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Evaluation of photosynthetic quantum yield is important for analyzing the phenotype of plants. Chlorophylla
fluorescence (ChIF) has been widely used to estimate plant photosynthesis and its regulatory mechanisms.
The ratio of variable to maximum fluorescence, F,/F,,, obtained from a ChIF induction curve, is commonly
used to reflect the maximum photochemical quantum yield of photosystem Il (PSII), but it is measured
after asample is dark-adapted for along time, which limits its practical use. In this research, a least-squares
support vector machine (LSSVM) model was developed to explore whether F /F,, can be determined
from ChIF induction curves measured without dark adaptation. A total of 7,231 samples of 8 different
experiments, under diverse conditions, were used to train the LSSVM model. Model evaluation with different
samples showed excellent performance in determining F,/F,, from ChiF signals without dark adaptation.
Computation time for each test sample was less than 4 ms. Further, the prediction performance of test
dataset was found to be very desirable: a high correlation coefficient (0.762 to 0.974); a low root mean
squared error (0.005 to 0.021); and a residual prediction deviation of 1.254 to 4.933. These results clearly
demonstrate that F,/F,,, the widely used ChlF induction feature, can be determined from measurements
without dark adaptation of samples. This will not only save experiment time but also make F,/F,,, useful in
real-time and field applications. This work provides a high-throughput method to determine the important
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photosynthetic feature through ChlF for phenotyping plants.

Introduction

Photosynthesis is the source of food, energy, fiber, and oxygen
for all living organisms including humans. Evaluation of photo-
synthetic quantum yield is important for analyzing plant pheno-
types; however, the research of current plant phenomics is often
limited to external geometry features. When the chloroplasts in
plants and algae absorb sunlight, pigments, mainly chlorophyll
molecules, in the light-harvesting pigment protein (antenna)
complexes are excited and the absorbed energy is transferred to
photosystem II (PSIT) and photosystem I (PSI) reaction centers
[1]. The absorbed light energy is used mostly for photosynthesis
but is partly dissipated in the form of chlorophyll a fluores-
cence (ChlF) or heat [2]. Background on the various steps of
photosynthesis is available in several publications [3,4].
Environmental or plant physiological changes that affect PSII
lead to changes in ChlF, which can be used as a fast, sensitive,
and a nondestructive indicator of the status of PSII [5,6]. Analysis
of ChIF changes is one of the most powerful and widely used
techniques to study the effects of various types of stress on the
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photosynthetic process [7-9]. At present, ChlF is widely used
as a probe for not only PSII but overall photosynthesis [10],
photosynthetic systems [11], photochemistry and heat dissi-
pation [12], several photosynthetic reactions [13], and pho-
toinhibition [14]. Furthermore, it is used to monitor different
types of abiotic stress [15], including drought [16], heat [17,18],
environmental pollution [19], nutrient status [20], and plant
phenotyping [21]. ChlF measurement can serve as a plant phys-
iological variable related to photosynthesis in phenotypic anal-
ysis. Advances in optical phenotyping (including that by ChlF)
of cereal crops have been summarized by Sun et al. [22].
Although ChIF has been used for many purposes, as men-
tioned above, the interpretation of ChlF measurement is quite
complex. A very important feature derived from the ChlF induc-
tion curve is F,/F,, [23], which allows us to provide information
on effects of carbon metabolism and has been successfully used
as a sensitive indicator of the photosynthetic performance of
plants [24]. To determine the F,/F,, ratio, dark adaptation is
needed to open all the PSII reaction centers, and only then can
the minimal fluorescence (F,) be measured. (For a discussion
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on the timing for measuring F,, see the study by Padhi et al.
[25].) After excitation with strong continuous light, most, if not
all, the reaction centers are closed, and thus, ChlF reaches a
maximum value (F,). The difference, F, = F,, — F, is referred
to as the variable fluorescence. The ratio, F,/F,, = (F,, — F,)/F,,,
reflects an intrinsic PSII efficiency and measures the quantum
yield of the primary PSII photochemistry in dark-adapted pho-
tosynthetic samples [26,27]. F,/F,, has been successfully used
as an indicator of plant photosynthetic performance [28]. It has
also been used to obtain information on photoinhibition induced
by abiotic stress [29]. The F,/F,, can also reflect the severity of
plant phenotypic diseases, and it is an important indicator of
plant stress. Rousseau et al. [21] focused on phenotyping by
analyzing F,/F, images, and their results showed that there was
a clear strong difference between the infected tissues and the
healthy tissues. Zhou et al. [30] used ChlF in the phenotypic
analysis of faba beans (Vica faba L.) under both cold and heat
stress and found that F,/F,, is a very effective parameter in detect-
ing the damage by low and high temperatures to PSII; further,
they identified high-temperature-tolerant broad bean geno-
types. Therefore, F,/F,, can be used as a physiological marker
for phenotyping.

