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In this paper, a nonuniform size modified Poisson-Boltzmann ion channel (nuSMPBIC) 
model is presented as a nonlinear system of an electrostatic potential and multiple ionic 
concentrations. It mixes nonlinear algebraic equations with a Poisson boundary value 
problem involving Dirichlet-Neumann mixed boundary value conditions and a membrane 
surface charge density to reflect the effects of ion sizes and membrane charges on 
electrostatics and ionic concentrations. To overcome the difficulties of strong singularities 
and exponential nonlinearities, it is split into three submodels with a solution of Model 
1 collecting all the singular points and Models 2 and 3 much easier to solve numerically 
than the original nuSMPBIC model. A damped two-block iterative method is then presented 
to solve Model 3, along with a novel modified Newton iterative scheme for solving each 
related nonlinear algebraic system. To this end, an effective nuSMPBIC finite element solver 
is derived and then implemented as a program package that works for an ion channel 
protein with a three-dimensional molecular structure and a mixture of multiple ionic 
species. Numerical results for a voltage-dependent anion channel (VDAC) in a mixture of 
four ionic species demonstrate a fast convergence rate of the damped two-block iterative 
method, the high performance of the software package, and the importance of considering 
nonuniform ion sizes. Moreover, the nuSMPBIC model is validated by the anion selectivity 
property of VDAC.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The Poisson-Boltzmann equation (PBE) is one widely-used dielectric continuum model for the calculation of electrostatic 
solvation free energies [6,7,9,17,20,22]. But it cannot distinguish the two ions with the same charge, such as cations Na+
and K+ , since it treats ions as volume-less points. Thus, it may work poorly in the applications in which ion sizes have 
impact on electrostatics and ionic concentrations, especially in the simulation of ion transport across a membrane via an 
ion channel pore. Thus, it is important to develop size modified PBE (SMPBE) models.

The first SMPBE model was reported in 1997 for an asymmetric electrolyte consisting of two ionic species under the 
assumption that all the ions have the same size [3]. Since then, several SMPBE models had been developed for the case of 
a protein in an ionic solvent. A good review on those models developed before 2015 can be found in [19] (mostly in its 
second paragraph of Section 1), in which a local hard sphere Poisson-Nernst-Planck (PNP) model is shown to contain the 
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early SMPBE model [3] as a special case in equilibrium state. One of these SMPBE models for a protein in a solution of 
multiple ionic species is reported in [10]. Since it treats all the ions and water molecules as cubes, this model has a void 
problem (i.e., there exist cavities among ions and water molecules) in the nonuniform ion size case, breaking down the 
required size constraint conditions. This drawback was attempted to fix by introducing a concentration of voids in [13, Eq. 
(10)], from which another SMPBE model was constructed. But how to estimate a concentration of voids is still a puzzle since 
the voids can have different shapes and different volumes; the concept of “voids” also remains questionable in the physics 
community. Besides, these two SMPBE models suffer a redundancy problem because they use a concentration of water 
molecules to describe the water solution that has been treated as a continuum dielectric in their constructions. To fix these 
drawbacks, several improved SMPBE models were reported in [11,12,23,29], along with their effective finite element solvers 
and a web server [28]. Most recently, a size modified Poisson-Boltzmann ion channel (SMPBIC) model and its effective finite 
element solver were reported in [24]. However, this SMPBIC model still cannot distinguish the two ions with the same 
charge despite that it can partially reflect the effect of distinct ion sizes due to setting each ion to have an average of ion 
sizes. To further improve this model, the purpose of this work is to develop a nonuniform SMPBIC (nuSMPBIC) model and 
its finite element solver for an ion channel protein in a mixture of multiple ionic species.

However, the nuSMPBIC model is much more difficult to solve numerically than the SMPBIC model since it is a nonlinear 
system mixing n nonlinear algebraic equations with one Poisson dielectric interface boundary value problem and involves 
two physical domains — a simulation box domain for potential functions and a solvent domain for ionic concentration 
functions, not to mention its stronger singularities and stronger nonlinearities than the case of a protein surrounded by an 
ionic solvent. Here n is the number of ionic species; the algebraic equations describe ion size constraint conditions; and the 
Poisson problem involves Dirichlet-Neumann mixed boundary value conditions and a membrane surface charge density to 
reflect membrane charge effects. A nuSMPBIC solution gives n ionic concentration functions ci and an electrostatic potential 
function u. Since ci and u are defined in two different domains, they belong to two different finite element function 
spaces, producing a two-domain issue that we must deal with during the development of a nuSMPBIC finite element solver. 
Currently, this issue was simply treated by letting ci belong to the function space of u through setting ci to be zero at the 
mesh points outside a solvent region [23]. But this simple treatment may cause a large error disturbance since it produces 
an artificial boundary layer around the solvent region, where ci may have large values due to strong atomic charges on a 
part of solvent domain boundary — a part of an ion charge molecular surface including the mostly charged ion channel 
pore surface. To avoid such a boundary layer error, this two-physical-domain issue has been well treated in our recent PNP 
work [5,25,27]. That is, two finite element function spaces are constructed: one for concentration functions and the other 
for potential functions; two communication operators are then constructed to directly carry out operations involving ionic 
concentrations and potential functions. These techniques will be adapted to the development of a nuSMPBIC finite element 
solver in this work.

Following what was done in [24], we will overcome the difficulties of solution singularities through splitting the nuSMP-
BIC model into three submodels, called Models 1, 2 and 3. While Models 1 and 2 are the same as those reported in [24], 
Model 3 is a nonlinear system mixing the n nonlinear algebraic equations with an interface boundary value problem. A 
solution of Model 1 gives a potential component, G , induced by the atomic charges of an ion channel protein, in an alge-
braic expression that collects all the solution singularity points while a solution of Model 2 gives a potential component, 
�, induced by membrane charges and Dirichlet boundary and interfaces values. Solving Model 3 gives n ionic concentration 
functions ci and a potential component function, �̃, induced by ionic charges from the solvent region Ds . Model 2 has been 
solved efficiently in [24]. Hence, we only need to develop a nonlinear iterative scheme for solving Model 3 in this work.

