Mh and Eh forces h to be
O(1) near ccrit (recall Lemma 4.2). Then, as Eh grows to be approximately θ, so
does h, at least on the set [−ccrit, ccrit]. It follows that the integral of h is at least
approximately 2θccrit > 2θcritccrit = 1, which is a contradiction.

Before beginning we set two parameters. Fix

(4.2) ε ∈ (0, θ − θcrit

100(1 + θcrit)) and c =
ccrit(1 + 2ε)2 .

such that

(4.3) 2(c − ε)(θ − 2ε) > 1.

The above is possible since θ > θcrit and 2θcritccrit = 1.

Step 1: a large time interval in which Eh transitions from θcrit to θ.

Let τ > 0 be a large time to be determined. By Proposition 1.4, we have that
lim inf Eh ≤ θcrit. Hence, we can find τ < τ̃1 < τ2 such that

(4.4) Eh(τ̃1) = θcrit(1 + ε), Eh(τ2) = θ − ε, and Eh(τ) ∈ [θcrit(1 + ε), θ − ε]
for all τ ∈ [τ̃1, τ2]. By Lemma 4.5,

τ2 ≥ τ̃1

√
θ−ε

θcrit(1+ε) .

We note that, by the choice of ε (4.2), the coefficient of τ̃1 is greater than 1 so that
τ2 ≥ (1 + 2ρ)τ̃1 for some ρ > 0. We note that ρ can be chosen independent of ε over
all ε satisfying (4.2).

Using Lemma 4.7 and increasing τ if necessary, we find a universal constant τshift

such that

(4.5) Mh(τ̃1 + τshift) ≤ 1 + 2ε

1 + ε
Eh(τ̃1) = (1 + 2ε)θcrit.

Let τ1 = τ̃1 + τshift. Up to increasing τ in a way depending only on ρ, we have that(1 + ρ)τshift ≤ ρτ̃1 and, hence

(4.6) (1 + ρ)τ1 = (1 + ρ)(τ̃1 + τshift) ≤ (1 + ρ)τ̃1 + ρτ̃1 = (1 + 2ρ)τ1 ≤ τ2.
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Combining (4.5) with the fact that Eh(τ1) ≥ θcrit(1 + ε) by (4.4), we deduce the
two following inequalities:

(4.7) Mh(τ1) ≤ θcrit(1 + 2ε) and
Eh(τ1)
Mh(τ1) ≥

1 + ε

1 + 2ε
.

Step 2: h = O(1) near ccrit. In this step, we obtain a preliminary bound on h

so that we may apply Proposition 3.3.

Applying Lemma 4.2.(i), we find

(4.8) h(τ1, c) ≥Mh(τ1)
Eh(τ1)
Mh(τ1) − ∫

c

−c hdy

1 − ∫ c

−c hdy
.

In order to obtain a lower bound on the right hand side above, we define the following
auxiliary function. For any s < Eh/Mh ≤ 1, let

φ(s) = Eh(τ1)
Mh(τ1) − s

1 − s
.

Notice that φ is decreasing on its domain. In addition, recalling the definition of
Mh, the choice of c (4.2), the fact that 2ccritθcrit = 1, and the bounds on Mh and
Eh/Mh (4.7), yields

∫
c

−c
hdy ≤ 2cMh(τ1) = 2

ccrit(1 + 2ε)2Mh(τ1)
≤ 2

ccrit

1 + 2ε
θcrit =

1

1 + 2ε
<

1 + ε

1 + 2ε
≤
Eh(τ1)
Mh(τ1) .

Thus, ∫ c

−c hdy ≤ 1/(1 + 2ε) and both quantities are in the domain of φ. Hence,

Eh(τ1)
Mh(τ1) − ∫

c

−c hdy

1 − ∫ c

−c hdy
= φ(∫ c

−c
hdy) ≥ φ( 1

1 + 2ε
) = Eh(τ1)

Mh(τ1) −
1

1+2ε

1 − 1
1+2ε

.

Using this in (4.8) and applying (4.7) yields

h(τ1, c) ≥Mh(τ1)
Eh(τ1)
Mh(τ1) −

1
1+2ε

1 − 1
1+2ε

≥Mh(τ1) 1+ε
1+2ε
−

1
1+2ε

1 − 1
1+2ε

=
Mh(τ1)

2
.

By Lemma 3.1 and the fact that h is radially decreasing, we conclude that

(4.9) min∣x∣≤c
h(τ1, x) = h(τ1, c) ≳ 1.

Step 3: h grows up to θ. Up to increasing τ , which also increases τ2 − τ1

(see (4.6)), we now apply Proposition 3.3 to conclude that

uc(τ2,0) ≥ θ − 2ε

for all c ∈ [0, c − ε]. Here it was crucial that the lower bound (4.9) on h was O(1)
and uniform over all x ∈ [−c, c]. Thus, we find

1 = ∫
∞

−∞

h(τ2, c)dc ≥ ∫ c−ε

−c+ε
uc(τ2,0)dc ≥ 2(c − ε)(θ − 2ε).

However, 2(c − ε)(θ − 2ε) > 1 by (4.3). This is a contradiction, concluding the proof.
◻
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4.2.3. Lower bound on liminf. We now prove Proposition 4.4, which completes the
proof of Proposition 4.1. As in the previous section, we note that we do not directly
use the symmetries of g0 in a strong way here. It only arises in this section through
Proposition 4.3, which was established using the symmetry.

A useful quantity in the sequel is the time average of Eh. In general, given a
function f ∶ [0,∞)→ R, we define its time average to be, for any τ > 0,

f(τ) = 1

τ
∫

τ

0
f(s)ds.

The main heuristic of the proof is the following. If Eh oscillates below θcrit

by a fixed amount at a large time, then so does Mh, by Lemma 4.7. Hence, on[−ccrit, ccrit], h has to be smaller than θcrit, which implies that

uccrit
< θcrit for z < 0.

On the other hand, using Proposition 4.3, the “accumulated reaction” 3 ∫ τ

0
Eh(s)ds =

3τEh(τ) can be no larger than 3τθcrit plus a small correction due to the difference
in time domains between the integral and the interval on which Eh is small. Heuris-
tically, this means the front uccrit

in (3.5) cannot exceed the speed 0 in the moving
frame (speed ccrit in the physical variables). This yields

uccrit
= o(1) for z > 0.

Thus, after suitably quantifying everything, we obtain the contradiction:

1

2
= ∫

∞

0
h(τ, y)dy = 1

τ
∫
∞

−ccrit(τ+1) uccrit
(τ, z)dz

<
1

τ
∫

0

−ccrit(τ+1) θcrit dz´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h<θcrit on [−ccrit,ccrit]

+
1

τ
∫
∞

0
o(1)dz´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

uccrit
is small

beyond the front

≈ θcritccrit =
1

2
.

Proof of Proposition 4.4. Recall that Eh ≤ Mh, and hence that lim inf Eh ≤

lim infMh. By Proposition 4.3, we have that lim supMh = θcrit. Hence, if we prove
that lim inf Eh = θcrit, we may conclude that lim infMh = θcrit. As such, we consider
only lim inf Eh for the remainder of the proof.

We proceed by contradiction. Assume that lim inf Eh < θcrit. By Lemma 4.7,
there exists τn tending to infinity such that

lim
n→∞

Mh(τn), lim
n→∞

Eh(τn) < θcrit.

Define E+(τ) = max{Eh(τ), θcrit}. We note that E+(τ) ≥ θcrit for all τ and

that limE+ = θcrit. The latter follows from the fact that, by Proposition 4.3,
lim supEh = θcrit. Recall that E+ was defined as the time average of E+.

