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Abstract
We revisit an older concept in singularity theory: that in the presence of the strong
energy condition (SEC), a static or stationary spacetime must have a quadratic fall-off
in a characteristic Ricci quantity, in order for the spacetime to be without singularities
(or, at least, to be both globally hyperbolic and timelike or null geodesically complete).
We replace SEC with the null energy condition (NEC), and apply the methods used
previously on timelike geodesics, to null geodesics instead. The results are noticeably
weaker for the NEC case than for SEC: using a somewhat different characteristic
measure of Ricci curvature, we obtain a fall-off which is quadratic only if there is
not much asymptotic change in the size of the Killing field: we employ a ratio of
maximum size to square of minimum size of the Killing field—within a ball of given
radius r—in addition to 1/r2.

Keywords Singularity theorem · Stationary · Static · Ricci fall-off · Null energy
condition
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1 Introduction

Singularity theorems fall into two classes: (1) those that use the behavior of null
geodesics (like the Penrose singularity theorem [8]) and thus must assume the null
convergence condition, and (2) those that use the behavior of timelike geodesics (like
the Hawking singularity theorem [6]) and thus must assume the timelike convergence
condition. Here the null convergence condition is the statement that Ric(k, k) ≥ 0
for all null vectors k, while the timelike convergence condition is the statement that
Ric(t, t) ≥ 0 for all timelike vectors t . (By continuity the timelike convergence con-
dition implies the null convergence condition).

These convergence conditions are more commonly stated as energy conditions: that
is, one assumes the Einstein field equation and writes the convergence condition as a
condition on the stress-energy tensor T . The null convergence condition then becomes
the Null Energy Condition (NEC) which states that T (k, k) ≥ 0 for all null k, while
the timelike convergence condition becomes the strong energy condition (SEC) which
states that T (t, t) − 1

2 〈t, t〉tr(T ) ≥ 0 for all timelike t .
Even in the early days of the singularity theorems, it was realized that the Strong

Energy Condition was problematic from the point of view of physics; for example,
Hawking and Ellis [7] note that a massive scalar field violates the Strong Energy Con-
dition. However, over the years the Strong Energy Condition has become considerably
more problematic due to three developments: (1) the theory of inflationary cosmology,
(2) the discovery of the Higgs boson, and (3) the discovery of the acceleration of the
expansion of the universe:

It’s not only a massive scalar field that violates the Strong Energy Condition, but
also any scalar field with a positive potential. Such a field plays an essential role in
inflationary theories of the early universe, which are widely considered to be our best
explanation for the detailed properties of both the Cosmic Microwave Background
and the distribution of galaxies and galaxy clusters.

At the time [7] was written, it was not knownwhether nature contained a fundamen-
tal scalar field with a positive potential. However, such a scalar field was theorized:
the Higgs field that both gives mass to other particles and whose quantum excitations
are the Higgs boson. Now that the Higgs boson has been discovered, we know that
nature contains a fundamental matter field that violates the Strong Energy Condition.

Even more embarassing for the Strong Energy Condition was the discovery of the
acceleration of the expansion of the universe. In a Friedmann–Lemaitre–Robertson–
Walker spacetime an accelerated expansion can only happen through a violation of the
Strong Energy Condition. Thus we can now say definitively that not only can nature
violate the Strong Energy Condition, but also at the present time most regions of space
are places where the Strong Energy Condition is violated.

Thus, from the physical point of view, it is better to have singularity theorems
that don’t depend on the Strong Energy Condition. Based on this consideration, your
authors are motivated to revisit their own “non-singularity” result of 1997 [1]. That
paper considered a particular class of spacetimes: those that are static or stationary,
globally hyperbolic, and non-singular. We then used the methods of the singularity
theorems (assuming the Strong Energy Condition and treating the behavior of timelike
geodesics) to obtain bounds on the behavior of the Ricci curvature in such spacetimes.
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We found that a characteristic eigenvalue of the Ricci tensor Ra
b must fall off quadrat-

ically in terms of a geometrically important conformal metric on the leaf-space of the
foliation F of integral curves of the Killing field. Put another way: if the Ricci curva-
ture does not exhibit this quadratic fall-off condition, yet we assume SEC and global
hyperbolicity, then timelike-geodesic completeness must fail: the classic rendering
of the singularity theorems. Along the way we obtained some general results on the
topology and geometric properties of this class of spacetimes.

The current paper is an attempt to obtain analogous results to those of [1] but
not assuming SEC and using the properties of null geodesics rather than timelike
geodesics. In Sect. 2 we will summarize the results of [1], including results that are
independent of energy conditions and can therefore also be used in the present work.
In Sect 3 we treat static spacetimes, while Sect. 4 treats stationary spaccetimes (with
somewhat less general applicability). Discussion is presented in Sect. 5. In general:
the results are not as simply expressed as when using SEC and timelike geodesics (in
particular, asymtoptic behavior of the size of the Killing field has a strong effect), and
they can be unsatisfying in specific situations (making the results vacuous); but, then,
the universe is not as we supposed it a quarter century gone.

