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ABSTRACT: Analyzing gradual trends in meteorological drought has become increasingly important as anthropogenic
climate change and natural climate variability interact to complicate measurement of drought severity. Complex seasonal-
ity and long-term trends pose a limitation in understanding spatial trends in nonstationary changes of meteorological
drought in the United States. This study seeks to address this issue by simultaneously analyzing recurring seasonal patterns
(stationary component) and long-term drought trends (nonstationary component), with a unique focus on nonlinear trends
and common regional patterns. We analyzed 696 instrumental precipitation gauges with long historical records in the conti-
nental United States, using a novel spline-based model to disaggregate a 3-month meteorological drought index (SPI) into
its seasonal and long-term components. The disaggregated components for each gauge were then clustered into subregions
with similar seasonality and groupings with similar long-term trends using a two-step process. Our results identify clearly
defined regions based on precipitation seasonality, while long-term trends are not spatially coherent with the seasonality.
Instead, these findings support prior findings of an increasingly drier western United States and an increasingly wetter east-
ern United States over the last century, but with more nuanced spatial and temporal patterns. The new clustering analysis
based on nonstationary meteorological drought trends can contribute to informing and adapting current water manage-
ment strategies to long-term drought trends.

SIGNIFICANCE STATEMENT: This study considered 656 precipitation gauges across the continental United States
to find regions with similar precipitation seasonality and then to group records with similar long-term climate trends.
The study focused on 3-month average precipitation, a key indicator for drought monitoring. We identified eight re-
gions across the United States with similar precipitation seasonality. From 1920 to the present, we found continuous
drying trends throughout the western United States, continuously wetter trends in the northern plains, and an overall
wetter trend interrupted by a midcentury dry period (1930-50) for much of the central Plains and Midwest. This study’s
use of splines, or fitted curves, allowed these nonlinear patterns, which we believe better capture the nuances and inten-
sification of climate change effects on precipitation.
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1. Introduction and the ecosystem, posing challenges to water resource man-
agement, while also providing insight into anthropogenic
climate change impacts, and therefore are important to inves-
tigate in greater detail.

The definition of drought can vary depending on what part
of the hydrologic cycle is of interest. For example, meteoro-
logical drought measures anomalies in precipitation, hydro-
logical drought measures streamflow anomalies, and agricultural
drought measures soil moisture or agriculture yield anomalies
(Lloyd-Hughes and Saunders 2002). Because each drought
type focuses on a specific part of the hydrologic cycle, they
can have unique impacts in addition to onset/cessation char-
acteristics (Heim 2002; Mishra and Singh 2010). This study
focuses on meteorological drought, defined as a lack of pre-
cipitation relative to typical conditions prolonged for a cer-
tain time period (Lloyd-Hughes and Saunders 2002; Stagge
et al. 2015a; McKee et al. 1993). Measuring only precipitation,
meteorological drought is often the primary cause of other
types of drought as this anomaly propagates through the
hydrologic cycle to induce water balance (precipitation minus
evapotranspiration) (Palmer 1965; Stagge et al. 2015b),
hydrologic (Van Loon et al. 2015), agricultural, and socio-
Corresponding author: James H. Stagge, stagge.11@osu.edu economic droughts (Ukkola et al. 2020; McKee et al. 1993;

Drought trends have long been studied as a primary issue
in water management, especially as related to modern anthro-
pogenic climate change (Trenberth et al. 2014; Ukkola et al.
2020; Cook et al. 2019). Climate change has induced compli-
cated shifts in the severity and frequency of drought (Cook
et al. 2019; Dai et al. 2018; Seager et al. 2009; Cook et al.
2010) and those changes vary across regions and seasons
(Cook et al. 2010; Diffenbaugh 2020; Stahle 2020; Seneviratne
2012; Sheffield et al. 2012; Cook et al. 2020). For example, the
southwestern United States and the Mediterranean region of
Europe have experienced increasingly drier patterns during
the last century, while northern Europe and the Midwestern
United States have become wetter (Hoerling et al. 2012;
Stagge et al. 2017). The commonly repeated adage of “dry
gets drier and wet gets wetter” provides a simple shorthand,
but it is too simplified to explain more nuanced regional
trends or seasonal-specific drought trends, or does not hold in
some land areas (Hu et al. 2019; Chou et al. 2013; Byrne and
O’Gorman 2015). These drought trends impact water security
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Van Loon et al. 2016). The Standardized Precipitation Index
(SPI) is commonly used to quantify the severity of meteoro-
logical drought using only precipitation, while indices like the
Standard Precipitation Evaporation Index (SPEI) or Palmer
Drought Severity Index (PDSI) measure water balance and
agricultural drought by considering evapotranspiration or sim-
plified soil behavior (Mishra and Singh 2010; Vicente-Serrano
et al. 2010; McKee et al. 1993; Lloyd-Hughes and Saunders
2002).