We now construct a super-solution of uccrit
on the parabolic domain P = (0,∞)×(0,∞). Indeed, for A > 0 to be determined and any (τ, z) ∈ P , let

u(τ, z) = A(τ + 1) exp{3∫ τ

0
E+(s)ds − 2c2

crit

3
τ −

2ccrit

3
z −

z2

2(τ + 1)} .
The first three factors in the exponential are typical of supersolutions for Fisher-KPP.
The last factor is to cancel the contributions due to the z

τ+1
∂z term in (3.5).

Define the parabolic domain P = (0,∞) × (0,∞). We aim to use the comparison
principle to bound uccrit

from above by u on P. To that end, we first check that
u ≥ uccrit

on the parabolic boundary of P. There are two components to check:
when τ = 0 and when z = 0. In the former case, this is clearly satisfied by choosing
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A sufficiently large as uccrit
(τ = 0, ⋅) = g0(ccrit + ⋅) ∈ Cc(R). In the latter case, we

note that

u(τ,0) = A(τ + 1) exp{τ (3E+(τ) − 2c2
crit

3
)} = A(τ + 1) exp{3τ (E+(τ) − θcrit)} .

where the second equality follows by the definition of θcrit and ccrit (see (1.10)).

Since, by construction, E+ ≥ θcrit, it follows that u(τ,0) ≥ A for all τ ≥ 0. By
Theorem 1.1 and its definition, uccrit

is bounded above uniformly for all τ . Hence,
there is some A such that u(τ,0) ≥ uccrit

(τ,0) for all τ ≥ 0. We conclude that
u ≥ uccrit

on the parabolic boundary of P .

The last step is to check that u is, in fact, a supersolution of (3.5) in P. We
compute:

uτ −
3

2
∆u − 3u(Eh − u) − 2ccrit∂zu −

2

τ + 1
u −

z

τ + 1
∂zu

= u
⎛⎝ 1

τ + 1
+ 3E+ −

2c2
crit

3
+

z2

2(τ + 1)2 − 3

2

⎛⎝(2ccrit

3
+

z(τ + 1))
2

−
1

τ + 1

⎞⎠
− 3Eh + 3u + 2ccrit (2ccrit

3
+

z

τ + 1
) − 2

τ + 1
+

2ccritz

3(τ + 1) + z2

(τ + 1)2⎞⎠
= u
⎛⎝ 1

2(τ + 1) + 3(E+ −Eh) + 2ccritz

τ + 1
+ 3u
⎞⎠ ≥ 0.

In the inequality, we used that E+ ≥ Eh and u ≥ 0. Hence u is a supersolution
of (3.5).

Combining all the work above, we apply the comparison principle and conclude
that u ≥ uccrit

on P .

We now conclude the proof. Let

c =
1

θcrit + limMh(τn) >
1

θcrit + θcrit

= ccrit

Using that ∫ hdy = 1 and that h is even, we have that

1

2
= ∫

∞

0
h(y)dy = ∫ c

0
h(y)dy + 1

τ + 1
∫
∞

(c−ccrit)(τ+1) uccrit
(τ, z)dz

≤ cMh(τ) + 1

τ + 1
∫
∞

(c−ccrit)(τ+1) u(τ, z)dz
= cMh(τ) +Ae3τ(E+− 2c2

crit
9
) ∫

∞

(c−ccrit)(τ+1) e
−

2ccrit
3

z− z2

2(τ+1) dz

≤ cMh(τ) + 3A

2ccrit

exp{3τ (E+ − 2c2
crit

9
−

2ccrit

9
(c − ccrit)τ + 1

τ
)} .

(4.10)

Recall that limE+ = θcrit = 2c2
crit/9 and c > ccrit. Evaluating the above at τn and

taking n to infinity, we find

1

2
≤ c limMh(τn) + 0 =

limMh(τn)
θcrit + limMh(τn) <

1

2
,

where the last inequality follows because limMh(τn) < θcrit. This is a contradiction.
Hence, the proof is complete. ◻

4.3. Proof of technical lemmas.
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4.3.1. The proof of Lemma 4.2. There are two parts to prove. We show them in
order.

Proof of Lemma 4.2.(i). Fix r as in the statement of the lemma. We abuse notation
by denoting f(r) = f(x) for any ∣x∣ = r. We compute:

Ef ≤ ∫
Br

f2 dx +∫
Bc

r

f2 dx ≤Mf ∫
Br

f dx + f(r)∫
Bc

r

f dx

=Mf ∫
Br

f dx + f(r) (1 −∫
Br

f dx) .
Recall that ∫Br

fdx < 1. Thus, rearranging the above yields

Mf

Ef

Mf
− ∫Br

f dx

1 − ∫Br
f dx

=
Eg −Mf ∫Br

f dx

1 − ∫Br
f dx

≤ f(r).
This completes the proof. ◻

Proof of Lemma 4.2.(ii). First we compute:

1 = ∫ f dx ≥ ∫
Br

f dx +∫
B∣x0 ∣∖Br

f dx ≥ ∫
Br

f dx + ωd(∣x0∣d − rd)f(x0).
The last inequality uses the fact that f is rotationally symmetric and radially
decreasing. The proof is concluded by rearranging the above inequality. ◻

4.3.2. The proof of Lemma 4.7.

Proof. We begin with the first claim. Fix τε and τshift to be determined. In order
to prove this, we first note that Eh cannot stray too far above Eh(τ). Indeed, by
Lemma 4.5, we have

Eh(τ ′) ≤ (τ ′
τ
)2

Eh(τ).
Hence, there is µε > 0 such that if τshift < µετ then Eh(τ ′) ≤ (1 + ε/4)Eh(τ) for all
τ ′ ∈ [τ, τ + τshift]. Notice that µε depends only on ε.

We now construct a simple super-solution that “pushes” Mh down to Eh. Indeed,
for τ ′ ≥ τ , let

h(τ ′, y) = (1 + ε
2
) [Mh(τ)e−γ(τ ′−τ)

+ (1 − e−γ(τ ′−τ))Eh(τ)] ,
where γ > 0 is a constant to be determined. Notice that h(τ, y) ≥Mh(τ) ≥ h(τ, y)
for every y.

We next show that h is a supersolution of (3.3). Indeed, for any τ ′ ∈ [τ, τ + τshift],
∂τ ′h −

3

2(τ ′ + 1)2 ∆h − 3h(Eh(τ ′) − h) − 2

τ ′ + 1
(h + y∂yh)

= γ(1 + ε/2)Eh(τ) + 3h(h − γ
3
−Eh(τ ′) − 2

3(τ ′ + 1))
≥ γ(1 + ε/2)Eh(τ) + 3h(h − γ

3
− (1 + ε

4
)Eh(τ) − 2

3(τε + 1)) .
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In the last step, we used that Eh(τ ′) ≤ (1+ε/4)Eh(τ) for all τ ′ ∈ [τ, τ +τshift]. Recall

that Mh(τ) ≥ Eh(τ). Thus, h ≥ (1 + ε/2)Eh(τ), and we find

∂τh −
3

2(τ ′ + 1)2 ∆h − 3h(Eh(τ ′) − h) − 2

τ ′ + 1
(h + y∂yh)

≥ γ(1 + ε/2)Eh(τ) + 3h(ε
4
Eh(τ) − γ

3
−

2

3(τε + 1)) .
From Theorem 1.1, there exists C > 0 such that C−1 < Eh(τ) ≤Mh(τ) < C for all
τ ≥ 1. Thus, choosing γ = ε/(24C) and increasing τε if necessary, we find

∂τh −
3

2(τ ′ + 1)2 ∆h − 3h(Eh(τ ′) − h) − 2

τ ′ + 1
(h + y∂yh) ≥ 0.