2 Earlier results summarized

We recall here the chief results from [1], including the notation there.
We let M be a chronological stationary spacetime with U its Killing field. Let

F be the foliation of integral curves of U (all of which must be lines, not circles,
as M is chronological), with Q = M/F the leaf-space of the foliation (also called
the stationary orbit-space), i.e., equivalence relation is “lying on the same foliate”;
π : M → Q is the projection.

Theorem 2.1 If M is timelike or null geodesically complete, then U is complete and
Q is a (Hausdorff) manifold; also, M is diffeormorphic to R × Q.

Proof Lemma 1, Theorem 2, and Theorem 3 in [1]. ��
Although, when M is globally hyperbolic, this yields Q as having the topology of a

Cauchy surface, it can be non-trivial to locate Cauchy surfaces in the spacetime, even
in the static case: if M is not simply connected, then the rest-spaces to the Killing field
are not diffeormorphic to Q.

But we can invest Q with a great deal of important geometry. WithU a (orU ) being
the Killing field, let � = |U |2 = −UaU a , a function on Q, and define the 1-form α

on M by α(U ) = 1 and Ker(α) = U⊥ (i.e., αa = −(1/�)Ua). Then, following [2],
we derive a Riemannian metric h = hab on Q such that we can express the spacetime
metric g on M via

g = −(� ◦ π)α2 + π∗h

or

gab = −�αaαb + hab
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Then M is static iff dα = 0.
The geometrically important metric on Q, however, is not h, but what we may

call the geometric conformal metric h̄ = (1/�)h (to distinguish this from another
conformal metric we will also be using). If, similarly, we let ḡ = (1/(� ◦ π))g, then
we have, on M ,

ḡ = −α2 + h̄

Theorem 2.2 If M—timelike or null geodesically complete and stationary—is globally
hyperbolic, then Q is complete in the geometric conformal metric.

Proof Theorems 4 and 8 in [1]. ��
Another general result on stationary spacetimes and covering spaces:

Lemma 2.3 Let M̃ be the universal cover of a spacetime M. Then M̃ (with metric
induced from M) inherits these properties from M:

(1) static or stationary,
(2) energy conditions such as SEC or NEC,
(3) geodesic completeness of any type,
(4) global hyperbolicity.

Furthermore, if M is stationary and chronological, with complete Killing field:
Let Q̃ be the universal cover of Q; let pM : M̃ → M and pQ : Q̃ → Q be the

corresponding projections; and let π̃ : M̃ → Q̃ be defined by pQ ◦ π̃ = π ◦ pM .
Then π̃ is the projection of M̃ to its stationary orbit-space.

Proof Lemmas 4.1 and 4.2 of [1]. ��
The crucial role of SEC is this: SEC—more precisely, the timelike convergence

condition—gives us that for timelike vector t , Ric(t, t) ≥ 0 (Rabtatb ≥ 0). A result
of Hall [3] then yields Ra

b (also denoted Ric�, using �/� notations for raising and
lowering indices) has exactly one non-spacelike eigenspace at each point. We denote
the corresponding eigenvalue by −S. Then we have

Theorem 2.4 Let M be a spacetime satisfying SEC. Then S ≥ 0, and for any unit
timelike vector t , Rabtatb ≥ S.

Proof Proposition 5 of [1]. ��
In case M is static, then U is itself an eigenvector of Ra

b, and we obtain S =
RabU aU b/|U |2.

That is all the ingredients needed for the static case; but for non-static stationary,
we need a bit more. First note that the projection π : M → Q is a line-bundle: M
has an R-action given by s · x = γx (s), where γx is the U -integral curve through x
with γx (0) = x . This also means π has smooth cross-sections z : Q → M , i.e., so
that π ◦ z = idQ ; indeed, there is gauge-freedom in choice of such cross-sections, in
that for any such cross-section z, for any smooth function η : Q → R, zη : Q → M
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is also a smooth cross-section, defined by zη(q) = η(q) · z(q)—and for any fixed
cross-section z, this construction encompasses all possible cross-sections.

Such cross-sections define global time-functions τ on M (also smooth), obeying
(dτ)U = 1; for a given cross-section z, this works by defining τz : M → R so that
τz(x)·z(π(x)) = x , i.e., τz(x)moves z(π(x)) back to x . Conversely, any smooth time-
function τ on M obeying (dτ)U = 1 defines a smooth cross-section zτ via zτ (q) is that
element x ∈ π−1(q) such that τ(x) = 0; and the operations z �→ zτ and τ �→ τz are
inverses. If we start with τ , derive zτ , then modify that by η : Q → R yielding (zτ )

η,
then the corresponding time-function is given by τη(x) = τ(zτ )η (x) = τ(x)+η(π(x));
and for fixed τ , that encompasses all possible such time-functions.