The classical nonlinear successive over-relaxation (SOR) iterative technique [18] is often used to develop iterative schemes 
for solving a system of nonlinear equations because it can separate each equation from the others so that each equation 
can be solved one-by-one to achieve the goal of reducing computational complexity and computer memory requirement. 
It was applied to the construction of a nonlinear SOR-Newton iterative scheme for solving a nonuniform SMPBE model in 
the case of a protein surrounded by an ionic solvent [23]. Thus, we started with an adoption of this scheme as a Model 
3 solver. Unfortunately, this adapted SOR-Newton scheme was found numerically not to work well due to a slow rate of 
convergence because an ion channel protein has a much more complicated geometry and much stronger atomic charges 
than the protein case considered in [23]. Hence, developing efficient iterative schemes for solving Model 3 becomes one key 
step in the construction of an effective nuSMPBIC finite element solver.

During the search for an efficient Model 3 solver, we discovered that under a linear finite element framework, all the 
nonlinear algebraic equations of Model 3 can be split from a large set of nNh nonlinear algebraic equations into Nh small 
sets with each set containing only n nonlinear algebraic equations. Here Nh is the number of mesh points of a solvent 
region mesh. Since n is typically very small (such as 2, 3, or 4) in practice, each small set can be quickly solved as a 
small nonlinear algebraic system. This discovery motivated us to divide the equations of Model 3 into two blocks — Block 1 
consists of all the nonlinear algebraic equations and Block 2 contains the linear boundary problem only. We then construct 
a novel modified Newton iterative scheme to solve the nonlinear algebraic equations of Block 1 quickly, resulting in an 
efficient damped two-block iterative method for solving Model 3. In addition, we construct a linearized SMPBIC model 
and use its finite element solution as a good initial iterate of the damped two-block iterative method. Consequently, the 
construction of an efficient nuSMPBIC finite element solver is completed.

Finally, we implemented this new nuSMPBIC finite element solver in Python and Fortran as a software package based 
on the state-of-the-art finite element library from the FEniCS project [15] and the SMPBIC program package [24]. To 
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Fig. 1. An illustration of a box domain partition given in (2) and (3).

demonstrate the performance of the new nuSMPBIC software package, we did numerical tests using a crystallographic 
three-dimensional molecular structure of a murine voltage-dependent anion channel 1 (mVDAC1) [21] in a mixture of four 
ionic species. Note that this mVDAC1 protein (PBD ID: 3EMN) is known to be in the open state conformation with an anion 
selectivity property. Hence, it can serve as a good test case for assessing our nuSMPBIC model. Numerical results demon-
strate a fast convergence rate of our damped two-block iterative method, the high performance of our nuSMPBIC software 
package, and the importance of considering nonuniform ion sizes. They also show that the membrane surface charges have 
impact on the electrostatic potential and ionic concentrations. Moreover, our SMPBIC model was validated by the mVDAC1 
anion selectivity property.

The remaining part of the paper is arranged as follows. In Section 2, we present the nuSMPBIC model. In Section 3, we 
split the nuSMPBIC model into three submodels. In Section 4, we present the damped two-block iterative method. In Section 
5, we present the Newton iterative scheme for solving each nonlinear algebraic system arisen from the damped two-block 
iterative method. In Section 6, we construct a good initial iterate for the damped two-block iterative method. In Section 7, 
we report the nuSMPBE program package and numerical test results. Finally, conclusions are made in Section 8.

2. A nonuniform size modified Poisson-Boltzmann ion channel model

We define a simulation box domain, �, by

� = {(x, y, z) | Lx1 < x < Lx2, L y1 < y < L y2, Lz1 < z < Lz2 }, (1)

and split it into three open subdomains, Dp , Dm , and Ds as follows:

� = Dp ∪ Dm ∪ Ds ∪ �p ∪ �m ∪ �pm, (2)

where Lx1, Lx2, L y1, L y2, Lz1, and Lz2 are real numbers; Dp is a protein region containing an ion channel protein molecule 
with np atoms; Dm is a membrane region; Ds is a solvent region containing n ionic species; �p denotes an interface 
between Dp and Ds; �m an interface between Dm and Ds; and �pm an interface between Dp and Dm . We also split the 
boundary ∂� of � by

∂� = �D ∪ �N , (3)

where �D consists of the bottom and top surfaces of � and �N consists of the four side surfaces of �. We further set the 
normal direction of the membrane surface in the z-axis direction so that the membrane location can be determined by two 
numbers Z1 and Z2. An illustration of this setting and partitions (2) and (3) is given in Fig. 1.

Let ci denote a concentration function of the i-th species in moles per liter (mol/L) and u be a dimensionless electrostatic 
potential function of an electric field induced by atomic charges, ionic charges, and membrane charges. When a three-
dimensional molecular structure of an ion channel protein and a mixture of n ionic species are given, an atomic charge 
density function, ρp , and an ionic charge density function, ρs , can be estimated by

ρp = ec

np∑
j=1

z jδr j in Dp, ρs(r) = ec

n∑
i=1

Zici(r) in Ds,

where ec is the elementary charge, z j and r j denote the atomic charge number and position vector of atom j, respectively, 
Zi is the charge number of ionic species i, and δr j is the Dirac delta distribution at r j . In addition, a membrane surface 
charge density σ is given in μC/cm2 to account for membrane charge effects. Based on the implicit solvent approach, the 
three regions Dp , Dm , and Ds are treated as dielectric media with permittivity constants εp , εm , and εs , respectively. We 
then construct a Poisson dielectric boundary value problem for estimating u as follows:
3
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εp�u(r) = α
np∑
j=1

z jδr j , r ∈ Dp,

−εm�u(r) = 0, r ∈ Dm,

−εs�u(r) = β
n∑

i=1
Zici(r), r ∈ Ds,

u(s−) = u(s+), εp
∂u(s−)
∂np(s)

= εs
∂u(s+)
∂np(s)

, s ∈ �p,

u(s−) = u(s+), εm
∂u(s−)
∂nm(s) = εs

∂u(s+)
∂nm(s) + τσ , s ∈ �m,

u(s−) = u(s+), εp
∂u(s−)
∂np(s)

= εm
∂u(s+)
∂np(s)

, s ∈ �pm,

u(s) = g(s), s ∈ �D ,

∂u(s)
∂nb(s)

= 0, s ∈ �N ,

(4)

where ns , np , nm , and nb denote the unit outward normal directions of Ds , Dp , Dm , and �, respectively; ∂u(s)
∂n(s) denotes the 

directional derivative of u along a unit outside normal direction n (say, n = np); u(s±) = limt→0+ u(s ± tn(s)), which are 
the two sided limits along a direction n of a region (say a protein region, Dp) from the inside and outside the region; α, 
β and τ are three physical constants; and g is a boundary value function. Here the length unit is set in angstroms (Å) and 
the concentration unit in mol/L so that we can get the constants α, β and τ as follows:

α = 1010e2c
ε0kB T

, β = NAe2c
1017ε0kB T

, τ = 10−12ec
ε0kB T

, (5)

where ε0 is the permittivity of the vacuum, kB is the Boltzmann constant, T is the absolute temperature, and NA is the 
Avogadro number, which estimates the number of ions per mole.