It follows from the comparison principle that h(τ ′, ⋅) ≥ h(τ ′, ⋅) for all τ ′ ∈ [τ, τ +
τshift]. Thus, we conclude that

Mh(τ + τshift) ≤ h(τ + τshift,0) ≤ (1 + ε/2)Ce− ε
24C

τshift + (1 + ε/2)Eh(τ).
It is clear that if τshift is chosen large enough, depending only on ε, then the right
hand side above is bounded by (1 + ε)Eh(τ), as desired. This finishes the proof of
the first claim.

We now prove the second claim. First note that lim inf Eh ≤ lim infMh since
Eh ≤Mh. Hence, if we find the sequence τn in the statement of the lemma, then
it follows that lim inf Eh = lim infMh and the proof is concluded. In order to find
such a sequence, it is enough to establish the following claim:

for every ε, τ0 > 0, there is τ1 ≥ τ0 such that Mh(τ1),Eh(τ1) ≤ (1 + ε)2 lim inf Eh.

It is clear that the procedure used to establish the first claim yields the desired
τ1. Indeed, after choosing, in the notation above, τε > τ0, τ ≥ τε such that Eh(τ) ≤(1 + ε) lim inf Eh, and letting τ1 = τ + τshift, we find

Mh(τ1) ≤ (1 + ε)Eh(τ) ≤ (1 + ε)2 lim inf Eh and

Eh(τ1) ≤ (1 + ε/4)Eh(τ) ≤ (1 + ε/4)(1 + ε) lim inf Eh.

This concludes the proof. ◻

4.3.3. The proof of Proposition 3.3. We break this proposition into two smaller
lemmas. The first (Lemma 4.8) shows that uc remains locally uniformly bounded
below over the entire time interval [τ0, τ1], while the second (Lemma 4.9) shows
that uc grows from this initial weak lower bound to the claimed value E(τ1)− ε over
a terminal boundary layer [τ1(1 − βε), τ1] for βε ≈ ε. In this final step, it is crucial
that Eh grows “slowly” as in Lemma 4.5. We state these lemmas here and then
show how to use them to conclude Proposition 3.3. Afterwards, we prove them.

Our first lemma is below. Similar results exist in the literature (see, e.g., a very
general work of Berestycki, Hamel, and Nadin [2]); however, we are unable to find
one that, applied out-of-the-box, yields the result below with the uniformity in all
parameters and allows for the particular assumptions that we require. As such, we
provide a proof below, although the ideas are standard.

Lemma 4.8. Fix any T0 < T1, µ, δ, and c. Suppose that R > 1 + 10π/√δ and

(4.11)

⎧⎪⎪⎨⎪⎪⎩
∂τu =

3
2
∆u + 3u(f(τ) − u) + 2c∂zu + a(τ, z)∂zu in (T0, T1) ×B2R,

u ≥ µ1BR
on {T0} ×B2R(0),

where f and a are continuous and f satisfies

(4.12) 18f(τ) − 4c2
> δ for all τ ∈ [T0, T1].
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If ∥a∥L∞([T0,T1]×B2R) is sufficiently small depending only on δ and c, then there
exists Cδ,f , depending only on δ and ∥f∥∞, and T , depending only on ∥f∥∞, ∥a∥∞,
µ, δ, and R, such that, if τ ∈ [T0 + T,T1], then

min
z∈BR

u(τ, z) ≥ 1

Cδ,f

.

The heuristic of Lemma 4.8 is that if the reaction f , advection a, and speed c

satisfy a sub-minimal speed condition (4.12) in a uniform way, then u propagates at
speed c in the sense that it remains O(1) regardless of the particular fluctuations of
f and g. We note that it is crucial for our estimates that this is uniform in c and f .

Our next lemma is the following.

Lemma 4.9. Fix any τ0, τ1, µ, R, ρ, ε, δ, and c. Suppose that u solves

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂τu =

3
2
∆u + 3u(ρ − u) + 2c∂zu +

2
τ+1

u + z
τ+1

∂zu in (τ0, τ1) ×BR,

u = µ on {τ0} ×BR,

u = 0 on (τ0, τ1) × ∂BR

and 18ρ− 4c2 > δ. If τ0 and R are sufficiently large, depending only on δ and ε, then
there exists τ , depending only on µ, ε, and δ, such that, if τ1 − τ0 ≥ τ , then

u(τ1,0) ≥ ρ − ε.
The main difference between the following and Lemma 4.8 is that the lower bound

at the final time is much stronger at the cost of having a constant reaction term 3ρ.
In particular, as long as the sub-minimal speed condition (18ρ − 4c2 > δ) is satisfied
and τ is sufficiently large that the last two terms in (3.5) are negligible, then u must
grow to the carrying capacity ρ uniformly among all speeds.

We first show how to conclude Proposition 3.3 from Lemmas 4.8 and 4.9.

Proof of Proposition 3.3. First we notice that, by Lemma 4.5, there is βε ∈ (0,1),
depending only on ε, such that

Eh(τ1) ≤ (τ1 + 1

τ + 1
)2

Eh(τ) ≤ 1(1 − βε)2Eh(τ) ≤ 1

1 − ε
2Eh(τ1)

Eh(τ),
for all τ ∈ [τ1(1−βε), τ1]. Recall that Eh(τ1) is bounded uniformly above and below
by Theorem 1.1, and, hence, βε can be chosen independent of Eh(τ1). Thus,

(4.13) Eh(τ) ≥ Eh(τ1) − ε
2

for all τ ∈ [τ1(1 − βε), τ1].
Fix R > 1 + 10π/√δ large enough such that Lemma 4.9 can be applied with the

choice

(4.14) ρ = min
τ ′∈[τ1(1−βε),τ1]

Eh(τ ′) (≥max{E(τ1) − ε
2
,

1

C
})

and the ε in Lemma 4.9 taking the value of ε/2 in the current proof. As 18Eh−4c2 > δ,
by assumption, it follows that 18ρ − 4c2 > δ.

Fix an intermediate time τint ∈ [τ1(1 − βε), τ1] to be determined. Applying
Lemma 4.8 on the time interval [τ0, τint], we find that, up to increasing τ0 if
necessary (to make the coefficients in (3.5) sufficiently small) and choosing τint − τ0

sufficiently large, there is Cδ > 0 such that

(4.15) uc(τint(1 − βε), z) ≥ 1

Cδ

for all z ∈ BR.
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We now let u be the solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂τu =

3
2
∆u + 3u(ρ − u) + 2c∂zu +

2
τ+1

u + z
τ+1

∂zu, in (τint,∞) ×BR,

u = 1
Cδ
, on {τint} ×BR,

u = 0 on (τint,∞) × ∂BR.

By (4.15), u ≤ uc on {τint} ×BR. By the choice of boundary conditions u ≤ uc on[τint, τ1] × ∂BR. By our choice of ρ and by (4.13), u is a subsolution of (3.5). Thus,
the comparison principle implies that u ≤ uc on [τint, τ1] ×BR.

Up to increasing τ1 − τ0 (recall that τint has already been fixed relative to τ0), we
have that τ1 − τint, the length of the time interval [τint, τ1], is sufficiently large to
apply Lemma 4.9 and conclude that

E(τ1) − ε ≤ ρ − ε
2
≤ u(τ1,0) ≤ uc(τ1,0).

The first inequality is by (4.14), the second by Lemma 4.9, and the third by the
ordering u ≤ uc outlined in the previous paragraph. This concludes the proof. ◻

We now prove the two lemmas.

Proof of Lemma 4.8. Let ρ = 10π/√δ. By assumption R+ρ+1 < 2R. By the Harnack
inequality, there exists µ, depending only on ∥f∥L∞[T0,T1], ∥g∥L∞([T0,T1]×B2R), µ,
and ρ, such that

u(T0 + 1, ⋅) ≥ µ1BR+ρ
.