Any such time-function τ then defines a smooth 1-form ω, the “drift form”, defined
on Q by

α − dτ = π∗ω

giving us

g = −(� ◦ π)(dτ + π∗ω)2 + π∗h

ḡ = −(dτ + π∗ω)2 + π∗h̄

Notice that if we change τ to τη = τ + η ◦ π , we have d(τ η) = dτ + π∗dη, so ω is
well-defined up to an exact 1-form on Q (ω shifting toω−dη). We have M is static iff
dω = 0, in which case ω defines a unique element of the first de Rham cohomology
of Q. But things are more complicated in the general stationary case.

Pick a basepoint q0 ∈ Q. Define Z(Q) (the cycles of Z ) to be the Abelian group
generated by all the loops in Q base-pointed at q0, with concatenation being sum,
reparametrization in the same direction being irrelevant, and reversed orientation being
the negative. Change in basepoint is an isomorphism of groups, and we can ignore
it. Any cycle z has a length L̄(z) defined using the geometic conformal metric h̄
on Q. For any basepointed loop c in Q, let [c] be the cycle defined by c (i.e., if c
includes basepointed sub-loops, [c] is independent of rearranging the order in which
one traverses them—and eliminating any pair of sub-loops which are the same execept
for having reverse orientations); and any cycle can be represented as coming from a
loop in such a manner—in fact, by a loop which doesn’t contain any pairs of reverse-
orientation sub-loops.

Define the cocycles Z∗(Q) of Q by Z∗(Q) = Hom(Z(Q),R). Any 1-form θ on Q
defines a cocycle {θ} via {θ}([c]) = ∫

c θ . We define the weight wt(β) of any cocycle
β by

wt(β) = sup
z∈Z(Q)

β(z)

L̄(z)

Define the fundamental cocycle of M by βM = {ω}, for ω the drift-form on Q.
Then a great deal of the global causal structure of M is bound up in wt(βM ); see,
for example, [4]. In particular, M is chronological iff wt(βM ) ≤ 1, and wt(βM ) < 1
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implies M is causal. For a static spacetime, the fundamental cocycle is an element of
H1
dR(M), the first de Rham cohomology, thus: consider any loop of static observers,

say, from q0 to q0. If we constrain a photon to move along this path—or any path
homotopic to it—then the fundamental cocycle returns the difference between the q0-
observed time between photon emission and its return to that observer, and the length
of the photon’s path in Q (measured in the geometric conformal metric h̄). We naively
may expect this difference to be 0, but it’s easy to construct examples in which it is not
(take a product spacetime R1 × Q for Q not simply connected, pass to the universal
cover, then take a quotient by π1(Q), but with non-trivial action on the R

1-factor).
Note the fundamental cocycle is constant within a homotopy class of paths.

For stationary spacetimes, the only difference is that the fundamental cocycle can
vary continuously among paths, instead of being discretely defined on homotopy
classes. In either case, the weight of the fundamental cocycle tells us the extent to
which the spacetime is subject to a sort of chronological decoherence among the
stationary observers.

The main result in the SEC case is this:

Theorem 2.5 Let M be a stationary, globally hyperbolic, timelike or null geodesically
complete spacetime satisfying SEC and having wt(βM ) = w < 1; or, if M is static,
take w = 0 instead. For any point q0 ∈ Q, for any r > 0, define Sr (q0) = inf B̄r (q0) S,

where B̄r (q0) is the ball of radius r in Q, using the geometric conformal metric h̄.
Then for all r > 0,

Sr (q0) ≤ K/r2

where K = 3π2/(4|U |2q0(1 − w)2).

Proof Theorems 6 and 10 of [1]. ��

3 Static case

The approach followed here is based on that in [1], but we are forced to be somewhat
more general in our approach. For the static case, we again will make use of a timelike
eigenvalue for Ra

b—meaning, the eigenvalue for the (necessarily existing) timelike
eigenspace—but we will also have to consider the other eigenvalues as well. The
important point is that the Killing vector U is itself an eigenvector for Ra

b, which
implies that there is a basis of eigenvectors for the tangent space at each point (since
Ra

b, being self-adjoint, preserves the perp-space to any eigenvector; then, with U
being a timelike eigenvector, Ra

b is self-adjoint in the spacelike space U⊥, which
then splits into orthogonal eigenspaces as per usual behavior with a positive-defininte
metric).

This result was referred to in [1], but was never used. As it is crucial to the static
case, we call specific attention to it now.

Proposition 3.1 In any static spacetime, the Killing vector U is an eigenvector of the
Ricci tensor Ra

b.
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Proof sketch A stationary spacetime M has metric

g = −(� ◦ π)(dτ + π∗ω)2 + π∗h

for U the Killing field, π : M → Q the projection to stationary orbit-space, � = |U |,
τ any function on M with (dτ)U = 1, ω the corresponding drift-form on Q, and
h the induced Riemannian metric on Q. In abstract-index notation (with π b

a = π∗,
πa

b = π∗):

gab = −�(daτ + π c
a ωc)(dbτ + π d

b ωd) + π c
a π d

b hcd

Let∇h ,
h , Hessh , and (Rh)ab denote, respectively, the covariant derivative, Lapla-
cian, Hessian operator, and Ricci tensor in (Q, h). For any q ∈ Q and x ∈ π−1(q),
let β : Tq Q → Tx M be such that π∗ ◦β = id and image of β is in U⊥. Then we have,
for any Xa , Y a in Q,