Before measuring F,, it is necessary to dark-adapt a plant
sample for 15 to 30 min [31] or even longer [32]. This dark-
adaptation process is time-consuming. Far-red light, absorbed
mainly by PSI, might be used to speed up the oxidation of the
reduced plastoquinone (PQ) pool and thus suppress the measured
F,i.e., F, (minimum ChIF intensity in the light-adapted state)
increase, and this method is often applied following dark adap-
tation. It is thus desirable to find a method to determine F,/F,,
from ChlF measurement without dark adaptation. The exact
relationship between ChlF with dark adaptation and that with-
out dark adaptation is complex and has not yet been established.
By using contemporary computational methods, this hidden
relationship can be explored to determine accurate F,/F,, from
ChIF measurement without dark adaptation, but this has not
yet been done by any research group.

Artificial intelligence methods have been widely used to
identify hidden relationships in many fields. Using these meth-
ods to analyze ChlF data can identify complex relationships in
plant responses to stresses [33]. Tyystjarvi et al. [34] have iden-
tified species of crops and weeds by analyzing ChlF induction
curve with an artificial neural network method. This method
has been used to identify plant species by analyzing ChIF
induced by different types of illumination [35]. Furthermore,
Goltsev et al. [36] have constructed and trained an artificial
neural network by using photoinduced prompt ChlF, delayed
ChlFE and 820-nm modulated reflection signal (measuring PSI)
to identify changes in the photosynthetic activity in bean leaves
during drying. Yao et al. [37] have applied kinetic ChlF and
multi-color fluorescence imaging technology for phenotypic
analysis of Arabidopsis drought stress response, and, from it, they
have successfully classified Arabidopsis under different drought
stress levels by a support vector machine (SVM). Artificial intel-
ligence methods may be potentially used to find the hidden
relationship between the F,/F,, and ChlF measurement, without
any dark adaptation of plants, but by using a general learning
strategy (i.e., a mathematical method), so that F,/F,, under dark
adaptation can be predicted from ChlF measurement without
dark adaptation.

In our present study, a least-squares SVM (LSSVM), an arti-
ficial intelligence method, was used to determine F,/F,, from
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ChlIF measurement without dark adaption for multiple plant
species and conditions, which allows one to save tremendous
amount of experimental time and provides an important feature
for plant phenomics.

Materials and Methods

Plant samples

Eight sets of experiments with a total of 7,231 samples were
performed on 6 plant species (Oryza sativa L. [rice], Camellia
japonica, Euonymus japonicus Thunb, Osmanthus sp, Cerasus
lannesiana var. speciosa, and Capsicum annuum). These plant
species are under different drought stress, ambient growth tem-
perature, growing seasons, and measured environments. Details
are described below in the order they were done from the sum-
mer of 2019 until the winter of 2021 for different plant species,
described below.

Rice (Oryza sativa L.)

The first set of experiments was conducted on rice plants (Oryza
sativa L.) under 4 different drought stress conditions. Rice plants
were taken with roots from a production field in Jiangsu, China,
in the early mornings, during the growing season in the sum-
mer of 2019, when the ambient temperature was ~28 °C. To
reduce the effects of variations in moisture in different samples,
during ChlF measurements, the roots of the plants were com-
pletely immersed in water for at least 2 h. Then, the roots were
placed in 20% polyethylene glycol for different durations (0, 1,
2, and 4 h) of treatment to achieve different levels of drought
stress or physiological state [38]. The number of samples of rice
plants without drought or with drought treatment for 1, 2, and
4 h was 1,335, 1,093, 1,322, and 1,146, respectively. The tem-
perature during ChIF measurement was between 30 and 36 °C,
and the ambient photosynthetic photon flux density (PPFD)
was between 3 and 7 pmol photons m™> s~

Camellia japonica and Euonymus japonicus Thunb

The second set of experiments was carried out on Japanese
Camellia (Camellia japonica) leaves, using 314 samples. The third
set of experiments was done on leaves of Euonymus japonicus
Thunb, also using 314 samples. Both Camellia japonica and
Euonymus japonicus Thunb were grown on the campus of
Jiangnan University (Wuxi, China). Leaves from these 2 plants
were picked in the mornings in April 2021 and were transferred
immediately to the laboratory for measurements. To reduce the
effect of variations in the water condition, the sampled leaves
of the second and the third sets of experiments were floated
on water for at least an hour. The temperature during ChlF
measurement was ~23 °C and the ambient PPFD was ~5 pmol
photons m s~

Osmanthus sp. and Cerasus lannesiana var. speciosa

The fourth and the fifth sets of experiments were carried out
on intact plants in the wild field, using leaves of Osmanthus sp.
with 237 samples and those of Cerasus lannesiana var. speciosa
with 335 samples. These plants in the fourth and the fifth exper-
iments were grown naturally on the campus of Jiangnan University
(Wuxi, China). The ChlF data of the fourth and the fifth exper-
iments were collected at the end of July 2021, the ambient tem-
perature was ~33 °C, and the ambient PPFD was between 58 and

1,960 pmol photons m™*s™".
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Capsicum annuum

The sixth set of experiments was performed on attached leaves
of Capsicum annuum. Here, 356 samples were tested in the field,
which were grown in a greenhouse in Wuxi, China. The ChlF
data were collected at the beginning of August 2021. The tem-
perature was between 36 and 40 °C, and the ambient PPFD was
between 58 and 1,770 pmol photons m ™ s~' during measure-
ments in the greenhouse.