In particular, we have the bound u(T0 + 1, ⋅) ≥ µ1Bρ(z0) for any z0 ∈ BR. Our goal

is to obtain a lower bound on u(T1, z0) via the construction of a subsolution u on[T0 + 1, T1] ×Bρ(z0). For notational ease, we assume z0 = 0 and T0 + 1 = 0 for the
remainder of the proof since all arguments are translation invariant.

We now construct u. Let λ > 0 and φ ∶ [0, T1] → R be a constant and function
determined, respectively. Then let

u(τ, z) = µe−λ(ρ+z)e∫ τ
0

φ(s)ds cos(zπ
2ρ
)2

.

Up to decreasing µ, we can choose φ in the sequel such that

(4.16) u ≤
δ

100
on [0, T1] ×Bρ.

Notice that u ≤ µ ≤ u on {0} ×Bρ. Moreover, u ≤ u on ∂Bρ since u is positive.

Hence, we need only check that u is a subsolution of (4.11) in order to conclude,
via the comparison principle, that u ≤ u on [0, T1] ×Bρ. To this end, we compute
that, using (4.16),

∂τu −
3

2
∆u − 3u(f − u) − (2c + a)∂zu

≤ φu −
3

2
(λ2u +

2πλµe−λ(ρ+z)+∫ τ
0

φ(s)ds

ρ
cos sin+

π2µe−λ(ρ+z)+∫ τ
0

φ(s)ds

2ρ2
(sin2

− cos2) )
− 3u(f − δ

100
) + (2c + a)⎛⎝λu +

πµe−λ(ρ+z)+∫ τ
0

φ(s)ds

ρ
cos sin

⎞⎠
= −u(3λ2

2
+ 3f − 3

δ

100
−
π2

2ρ2
− (2c + a)λ − φ) + u sin

cos

(2c + a − 3λ)π
ρ

− u
sin2

cos2

π2

2ρ2
.
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We now select λ = 2c/3. Using this choice of λ and condition (4.12) to find

∂τu −
3

2
∆u − 3u(f − u) − (2c + a)∂zu

≤ −u( δ
10
−
π2

2ρ2
−

2ca

3
− φ) + u sin

cos

aπ2c

3ρ
− u

sin2

cos2

π2

2ρ2
.

Next, see that, by Young’s inequality

sin

cos

aπ2c

3ρ
≤

sin2

cos2

π2

2ρ2
+

2a2c2

9
.

Thus,

(4.17) ∂τu −
3

2
∆u − 3u(f − u) − (2c + a)∂zu ≤ −u( δ

10
−
π2

2ρ2
−

2ca

3
− φ −

2a2c2

9
) .

Using the choice ρ = 10π/√δ and letting

φ(τ) = δ

100
1[0,T ](τ) with T =

100

δ
log(max{1, δ

100µ
}) ,

(clearly T ≤ T1 if T1 is sufficiently large), we find

∂τu −
3

2
∆u − 3u(f − u) − (2c + g)∂zu ≤ −u( δ

25
−

2ca

3
−

2a2c2

9
)

Thus ∂τu −
3
2
∆u − 3u(f − u) − (2c + a)∂zu ≤ 0 if ∥a∥∞ is sufficiently small. We

conclude, via the comparison principle, that u ≤ u. Using the form of φ yields

u(T1,0) ≥ δ

100
e−λρ.

Recall that ρ is given explicitly in terms of δ and λ is bounded by 3
√∥f∥∞/2 due

to (4.12). Hence u(T1, 0) is bounded below in a way only depending on δ and ∥f∥∞,
as claimed. This concludes the proof. ◻

Proof of Lemma 4.9. We prove this by contradiction. Suppose there exists τn,
τn, and Rn ≤

√
τn all tending to infinity such that u(τn, ⋅) ≥ µ on BRn

(0) and
u(τn + τn,0) < ρ − ε.

Let un(τ, z) = u(τn + τn + τ, z). By the maximum principle, u ≤max{µ, ρ + 2/3}.
Thus un is uniformly bounded in L∞, which, using parabolic regularity theoryd,
yields a uniform bound in C2+α

parabolic for any α ∈ (0,1). Thus, there exists u∞ such

that un → u∞ locally uniformly in C2
parabolic and u∞ solves

∂τu∞ =
3

2
∆u∞ + 3u∞(ρ − u∞) + 2c∂zu∞ in R ×R.

Applying Lemma 4.8, we have that u∞ ≥ µ on R ×R for some µ > 0.

Notice that

u∞(0,0) = lim
n→∞

u(τn + τn,0) ≤ ρ − ε,
where the inequality follows by assumption, it follows that infR×R u∞ ∈ [µ, ρ − ε].
There are two cases to consider.

dSee, e.g., [18, Theorem 4.9, Theorem 6.9] which correspond to Schauder and De Giorgi
estimates, respectively. Also, C2+α

parabolic
mentioned here refers to the standard parabolic Hölder

spaces. Roughly, this corresponds to C1+α/2 regularity in t and C2+α regularity in z.
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Case one: u∞ achieves its minimum at a point (τmin, zmin). Then,
u∞(τmin, zmin) ∈ [µ, ρ − ε] and, at (τmin, zmin), we have

0 ≥ ∂τu∞ −
3

2
∆u∞ − 2c∂zu∞ = 3u∞(ρ − u∞).

This is a contradiction since u∞(τmin, zmin) ∈ [µ, ρ − ε] and, hence, at (τmin, zmin),
u∞(ρ − u∞) ≥min{µ(ρ − µ), ε(ρ − ε)} > 0.

Thus, this case cannot occur.

Case two: u∞ does not achieve a minimum. Here we use a fairly standard
re-centering trick. Indeed, let (τn, zn) be a sequence such that u∞(τn, zn)→ inf u∞
as n→∞. Let

vn(τ, z) = u∞(τn + τ, zn + z) for all (τ, z) ∈ R ×R.
We conclude as above that vn → v∞ for some smooth function v∞ solving the same
equation as u∞. In addition, v∞(0,0) = inf v∞ ∈ [µ, ρ − ε]. At this point, the proof
proceeds exactly as in case one, leading to a contradiction.

Since we obtain a contradiction in all cases, the proof is finished. ◻

5. Long time dynamics of solutions in higher dimensions

We begin with the (somewhat simpler) proof of the moments estimate Theorem 1.5.
Afterwards we proceed with the construction of non-Gaussian self-similar solutions
for the equation in two dimensions.

5.1. Higher dimensional moments estimates. As in the one-dimensional case,
the key estimate to establish is an upper bound on Eg. We state this here and prove
it in Section 5.1.2.

Proposition 5.1. For any d ≥ 1 and t > 0,

Eg(t) ≲ (t +Eg(0)− 2
d )− d

2

.

We note that, in the course of establishing Theorem 1.5 from Proposition 5.1, we
obtain a similar bound on Mg.

5.1.1. Moment bounds. We show how to conclude bounds on the moments of g
using Proposition 5.1. The main difficulty is in establishing the upper bounds on
the moments as all other conclusions in Theorem 1.5 are either obtained along the
way or a simple consequence of Proposition 5.1 and the moment upper bound.

We establish these upper bounds through the construction of a supersolution. In
the one dimensional case, this was made up of a solution to the heat equation with
an exponential integrating factor depending on Eg. Trying to apply this directly

here yields an issue in the 2d case: ∫ t

1
Eg(s)ds grows logarithmically in t (it is

bounded if d > 2). As such, a simple proof mirroring the 1d proof closely can be
established in dimensions d ≥ 3 but will not be sharp when d = 2. Thus, we mainly
focus below on the case d = 2. The key step here is to obtain and use a lower bound
on the R ∗ g term when ∣x∣2/t = O(1).
Proof of Theorem 1.5. We begin with the proof of the upper bound on the moments
in Theorem 1.5. We claim that there exists A > 0 such that for all t ≥ 0,

(5.1) g(t, x) ≤ A

(t + 1) d
2

e
−

x2

A(t+1) .
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Before establishing this, we note that the proof of the upper bound follows imme-
diately via a direct computation using (5.1) (indeed, this is, up to a time change,

equivalent to the fact that the pth moment of a Brownian motion is O(tp/2)).
We now establish (5.1) via the construction of a supersolution. Let

g(t, x) = A

t + 1
e
−

x2

2A(t+1) if d = 2,

g(t, x) = A(t + 1)d/2 e∫ t
0

Eg(s)ds− x2

2(t+1) if d ≥ 3.