The SPI measures drought severity using only precipitation
and is calculated by fitting precipitation records of an accumu-
lated duration (e.g., 1, 3, 6, or 12 months) to a probability
density function, generally the gamma distribution or Pearson
type I distribution (Mishra and Singh 2010; McKee et al.
1993; Stagge et al. 2015b). Then, the calculated probability is
standardized by being transformed to the standard normal
distribution (Heim 2002; Guttman 1999). Since the SPI is
normalized based on the historical record, we can interpret
the values as the normalized anomaly from the region’s
observed long-term mean. In other words, the SPI enables
the user to compare drought severity relative to a location’s
long-term climatology across different locations and time
scales (Lloyd-Hughes and Saunders 2002; Guttman 1999). This
index therefore mirrors the definition of meteorological drought
as an extended anomaly from typical conditions. In addition,
3-month SPI reflects seasonal characteristics in temperate
climate zones with four distinct seasons (Vicente-Serrano et al.
2021). Even those regions with fewer distinct seasons or
seasons lasting longer than 3 months should be adequately
captured by a 3-month moving average with a daily time step.
There have been critiques that SPI measures drought using
only precipitation without incorporating water loss or evapo-
transpiration (Vicente-Serrano et al. 2010). Nevertheless, the
SPI has proven to perform well relative to its simple data re-
quirement (i.e., precipitation only and a straightforward calcu-
lation process) (Ukkola et al. 2020; Lloyd-Hughes and
Saunders 2002; McKee et al. 1993; Heim 2002). Isolating a
single variable like precipitation to calculate a drought index
provides a more straightforward interpretation, linking the
variable (precipitation) and the measurement (drought sever-
ity). Also, the simplicity leads to more easily understood un-
certainty estimates compared to indices that also incorporate
evapotranspiration or soil moisture, which in turn are com-
posed of temperature, wind speed, or soil characteristics, each
with their own biases and measurement error (Ukkola et al.
2020). There cannot be a best single index to perfectly mea-
sure drought as there is no single fixed definition to describe
droughts for all circumstances (Lloyd-Hughes 2014). In light
of these considerations, the SPI with a gamma distribution
and 3-month accumulation period was chosen for this study
and used to explain both seasonal and long-term characteris-
tics of meteorological drought.

This study analyzes spatiotemporal trends in the meteoro-
logical drought index SPI over the continental United States
during the twentieth-century instrumental period. Because
this index was originally designed as a drought index, we will
continue to refer to meteorological drought; however, this
index measures both drought (negative SPI) and pluvials
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(positive SPT). Therefore, a change in the mean parameter of
the SPI-3 technically indicates a shift toward wetter or dryer con-
ditions for seasonal (3-month) precipitation. Prior studies show a
general consensus in precipitation and drought trends across the
continental United States during this period, with increasing
dryness in the western United States and increasing wetness
in the eastern United States (Andreadis and Lettenmaier
2006; Herweijer et al. 2007; Cook et al. 2015). Major record-
breaking drought events during the instrumental period in-
clude the Dust Bowl (1930s) and the southern Great Plains
drought (1950s), while extreme drought trends in the south-
west region have made the reoccurrence of similar extreme
events more likely and frequent in recent decades (Cook et al.
2010; Stahle 2020; Williams et al. 2020). Future projections of
climate change suggest current trends will continue through-
out the next century (Ukkola et al. 2020; Cook et al. 2020).
Cook et al. (2020) predicted future drought trends in the
United States by comparing projected PDSI during 2071-2100
to 1851-80 using CMIP6 forcing scenarios. They show that
changes in drought trend will likely vary by season and region,
with the cold season in the eastern part of the United States
tending toward wetter conditions and the warm season in the
U.S. Southwest tending to have a drier trend. Ukkola et al.
(2020) predicted complicated patterns of future change in
drought using CMIP6 projections by comparing the average
drought of 2051-2100 to the base period 1950-2014 across the
United States. They found that future change will mostly oc-
cur in seasonality shifts and the frequency of extreme drought
events while changes in drought intensity will not be signifi-
cant. Marvel et al. (2021) also found regions in the United
States with projected future changes in seasonal and long-
term precipitation. For example, the Southeast is likely to
undergo an increase in the amplitude of the annual precipita-
tion cycle, making both high and low values more extreme,
while the upper Great Plains tends to undergo shifts in the an-
nual peak precipitation season. While model-derived projec-
tions of precipitation are more uncertain than variables like
temperature (Vicente-Serrano et al. 2021; Lee et al. 2019),
studies have shown consistent regional results (Ukkola et al.
2020) and the sign agreement between historical observations
and future projections provides some additional confidence.
These projected future changes in the literature highlight the
importance of understanding regional drought trends in both
seasonal and long-term time scales.

Statistical approaches for quantifying long-term drought
trends typically rely on one of two approaches: either to calcu-
late the rate of gradual, monotonic change over time or to cal-
culate the step difference between two nonoverlapping time
periods (Helsel et al. 2020). For analyzing monotonic change,
linear regression or the Mann-Kendall (MK) trend tests are
the most widely used methods (Rahmani et al. 2015; Ganguli
and Ganguly 2016). Linear regression is the simplest method,
performed by calculating the slope of a regression line relative
to time and testing its statistical significance by comparing the
estimated slope to a slope of zero (the null hypothesis). Since
simple linear regression assumes the data are normally dis-
tributed about the regression line and have uniform variance,
it has a limitation to model highly skewed data such as
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precipitation directly. The MK test can be used as an alterna-
tive. It is particularly robust for hydroclimate data as it is a
nonparametric test, which is free from the normality assump-
tion and is less sensitive to high leverage outliers (Mann 1945;
Andreadis and Lettenmaier 2006). For calculating a step dif-
ference between two periods, the ¢ test and Mann—Whitney
test are popular parametric and nonparametric options, re-
spectively (Ganguli and Ganguly 2016). They test for a signifi-
cant difference in mean or median, respectively, between two
periods (Helsel et al. 2020; Stagge et al. 2014; Ganguli and
Ganguly 2016). The Chow (Chow 1960) and Pettitt (Pettitt
1979) tests are other examples of parametric and nonparamet-
ric tests, respectively, designed to detect abrupt step differ-
ences in the mean of a time series, its magnitude of shifts and
changepoints (Mallakpour and Villarini 2016).

These conventional trend analysis methods are simplifica-
tions and thus may not capture more complex temporal
changes that occur in the real world (Ge et al. 2016). Espe-
cially, those methods usually assume a constant long-term
drought trend and constant variance, while the true underly-
ing drought trend may be nonlinear under a nonstationary cli-
mate, undergo a gradual change in variance/extremes, or both
(Pryor et al. 2009; Stagge et al. 2017; Wu et al. 2017). As such,
simple linear regression methods cannot capture nonlinear
patterns, such as a “pause,” acceleration in the rate of change,
or abrupt changes. Further, linear trend tests are not designed
to capture trends in higher moments, such as variance or skew.