From the Poisson problem (4) it can be seen that different selections of ionic concentrations ci may lead to different 
electrostatic potentials u. To find an optimal selection, we define an electrostatic free energy functional, F (c; u), by

F (c;u) = Fes(c;u) + Fid(c) + Fex(c) with c = (c1, c2, . . . , cn), (6)

where Fes , Fid , and Fex denote the electrostatic, ideal gas, and excess energies, respectively, in the expressions

Fes(c;u) = kB T

2
γ

n∑
i=1

Zi

∫
Ds

ucidr, Fid(c) = kB Tγ

n∑
i=1

∫
Ds

ci

(
ln

ci

cbi
− 1

)
dr,

Fex(c) = kB T

v0

∫
Ds

[
1− γ

n∑
i=1

vici(r)

][
ln

(
1− γ

n∑
i=1

vici(r)

)
− 1

]
dr.

Here, vi a volume of each ion of species i in cubic angstroms (Å3), γ = 10−27NA , cbi is a bulk concentration, and v0 is a 

physical parameter in Å3 (e.g., v0 = mini vi ) [16]. Note that the sum γ
n∑

i=1
vici(r) gives the ionic volume portion out of the 

solvent region. Hence, the difference 1 − γ
n∑

i=1
vici(r) is the portion of water solution volume, which should be positive, 

ensuring the definition of excess energy Fex . These energy terms have been measured in energy units Joules.
The constant γ is a unit converter from mol/L to Å3. In fact, under the SI unit system, a concentration is measured in 

the number of ions per Å3. But in practice, it is usually measured in mol/L as done in this paper. Hence, γ is needed to 
convert from mol/L to Å3 as shown below:

1 mol /L = 103NA/m3 = 10−27NA/Å
3 = γ /Å

3
,

where we have used the unit converters: 1 mol = 1 NA , 1 L = m3/103, and 1 m = 1010 Å. For NA = 6.02214129 × 1023, γ
can be estimated as γ ≈ 6.022 × 10−4.

The first Fréchet derivative F ′ of F can be found in the expression

F ′(c;u)w = kB Tγ

n∑
i=1

∫
Ds

[
Ziu + ln

(
ci

cbi

)
− vi

v0
ln

(
1− γ

n∑
j=1

v jc j
)]

wi(r)dr,

where F ′(c; u) is a linear operator and w denotes a test function vector with w = (w1, w2, . . . , wn). From the above ex-
pression we can obtain the variation ∂ F (c;u) of F with respect to ci as follows:
∂ci

4
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∂ F (c;u)

∂ci
= kB Tγ

⎡
⎣Ziu + ln

(
ci

cbi

)
− vi

v0
ln

(
1− γ

n∑
j=1

v jc j
)⎤⎦ , i = 1,2, . . . ,n.

Setting ∂ F (c;u)
∂ci

= 0 gives the equation Ziu + ln

(
ci
cbi

)
− vi

v0
ln

(
1 − γ

n∑
j=1

v jc j
) = 0, which can be reformulated as

ci(r) − cbi

⎡
⎣1− γ

n∑
j=1

v jc j(r)

⎤
⎦

vi
v0

e−Ziu(r) = 0, i = 1,2, . . . ,n. (7)

Obviously, the above nonlinear algebraic equations give the necessary conditions that an optimal c must satisfy. They also 
can be regarded as the ion size constraint conditions during a search process for an optimal u. Because the nonlinear 
equations (7) and the Poisson problem (4) are dependent each other, they must be combined together as a nonlinear 
system in terms of c and u. A solution of this system gives an optimal c and an optimal u in the sense of minimizing 
the electrostatic free energy (6). This nonlinear system defines a nonuniform size modified Poisson-Boltzmann ion channel 
(nuSMPBIC) mode. For clarity, we restate it as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci(r) − cbi

[
1− γ

n∑
j=1

v jc j(r)

] vi
v0

e−Ziu(r) = 0, r ∈ Ds, i = 1,2, . . . ,n,

−εp�u(r) = α
np∑
j=1

z jδr j , r ∈ Dp,

−εm�u(r) = 0, r ∈ Dm,

εs�u(r) − β
n∑

i=1
Zici(r) = 0, r ∈ Ds,

u(s−) = u(s+), εp
∂u(s−)
∂np(s)

= εs
∂u(s+)
∂np(s)

, s ∈ �p,

u(s−) = u(s+), εm
∂u(s−)
∂nm(s) = εs

∂u(s+)
∂nm(s) + τσ , s ∈ �m,

u(s−) = u(s+), εp
∂u(s−)
∂np(s)

= εm
∂u(s+)
∂np(s)

, s ∈ �pm,

u(s) = g(s), s ∈ �D ,

∂u(s)
∂nb(s)

= 0, s ∈ �N .

(8)

In physics, the Neumann boundary condition on the four side surface �N reflects the fact that none of the charges enter 
the box domain � from �N . For an equilibrium simulation of an ion channel system, the boundary value function g is set 
to have the same value (e.g. zero) on the bottom and top surfaces of �D since this particular selection yields a zero voltages 
across the cell membrane.

The nuSMPBIC model involves Dirac delta distributions, two physical domains (the solvent domain Ds and the box 
domain �), complicated interface conditions, mixed boundary value conditions (i.e., a Dirichlet boundary condition on �D
and a Neumann boundary condition on �N ), and the membrane surface charge density σ . The Dirac delta distributions 
cause the potential function u strongly singular while the nonlinear algebraic equations cause the ionic concentrations ci
exponentially nonlinear. Hence, the nuSMPBIC model (8) is very difficult to solve numerically. New numerical techniques 
are needed to develop an effective nuSMPBIC finite element solver.