Again, note that the choice of g for d ≥ 3 would yield an extra logarithmic factor
were we to use it in the case d = 2 as Eg(s) ≈ (s + 1)−1 and, hence, would not yield
the sharp asymptotics. In fact, that g is a supersolution when d ≥ 3 is clear as it is
simply a solution to the heat equation along with an integrating factor. Thus, we
focus our efforts on the case d = 2.

Up to increasing A, we have that g > g at t = 0 since g0 is compactly supported
and bounded. We show that g ≥ g on (0,∞) ×R2 by contradiction, taking t0 > 0 to
be the first time that g and g “touch.” Let x0 be the point at which they touch. It
follows that, at (t0, x0),
(5.2) ∂tg −

1

2
∆g ≤ ∂tg −

1

2
∆g.

Our goal is to use (5.2) to obtain a contradiction.

We claim that, at (t0, x0),
(5.3) ∂tg −

1

2
∆g − g (Eg −R ∗ g) > 0.

Postponing the proof of (5.3) momentarily, we show how to conclude using it.
Indeed, at (t0, x0), we have, from (5.2), (1.1), and then (5.3),

∂tg −
1

2
∆g ≤ ∂tg −

1

2
∆g = g (Eg −R ∗ g) = g (Eg −R ∗ g) < ∂tg −

1

2
∆g.

This is clearly a contradicton. Hence, (5.1) follows from (5.3), which we prove now.

With arguments reminiscent of those in Section 2 (see, e.g., the proof of Lemma 2.3),
it is easy to check that, up to further increasing A, we may assume that t0 > 1. Next,
using arguments exactly as in Lemma 2.2 (cf. (2.7)), there exists CR > 0, depending
only on R, such that

(5.4) R ∗ g(t0, x0) ≥ A

CR(t0 + 1)e−
2x2

0
A(t0+1) .

The above relies on the fact that g(t0, ⋅) ≤ g(t0, ⋅) ≤ (1 + t0)−1 and that

g(t0, x0) = g(t0, x0) = A

t0 + 1
e
−

x2
0

A(t0+1) ,

which hold by contradictory assumption.

Notice that, for any (t, x),
∂tg −

1

2
∆g = g ( x2

2A(t + 1)2 (1 − 1

A
) + 1

t + 1
(−1 +

1

A
)) .



LONG-TIME BEHAVIOR FOR A NONLOCAL MODEL 39

Hence, using Proposition 5.1 and (5.4), we find, at (t0, x0),
∂tg −

1

2
∆g − g (Eg −R ∗ g)

≥ g
⎛⎜⎝

x2

2A(t0 + 1)2 (1 − 1

A
) + 1

t0 + 1
(−1 +

1

A
) − C(t0 + 1) + Ae

−
2x2

0
A(t0+1)

CR(t0 + 1)
⎞⎟⎠ .

(5.5)

where C is the implied constant in Proposition 5.1.

Increasing A if necessary, we have

(5.6) A >max{2,CR(C + 1)e8(C+1)}.
We consider first the case when ∣x0∣2 ≥ 4(C + 1)A(t0 + 1). Then (5.5) becomes

∂tg −
1

2
∆g − g (Eg − g) > g (2(C + 1)

t0 + 1
−

1

t0 + 1
−

C(t0 + 1)) ≥ 0.

On the other hand, if ∣x0∣2 ≤ 4(C + 1)A(t0 + 1), then (5.5) becomes

∂tg −
1

2
∆g − g (Eg − g) > g (− 1

t0 + 1
−

C(t0 + 1) + A

CR(t0 + 1)e−8(C+1)) ≥ 0.

where the last line follows from (5.6). Thus, (5.3) follows from the two cases above.
This finishes the proof of (5.1).

The proof of the upper bound on Mg follows from the fact that g ≤ g, while the
upper bound on Eg is the content of Proposition 5.1. The proof of the lower bounds
on the moments and on the L2- and L∞-norms of g(t, ⋅) follows exactly as in the
proof of Theorem 1.1 using the bounds established above. As such, we omit the
details. The proof is, thus, finished. ◻

5.1.2. The upper bound on g. We now establish the key upper bound on Eg on
which the previous section depends. We use classical methods based on the Nash
inequality to order to establish the t−d/2 decay of Eg; however, the Nash inequality
must be slightly adapted to our macroscopic quantities Eg and Dg. We state this
updated Nash inequality here, its proof is left until after the proof of Proposition 5.1.

Lemma 5.2. Let h ∈H1(Rd) ∩L1(Rd) and suppose that R satisfies (1.4) or R = δ.
Then

E
1+2/d
h ≲ ∥h∥4/d1 Dh.

Proof of Proposition 5.1. Applying the convolved Nash inequality from Lemma 5.2,
we find that

E1+2/d
g ≲ ∥g∥4/d1 Dg =Dg.

Using this inequality in (2.12), we have

(5.7) Ėg = −Dg − 2∫ g(R ∗ g −Eg)2 dx ≤ −Dg ≲ −E
1+2/d
g .

Integrating this in time, we find

(5.8) Eg(t) ≲ (t +Eg(0)−2/d)−d/2
,

which concludes the proof. ◻

We now prove Lemma 5.2. The proof given is almost exactly as in the classical
case; however, the new R̂ terms in the Fourier transform must be addressed.

Proof of Lemma 5.2. We note that the case R = δ is the standard Nash inequality;
hence we omit its proof and focus only on the case when R is continuous and
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satisfies (1.4). We use the Fourier transform: for any function h, we denote its

Fourier transform by ĥ. We begin with Plancherel’s identity

Eh = ⟨h,R ∗ h⟩ = ∫ ĥR̂ ∗ hdξ = ∫ ∣ĥ∣2R̂ dξ.
Notice that, due to the form of R in terms of φ (see (1.4)), we have R̂ = φ̂2 and

since φ is assumed to be even, it actually implies R̂ = ∣φ̂∣2. In other words, R̂ is
real valued and non-negative (this is not surprising, because R comes from the
covariance function of a Gaussian process so it is positive definite).

Hence, for L to be chosen, we have

Eh ≤ ∫
BL

∣ĥ∣2R̂ dξ +∫
Bc

L

∣ξ∣2
L2
∣ĥ∣2R̂ dξ ≲ Ld∥ĥ∥2

∞
∥R̂∥∞ +∫

Bc
L

∣ξ∣2
L2
∣ĥ∣2R̂ dξ

≤ Ld∥h∥21 + 1

L2
⟨∇h,R ∗∇h⟩ = Ld∥h∥21 + 1

L2
Dh.

The proof is then finished by choosing Ld+2 =Dh/∥h∥21. ◻

5.2. Gaussian and non-Gaussian self-similar dynamics. The goal of this
section is to prove Theorem 1.6. Recall that we assumed the convolution kernel
R = δ. In order to attack this problem, we begin with a few transformations of the
function g. We use self-similar variables here; that is, we define

(5.9) G(τ, y) = e d
2

τg (eτ , eτ/2y)
and find that

(5.10) Gτ =
d

2
G +

1

2
∆G +Ge−

d−2
2

τ (∥G∥22 −G) + y
2
⋅ ∇G.