Paired period tests (e.g., the ¢ test or Mann—Whitney tests)
are sensitive to the selection of two discrete time periods,
which can cause inconsistencies across studies using different
periods or provide conflicting results (Herweijer et al. 2007;
Griffin and Anchukaitis 2014; Ge et al. 2016; Ganguli and
Ganguly 2016). For example, Dai (2013) and Sheffield et al.
(2012) both studied agricultural/soil moisture drought using
PDSI in the United States but provided contradictory long-
term trend results. Trenberth et al. (2014) found the choice in
base period to be a major cause of this discrepancy. Dai
(2013) used a relatively wet base period (1950-79), thereby
producing drier trends than Sheffield et al. (2012), which used
a longer base period of 1950-2008 (Trenberth et al. 2014).

To expand from a purely temporal analysis to a spatiotem-
poral analysis of regionally consistent drought trends, studies
typically plot the magnitude of conventional trend tests, either
displayed as raw values or using isolines (Trenberth et al.
2014). But by relying on a single value for each location to de-
scribe the trend, these approaches do not capture more com-
plex, nonlinear patterns like those explored in this study.
Cluster analysis is one approach that can be used to identify
common patterns among complex data, for example identify-
ing regions with similar patterns of drought or climate (Fovell
1997). Cluster analysis allows the data to drive groupings,
rather than predetermining a structure. Fewer studies have
used cluster analysis to identify regions with similar patterns
of meteorological drought trends (Fovell and Fovell 1993;
Haslinger et al. 2019; Mahlstein and Knutti 2010; Sathiaraj
et al. 2019) since it is challenging to determine similarity when
directly clustering long-time series with large numbers of data
points (Distefano et al. 2020). The approach adopted in this
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study leverages the flexibility of cluster analysis to identify
common patterns in parameter estimates from the Non-
Stationary Precipitation Index, thereby avoiding the pitfalls of
clustering long time series directly.

To address the limitations of linear trend analyses, while
also capturing spatiotemporal meteorological drought trends
at a regional scale, this study aims 1) to model nonstationary
and nonlinear changes in meteorological drought over the
twentieth century across the continental United States and
2) to identify subregions with similar dynamics of seasonality
and long-term drought trends. To do this, the recently devel-
oped Bayesian Non-Stationary Precipitation Index (NSPI)
method (Stagge and Sung 2022) is used to simultaneously
model the stationary seasonal component of SPI-3 along with
gradual nonlinear trends in mean and variance over multiple
decades. Instrumental gauges are then clustered based on the
fitted NSPI parameters, first based on seasonality and then
based on long-term trends. Clustering seasonal parameters is
performed to identify climatologically similar stations, similar
to previous regionalization studies but with a specific SPI-3 focus,
and to validate the results of the NSPI approach. Clustering
trends using the long-term NSPI parameters is performed to
identify common patterns of century-long climate trends,
while retaining the flexibility of nonlinear trends. Using fitted
parameters from the NSPI model for clustering reduces the
computational burden as well as uncertainty in clustering
large sets of data. Further, clustering based on normalized
parameter estimates, rather than absolute values, allows for
direct comparisons across gauges with widely varied clima-
tology, mimicking the underlying principles of the SPI.
Ultimately, this new analysis provides a more flexible and
objective spatiotemporal analysis of meteorological drought
trends across the United States and is expected to provide in-
sights for regional-scale seasonal precipitation change and to
inform future studies of causal mechanisms explaining com-
mon patterns of twentieth-century precipitation trends.

2. Method

This study’s approach is organized into three sections. First,
the NSPI model was fit individually for 656 precipitation
gauge records across the continental United States, producing
a set of model parameters that describe three interrelated
terms: repeating seasonal patterns of NSPI-3, a nonlinear an-
nual trend, and seasonally specific long-term trends. Second,
the gauges were clustered according to a subset of fitted
model parameters that describe only the recurring seasonal
NSPI-3 pattern. Third, the gauges were clustered according to
a subset of fitted model parameters that describe only long-
term annual trends. Seasonally specific long-term trends were
not considered for clustering.

The NSPI approach provides for nonlinear seasonality and
long-term precipitation trends, while the clustering approach
provides a more objective method to define regions with simi-
lar drought trends. The two-step clustering method over-
comes the limitation of clustering algorithms in evaluating
large datasets having both seasonal and long-term parameters
by reducing the parameters used for clustering in each step
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(Wang et al. 2013). We expect this two-step clustering (i.e.,
long-term trends within the same seasonality) to reduce bias
produced by larger seasonal variance dominating relatively
smaller long-term trend magnitude (Cook et al. 2020).

a. Precipitation data

Daily observed gauge precipitation data (PRCP) were
based on the Global Historical Climatology Network dataset
at the daily scale (GHCN-D) (Durre et al. 2010). At the time
of writing the GHCN-D dataset contains 6542 precipitation
gauges in the continental United States. To ensure consis-
tency, we filtered these available records, selecting only
gauges where data are available between 1920 and 2018, and
at least 80% of the daily data were recorded during this pe-
riod. A total of 656 gauges across the continental United
States satisfied the above criteria and were used to calculate
the NSPI based on a 3-month (90-day) accumulation period.