The free energy functional F of (6) can be regarded as an improvement of the conventional free energies (e.g., [10, eq. 
(1.4) or (3.4)], and [2, eq. (4)] or [26, eq. (36)]) since it does not involve any of the thermal de Broglie wavelengths, chemical 
potentials, a concentration of water molecules, and terms ln(vici). Instead, it is constructed in terms of the parameters of 
nuSMPBE. To this end, the algebraic equations of (7) can be derived directly in a mathematical way as done in this section.

3. A submodel partition of the nuSMPBIC model

One major difficulty in the numerical solution of the nuSMPBIC model comes from the solution singularity caused by 
the Dirac-delta distributions δr j . Following what are done in [22,24], in this section, we partition the nuSMPBIC model into 
three submodels, called Models 1, 2, and 3, to overcome the singularity difficulty.

Model 1 is defined by the Poisson equation over the whole space R3,

−εp�G(r) = α

np∑
z jδr j , r ∈ R3, G(r) → 0 as |r| → ∞, (9)
j=1

5
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whose solution G gives an electrostatic potential induced by atomic charges from an ion channel protein. The analytical 
solution G of Model 1 and its gradient vector ∇G(s) can be found in the algebraic expressions [22]

G(r) = α

4πεp

np∑
j=1

z j
|r− r j| , ∇G(r) = − α

4πεp

np∑
j=1

z j
(r− r j)

|r− r j|3 ∀r 
= r j . (10)

Model 2 is defined by the linear interface boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��(r) = 0, r ∈ Dm ∪ Dp ∪ Ds,

�(s−) = �(s+), εp
∂�(s−)
∂np(s)

= εs
∂�(s+)
∂np(s)

+ (εs − εp)
∂G(s)
∂np(s)

, s ∈ �p,

�(s−) = �(s+), εm
∂�(s−)
∂nm(s) = εs

∂�(s+)
∂nm(s) + (εs − εm)

∂G(s)
∂nm(s) + τσ , s ∈ �m,

�(s−) = �(s+), εp
∂�(s−)
∂np(s)

= εm
∂�(s+)
∂np(s)

+ (εm − εp)
∂G(s)
∂np(s)

, s ∈ �pm,

�(s) = g(s) − G(s), s ∈ �D ,

∂�(s)
∂nb(s)

= − ∂G(s)
∂nb(s)

, s ∈ �N .

(11)

Clearly, both Models 1 and 2 are independent of ionic concentration ci . Hence, they can be solved prior to a search for ionic 
concentrations ci .

With Models 1 and 2, we can simplify the nuSMPBIC model (8) into Model 3 — a nonlinear system of an electrostatic 
potential, �̃, (induced purely by ionic charges) and ionic concentration functions ci as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci(r) − cbi

[
1− γ

n∑
j=1

v jc j(r)

] vi
v0

e−Zi [G(r)+�(r)+�̃(r)] = 0, r ∈ Ds, i = 1,2, . . . ,n,

��̃(r) = 0, r ∈ Dm ∪ Dp,

εs��̃(r) + β
n∑

i=1
Zici(r) = 0, r ∈ Ds,

�̃(s+) = �̃(s−), εs
∂�̃(s+)
∂np(s)

= εp
∂�̃(s−)
∂np(s)

, s ∈ �p,

�̃(s+) = �̃(s−), εs
∂�̃(s+)
∂nm(s) = εm

∂�̃(s−)
∂nm(s) , s ∈ �m,

�̃(s−) = �̃(s+), εp
∂�̃(s−)
∂np(s)

= εm
∂�̃(s+)
∂np(s)

, s ∈ �pm,

�̃(s) = 0, s ∈ �D ,

∂�̃(s)
∂nb(s)

= 0, s ∈ �N .

(12)

After solving Models 2 and 3, we construct the electrostatic potential function u by the formula

u(r) = G(r) + �(r) + �̃(r) ∀r ∈ �. (13)

Since G collects all the singularity points of u, both Models 2 and 3 can be much easier to solve numerically than the 
original nuSMPBIC model. Consequently, the complexity of solving the nuSMPBIC model is sharply reduced. An efficient 
finite element method for solving Model 2 has been reported in [24,25]. Hence, we only need to develop a finite element 
method for solving Model 3 as done in the next section.

4. A damped two-block iterative method for solving Model 3

We start with a construction of two finite element meshes — an interface fitted irregular tetrahedral mesh, �h , of a 
box domain � and a tetrahedral mesh, Ds,h , of a solvent domain Ds . We then use them construct two linear Lagrange 
finite element function spaces, denoted by U and V, as two finite dimensional subspaces of the Sobolev function spaces 
H1(�) and H1(Ds) [1], respectively. We further construct a restriction operator, R :U→V, and a prolongation operator, 
P :V→U, such that Ru ∈V for any u ∈U and Pci ∈U for any ci ∈V. With these spaces and operators, we can obtain a 
finite element approximation of Model 3 as follows: Find �̃ ∈U0 and ci ∈V for i = 1, 2, . . . , n such that
6
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ci(r) − cbi

⎡
⎣1− γ

n∑
j=1

v jc j(r)

⎤
⎦

vi
v0

e−ZiR[G(r)+�(r)+�̃(r)] = 0, r ∈ Ds,h, i = 1,2, . . . ,n, (14a)

a(�̃, v) − β

n∑
j=1

Z j

∫
Ds

Pc j(r)vdr = 0 ∀v ∈U0, (14b)

where U0 = {u ∈U | u = 0 on �D}, which is a subspace of U, and a(·, ·) is a bilinear form defined by

a(u, v) = εp

∫
Dp

∇u · ∇vdr+ εm

∫
Dm

∇u · ∇vdr+ εs

∫
Ds

∇u · ∇vdr, u, v ∈U0. (15)

We now present the damped two-block iterative method for solving the finite element system (14). Here we divide the 
unknown functions of (14) into two blocks with Block 1 containing all the ionic concentration functions ci and Block 2 
containing �̃ only. With vector c = (c1, c2, . . . , cn), we rewrite (14a) in the vector equation

F (c(r), �̃(r)) = 0 ∀r ∈ Ds,h, (16)

where F = ( f1, f2, . . . , fn) with the i-th component function f i being defined by

f i(c(r), �̃(r)) = ci(r) − cbi

⎡
⎣1− γ

n∑
j=1

v jc j(r)

⎤
⎦

vi
v0

e−ZiR[G(r)+�(r)+�̃(r)], r ∈ Ds,h, i = 1,2, . . . ,n. (17)