First, we note that, in the above equation, the linear operator 1
2
∆+ y

2
⋅∇+

d
2

is actually

the adjoint of 1
2
∆ − y

2
⋅ ∇, which is the generator of an Ornstein–Uhlenbeck process

with the standard Gaussian invariant density (2π)−d/2 exp(−∣y∣2/2). Thus, without
the nonlinear term, the above equation is actually the Fokker-Planck equation for
the Ornstein-Uhlenbeck process which converges to its invariant density. We now
see the reason for the different behavior in d = 2: when d ≥ 3, the nonlinear terms
are lower order terms decaying exponentially in τ , hence we get a Gaussian behavior
as expected, while when d = 2, the nonlinear terms are O(1) since, in these variables,
Theorem 1.5 yields

(5.11) ∥G∥22, ∥G∥∞ ≈ 1.

5.2.1. Decay to a Gaussian in higher dimensions d ≥ 3. We now use the above
change of variables to obtain the convergence to a Gaussian; that is, we prove
Theorem 1.6 (i). First, we make a few reductions. Up to shifting in time, we may
assume that, for τ0 ≥ 0, g(eτ0 , x) = g0(x), which yields

(5.12) G(τ0, y) = g0(eτ0/2y) ≤ e dτ0
2 Ae−

eτ0 y2

B for all y ∈ Rd.

Hence, up to increasing τ0 and increasing A, we may assume that

G(τ0, y) ≤ Ae− y2

2 for all y ∈ Rd.

Summing up the previous reductions, we assume that G solves

(5.13)

⎧⎪⎪⎨⎪⎪⎩
Gτ =

1
2
∆G + y

2
⋅ ∇G + d

2
G + e−

d−2
2

τG (∥G∥22 −G) in (τ0,∞) ×Rd,

G = G0 ≤ Ae
−

y2

2 on {τ0} ×Rd.
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The above is not self-adjoint and, thus, not amenable to spectral analysis. Hence,
we define a new function

W (τ, y) = G(τ, y)
ψ0(y) , where ψ0(y) = 1

Z
e−

y2

4

with Z = (2π)d/4 is a normalization constant chosen so that ∥ψ0∥2 = 1. It is clear
that ψ2

0 is the standard Gaussian density. We note that, due to the bound on G0

in (5.13), we have that W0 ∶= G0/ψ0 ∈ L
2.

We notice that

(5.14) Wτ =
1

2
∆W +W (d

4
−
∣y∣2
8
) +We−

d−2
2

τ (∥G∥22 −G)
For simplicity, we write the linear operator

M = −
1

2
∆ + ( ∣y∣2

8
−
d

4
) .

We understand the behavior of G through the properties of M . First, note that
M is an unbounded, symmetric operator on L2. For each multi-index α ∈ Nd

0, let

ψα = ψ
−1
0 ∂α1

x1
⋯∂αn

xn
ψ2

0 =Hα(y)ψ0(y),
where Hα is the α Hermite polynomial that is implicitly defined above. It is easy to
check that

Mψα =
∣α∣
2
ψα.

In addition, it is well-knowne that ψα form an orthogonal basis of L2. In particular,
we conclude that if ⟨ψ,ψ0⟩ = 0, then

(5.15) ⟨Mψ,ψ⟩ ≥ 1

2
∥ψ∥22.

We are now in a position to complete the proof of Theorem 1.6 (i).

Proof of Theorem 1.6 (i). We write

W⊥(τ, y) =W (τ, y) −ψ0(y).
Notice that

⟨W⊥(τ), ψ0⟩ = ⟨W (τ), ψ0⟩ − ⟨ψ0, ψ0⟩ = ∫ G(τ, y)dy − 1 = 0.

The proof proceeds by showing that W⊥ → 0 using this orthogonality.

Multiplying (5.14) by W⊥, integrating, and noticing that ⟨W,W⊥⟩ = ∥W⊥∥22 by
orthogonality, yields

1

2
∂τ∥W⊥∥22 = −⟨MW,W⊥⟩ + e− d−2

2
τ ⟨W (∥G∥22 −G) ,W⊥⟩.

Next, using that MW =Mψ0 +MW⊥ =MW⊥ and (5.15), yields

1

2
∂τ∥W⊥∥22 = −⟨MW⊥,W⊥⟩ + e− d−2

2
τ ⟨W (∥G∥22 −G) ,W⊥⟩

≤ −
1

2
∥W⊥∥22 + e− d−2

2
τ ⟨W (∥G∥22 −G) ,W⊥⟩.(5.16)

Using the bounds in Theorem 1.5, we find

⟨W (∥G∥22 −G),W⊥⟩ ≲ ∥W ∥2∥W⊥∥2 ≤ (1 + ∥W⊥∥2) ∥W⊥∥2.
eThis is usually stated in the following way: the set of (rescaled) Hermite polynomials Hα form

a basis of the weighted space L2(ψ2
0). This is, however, equivalent to our statement.
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Hence, (5.16) becomes, for some C > 0,

∂τ∥W⊥∥22 + (1 −Ce− d−2
2

τ) ∥W⊥∥22 ≲ e− (d−2)
2

τ∥W⊥∥2.
Solving this differential inequality yields

∥W⊥∥2 ≲ Rd(τ)
where we define

Rd(τ) = ⎧⎪⎪⎨⎪⎪⎩
(τ + 1)e−τ/2 if d = 3,

e−τ/2 if d ≥ 4.

Returning to G, we find

∫ e
y2

2 (G(τ, y) − ψ2
0)2 dy ≲ Rd(τ)2.

Using parabolic regularity theory, it is standard to conclude, for any σ < 1/4,

∥eσy2 (G(τ) − ψ2
0) ∥∞ ≲ Rd(τ),

which, after returning to the original variables, concludes the proof. ◻

5.2.2. A non-Gaussian steady state in two dimensions. In the following, we use R as
the variable for the radius of a ball, which is not to be confused with the convolution
kernel (the kernel is fixed to be δ in this section). We construct a steady solution
of the self-similar problem (5.13) when d = 2 that is not the Gaussian ψ2

0 from the
previous subsection. The construction occurs in multiple steps. First, we replace
the ∥G∥22 in (5.10) with a constant term E to “localize” the equation. For any E > 0

and R ≳ 1/√E, we construct radial (rotationally symmetric) steady solutions GR of
the localized equation on BR with Dirichlet boundary conditions on ∂BR. Second,
we show that, choosing E = ER well guarantees that ∫BR

GR(y)dy = 1. Finally, we

show that, in the limit R →∞, ER − ∥GR∥22 → 0 and that GR converges to a steady
solution G of (5.10) on R

2.

Constructing a steady solution of the localized problem on a ball.

Lemma 5.3. Fix E > 0 and R ≥ max{4,20/√E}. There exists a radial function
GE,R ∶ BR → [0,E/2] such that

(5.17)

⎧⎪⎪⎨⎪⎪⎩
1
2
∆GE,R +

y

2
⋅ ∇GE,R +GE,R(1 +E −GE,R) ≥ 0 in BR,

GE,R = 0 on ∂BR,

and

∫
BR

GE,Rdy ≳ E.

Proof. Let φ ∶ [0,R]→ R be a C2 cut-off function such that

(i) 0 ≤ φ ≤ 1, φ′(R) = φ(R) = 0, (ii) φ ≡ 1 on [0, R
3
] ,

(iii) − 20

R2
≤ φ′′, −

10

R
≤ φ′, and φ(y) ≥ 1/2 on [R

3
,
2R

3
] , and

(iv) φ′′ ≥
2

R2
, φ′(r) ≥ − 10

R2
(R − r) on [2R

3
,R] .