b. Quantify temporal trend: Bayesian NSPI model

We applied the Bayesian Nonstationary SPI model (NSPI;
Stagge and Sung 2022) to calculate a nonstationary 3-month
SPI-3 wherein the parameters of the gamma distribution can
change slowly through time to capture slowly changing pre-
cipitation characteristics under climate change (Russo et al.
2013). All fitting was conducted using the “spibayes” package
(Stagge 2021). The Bayesian NSPI model allows for nonlinear
trends across all distribution parameters using splines (Wood
2004; Marx and Eilers 1998; Wood 2011; Tibshirani et al.
2001) and estimates all daily parameters simultaneously, un-
like other nonstationary SPI approaches, which tend to as-
sume linear trends and model each day independently (Stagge
and Sung 2022). The NSPI used here is designed to fit the
3-month precipitation using a two-parameter gamma distribu-
tion, similarly to a traditional SPI:

Py onins ~ Gamma(e, 6) 1)
where o and 0 represent shape and scale parameters, respec-
tively. Seasonality and long-term trends are modeled by set-
ting each parameter of the gamma distribution as a function
of time (day and year). Note that this model estimates the
mean (p = af) and shape (a) parameters instead of the shape
and scale parameters for more stable estimation. The esti-
mated mean and shape were then used to estimate the scale
parameter, 6 = u/a. The parameters of the gamma distribution
were modeled based on the generalized additive modeling
(GAM) in terms of day of the year (Julian date), year, and an
interaction between Julian date and year. The mean (n) and
shape (a) parameters were therefore estimated using three

interaction spline functions, f( ), for each parameter:

E[lOg(lJu)] = b() + f(xJulialLdate) + f(x)’ear)

+ f(xlulian_date’ xyear)’ (2)
1
E m = bO + f(xJulian_datc) + f(xycar)
+ f(xlulian_datc’ xycar)’ (3)
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where f(Xrulian_date) T€presents the seasonal spline by the day
of year (Julian date), f(xycor) models the change by year, and
Sf(Xsulian_date> Xyear) T€presents long-term trends specific to a
given season. This model formulation follows the same ap-
proach outlined in greater detail by Stagge and Sung (2022).

Each f( ) term represents a nonlinear smooth function, or
spline, created by summing smooth segments and controlled
by regular points called knots (Wood 2004, 2006; Marx and
Eilers 1998). The function f{ ) is represented as

M
f(xi) = Z Bim Bmxi’ (4)
m=1

where M is the number of knots, B;,, is a coefficient that raises
or lowers the spline at a given knot m, B is a model matrix,
and x is the location of a point of interest, for example, a given
Julian date.

We modeled f(Xjylian_date) as a stationary model with a re-
peating cyclic spline function for each day of the year. The
f(Xyear) term was a nonstationary, nonrepeating spline, while
the f(Xjuian_dates Xyear) Was modeled as nonstationary tensor
interaction product (Stagge and Sung 2022). The tensor spline
is useful for modeling the interaction between two variables
(Julian date and year), while allowing different smoothness
for each dimension. As such, the tensor product spline pro-
vides a three-dimensional smooth surface with two axes:
Julian date and year. Another strength of the tensor prod-
uct spline is that the entire tensor surface can be con-
strained by a few control points’ (knots’) B, values. This study
used 18 knots for seasonality, spaced every 21 days, and 8 knots
for long-term trends to control the spline shape every 14 years.
Knots are applied at the same year and Julian date for all
gauges to facilitate uniform comparisons.

The B control the magnitude of the spline function at each
knot and are estimated by Bayesian Monte Carlo Markov
chain simulation. Our tensor spline method with normalized
parameters is capable of explaining full nonlinear trends using
a few parameters at knots both in seasonality and long-term
dimensions. Fitting B values can therefore be viewed as a type
of dimension reduction prior to clustering. For our clustering
purposes, the B; were standardized to have mean of 0 and
standard deviation of 1 at each gauge:

B _ 'Byear,i - Byear
year, — ’
TByear

®)

where % and op, are the mean and standard deviation of
all Bycar,; estimates, respectively, for i knots. This removes dif-
ferences in absolute value across gauges and allows for a rela-
tive comparison. We calculated Bjyjian dare in the same way,
normalizing only these seasonal parameters. For clustering
and the remainder of this study, we focused only on the mean
parameter [Eq. (2)], rather than the shape parameter [Eq. (3)].

c¢. Cluster analysis

The goal of cluster analysis in this study was to aggregate
the observed gauges into clusters with similar patterns of
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FIG. 1. Framework of clustering analysis.

precipitation seasonality, and then into clusters with similar
long-term nonlinear trends. All clustering was conducted via
a two-step process: first clustering based on seasonality
(Byutian_date) @nd then clustering within each of these groups
based on long-term trends (Byear) (Fig. 1). Two-step cluster-
ing was chosen because seasonal variability, captured with
Bjunan_date, was much larger than that of interannual trends
(Byear), and thus dominated the clustering. Additionally,
seasonality tended to overwhelm interannual trends in clus-
tering because there was more than double the number of 8
values.

Ward’s agglomerative hierarchical clustering method was
used to aggregate gauges with similar seasonality and then
drought trends. Under Ward’s method, cluster distances are
defined as the squared Euclidean distances between points
and clustering aims to find the group minimizing within-clus-
ter distances (Marston and Ellis 2021; Distefano et al. 2020).
The optimal number of clusters for seasonal patterns (cluster-
ing 1) and long-term trends (clustering 2) was determined by
the gap statistic, comparing the change in within-cluster dis-
persion with that of a reference null distribution for clustering
schemes ranging from 1 to 15 clusters (Tibshirani et al. 2001).
A high gap statistic indicates an optimal number of clusters.
Gap statistics were calculated via the R package called
“factoextra” (Kassambara and Mundt 2020).

3. Results

Here we present the results of meteorological drought
clustering performed in two steps, first based on seasonal-
ity, and then based on long-term trends using their respec-
tive fitted and normalized spline parameters (BJulianidale and
Eyear). This approach clusters regions only based on relative
seasonality and long-term trends of the mean parameter in-
stead of its absolute value. In this sense, very dry regions
and wet regions could be clustered together if those regions
have similar seasonality (clustering 1) or long-term trends
(clustering 2).