RabU aU b = −1

4

1

�
|(∇h)a�|2 − 1

2

h�

RabU aβb
dY d = 1

2
(daωb)(∇h�)aY b

Rabβ
a
c Xcβb

dY d =
(
1

2
(Hessh

�)ab − 3

4

1

�2 (da�)(db�) + (Rh)ab

)

XaY b

or

Ric(U , U ) = −1

4

1

�
|∇h�|2 − 1

2

h�

Ric(U , βY ) = 1

2
(dω)(∇h�, Y )

Ric(β X , βY ) =
(
1

2
Hessh

� − 3

4

1

�2 (d�)2 + Rich
)

(X , Y )

The important point here is that for M static, dω = 0, producingU a as an eigenvec-
tor of Ra

b. (If M is not static, thenU is not an eigenvector, unless (dω)(∇h�,−) = 0.)
��

So in a static spacetime U is a timelike eigenvector; call its eigenvalue −S. Since
Ric� = Ra

b is self-adjoint, it follows that U⊥, spacelike subspace, is preserved by
Ra

b, hence, has an orthonormal basis of (spacelike) eigenvectors; let p be the smallest
(possibly, most negative) of those eigenvalues.

Proposition 3.2 Let M be a static spacetime obeying NEC. Then

S + p ≥ 0

Proof Any null vector k can be expressed as k = aU + k⊥ for non-0 a, where
k⊥ ∈ U⊥, hence, is spacelike, and |a||U | = |k⊥|. Then Ric�k = Ric�(aU + k⊥) =
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a(−S)U + Ric�(k⊥), and we know Ric�k lies in U⊥. By NEC (more properly, the
null convergence condition), we get

0 ≤ Ric(k, k)

= 〈Ric�k, k〉
= 〈 − aSU + Ric�(k⊥), aU + k⊥〉
= a2S|U |2 + 〈Ric�(k⊥), k⊥〉

Select k so that k⊥ is in the eigenspace of p; then 〈Ric�(k⊥), k⊥〉 = 〈pk⊥, k⊥〉 =
pa2|U |2. Combining with the inequality above yields 0 ≤ a2|U |2(S + p). ��

It is this sum, S+ p, that wewill use as a characteristic value for the Ricci curvature.
(While SEC allowed us to deduce that S ≥ 0, NEC doesn’t give us that; instead we
have the somewhat less physically compelling quantity S + p ≥ 0. In the static
case—which implies timelike Ricci eigenvector—we can employ the interpretations
of section 4.3 of [7]: S is the static-observer energy density, and the other eigenvalues
are pressures in the static rest-frame, with p being the smallest of those: S + p is static
energy density plus minimum of all static pressures.) Define A = S + p. As in [1],
we will be concerned with how this quantity behaves with respect to the geometric
conformal metric h̄ in the observer space Q. Recall that Theorem 2.2 guarantees for us
(in a timelike or null geodesically complete stationary spacetime) that Q is complete
in h̄; thus, any closed metric ball B̄r (q0) = {q ∈ Q | d̄(q, q0) ≤ r} (with d̄ denoting
distance in h̄) is compact. We define, for r > 0,

Ā−
r = inf

q∈B̄r (q0)
A(q)

(the bar reminding us we are using h̄ in the definition). By Proposition 3.2, we know
Ā−

r > 0 unless there is some point q in B̄r (q0) with Ā−
r = 0 (in which case Ā−

s = 0
for all s ≥ r ).

It turns out that for null geodesics, the geometric conformal metric is not the one
that has direct application. Rather, we will have need to consider what we’ll call the
null-specific conformal metric ĥ = �h. So we have ĥ = �2h̄ = |U |4h̄. We will have
occassion to use

�̄−
r = inf

q∈B̄r (q0)
�(q)

�̄+
r = sup

q∈B̄r (q0)

�(q)

Note that in the treatment of [1], the results on Ricci fall-off really make sense
only when Q is non-compact (although the statements of the theorems aren’t false in
case Q is compact: merely not very interesting). We will specifically restrict to the
non-compact case in this paper. In light of Theorem 2.1, we see this is equivalent to
saying that the Cauchy surface topology is non-compact.
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Theorem 3.3 Let M be a static, globally hyperbolic (with non-compact Cauchy sur-
face), null geodesically complete spacetime obeying NEC; take π : M → Q
to be the projection to the static-observer space and the spacetime metric to be
g = −(� ◦ π)α2 + π∗h with U a the Killing field, � = |U |2, αa = −(1/� ◦ π)Ua, h
the induced Riemannian metric on Q, A = S + p the sum of Ricci eigenvalues, and
Ā−

r , �̄+
r , �̄−

r defined as above using the geometric conformal metric h̄ = (1/�)h
with respect to any base-point q0 ∈ Q. Then for all r > 0,