(5.18)

Let

(5.19) GE,R(y) = E2 e− y2

2 φ(∣y∣).
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Notice that, by (5.18).(i), GE,R ≤ E/2. Using polar coordinates, we find

−
1

2
∆GE,R−

y

2
⋅ ∇GE,R −GE,R(1 +E −GE,R)
= −

Ee−
y2

2

2
(1

2
φ′′ +

1

2r
φ′ + (E − E

2
e−

r2

2 φ)φ) .(5.20)

It is clear that the last line is non-positive when r ∈ [0,R/3] since φ ≡ 1 on this
set. When r ∈ [R/3,2R/3], we deduce, from (5.18).(iii), that

−(1

2
φ′′ +

1

2r
φ′ + (E − E

2
e−

r2

2 φ)φ) ≤ 10

R2
+

15

R2
−
E

2
=

E

2R2
(50

E
−R2) .

Since, R ≥max{4, 20/√E}, this is non-positive. Hence, the right hand side of (5.20)
is non-positive.

Finally consider the case when r ∈ [2R/3,R]. First notice that, due to (5.18).(i)
and (iv), we have

φ(y) ≥ 1

R2
(R − y)2.

Using this lower bound, as well as (5.18).(iv) again, yields

(5.21) − (1

2
φ′′ +

1

2r
φ′ + (E − E

2
e−

r2

2 φ)φ) ≤ − 1

R2
+

3

4R

10

R2
(R − y) − E

2

(R − y)2
R2

.

We now use Young’s inequality and then the fact that R ≥ 20/√E to find

3

4R

10

R2
(R − y) ≤ 225

8ER4
+
E

2

(R − y)2
R2

≤
225

3200R2
+
E

2

(R − y)2
R2

.

Plugging this into (5.21) implies that the right hand side of (5.20) is non-positive
on [2R/3,R].

Hence, in all cases, the right hand side of (5.20) is non-positive, which implies
that GE,R is a subsolution; that is, it satisfies (5.17), as claimed. In addition, the

lower bound on the integral of GE,R is clear by (5.18) and (5.19). ◻

We now use GE,R to construct a radial solution to the local problem on BR.

Proposition 5.4. Suppose that E > 0 and R ≥ max{4,20/√E}. There exists a
radial function GE,R ∶ BR → [0,1 +E) of

(5.22)

⎧⎪⎪⎨⎪⎪⎩
0 = 1

2
∆GE,R +

y

2
⋅ ∇GE,R + (1 +E −GE,R)GE,R in BR,

GE,R = 0 on ∂BR,

such that ∫BR
GE,Rdy ≳ E. This is the unique nontrivial solution of (5.22).

Proof. Let H be the solution of

(5.23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ht =

1
2
∆H + y

2
⋅ ∇H + (1 +E −H)H in (0,∞) ×BR,

H = GE,R on {0} ×BR,

H = 0 on [0,∞) × ∂BR,

where GE,R is from Lemma 5.3. The comparison principle immediately yields that
H ≤ 1 +E.

We claim that Ht ≥ 0 for all t > 0. Since GE,R satisfies (5.17), then Ht(0, ⋅) ≥ 0.

In addition, differentiating (5.23) in time yields a parabolic equation for Ht that
enjoys the comparison principle and of which 0 is a solution. We conclude that
mint,y Ht(t, y) ≥ 0 by applying the comparison principle to Ht and 0.
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Since, for all y, H(t, y) is increasing in t, there exists GE,R(y) such that H(t, y)→
GE,R(y) as t →∞. In addition, we have that H(t, ⋅) ≤ GE,R for all t. Finally we
point out that GE,R ≤ 1 +E since H ≤ 1 +E.

We also note that, by parabolic regularity theory, for any α ∈ (0,1), there exists
C > 0, depending only on α and E, such that

(5.24) ∥H∥C2+α
parabolic

([0,∞)×BR) ≤ C,

where C2+α
parabolic is the standard parabolic Hölder space.

We claim that ∥∂tH(tn)∥L2(BR) → 0 along some subsequence tn → ∞. If not,
then there exists δ > 0 and t0 > 0 such that, for all t ≥ t0, ∥∂tH(t)∥2 ≥ δ. Using (5.24)
and the nonnegativity of ∂tH, we find, for all t ≥ t0,

δ2
≤ ∫

BR

∣∂tH(t, y)∣2dy ≤ C ∫
BR

∂tH(t, y)dy.
Integrating this and using that 0 ≤H ≤ GE,R ≤ 1 +E, we find, for any T > 0,

δ2T

C
≤ ∫

t0+T

t0

∫
BR

∂tH(t, y)dydt = ∫ t0+T

t0

∂t ∫
BR

H(t, y)dydt
= ∫

BR

H(t0 + T, y)dy −∫
BR

H(t0, y)dy ≤ ∫
BR

GE,R(y)dy ≤ πR2(1 +E).
Taking T → ∞ yields a contradiction. Hence, there exists a sequence tn → ∞ as
n→∞ such that ∥∂tH(tn)∥2 → 0.

Up to taking a subsequence, the bounds in (5.24) and the compactness of C2,α
parabolic

in C2
parabolic, imply that H(tn) → GE,R in C2

parabolic. In addition, the resulting

convergence of ∂tH(tn) in L∞ and its convergence to zero in L2 implies that
∂tH(tn)→ 0 in L∞. We conclude that

0 =
1

2
∆GE,R +

y

2
⋅ ∇GE,R + (1 +E −GE,R)GE,R.

To conclude the proof, we check the various properties of GE,R. First, the
nonnegativity of GE,R follows from the fact that H is increasing in time and
H(0, ⋅) = GE,R ≥ 0.

Second, parabolic regularity theory implies that H is uniformly (in time) small
near ∂BR, which implies that GE,R = 0 on ∂BR.

Third, recall the earlier observation that GE,R ≤ 1 +E. The strong maximum
principle applied to (5.22) implies that this inequality is strict.

Fourth, the lower bound on the integral of GE,R follows from the lower bound
on GE,R =H(0, ⋅) and the fact that H is increasing.

Finally, H is radial at t = 0 by construction of GE,R. Let M be any rotation

matrix and define HM(t, y) = H(t,My). It is easy to see that HM solves (5.23).
Thus, by the uniqueness of solutions of parabolic equations, we find HM =H. We
conclude that H(t, ⋅) is radial for all t, from which it follows that GE,R is radial.

The last step is to check the uniqueness of GE,R. We drop the E and R

subscripts for ease. Suppose that H is another nontrivial solution (5.22). Define
GA(y) = AG(x). It is easy to verify that

0 =
1

2
∆GA +

y

2
⋅ ∇GA + (1 +E − 1

A
GA)GA.

The Hopf maximum principle implies that the outward point normal derivative of
G is negative on ∂BR. Hence, we have that GA >H for all A sufficiently large. We
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define
A0 = inf{A ≥ 1 ∶ GA ≥H}.

If A0 = 1, we conclude that G ≥H, which is our goal. If not, let Ψ(y) = GA0
(y)−H(y)

for all y. We then find that

−H (H − GA0

A0

) = 1

2
∆Ψ +

y

2
⋅ ∇Ψ + (1 +E − 1

A0

GA0
)Ψ.

By the choice of A0, we either have that there exists y0 ∈ BR such that Ψ(y0) = 0

or there exists y0 ∈ ∂BR(0) such that y0 ⋅ ∇GA0
(y0) = y0 ⋅ ∇H(y0).

Consider the first case. Let Σ be the maximal open connected component of
BR ∩ {GA0

< A0H} containing y0. Then Ψ > 0 on ∂Σ and Ψ satisfies

0 ≥
1

2
∆Ψ +

y

2
⋅ ∇Ψ + (1 +E − 1

A
GA0
)Ψ on Σ.

The strong maximum principle implies that Ψ > 0 on Σ, which contradicts the fact
that Ψ(y0) = 0.

The second case proceeds similarly, except using the Hopf lemma to conclude
that y0 ⋅ ∇Ψ(y0) < 0 to obtain a contradiction. We omit the details.