Brought to you by OHIO STATE UNIVERSITY,

a. Seasonal clusters of NSPI-3

Based on the gap statistic, we retained eight seasonal clusters
in clustering 1 using the normalized seasonal betas (Bjulian_daw),
shown spatially (Fig. 2) and seasonally, as a box plot of all
Biuiian_date €Stimates within a cluster (Fig. 3). As can be seen in
the combined cluster map in Fig. 2 (lower right corner), sea-
sonally clustered gauges are spatially compact such that most
gauges within a seasonal cluster are closely located. It should
be noted that the clustering method did not consider location
or distance and was based solely on normalized patterns of
seasonal precipitation. Where the clusters are not in a single
spatial location, they tend to form regionally compact clusters,
as in the case of clusters 2, 4, 7, and 8. Clusters are numbered
based on their order within the agglomerative clustering
dendrogram.

Cluster 6 covers the largest region, occupying most of the
middle of the continental United States. It is located through-
out many of the central plains states, which have dry winters
and a wet seasonal peak during summer (Fig. 3). Seasonality
varies little within this cluster, as indicated by relatively small
variance despite the large number of stations (Fig. 3; cluster 6).
In the eastern part of the United States, cluster 5 represents a
narrow transitional band between the central plains states
(cluster 6) and the southeastern United States (cluster 2) near the
Mississippi and Ohio Rivers. As a transitional region, cluster 5’s
seasonality is similar to these two neighboring clusters (Fig. 3).
Clusters 5 and 6 both have dry winters and wet summers; how-
ever, cluster 5 has a longer dry period, lasting from September to
the end of April, similar to its southeastern neighbor (cluster 2). In
this way cluster 5 represents a transition between the climate of
cluster 6 (the Great Plains states) and cluster 2 (the Southeast),
which agrees with its geographic location (Fig. 2). Gauges of
cluster 8 are located along the outer edges of cluster 6, sepa-
rated into distinct regions to the northeast (Great Lakes
and New England) and south/southwest. The seasonality of
cluster 8 is similar to that of cluster 6 (Fig. 3) but shows less
difference between wet and dry seasons, with its wet period
occurring later during fall than cluster 6.
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FIG. 2. Spatial patterns of clusters based on seasonal patterns of the precipitation distribution mean. Each cluster is shown in a separate panel
for clarity and combined in the final panel with colors corresponding to cluster.

The southeastern United States was divided into three clus-
ters (clusters 1-3). Cluster 3 is predominantly coastal, while
clusters 1 and 2 separate the southeast into more eastern and
western subregions, respectively (Fig. 2). Cluster 2 has a simi-
lar spring/summer wet peak and late summer dry period as its
neighbor, cluster 5, but with a more consistent wet period
(Fig. 3). Referring to Fig. 3, cluster 1 has two wet seasons, one
in late March to the beginning of April and another at the
end of July, with the dry period occurring in winter around
November to December. Cluster 3 is seasonally reversed,
with the wettest season occurring in the fall and driest season
in the winter and spring. This unique seasonality is likely re-
lated to cluster 3’s coastal influence.

Cluster 4 (the desert Southwest) has two wet periods,
February—April and September—October, separated by a dry
period during summer (Fig. 3). It is important to note here
that because the SPI-3 is a backward looking 3-month precipi-
tation metric, the mean parameter for March 1 measures total
precipitation from the previous 1 December through 1 March,
or the classical DJF winter period. The Southwest cluster 4
shows noticeably large variance among the gauges. This is be-
cause the mean parameter (u) values are very small in the
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semiarid southwest (near zero), such that the normalizing via
Bjuﬁan_dme accentuates what are actually very small differences
in absolute value. There are a few gauges in the mid-Atlantic
coast (cluster 4) that follow a similar bimodal seasonality to
the Southwest, despite having a very different total precipita-
tion (Fig. 2). The West coast region (cluster 7) has a unique
seasonality compared to other regions. Unlike most other re-
gions, cluster 7 has a short wet season during winter and a
clear dry period over summer and fall (Fig. 3).

b. Long-term precipitation trend clusters

In clustering step 2, we retained 12 long-term clusters
within each of the eight seasonal clusters, although the cluster
analyses were performed independently for each region iden-
tified in clustering step 1. This second clustering was based on
the extracted ﬁyear parameters from the model [Eq. (2)] for
each gauge. This produced a total of 96 unique clusters com-
bining seasonality and long-term trend parameters. Although
we calculated the gap statistic to determine the optimal number
of long-term clusters under each seasonal clusters, 12 clusters
was a common solution to all regions and so was applied
throughout to maintain consistency. The two-step clustering
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FIG. 3. Mean parameters of all gauges under same seasonal clusters in terms of Julian date. Cluster numbers and colors match those in Fig. 2.

process helps to isolate parameters of seasonality and long-
term trend by preventing large variance from mixing many
numbers of variables with different scales.

Despite the consistent finding of 12 long-term clusters
within each region, when viewed qualitatively, we concluded
that these 12 long-term clusters fall under seven more general
patterns. We therefore categorized each based on the relative
pattern of [%year during the observed period. In order from
wetting to drying, these patterns are increasingly wetter (W),
drier and then wetter (DW), wetter—drier—wetter (WDW),
drier-wetter—drier (DWD), wetter—drier (WD), increas-
ingly drier (D), and no trends (NA). The classification is de-
termined based on the direction of change and the number of
sign changes in the set of during the observed period. This
manual classification rule was then applied across all seasonal
clusters to recategorize each long-term cluster into seven
more general long-term patterns (Fig. 4). All spatial compari-
sons are based on these seven long-term patterns. Figure 4
shows typical examples of these temporal patterns, ranging
from continuously drier or wetter (left; D, W), to midcentury
reversals (center; WD, DW) and multidecadal fluctuations

Brought to you by OHIO STATE UNIVERSITY,

(right; DWD, WDW). The seventh pattern is NA, represent-
ing patterns that are hard to define or do not have enough
gauges to demonstrate a pattern. They are not shown here.