Thus, (14) has been rewritten in a two block form — a system of (16) and (14b).
Let (ck, �̃k) denote the k-th iterate of the damped two-block iterative method with ck = (ck1, c

k
2, . . . , c

k
n). When an initial 

iterate, (c0, �̃0), is given, we define the damped two-block iterative method as follows:

ck+1(r) = ck(r) + ω
[
p(r) − ck(r)

]
, r ∈ Ds,h, (18a)

�̃k+1(r) = �̃k(r) + ω
[
q(r) − �̃k(r)

]
, r ∈ �, k = 0,1,2, . . . , (18b)

where ω is a damping parameter between 0 and 1, p = (p1, p2, . . . , pn) is a solution of the nonlinear algebraic system

F (p(r), �̃k(r)) = 0, r ∈ Ds,h, (19)

and q is a solution of the linear finite element variational problem: Find q ∈U0 such that

a(q, v) = β

n∑
j=1

Z j

∫
Ds

Pck+1
j (r)vdr ∀v ∈U0. (20)

In the implementation, we use the following iteration termination rules:

‖�̃k+1 − �̃k‖� < ε, max
1≤i≤n

‖ck+1
i − cki ‖Ds < ε, and R(ck+1, �̃k+1) < ε, (21)

where ε is a tolerance (by default, ε = 10−4), ‖ · ‖� and ‖ · ‖Ds denote the norms of function spaces L2(�) and L2(Ds), 
respectively, and R(c, �̃) denotes a residual error of the nonlinear algebraic system (16) as below:

R(c, �̃) = 1

Nh
max
1≤i≤n

⎛
⎝ Nh∑

μ=1

∣∣ f i(c(r(μ)), �̃(r(μ))
∣∣2

⎞
⎠

1/2

. (22)

Here r(μ) denotes the μ-th mesh point of Ds,h and Nh is the total number of mesh points. Clearly, R(c, �̃) = 0 if and 
only if F (c(r), �̃(r)) = 0 for r ∈ Ds . We stop the iterative process (18) and output the (k + 1)-th iterate (ck+1, �̃k+1) as an 
approximate solution (c, �̃) of Model 3 whenever the iteration termination rules (21) are satisfied.
7
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5. A Newton iterative method for solving a nonlinear algebraic system of Block 1

In this section, we present a novel Newton iterative scheme for solving the nonlinear algebraic system (19) of Block 1. 
It is this efficient scheme that turns the damped two-block iterative method (18) into an efficient algorithm for solving 
Model 3.

A construction of such a Newton iterative scheme is motivated from one basic property of a linear finite element function. 
That is, a linear finite element function is determined uniquely by its mesh node values. In other words, to search for a 
unknown linear finite element function, we only need to determine its mesh node values. According to this property, we 
set r = r(μ) in the equation of (19) to produce Nh small nonlinear systems as follows:

F̄ (ξμ) = 0, μ = 1,2, . . . ,Nh, (23)

where ξμ = (ξ1,μ, ξ2,μ, . . . , ξn,μ) with ξi,μ denoting the mesh node value pi(r(μ)) of pi and F̄ =
(
f̄1, f̄2, . . . , f̄n

)
with f̄ i

being defined by

f̄ i(ξμ) = ξi,μ − cbi

⎡
⎣1− γ

n∑
j=1

v jξ j,μ

⎤
⎦

vi
v0

e−Ziuk,μ with uk,μ = G(r(μ)) + �(r(μ)) + �̃k(r(μ)).

Here uk,μ is a known value but may be too large to cause a numerical overflow problem during an iterative process. To 
avoid the overflow problem, for a given allowable upper bound M , we modify uk,μ as −M/Zi whenever −Ziuk,μ ≥ M . By 
default, we set M = 45.

Clearly, the Nh nonlinear systems of (23) are independent each other. Hence, they can be solved one-by-one indepen-
dently to produce nNh mesh node values pi(r(μ)) for i = 1, 2, . . . , n and μ = 1, 2, . . . , Nh . We then use them to derive a 
solution of the nonlinear algebraic system (19).

We now construct a Newton iterative scheme for solving each small nonlinear system of (23). Let ξ j
μ denote the j-th 

iterate of the Newton iterative scheme. When an initial iterate ξ0
μ is given (by default, ξ0

μ = ck), we define the Newton 
iterative scheme by

ξ
j+1
μ = ξ

j
μ + ϒ j, j = 0,1,2, . . . , (24)

where ϒ j is a solution of the Newton equation

J (ξ j
μ)ϒ j = − F̄ (ξ

j
μ). (25)

Here J denotes a n × n Jacobian matrix of F̄ with the (i, j)-th entry being the partial derivatives ∂ f̄ i/∂ξ j,μ for i, j =
1, 2, . . . , n as follows:

∂ f̄ i
∂ξ j,μ

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1+ γ
v2i
v0
cbi e

−Ziuk,μ

[
1− γ

n∑
j=1

v jξ j,μ

] vi
v0

−1

, j = i,

γ
vi v j
v0

cbi e
−Ziuk,μ

[
1 − γ

n∑
j=1

v jξ j,μ

] vi
v0

−1

, j 
= i.

(26)

Each Newton equation (25) can be solved directly by the Gaussian elimination method since n is small (say 2, 3, or 4). 
When ‖ϒ j‖ < ε (by default ε = 10−8), we output ξ j+1

μ as a numerical solution of (23). Note that a similar Newton-type 
iterative method is reported in [8, Algorithm 1] for solving a more difficult system than the nonlinear system (23).

6. A good initial iterate for the damped two-block iterative method

When all the ion sizes vi are set to be equal to the average size v̄ = 1
n

∑n
i=1 vi , we can solve the nonlinear algebraic 

system (7) for c to derive an analytical expression of ci as follows:

ci(r) = cbi e
−Ziu(r)

1+ γ v̄2
v0

n∑
j=1

cbj e
−Z ju(r)

, r ∈ Ds, i = 1,2, . . . ,n. (27)

Substituting the above expressions to the finite element equation (14b) and using the formula u = G +� + �̃, we can obtain 
the following nonlinear finite element variational problem: Find �̃ ∈U0 such that
8
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a(�̃, v) − β

∫
Ds

n∑
i=1

Zicbi e
−Zi(G+�+�̃)

1+ γ v̄2
v0

n∑
i=1

cbi e
−Zi(G+�+�̃)

vdr = 0 ∀v ∈U0. (28)

Using the Taylor expansion ex = 1 + x + O (x2) and the electroneutrality condition 
∑n

i=1 Zicbi = 0, we can linearize the 
nonlinear problem (28) as the following linear finite element equation: Find �̃ ∈U0 such that

a(�̃, v) + β̄

∫
Ds

�̃vdr = −β̄

∫
Ds

(G + �)vdr ∀v ∈U0, (29)

where β̄ is defined by

β̄ =
β

n∑
i=1

Z2
i c

b
i

1+ γ v̄2
v0

n∑
i=1

cbi

.