Ā−
r ≤ 2π2 �̄+

r

(�̄−
r )2

1

r2

Proof (A) First we consider the case for M simply connected.
We can write the spacetime metric as

g = −(� ◦ π)(dτ + π∗ω)2 + π∗h

where τ : M → R derives from any cross-section of π : M → Q and the 1-form ω

on Q is thereby derived from α = dτ + π∗ω represesenting an element {ω} of the
first de Rham cohomology H1

dR(Q) (i.e., since M is static, dα = 0, hence dω = 0).
Since M is simply connected, so is Q (Theorem 2.1). It follows that H1

dR(Q) = 0, so
{ω} = 0, so there is some η : Q → R with ω = dη. Replacing τ by τ + η ◦ π , we
can rewrite g as

g = −(� ◦ π)(dτ)2 + π∗h

that is to say, we have presented M as standard static. (This always can be done locally,
but in the simply connected case we have it globally.)

Consider any null geodesic β : [0, b] → M with π(β(0)) = q0. First note that
E = 〈β̇, U 〉 is constant, simply due to β being a geodesic: Let c = π ◦β : [0, b] → Q.
We can extend β̇ to a vector field k on π−1[c] via the R-action, kt ·β(λ) = t · β̇(λ),
i.e., LU (k) = 0; then, since this action is an isometry, the curves t · β : [0, b] → M
(t constant) are also geodesics. It follows (note here that k = ka is a vector) that
β̇〈β̇, U 〉 = k〈k, U 〉 = 〈k,∇U k〉 = 0. Let us take β and U as both future-directed, so
E < 0.

Since β is null, we have �((dτ)β̇)2 = h(ċ, ċ). Rewrite dτ = α and recall αa =
−(1/� ◦ π)Ua . Thus we have |ċ|h = √

�(−E/�)2 = −E/
√

� or −E =
√

ĥ(ċ, ċ),

where ĥ = �h is the null-specific conformal metric. It follows that if we let L̂ denote
the length-functional from ĥ, then L̂(c) = −Eb.

But ĥ is not known to be a complete metric on Q; it is h̄ = (1/�)2ĥ that has that
property from M being timelike/null geodesically complete. So we will be obliged to
relate these two metrics via �̄+ and �̄−.

As in the proof of Proposition 3.2, for any null vector k, we can write k = aU + k⊥
and obtain Ric(k, k) = a2S� + 〈Ric�(k⊥), k⊥〉; and we also have 〈Ric�(k⊥), k⊥〉 ≥
p|k⊥|2 = pa2� (with p the smallest eigenvalue of Ric� restricted to U⊥). Taking
k = β̇, we have E = −a�. This gives us Ric(β̇, β̇) ≥ (S + p)a2� = AE2/�. If
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π ◦ β is contained within B̄r (q0), then Ric(β̇, β̇) ≥ Ā−
r E2/�̄+

r . (Note that as β has
compact image, there must exist such r : c cannot escape all B̄r (q0).)

But what do we take for r? First note that β̇τ = (dτ)β̇ = −〈U , β̇〉/� = −E/�.
The r we want is r = L̄(c) = ∫ b

0
1√
�

|ċ|h = ∫ b
0 β̇τ = 
(τ) = τ(β(b)) − τ(β(0). So

let us define, for any λ ≥ 0, ρ(λ) = τ(β(λ)) − τ(β(0)); we will be taking r = ρ(b).
We have

d

dλ
ρ(λ) = d

dλ
τ(β(λ)

= β̇τ

= − E

�

which tells us that ρ(b) =
∫ b

0

−E

�
≤

∫ b

0

−E

�̄−
ρ(b)

= −Eb

�̄−
ρ(b)

or ρ(b)�̄−
ρ(b) ≤ −Eb.

Conclusion: any r satisfying c ⊂ B̄r (q0)—i.e., β ⊂ π−1[B̄r (q0)]—must satisfy
r�̄−

r ≤ −Eb.
We can, of course, always choose to parametrize our null geodesic so that E = −1;

let us do so from this point onwards. Thus, any r yielding c as contained within B̄r (q0)
satisfies r�̄−

r ≤ b.
The Null Myers Theorem (e.g., Proposition 2.6 [5]) asserts that if Ric(β̇, β̇) ≥

(n − 2)q2, then β is not maximizing on [0, b] if b > π/q. We have, from above,
Ric(β̇, β̇) ≥ Ā−

r /�̄+
r for the r considered above.