The spatial patterns of long-term precipitation trends are
shown in Fig. 5. The color scale is based on whether modern
precipitation is drier (red) or wetter (blue) presently than in
the past. Midcentury reversals (WD or DW) are colored as in-
termediate patterns, while the DWD and WDW patterns
show little long-term trend and instead display multidecadal
cycles. Spatial patterns of long-term trend are not homoge-
nously organized by seasonal cluster. Instead, each seasonally
based cluster has mixed types of long-term trends.

Although long-term precipitation patterns do not strictly
follow the climate regions established via seasonal clustering,
there are emergent patterns when viewed across the contigu-
ous United States (Figs. 5 and 6). Overall, these results cap-
ture a dominant wetter trend in the north and eastern parts of
the United States and a dominant drier trend in the western
United States throughout the twentieth century. This trend is
clearer when we exclude relatively weak cyclic signals (WDW
and DWD) and focus on either continuous increase/decrease
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(a) Dry (D) (b) Wetter - Drier (WD) (c) Drier - Wetter - Drier (DWD)
Seasonal: 7 Seasonal: 1 | Seasonal: 8 |
Long-term: 1 Long-term:1 Long-term:9

Standardized B(year)

1920 1936 1952 1969 1984 2001 2018

1920 1936 1952 1969 1984 2001 2018

1920 1936 1952 1969 1984 2001 2018

(d) Wet (W) (e) Drier - Wetter (DW) (f) Wetter - Drier - Wetter (WDW)
Seasonal: 8 Seasonal: 3 Seasonal: 2
Long-term:12 Long-term:1 Long-term:12

Standardized B(year)

1820 1936 1952 1969 1984 2001 2018
year

1920 1936 1952 1969 1984 2001 2018

year

1920 1936 1952 1969 1984 2001 2018

year

FIG. 4. Example of six categories of long-term trends. “Seasonal” means seasonal clusters and “long-term”

means the long-term clusters.

(D, W) or long-term trends with a midcentury pause or re-
versal (DW, WD) in Fig. 6. This highlights the significant
wetting trend across the northern central United States and
the Midwest and the drying trend in the western United
States during the last century.

The progressively drier patterns in the west and southwest
regions are primarily captured by clusters 4 and 7 (Fig. 5).
Cluster 6, which covers much of the center of the United
States, has mixed trends because of its large area (Fig. 5).
However, wetter trends are more noticeable in the northern
portion while drier trends are dominant in the southern por-
tion. This is accentuated when only the strong trends are re-
tained (Fig. 6). The majority of the central United States in
cluster 6 underwent a DW pattern, with an extended dry pe-
riod in the midcentury (1930-50), followed by a steady wet-
ting period (Fig. 4). The most northern portions of cluster 6
do not demonstrate this midcentury reversal, instead showing
a steadier wetting pattern (Fig. 6).

By excluding weaker patterns with little long-term trends,
the wetting trend previously shown in Florida (Fig. 5, cluster
3) was removed (Fig. 6), as this region only has WDW trends.
This indicates that the long-term precipitation trends in
Florida are not very significant but rather follow a more cyclic
pattern with little long-term change. Excluding DWD pat-
terns also provides a clearer spatial pattern in the southern
plains states compared to Fig. 5. The wetting trend that occu-
pies much of the northern plains states extends into Okla-
homa and continues into northern Texas before transitioning
to a moderate drying trend in central and southern Texas. We
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note that the long-term trend in Kansas shows mixed spatial
patterns of both drying and wetting trends, likely due to its lo-
cation at the conjunction of the drying west and wetter north.

4. Discussion

Our study answers the question “What are the spatial patterns
of meteorological drought in continental United States when
non-stationary and non-linear changes are considered?” Using
the normalized mean parameters from the NSPI purposefully
removes the dramatic differences in precipitation magnitude
across the United States to permit a clearer focus on common
seasonal patterns and relative change in precipitation over
time. For example, this approach can highlight gauges with
similar timing of annual wet/dry seasons and highlight differ-
ences between gauges where annual precipitation has steadily
increased during the last century and those gauges where
increases only occurred following a midcentury low. Use of a
normalized, rather than absolute magnitude, comparison
mimics the basic principles of the normalized SPI, which eval-
uates drought severity in terms of a relative anomaly for a
given climate. Here we discuss common and distinctive fea-
tures of our seasonal and long-term trend findings relative to
existing studies to highlight their importance.

a. Spatial patterns in seasonality

Defining subregions by similar drought characteristics and
setting up water management plans based on climate rather
than the political boundaries can be valuable in managing
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FIG. 5. Long-term trends in each seasonal cluster. Seasonal clusters are separated into subfigures, while the color represents the general
direction of change for the seven long-term patterns.

drought risk (Coopersmith et al. 2014). The seasonal cluster  focus on 3-month precipitation provides some greater insights
approach (section 3a) provides insight into characterizing re-  that could be more useful for meteorological drought moni-
gions with similar precipitation seasonality by aggregating toring or water resources planning.

gauges based on the seasonal term from the 3-month NSPI We found that the seasonal clusters derived using our
model. The seasonal clusters identified here generally agree approach (Figs. 2 and 3) were mostly dictated by seasonal
with previous regionalization schemes; however, the specific  periods of greatest precipitation, rather than dry seasons.