A solution of the above linear equation is selected as an initial iterate �̃(0) of the damped two-block iterative method (18). 
We then use the formula (27) to get the initial iterates c0i by

c0i (r) = cbi e
−Zi [G(r)+�(r)+�̃0(r)]

1+ γ v̄2
v0

n∑
j=1

cbj e
−Z j [G(r)+�(r)+�̃0(r)]

, r ∈ Ds, i = 1,2, . . . ,n. (30)

7. Program package and numerical results

We have presented a nuSMPBIC finite element solver in the above sections. For clarity, we summarize it in Algorithm 1. 
We then implemented it in Python and Fortran as a software package based on the state-of-the-art finite element library 
from the FEniCS project [15] and the Poisson-Boltzmann finite element program packages reported in [22–24]. Here the 
linear interface boundary value problem (11) of Model 2 is solved by the efficient finite element method reported in [24,25]
while other related linear finite element equations are solved approximately by a generalized minimal residual method 
using incomplete LU preconditioning (GMRES-ILU) with the absolute and relative residual error tolerances being 10−6 by 
default.

Algorithm 1 (The nuSMPBIC finite element solver). Let U and V be linear Lagrange finite element spaces of H1(�) and H1(Ds), 
respectively, and (ck, �̃k) with ck = (ck1, c

k
2, . . . , c

k
n) be the k-th iterate of the damped two-block iterative method (18). A 

finite element solution (u, c) of the nuSMPBIC model (8) with c = (c1, c2, . . . , cn) is calculated in the following four steps:

Step 1. Initialization:
(a) Calculate G and ∇G via (10) on U.
(b) Solve Model 2 for � on U.
(c) Calculate �̃0 by solving the linear finite element equation (29) on U and c0 by formula (30).
(d) Set k = 0.

Step 2. Calculate (ck+1, �̃k+1) by the damped two-block iterative method (18). Here the nonlinear algebraic system (19) is 
solved by the Newton iterative scheme (24).

Step 3. Check the convergence: If (21) holds, set (ck+1, �̃k+1) as an approximate solution of Model 3 and go to Step 4; 
otherwise, increase k by 1 and go back to Step 2.

Step 4. Construct u by the solution decomposition (13): u(r) = G(r) + �(r) + �̃(r) ∀r ∈ �.

To demonstrate the convergence of the damped two-block iterative method for solving Model 3 and the performance of 
our nuSMPBIC finite element package, we did numerical tests on a murine voltage-dependent anion channel 1 (mVDAC1) 
[21] in a mixture of 0.1 mole KNO3 (potassium nitrate) and 0.1 mole NaCl (table salt). Here the four ionic species Cl− , 
NO−

3 , K+ , and Na+ were ordered from 1 to 4 for their concentration functions ci , bulk concentrations cbi = 0.1, and charge 
numbers Z1 = −1, Z2 = −1, Z3 = 1, and Z4 = 1. We treated each ion as a ball to estimate vi via the ball volume formula 
vi = 4πr3i /3 with ri denoting an ionic radius in Å. From the website https://bionumbers .hms .harvard .edu /bionumber.aspx ?
&id =108517 we got

r1 = 1.81, r2 = 2.64, r3 = 1.33, r4 = 0.95.
9
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Fig. 2. A crystallographic three-dimensional molecular structure of mVDAC1 (PDB ID: 3EMN) depicted in cartoon representations. Here the Van der Waals 
volume (a volume occupied by all the individual atomic balls of mVDAC1) is also displayed in grey color. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 3. (a, b) Two views of an interface fitted irregular tetrahedral mesh �h of a box domain �. (c) An irregular tetrahedral mesh Ds,h of the solvent 
region Ds extracted from �h . Here the meshes of the membrane region Dm and protein region Dp are colored in yellow and green and the two solvent 
compartments above and below the membrane belong to the cytoplasm and intermembrane space, respectively.

Using them, we obtained the four ion sizes vi and their average volume v̂ = (v1 + v2 + v3 + v4)/4 as follows:

v1 = 24.8384, v2 = 77.0727, v3 = 9.8547, v4 = 3.5914, v̂ = 28.8393. (31)

This mixture is a good selection for us to demonstrate the importance of considering distinct ion sizes since it contains two 
anions with the same charge number −1 (Cl− and NO−

3 ) and two cations with the same charge number +1 (K+ and Na+) 
and have four significantly different ion sizes.

As the main conduit on the outer mitochondrial membrane for the entry and exit of ions and metabolites between 
the cytosol and the mitochondria, the mVDAC1 has various ionic species with very different ion sizes within its channel 
pore, making it a good test case for us to validate the nuSMPBEic model not mention its anion-selectivity property and 
complex molecular structure [21]. We used a crystallographic three-dimensional molecular structure of mVDAC1 from the 
Orientations of Proteins in Membranes (OPM) database (https://opm .phar.umich .edu), instead of the Protein Data Bank (PDB) 
(https://www.rcsb .org), since in the OPM database, the mVDAC1 structure has been manipulated exactly like what we need 
as illustrated in Fig. 1, together with the membrane location numbers Z1 = −12 Å and Z2 = 12 Å. This ion channel protein 
has 4313 atoms and 283 amino acids in one α-helix and one β-barrel (with 19 β-strands) as depicted in Fig. 2. The β-
barrel has height 35 Å and width 40 Å. The channel pore has the width 27 Å at the entrance and 14 Å at the center. After 
downloading a PDB file from the OPM database (with the PDB identification (ID): 3EMN), we converted it to a PQR file on 
the PDB2PQR web server (http://nbcr-222 .ucsd .edu /pdb2pqr _2 .1.1/) to get the data missed in the PDB file such as hydrogen 
atoms, the atomic charge numbers, and atomic radii. Such a PQR file is a required input data file for our program package.