Thus, on the one hand, β : [0, b] → M , null geodesic with 〈β̇, U 〉 = −1, cannot

be maximizing if b > π
√
2

√
�̄+

r

Ā−
r

for π ◦ β contained within B̄r (q0), which implies

r�̄−
r ≤ b. On the other hand, consider any x0 withπ(x0) = q0 and any x on the bound-

ary of I +(x0). Since M is globally hyperbolic, there is a maximizing null geodesic
β : [0, b] → M from x0 to x , with 〈β̇(0), U 〉 = −1. A given null geodesic could
simply leave the boundary of I +(x0). However, since we are assuming a non-compact
Cauchy surface, it follows from the result of [8] that not all the null geodesics ema-
nating from x0 can leave this boundary. We now consider only those geodesics that

remain on the boundary (i.e., are maximizing). This gives us
�̄+

r

Ā−
r

≥ b2/(2π2), so

Ā−
r ≤ 2π2�̄+

r

b2
. Then we use r�̄−

r ≤ b (from β[0, b] ⊂ B̄r (q0)), and we have the

promised result:

Ā−
r ≤ 2π2 �̄+

r

(�̄−
r )2

1

r2
(*)

(B) Now consider the general case. We use Lemma 2.3 and examine the static
spacetime M̃ , the universal cover of M , with pM : M̃ → M the universal covering
space projection; the inducedKilling field Ũ on M̃ and the projection π̃ : M̃ → Q̃; and
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the universal covering space projection pQ : Q̃ → Q, with pQ◦π̃ = π◦ pM .We know
M̃ is globally hyperbolic, is null complete, and satisfiesNEC, so by (A), we have (*), as

applied to M̃ with respect to some q̃0 with pQ(q̃0) = q0. But pQ : (Q̃,
¯̃h) → (Q, h̄)

is distance-decreasing, and all quantities are otherwise identical (pQ being a local
isometry). It follows that (*) applies equally well to M and q0. ��

4 Stationary case

If we do not know M is static, then we gain no simplicity by looking at M̃ . So instead
we must deal directly the given metric on M . However, we can take some advantage
of knowing we can write the metric as g = (�◦π)(−(dτ +π∗ω)2 +π∗h̄), where we
have total gauge freedom to replace ω by ωη = ω + dη for arbitrary η : Q → R. We
are concerned with maximizing null geodesics in M . These project to curves in Q,
but not necessarily to loops (as was the case with the SEC exploration in [1], where
we looked at maximizing timelike geodesics between elements of a single stationary-
observer orbit); thus we cannot make use of the integration of ω around closed curves
(which is invariant under change to any ωη). We will, instead, simply control the size
of ω directly:

Whereas in [1] we required | ∫c ω| ≤ w L̄(c) for any base-pointed loop c in Q, for
some w < 1, we will here instead require |ω|h̄ ≤ w at all points, for some constant

w < 1 (i.e., using the geometric conformal metric h̄, |ω|h̄ = (h̄abω
aωb)

1
2 )—or at

least, that this be true for some presentation of the metric, i.e., choice of cross-section
of π . This gives us, for any curve c : [0, b] → Q, | ∫c ω| = ∫ b

0 ω(ċ) ≤ ∫ b
0 |ω|h̄ |ċ|h̄ ≤

w
∫ b
0 |ċ|h̄ = w L̄(c).
Now, for any null curve β : [0, b] → M , with c = π ◦ β, recall from the proof of

Theorem 3.3 we have (dτ + π∗ω)β̇ = |ċ|h̄ . Then with |ω| ≤ w we have

β̇τ = |ċ|h̄ − ωċ

≥ |ċ|h̄ − |ωh̄ ||ċ|h̄
≥ (1 − w)|ċ|h̄

and we conclude 
τ = τ(β(b)) − τ(β(0)) ≥ (1− w)L̄(c). (This constrasts with the
standard static situation—Theorem 3.3, section (A)—in which 
τ = L̄(c); although
the non-standard static case is more complex in terms of using d̄, we were able to elide
that complication by means of direct comparison with the universal cover.)

Another issue is that in the static case we have a timelike eigenvector of Ric and
therefore a basis of eigenvectors of Ric. In [1] we used the strong energy condition to
reduce to two cases: one where there is a timelike eigenvector and one where there is
a null eigenvector. However, that strategy will not work in this case, because we need
to consider all the eigenvalues of Ric, not just the timelike (or null) one. Therefore,
for the next theorem we will add the assumption that Ric has a timelike eigenvector.

Theorem 4.1 Let M be a stationary, globally hyperbolic (with a non-compact Cauchy
surface), null geodesically complete spacetime obeying NEC, with various quanti-
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ties as specified in Theorem 3.3 (save that Q is the space of stationary, not static,
observers); and let us also assume that Ric has a timelike eigenvector. Suppose for
some choice of cross-section of π : M → Q (yielding α = dτ + π∗ω), the cor-
responding drift form ω has, at all points, geometric-conformal norm |ω|h̄ ≤ w for
some constant w < 1. Then for any basepoint q0 ∈ Q, for all r > 0,

Ā−
r ≤ 2π2

(1 − w)2

�̄+
r

(�̄−
r )2

1

r2

Proof Pick a point x0 with π(x0) = q0. Consider any point q ∈ Q with d̄(q, q0) = r
(recall Q is complete in d̄). We know the stationary orbit γq enters the future of x0
(pick any curve σ : [0, L] → Q from q0 to q, unit-speed in h̄; then P = π−1[σ ] is
conformal to (R× [0, 1],−(dτ + f (x) dx)2 + (dx)2) for f (x) = ω(σ̇ ), so | f (x)| ≤
|ω|h̄ |σ̇ |h̄ ≤ w; it follows that the lightcones in P are no wider than those from the
metric −(dτ)2 + ( dx

1−w
)2, so each π−1(x) enters the future of every point in P). Thus,

from global hyperbolicity, there must be a maximizing null geodesic β : [0, b] → M
from x0 to some point x1 on γq , parametrized with 〈β̇, U 〉 = −1; let c = π ◦ β.