Above we showed that G ≤H. The argument used to establish this used nothing
about G from its construction; we only used that it is nontrivial. Thus, an identical
argument implies that H ≤ G as well, which yields G = H. Hence, non-trivial
solutions of (5.22) are unique. This concludes the proof. ◻

We show that GE,R decays exponentially away from the origin independently of
R. We require this to show that G, the limiting object, is exponentially decaying as
stated in Theorem 1.6.(ii) and in order to establish a relationship between the sizes
of E and ∫ GE,R dy in the sequel.

Lemma 5.5. For any E and R as in Proposition 5.4,

GE,R(y) ≤ (1 +E)e4(1+E)− y2

4 for all ∣y∣ ≥ 4
√

1 +E.

Proof. For any A ≥ 0, let ψA(y) = Ae− y2

4 . We first claim that, for ∣y∣ ≥ 4
√

1 +E,

(5.25) −
1

2
∆ψ −

y

2
⋅ ∇ψ − (1 +E)ψ > 0.

To this end, we compute:

−
1

2
∆ψA −

y

2
⋅ ∇ψA − (1 +E)ψA = −

1

2
(y2

4
ψA − ψA) − y

2
⋅ (−y

2
ψA) − (1 +E)ψA

=
1

8
ψA (y2

− 2(2 + 4E)) .
Hence, if y2 ≥ 16(1 +E), then we conclude (5.25).

If A ≥ (1 +E)eR2/4, then ψA ≥ 1 +E > GE,R (recall the upper bound on GE,R

from Proposition 5.4). Thus, let

A0 = inf {A > 0 ∶ ψA ≥ GE,R on ∣y∣ ∈ [4√1 +E,R]}
is well-defined. We claim that A0 ≤ (1 +E) e4(1+E). We argue by contradiction

assuming that A0 > (1 +E)e4(1+E).
By continuity, there exists y0 such that ∣y0∣ ∈ [4√1 +E,R] such that ψA0

(y0) =
GE,R(y0). Since

ψA0
(4√1 +E) = A0e

−4(1+E)
> (1 +E) > GE,R and ψA0

(R) > 0 = GE,R(R),
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it must be that ∣y0∣ ∈ (4√1 +E,R). In addition, by construction, y0 is the location
of a minimum of zero of ψA0

−GE,R. Hence ∆(ψA0
−GE,R) ≥ 0, ∇(ψA0

−GE,R) = 0,
and ψA0

(y0) = GE,R(y0). Hence, at y0,

0 ≥ −
1

2
∆ (ψA0

−GE,R)
> (y

2
⋅ ∇ψA0

+ (1 +E)ψA0
) − (y

2
⋅ ∇GE,R + (1 +E −GE,R)GE,R)

= G2
E,R > 0.

Here we used (5.22) and (5.25) to obtain the second inequality. This is clearly

a contradiction, so we conclude that A0 ≤ (1 +E)e4(1+E). It follows that, for all∣y∣ ∈ [4√1 +E,R],
GE,R(y) ≤ (1 +E)e4(1+E)e− y2

4 ,

which concludes the proof. ◻

Next we show that there exists E such that GE,R has L1-norm one.

Lemma 5.6. There exists ER
f ≈ 1, depending only on R, such that

∫
BR

GER,R(y)dy = 1.

Proof. To establish this we use the continuity of solutions of elliptic equations with
respect to their coefficients. With this in mind, we need only find E1 and E2 such
that

∫
BR

GE1,R(y)dy ≤ 1 and ∫
BR

GE2,R(y) ≥ 1.

The second inequality follows from Proposition 5.4, after taking E2 ≳ 1.

To find the first inequality, integrate (5.22) over BR to find

(5.26) −
1

2
∫

∂BR

y∣y∣ ⋅ ∇GE1,Rdy = E1 ∫
BR

GE1,Rdy −∫
BR

G2
E1,Rdy.

As G is positive in BR and zero on ∂BR, we find that the left hand side is nonnegative.
Hence,

∫
BR

G2
E1,Rdy ≤ E ∫

BR

GE1,Rdy

We wish to estimate the integral on the right hand side above. Let L > 4
√

1 +E1

be a constant chosen in the sequel. Then, using Hölder’s inequality and Lemma 5.5,
we obtain

∫
BR

GE1,Rdy ≤ ∫
BL

GE1,Rdy +∫
BR∖BL

(1 +E1)e4(1+E1)− y2

4 dy

≲ L(∫
BL

G2
E1,Rdy)1/2

+L2(1 +E1)e4(1+E1)−L2

4

≤ L(∫
BR

G2
E1,Rdy)1/2

+L2(1 +E1)e4(1+E1)−L2

4

≤ L(E1 ∫
BR

GE1,Rdy)1/2
+L2(1 +E1)e4(1+E1)−L2

4 .

Choosing L sufficiently large and then E1 sufficiently small independent of R, we
find

∫
BR

GE1,Rdy < 1.

f We make a slight change in convention here using the italicized “E” in order to avoid clashing
notation with Ef for the squared L2-norm of a function f .
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This concludes the proof. ◻

Using Lemma 5.6, we let GR = GER,R denote the solution of (5.22) with mass
one. We now show that ER ≈ ∥GR∥22 as R →∞.

Lemma 5.7. As R tends to ∞, ∣ER − ∥GR∥22∣→ 0.

Proof. Using (5.26), Lemma 5.6, and the fact that GR is radial, it is sufficient to
show that

(5.27) −
1

2
∫

∂BR

y∣y∣ ⋅ ∇GR(y)dy = −πR(GR)r(R)→ 0

Let W = ey2/4GR and, as in (5.14),

0 =
1

2
∆W +W (1

2
−
y2

4
+ ER −GR) .

Abusing notation and changing to polar coordinates, we find

0 =
1

2
Wrr +

1

2r
Wr +W (1

2
−
r2

4
+ ER −GR)

We note that the reason for the change to working with W is to work with an
equation whose first order term is bounded uniformly regardless of R. Hence, we
can apply L2 estimates for solutions of elliptic equations up to the boundary (see,
e.g., [13, Theorem 8.12]), we find

∥W ∥H2([R−1,R]) ≲ ∥(1

2
−
r2

4
+ ER −GR)W∥

L2([R−2,R])
+ ∥W ∥L2([R−2,R]).

Using Lemma 5.5 to bound GR and, thus, W from above and Lemma 5.6 to bound
ER from above, we see that W is uniformly bounded from above on [R − 2,R] as
long as R is sufficiently large. We deduce that

∥W ∥H2([R−1,R]) ≲ R2.

Using the Sobolev embedding theorem and the relationship between GR and W , we
find

∥GR∥C1([R−1,R]) ≲ Re−
(R−1)2

4 ∥W ∥C1([R−1,R])
≲ Re−

(R−1)2
4 ∥W ∥H2([R−1,R]) ≲ R3e−

(R−1)2
4 .

This establishes (5.27), which concludes the proof. ◻

We now finish the construction of the steady state G.

Proof of Theorem 1.6.(ii). From Proposition 5.4, Lemma 5.5, and Lemma 5.6 we
have that

GR ≲ e
−

y2

4 .

Using a similar argument as we did in the conclusion of Lemma 5.7 along with the
Schauder estimates for elliptic equations, we find that, for any α ∈ (0,1),

∥ey2/5GR∥C2,α ≲ 1.

We thus find a subsequence Rn →∞ as n→∞, and G ∈ C2,α such that GRn
→ G

uniformly in C2, and, due to the decay in y, in L1 and L2 as well. We conclude that

∫ Gdy = 1 and ∥GRn
∥22 → ∥G∥22. From Lemma 5.7, we further have that ERn

→ ∥G∥22.

Using all conclusions from the above, we find that G is a radial function satisfying

0 =∆G +
y

2
⋅ ∇G +G(1 + ∥G∥22 −G),
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which concludes the proof. ◻
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