We constructed a box domain � using Lx1 = −36, Lx2 = 43, L y1 = −36, L y2 = 33, Lz1 = −34, and Lz2 = 30 and generated 
an interface fitted irregular tetrahedral mesh �h of � (with 49798 mesh points) by an ion channel finite element mesh 
program package [4,14]. We then extracted a solvent region mesh Ds,h from the box domain mesh �h (with 29366 mesh 
points). From Fig. 3 it can be seen that these two meshes �h and Ds,h are very irregular due to the complex interfaces �p
and �pm or a complex molecular surface of mVDAC1.

All the numerical tests were done on an iMac computer with one 4.2 GHz Intel core i7 processor and 64 GB memory. 
For simplicity, we fixed the parameters εp = 2, εm = 2, εs = 80, and g = 0 on �D in these tests. The numerical test results 
are reported in Table 1 and Figs. 4 to 9.
10
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Fig. 4. Convergence and performance of the damped two-block iterative method (18) for a finite element system (14) of Model 3 as functions of ω for a 
mVDAC1 (PDB ID: 3EMN) in a solution with four ionic species Cl− , Na+ , K+ , and NO−

3 .

Fig. 5. Iteration errors and residual errors of the damped two-block iterative method using ω = 0.48 for solving a nonlinear finite element system (14) of 
Model 3 as functions of the number k of iterations. Here the residual error R(c, �̃) is defined in (22).

Table 1
A comparison of the performance of our nuSMPBIC finite element solver using the GMRES-ILU 
iterative method with that using the Gaussian elimination direct method in terms of computer 
CPU times in seconds. Here ω = 0.48.

Linear Calculate Solve Model 2 Solve (29) Solve Model 3 Total
solver G & ∇G for � for �̃0 for (c, �̃) CPU time

GMRES-ILU 1.13 0.91 0.60 9.37 12.01
Direct 1.19 2.74 2.55 12.63 19.11

Fig. 4 reports the convergence and performance of our damped two-block iterative method (18) in terms of the number 
of iterations and computer CPU time. From the figure it can be seen that the number of iterations and CPU time were 
reduced monotonically for ω ≤ 0.48. The damped two-block iterative method was found to be divergent for ω > 0.48. At 
ω = 0.48, it took about 12.63 seconds only to find one electrostatic potential and four ionic concentrations as a finite 
element solution of Model 3. These tests demonstrate the fast convergence of our damped two-block iterative method and 
the high performance of our nuSMPBIC finite element package.

Fig. 5 displays a convergence process of the damped two-block iterative method using ω = 0.48 in terms of two iteration 
errors ‖�̃k+1 − �̃k‖� and max1≤i≤n ‖ck+1

i − cki ‖Ds and the residual error R(ck, �̃k) defined in (22). From the figure it can 
be seen that this iterative method quickly reduced the two iteration errors from about 103 to 10−9 in 45 iterations and 
the residual error from 1012 to 10−5, indicating that the finite element solution of Model 3 has satisfied the size constraint 
conditions (7) in high accuracy.
11
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Fig. 6. The color mappings of the four ionic concentrations generated by the nuSMPBIC finite element program package for mVDAC1 (PDB ID: 3EMN) in a 
mixture of 0.1 molar KNO3 and 0.1 molar NaCl on one surface view of the solvent region Ds in the Z -axis direction.

Table 1 lists the distribution of computer CPU time in the major parts of the nuSMPBIC finite element solver, along with 
the case using the Gaussian elimination direct method to solve each related linear finite element equation. It shows that 
the nuSMPBIC finite element solver using the GMRES-ILU iterative method took much less CPU time than that using the 
Gaussian elimination direct method, demonstrating the efficiency of the GMRES-ILU method in our nuSMPBIC finite element 
package.

Fig. 6 displays the concentrations of ions Cl− , NO−
3 , K+ , and Na+ on a surface of the solvent region Ds in color map-

ping. Here all the concentration values more than 1.5 mol/L and less than 0.1 mole/L have been colored in red and blue, 
respectively. From Plots (a, b) it can be seen that there are much more anions Cl− than NO−

3 within the channel pore due 
to that the size of a Cl− ion is much smaller than that of a NO−

3 ion (i.e., 24.84 vs. 77.07 in Å3) even though both Cl− and 
NO−

3 have the same charge number −1 and the same bulk concentration 0.1 mol/L. In the cation case, Plots (c, d) show 
that there are few cations K+ and Na+ within the channel pore but it is difficult for us to tell which one more or less since 
each of them only displays one view of a three-dimensional concentration.

Using a curve visualization scheme reported in [25], we calculated the average values c j
i and u±

j of concentration function 
ci and positive/negative part u± of electrostatic potential function u by the formulas

c j
i = 1

‖B j,h‖
∫

B j,h

ci(r)dr, u±
j = 1

‖B j,h‖
∫

B j,h

u±(r)dr, j = 1,2, . . . ,m, (32)

where m = 80, B j,h denotes the jth block mesh of a solvent region mesh Ds,h , u± = 1
2 [u(r) ± |u(r)|], and ‖B j,h‖ denotes 

the volume of block B j,h . In particular, B j,h was extracted from Ds,h by

B j,h =
(
[Lx1, Lx2] × [L y1, L y2] × [z j − h̄/2, z j + h̄/2]

)
∩ Ds,h,

where z j denotes the jth partition number of the interval [Lz1 + h̄/2, Lz2 − h̄/2] with h̄ = 5 in the z-axis direction. These 
partition numbers include the membrane location numbers Z1 and Z2. In addition, we set z0 = Lz1, zm+1 = Lz2, c0i = cbi , 
cm+1
i = cbi , u

±
0 = 0, and u±

m+1 = 0 (since we set g = 0). Using these points (z j, c j
i ) and (z j, u±

j ) for j = 0, 1, 2, . . . , m, m + 1, 
we plotted 2D curves and displayed them in Fig. 7. Here the central part of the channel pore that links to membrane (i.e., 
−12 ≤ z ≤ 12) has been highlighted in light-cyan while the other parts of the channel pore in green to let us more clearly 
view the distribution profiles of ci and u± within the central part of the channel pore.