From the argument above, we know τ(x1) − τ(x0) ≥ (1 − w)L̄(c). The desired r
for which c ⊂ B̄r (q0) is, again, L̄(c); so we have (1 − w)r ≤ 
τ . This effectively
puts us back into the same situation as in the proof of Theorem 3.3, section (A), with
(1 − w)r substituted for r . And that yields the result. ��

But what if we have the non-generic situation, with Ra
b having no timelike eigen-

vector at some points?What can we say then?We just work with what we have instead
of with eigenvectors:

At each point we define a quantity

B = inf{Ric(k, k) | k is a null vector with 〈k, U/|U |〉 = −1}

This is plainly a measure of how “big” Ricci is (and is constant along the stationary
orbits, hence, it descends to Q), though it’s not one that we’re used to dealing with;
but it’s the one that works for the general algebraic form of Ric. With NEC in place we
know B ≥ 0. As before we define B̄−

r = inf{B(q) | d̄(q, q0) ≤ r} for any basepoint
q0.

Theorem 4.2 Let M be a stationary, globally hyperbolic, null geodesically complete
spacetime obeying NEC, with various quantities as specified in Theorem 3.3 (save
that Q is the space of stationary, not static, observers). Suppose for some choice of
cross-section of π : M → Q (yielding α = dτ + π∗ω), the corresponding drift form
ω has, at all points, geometric-conformal norm |ω|h̄ ≤ w for some constant w < 1.
Then for any basepoint q0 ∈ Q, for all r > 0,

B̄−
r ≤ 2π2

(1 − w)2

�̄+
r

(�̄−
r )2

1

r2

Proof We just everywhere use B in place of A. ��
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5 Discussion

We first examine some general issues relevant to the current exploration.
To understand the role of all the conditions we use, it is helpful to consider the fate

of “would-be counter-examples” to our theorems: that is, spacetimes that appear to
violate our conclusions but that do so by failing to satisfy one ormore of our conditions.

To begin, consider de Sitter spacetime and anti-de Sitter spacetime. Both space-
times are geodesically complete. However each of these spacetimes is “spacetime
homogeneous” (i.e. the same at all points of spacetime) and therefore neither the
Ricci curvature nor anything else can “fall off” in either spacetime. However, each of
these spacetimes has A = 0, as indeed does any spacetime whose only stress-energy
is a cosmological constant. Furthermore, de Sitter spacetime is not globally static,
and its Cauchy surfaces are compact; whereas anti-de Sitter spacetime is not globally
hyperbolic.

(Another class of would-be counter-examples are low-regularity spaces. For
instance, we could marry two copies of anti-de Sitter space together, along their com-
mon causal boundary; this produces a smoothmanifold that bears a covariant derivative
which extends smoothly across the marriage-boundary as well as a smooth sense of
causality, but there is no global spacetime metric which extends even continuously
across the boundary. Doubled anti-de Sitter space is arguably globally hyperbolic, in
having Cauchy hypersurfaces and compact causal diamonds; but it is a low-regularity
variety of global hyperbolicity, so does not come under our theorem. This is a subject
area that may deserve exploration.)

Two would-be counter-examples that we considered in [1] are the Einstein static
universe andMelvin’smagnetic universe. The Einstein static universe is homogeneous
(the same at all points in space) and thus again no quantity can “fall off.” This spacetime
fails to be a counter-example to the theorem of [1] because S = 0. In the present case
A is a nonzero constant. However, the Einstein static universe fails to be a counter-
example to our theorem here because its Cauchy surfaces are compact.

Melvin’s magnetic universe is a static solution of the Einstein-Maxwell equations
representing an infinitely long tube of magnetic flux held together by its own self-
gravity. Its curvature “fails to fall off” in the sense that it does not change at all
as one moves in the direction parallel to the axis of the flux tube. However, this is
not a counter-example to the theorem of [1] because that theorem only states that
curvature must fall off in at least one direction, not in all directions. One might expect
a similar resolution here; however things are even simpler: A = 0 at all points of
Melvin’s magnetic universe. Furthermore the A = 0 property is not some peculiarity
of Melvin’s magnetic universe, but rather is a property of any static solution of the
Einstein-Maxwell equations that is either purely magnetic (like Melvin’s magnetic
universe) or purely electric. Thus we cannot look to the Einstein–Maxwell equations
for interesting would-be counter-examples to our theorems.

We next examine some of the specifics involved in the theorems here, that are
different from those using the SEC condition.