FIG. 6. Long-term trends in the continental United States.
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Therefore, the prevailing atmospheric circulation patterns
that drive wetter seasons play a large role in determining
the distinctive seasonality of each cluster. For example,
cluster 3 in the coastal Southeast including the Gulf of Mexico
and Florida (Figs. 2 and 3) appears to be controlled by hurri-
cane and tropical storm peaks bringing large precipitation
during the summer (Brun and Barros 2014), as indicated by a
peak in late August (Fig. 3). Atmospheric drivers also define
cluster 4 in the Southwest, which is dominated by the effect of
the summer monsoon (Fig. 3). The spatial extent of cluster 4
matches prior studies of this monsoon affected region
(Hu and Feng 2008).

Seasonal clusters also appear to be highly dependent on
topography. For example, the central cluster 6 is a large,
homogenous region. As one would expect, the topography of
this region is also quite homogenous with relatively few to-
pographic extremes. This is contrasted with the west coast
(cluster 7), which is generally bounded to its east by the Sierra
Nevada Mountains to the south and the Cascade mountain
range to the north. The region of greatest topographic complex-
ity, the Rocky Mountains, is not captured by a single seasonal
cluster (Fig. 2), likely due to this complexity. This complex
precipitation seasonality in the Rocky Mountains coincides
with the previous study of revised Koppen—Geiger climate
classification, which shows complex temperature and precip-
itation patterns throughout this mountainous region (Beck
et al. 2018).

Some regions in this study (Fig. 2) agree well with
Koppen-Geiger climate regions, which groups global climate
into 30 classes based on absolute mean seasonal temperature
and precipitation patterns (Beck et al. 2018). Similar to our
findings, the Koppen—Geiger classification divides California
and Arizona into separate regions despite their close spatial
distance (Fig. 2). The Koppen-Geiger scheme also considers
the Great Lakes region and southern Florida (cluster 8) dis-
tinct from their respective surroundings, although these
areas are combined in our study due to precipitation season-
ality (Fig. 4) but separated in Képpen-Geiger because of its
consideration of temperature. This discontinuous grouping
(cluster 8) is supported by Marston and Ellis (2021) showing
both regions with a wet fall and dry spring.

The differences between the seasonal clusters identified
here and the K&ppen—-Geiger can be attributed to our focus
solely on normalized NSPI-3 whereas the Koppen—-Geiger
also considers absolute precipitation and temperature. Our
study subdivides precipitation seasonality in the eastern
United States into much greater detail (five clusters) than the
Koppen-Geiger, which divides the same region into two
parts: north and south (Seager et al. 2019). As mentioned, the
southeast region in this study was subdivided because their
peak precipitation seasons vary from early spring to late fall
(clusters 1, 2, and 5) (Fig. 4). In addition, our results do not
show the typical 100th meridian division, which bisects the
United States into the arid western and humid eastern re-
gions in many studies including the Koppen—Geiger scheme
(Coopersmith et al. 2014; Beck et al. 2018; Hu and Feng
2008). Rather, cluster 6 (Fig. 2) covers most of the Great
Plains in the central United States, spanning this dividing line.
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The lack of the 100th meridian in our study stems from our
focus solely on relative precipitation seasonality, which is sim-
ilar throughout this entire region, rather than absolute precip-
itation or consideration of temperature as in Képpen—-Geiger
methods (Seager et al. 2019).

Our results emphasize the improved regional boundaries in
observing seasonality in meteorological drought. In this way,
the seasonal clusters developed here support and confirm ex-
isting climatic regions defined by National Centers for Envi-
ronmental Information (NCEI) or Koppen-Geiger, while
also providing greater nuance and a specific focus on precipi-
tation seasonality, irrespective of temperature or annual abso-
lute precipitation (Marvel et al. 2021; Marston and Ellis
2021).

Our new regional boundaries contribute to improving
water management plans by identifying the region with the
season when water is relatively abundant or deficit (Dalton
et al. 2013). For example, a reservoir operation plan—when
to release or store water—can be adopted based on other
regions in the cluster as it is highly affected by seasonality of
precipitation. Our clusters can also be an important determi-
nant to manage agricultural productivity (Guido et al. 2020).
Existing studies that define the region with absolute seasonal
precipitation have a limitation in investigating this variability
since those classifications are highly driven by general wet and
dry climate; they aggregated the entire eastern United States to
the same cluster whereas our study captures detailed wet and
dry periods (Beck et al. 2017; Tallaksen and van Lanen 2004).

b. Regional patterns of long-term precipitation trends

The results of this study generally corroborate previous
studies that found increasingly wetter conditions in the east
and drier conditions in the western United States (Slater et al.
2021; Ganguli and Ganguly 2016). However, while our results
broadly agree with prior studies of precipitation change over
the instrumental period, some results differ from those using
only linear trend analysis. For example, Ganguli and Ganguly
(2016) compared the long-term trend of SPI between the peri-
ods 1926-69 and 1970-2013 and found a clear drier trend in
California and wetter trend in Florida. While agreeing in
California, the wetter trend in Florida is less significant or
negligible in our results. The discrepancy can be attributed to
our study evaluating trend based on the full period while the
previous study compares two averaged periods. Findings for
the central portion of the United States (cluster 6) further
highlight the importance of considering nonlinear trends.
There is a north-south gradient ranging from a constant wet-
ting pattern (W) in the upper Mississippi River valley (north-
ern cluster 6) to a wetting pattern with a midcentury low in
the central Mississippi Valley (central cluster 6 and cluster 5),
and ultimately mixed patterns in the southern portions of
cluster 6. In particular, the midcentury low corresponds to the
major droughts of the 1930s and 1950s (Heim 2017). The se-
vere drought of 1954 affected this region south of 40°N, ap-
proximately at the breakpoint between the W patterns to the
north and the DW patterns to the south (Fig. 6). A linear
analysis of the DW region may have found only a mild wetting
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or negligible trend in this region, whereas this study identifies
several exceptionally dry decades in the mid-twentieth cen-
tury followed by a strong wetting trend toward more precipi-
tation than the earliest records.