From Fig. 7 it can be seen that the positive potential u+ is much stronger than the negative potential u− , causing anions 
Cl− and NO−

3 to expel most cations K+ and Na+ away from the central portion of a channel pore between Z1 < z < Z2
highlighted in light-cyan. We also can see that the maximum concentration value of Cl− is almost triple that of NO−

3 (1.48 
vs. 0.53) simply because the size of a Cl− ion is much smaller than that of a NO−

3 ion (24.84 vs. 77.07). For cations, we 
find that the maximum concentration value of Na+ is almost four times that of K+ (1.37 vs. 0.36) in the range 12 < z < 22
highlighted in green since the size of a K+ ion is about triple that of a Na+ ion (9.85 vs. 3.59). These test results demonstrate 
that our nuSMPBIC model can well retain the anion selectivity property of mVDAC1 and that ionic sizes have significant 
impacts on electrostatics and ionic concentrations. They also indicate that the anion selectivity happens mostly within the 
central part of the ion channel pore.

The new damped two-block iterative method works for a uniform ion size case too. To confirm it, we did numerical tests 
using vi = v̂ with v̂ = 28.8393 and ω = 0.35. The test results were reported in Fig. 8. In this uniform ion size test case, 
the damped two-block iterative method took 46 iterations and 11 seconds in computer CPU time to satisfy the iteration 
convergence rule (21). As shown in Section 6, the nuSMPBIC model can be reduced from a nonlinear system to the nonlinear 
12
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Fig. 7. Effect of nonuniform ion sizes on the anion selectivity of mVDAC1. Here, the electrostatic potentials u+ and u− and ionic concentrations ci were 
generated by our nuSMPBIC finite element program package for mVDAC1 (PDB ID: 3EMN) in a mixture of 0.1 molar KNO3 and 0.1 molar NaCl; the ion sizes 
vi of the four ionic species Cl− , Na+ , K+ , and NO−

3 are given in (31); u+ and u− denote the positive and negative parts of electrostatic potential u; the 
central part of the channel pore that links to the membrane (i.e., −12 ≤ z ≤ 12) is highlighted in light-cyan; and the other parts of the channel pore are 
highlighted in green.

Fig. 8. Effect of uniform ion sizes on the anion selectivity of mVDAC1. Here the test was the same as the one reported in Fig. 7 except that all the ions were 
set to have the same volume size v̂ as given in (31).

finite element boundary value problem (28), which defines the SMPBIC model and has been solved by an efficient modified 
Newton iterative method in [24]. As a comparison, we repeated the test using the SMPBIC finite element package reported 
in [24]. In this test, the nonlinear finite element equation (28) was solved to satisfy the iteration convergence rule (21) in 8 
modified Newton iterations but took about 16 seconds in the total CPU time. This comparison test indicates that the damped 
two-block iterative method can also be efficient even compared to the modified Newton iterative method for solving the 
nonlinear finite element equation (28).

However, because all the ions were set to have the same size, the 2D curves of concentrations of the two anion species 
Cl− and NO−

3 and the two cation species K+ and Na+ are overlapped each other, respectively, in Fig. 8, implying that 
the concentrations of Cl− and NO−

3 (or K+ and Na+) are identical each other. This matches exactly what we could expect 
in physics when all the ions have the same size, the same charge number (−1 for the anions Cl− and NO−

3 and +1 for 
the cations K+ and Na+), and the same bulk concentration 0.1 mol/L. Even so, these test results still well reflect the anion 
selectivity property of mVDAC1. Hence, the SMPBIC model can remain a valuable model in ion channel simulation and study 
due to its simplicity.

Finally, we did tests using the membrane surface charge density σ = 10 μC/cm2 to check the affection of membrane 
charges on a solution of the nuSMPBIC model. The derived potential and concentration functions were reported in Fig. 9. 
From a comparison with those reported in Fig. 7 (i.e., the case without considering any membrane charge), we can see 
that the positive membrane surface charge significantly increased the values of positive electrostatic potential function u+
and anionic concentrations for Cl− and NO−

3 but had small affection to the negative electrostatic potential function u−
and cationic concentrations for Na+ and K+ . This test indicates the importance of considering membrane charges in the 
calculation of electrostatic potential and ionic concentration functions.

8. Conclusions

We have presented an efficient nuSMPBIC finite element iterative method for solving a nonuniform size modified 
Poisson-Boltzmann ion channel (nuSMPBIC) model using Neumann-Dirichlet mixed boundary conditions and a membrane 
13
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Fig. 9. Effect of membrane surface charges on the anion selectivity of mVDAC1. Here the test was the same as the one reported in Fig. 7 except that the 
membrane surface charge density σ was set as 10.

surface charge density, along with its finite element program package that works for an ion channel protein with a three-
dimensional crystallographic structure, a mixture of multiple ionic species, a nonuniform ion size case, and a uniform ion 
size case. In particular, we divide the nuSMPBIC model into three-submodels, called Models 1, 2, and 3, to overcome the 
difficulty of solution singularities induced from singular Direct-delta distributions and to sharply reduce the complexity of 
solving the nuSMPBIC model. We then have developed an efficient damped two-block iterative method for solving a linear 
finite element approximation to Model 3 — a system mixing nonlinear algebraic equations with a finite element variational 
problem, including a novel modified Newton iterative scheme for solving each related nonlinear algebraic system. Numer-
ical test results on a voltage-dependent anion-channel (VDAC) in a mixture of four ionic species have demonstrated the 
fast convergence of our damped two-block iterative method, the high performance of our finite element package, and the 
importance of considering nonuniform ion sizes in the calculation of electrostatic potentials and ionic concentrations. The 
nuSMPBIC model has also well validated by the anion-selectivity property of VDAC.

Since the focus of this paper is on the presentation of the nuSMPBIC model and its finite element solver, we only reported 
numerical test results for one ion channel protein in this paper. To further confirm the effectiveness and performance 
of our nuSMPBIC finite element solver, we plan to make numerical experiments on more ion channel proteins and do 
comparison studies with other ion channel models in our future work. During these new studies, we will further improve 
the efficiency of the nuSMPBIC finite element iterative method and the quality and usage of the nuSMPBIC finite element 
package. In this way, our nuSMPBIC finite element package will become a valuable simulation tool not only for quantitative 
assessment of ion size impacts on ion channel electrostatics and ionic concentrations but also for the study of ion channel 
selectivity properties, ionic distribution patterns across membrane, and membrane charge effects on electrostatics and ionic 
concentrations.
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