One point to be explored is the difference between the static and stationary cases.
Unlike in [1], in the stationary case we have not made use of an essential quantity
(the weight of the fundamental cocycle), but have simply said, “for some choice of
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cross-section, find some w < 1 for which at all points |ω|h̄ ≤ w.” This is a much less
transparent process. Let us look at a specific example in illustration:

We take as spacetime manifold M = R
3 = R

1 × R
2 (coordinates (t, x, y)) with

metric (for fixed constant a, |a| < 1)

g = −(dt + ax cos y dy)2 + (dx)2 + (dy)2

so that we have timelike killing field U = ∂
∂t , stationary orbit space Q = R

2 with
projection π : M → Q given by π(t, x, y) = (x, y) and orbit-space metric h =
(dx)2 + (dy)2; we have length of Killing field � = 1. With the obvious cross-section
z : Q → M given by z(x, y) = (0, x, y), we have the corresponding time function
τ : M → R given by τ(t, x, y) = t and drift-form ω = ax cos y dy on Q. Note that
|ω|h̄ = |ax cos y| is unbounded. As � is constant and h is flat, we have Ric = 0 for
M (see proof of Proposition 3.1).

We cannot apply Theorem 4.1 to this spacetime with the given presentation, as we
do not haveω sufficiently bounded. Butwe can fix this with an alternative presentation:
we will select η : Q → R so that |ωη|h̄ is bounded appropriately. Specifically: choose
η(x, y) = ax sin y. Then ωη = ω − dη = ax cos y dy − (a sin y dx + ax cos y dy) =
−a sin y dx , and |ωη|h̄ = |a sin y|, and so we can apply Theorem 4.1 with w = |a|,
so long as |a| < 1. The presentation of the metric now is with τη = τ + η ◦ π given
by τη(t, x, y) = t + ax sin y; that is to say, the metric can be expressed as

g = −(dτη − a sin y dx)2 + (dx)2 + (dy)2

on the same manifold with coordinates (τ η, x, y) and with cross-section zη = η · z
given by zη(x, y) = (ax sin y, x, y) in (t, x, y) coordinates. (However, the application
of Theorem 4.1 is trivial: Aq = 0 for all points q ∈ Q.)

Another point to consider is just what sort of Ricci fall-off Theorem 3.3 (for
instance) gives us. The complication here, as opposed to [1], is the max andmin values
of � over a geometric-conformal ball of radius r ; while the former can only grow and
the latter only shrink, the ratio can do anything—and, in particular, �̄+

r /(�̄−
r )2 need

not decrease with r . Let’s explore this with a spherically symmetric standard-static
example.

We take M = R
1 × R

3 with R
3 realized as ((0,∞) × S

2) ∪ {0}; use coordinates
(t, ρ) for R1 × (0,∞), and for metric use

g = −�(ρ)(dt)2 + (dρ)2 + ρ2kS2

where kS2 is the metric on the round unit S2 and� is some positive function on [0,∞),
sufficiently differentiable at 0 to make for a differentiable metric on M . Then we have
∂/∂t as Killing field with static-orbit space Q = R

3 and projection π(t, ρ, x) =
(ρ, x). What sort of behavior can we get in

�̄+
r

(�̄−
r )2

1

r2
? (Note we are using base-point

0 ∈ Q and r = d̄(0, (ρ, x)).) It can vary widely.
For instance, let’s restrict ourselves to �(ρ) = ρq for any constant q (more pre-

cisely: for some a > 0, use that only for ρ ≥ a, and take � constant on [0, a]). Then
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we get F(r) = �̄+
r

(�̄−
r )2

1

r2
decreasing in r iff −2 < q < 1. For 0 ≤ q < 1, we have

F(r) ∼ 1

r
2

(
1−q

1− 1
2 q

)

while for −2 < q ≤ 0, we have

F(r) ∼ 1

r
2
(
2+q
2−q

)

(where∼ indicates asymptotic behavior). For q = 1, F(r) is constant, and for q = −2,
F(r) approaches a finite number; for all other q, F(r) increases unboundedly in r .

Are all such q viable candidates for Theorem4.1? Ifwe calculate theRicci curvature
for the metric g above, we get

Ric = −
(
1

4

�′2

�
− 1

2
�′′ − 1

ρ
�′

)

(dt)2 + 1

�

(
1

4

�′2

�
− 1

2
�′′

)

(dρ)2 − ρ

2

�′

�
kS2

This shows us NEC is obeyed precisely when both

�′ ≥ 0

�′′ − 1

2

�′2

�
+ 1

ρ
�′ ≥ 0

So NEC is fulfilled for �(ρ) = ρq precisely when q ≥ 0, and the only cases in which
Theorem 3.3 gives us a Ricci fall-off are for 0 ≤ q < 1.

In sum: there are considerable challenges to achieving anything like the classical
singularity results, using only NEC. But these results show that something like the
SEC results can be achieved in the presence of a timelike Killing field, so long as the
size of that field does not vary strongly. What this might mean for a more general
consideration of singularity theorems is far from clear.

Data availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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