The Kansas region, located in the center of the United
States, is at the confluence of the east-west wet—dry pattern
and the north-south gradient within cluster 6. This region
thereby produced a complex mix of long-term trend patterns
(Figs. 5 and 6). Previous studies have found similar conflicting
trend results for this region (Rahmani et al. 2015; Anandhi
et al. 2016). Rahmani et al. (2015) pointed out that change
patterns in observed precipitation records in the Kansas area
are not coherent, and only some of the precipitation records
show a statistically significant increasing trend. By incorporat-
ing nonlinear trends and clustering across the continental
United States, this study places prior conflicting results in
Kansas into a clearer spatial context, located at the center of
several competing trends.

Another example highlighting the value of combining NSPI
nonlinear trends with clustering was found in the Southeast.
Mitra and Srivastava (2016) suggest that the southeastern
United States, except for Florida, experienced drier condi-
tions during 1936-70 and wetter conditions (less frequent
drought) during 1970-2005. This would be equivalent to
either a wetting (W) or midcentury reversal (DW) in the trend
classification system established here. However, our study
showed more complex spatial patterns, with the more western
subregions of Louisiana and Mississippi (cluster 2) experienc-
ing drier trends (WD, DWD) while the more eastern states of
Alabama and Georgia (cluster 1) have undergone a wetter
trend (DW, WDW). This discrepancy is likely caused by the
prior study’s comparison of two discrete periods, rather than
capturing the full shape of trends, as performed here. Defining
the long-term change of the region with a nonlinear trend or
pattern such as wetter—drier helps us understand historical dry
and wet periods and ultimately better prepare for the decadal
scale of cyclic wet and dry conditions.

We also note that several regions appear to have experi-
enced abrupt changes or acceleration of trends after the year
2000. For example, the long-term change patterns (DWD,
DW, and WDW) shown in Figs. 4c, 4e, and 4f each have
abrupt or dramatic changes during the last decade (2001-18).
Splines can be unduly influenced by so-called edge effects,
emphasizing extreme values at the beginning or end of a
series, but this finding warrants future detailed investigation of
these regions. Detecting regions having those abrupt changes in
WDW or DWD patterns helps to identify recent trend changes
in some regions. This overcomes the limitation of comparing
averaged two time periods, which tends to dilute the level of
very recent shifts in drought severity and catch the up-to-date
drought trend interrelated to climate change.

5. Conclusions

This study investigated spatiotemporal meteorological
drought trends using a novel approach: NSPI modeling for
temporal trends among the SPI distribution parameters and a
two-step clustering approach to categorize seasonality and
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common long-term patterns. NSPI modeling captured com-
plex nonlinear trends such as direction changes or cyclic vari-
ability and represents these patterns using few parameters.
The NSPI modeling approach also benefited from analyzing
seasonality and long-term trends in a single model, decreasing
uncertainty by greatly increasing the number of data points.

Separating the NSPI parameters into two components (sea-
sonality and long-term trend) permitted two-step clustering.
The two-step clustering approach avoids bias caused by scale
differences between seasonal and long-term parameters. By
categorizing gradual precipitation trends across the United
States into a few patterns, it simplifies interpretation of the
nonlinear trends while better capturing more complex pat-
terns beyond simple linear increases and decreases. Benefits
for this were shown particularly in the central United States
where the approach distinguished between continuous long-
term precipitation increases in the north and an increase in
the central latitudes that was interrupted by a multidecadal
period of drought in the 1930s to the 1950s. It further
highlighted intensifications and changes that have occurred in
the last decades, which otherwise would have been ignored in
a linear regression.

Our study corroborates results showing that the general
meteorological drought trends of a wetter eastern and a drier
western United States can be more complex at the local scale
(Orlowsky and Seneviratne 2013; Marvel et al. 2021; Ganguli
and Ganguly 2016). In addition, we found that long-term pre-
cipitation trends (Fig. 5) are less spatially coherent than sea-
sonality (Fig. 2) and do not follow seasonally based regions.
We further found several unique features not previously em-
phasized, such as a north-south gradient in the central United
States and a more complex pattern in the Southeast, which
changes from drier trends near the Mississippi River to wetter
trends near the Atlantic coast. These regionally specific trend
findings can inform future causal studies investigating local-
scale long-term drought trends interrelated to global and local
climate (Dai 2011).

We recommend future studies focus on nonlinear trends in
the shape parameter. The shape parameters control variance
and the extreme tails of the distribution. This study focused
solely on the mean, but the NSPI methodology simulta-
neously produces shape parameter estimates. In addition,
identifying shifts in seasonality is important, since these sea-
sonal shifts could impact existing water management schemes,
with annual precipitation remaining constant (i.e., no detect-
able trend) (Slater et al. 2021). Thus, research is also needed
to address shifts in seasonality or seasonally specific long-term
trends, as measured by the interaction term in our model. Pre-
liminary investigation of the interaction term showed more
complex patterns, which would require more detailed study.
We therefore recommend further study of seasonal trends at
the regional or local scale, where underlying causal mecha-
nisms can be better explored. Further study is also needed to
explore how the observed trends during the last century link
with projections of the future climate. Analyzing trends using
climate projection poses a new set of challenges because the
model would have to account for different carbon emission
scenarios and multiple models, each with their own specific

LIBRARY | Unauthenticated | Downloaded 05/15/23 05:25 PM UTC



6172

bias. The GAM model presented here provides a potential
to incorporate future trends, but would require further
development.

Ultimately this study provides better insight into under-
standing gradual drought changes, especially distinguishing
monotonic increase or decrease from cyclic wetter and drier
conditions or recent abrupt changes. Our results will contrib-
ute to highlighting vulnerable regions that have experienced
drier trends. Understanding local-scale drought trends can ul-
timately improve planning of community-scale water resour-
ces management (Marvel et al. 2021).
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