Camellia japonica and Osmanthus sp.

The seventh and eighth experiments were carried out on intact
plants on the campus of Jiangnan University (Wuxi, China),
which included leaves of Osmanthus sp. with 379 samples and
of Camellia japonica with 400 samples. These experiments
were done in December 2021; the ambient temperature was
between 8 and 15 °C, and the ambient PPFD was between 78
and 1,380 pmol photons m™*s™". Table 1 shows all plant sam-
ples and experiment specifics.

Instrumentation and measurements

The ChlF parameter F,/F,, (ratio of variable to maximum flu-
orescence) was measured under 2 conditions: with and with-
out dark adaptation of the leaves. The illumination condition
without dark adaptation means that the plant leaves are not
dark-adapted before the ChlF measurement. The leaves were
measured without dark adaptation, and then they were mea-
sured in dark-adapted state after dark adaptation. Twenty-
minute dark adaptation was applied through dark-adaptation
clips [39]. A FluorPen ChlF measurement device (Photon Sys-
tems Instruments, Drdsov, Czech Republic) was used to mea-
sure ChlF transient, ChlF induction of the leaves, where O is
the minimum fluorescence, ] and I are inflection steps, and P
is for the peak (the maximum). The illumination light inten-
sity to excite the ChlF of leaves was set as 2,400 pmol photons
m s~ for all samples.

The ambient light intensities for all our experiments were
measured by a light intensity meter (VC1010A, Victor, Shenzhen,
China). The light intensity read in Lux, from the measured light
intensity meter, was converted to PPFD. The conversion rela-
tionships are 1 Klux = 19.5 pmol photons m~* s~ for daylight
PPFD [40] and 1 Klux = 12 pmol photons m > s™" for white
fluorescent light [41]. The values of ambient light intensities in
this work are only used to show that measurements were made
on samples illuminated with a wide range of initial lighting
conditions. Estimation errors of PPFD from Lux have no effect
on the conclusion of this work.

Development of an LSSVM model

An SVM maps high-dimensional data from an input space to
a feature space through a nonlinear mapping process. LSSVM
is an extension of SVM; it uses inequality constraints instead
of equality constraints and the sum of squared-error loss func-
tion as the “experience loss” to transform a problem into a linear
one. In this work, an LSSVM model was employed to map the
relationship between the ChlF induction feature F,/F,, with and
without dark adaptation of the photosynthetic samples. The
LSSVM regression equation is:

fx)=wlpx) +b (1)

where x is the ChlF response without dark adaptation, f(x) is
the corresponding output, ¢(x) is a nonlinear mapping func-
tion that maps x to a high-dimensional feature space, w is a
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weighting vector, and b is a bias variable. Based on the principle
of structural risk minimization, the function becomes:

fx)= Zil al-K(x, xi) +b (2)

where K is a kernel function, g is the Lagrangian multiplier, i is
an integer, and m is the number of samples in a training dataset.
According to the Mercer condition, the kernel function can be
written as:

K(xi,xj> = (p(xi)T(p<xj> L,j=12, ...,m (3)

The following radial basis function was used as the kernel
function in our research:

2
K(x,x,-)=exp{ —%} (@)

where T represents the parameter of the Gaussian radial basis
kernel function.

For the training dataset {(x,y,),i=1,2,...,m}, x,€R" rep-
resents the input of the i-th training sample (ChlF measured
without dark adaptation), y,€R is the target value of the i-th
training dataset (F,/F, measured with dark adaptation), and
m is the number of samples in the training dataset.

For the testing dataset {(X,, Y}), (i = 1,2, ...,n)}, X;is the input
of the i-th test sample (ChIF measured without dark adapta-
tion), Y; is the real target value of the i-th test data sample (F,/F,,
measured with dark adaptation), and # is the number of samples
in the test dataset. X; is fed to the trained LSSVM model (Eq. 2)
to calculate the corresponding predicted F,/F,, value, and the
i-th predicted F,/F,, value is expressed as YY; (i = 1,2, ..., n).

Data normalization

To reduce the influence of differences in data magnitudes, the
following zero-mean normalization method (Z-score nor-
malization) was used to normalize both the ChlF signal data
without dark adaptation and the F,/F,, target values with dark
adaptation so that both were in the same order of magnitude:

(5)

where p denotes the mean and o is the SD of the original data
x, and Z represents standard normal distribution.

The predicted F,/F,, values from the model were denor-
malized to their original scale for testing and evaluation.

Model testing and evaluation

To evaluate the performance and generalization ability of the
model, the following metrics computed from the test samples
were used to assess the predicted F,/F,: (a) root mean square
error (RMSE); (b) correlation coefficient (CC); and (c) residual
predictive deviation (RPD), as shown below in Egs. 6 to 8.

RMSE = M (6)
o S (T (- T))

Iz =7z -

3
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z?:l (Yi_?)z

RPD = . -
Y (YY1

(8)

where YV, is the predicted F,/F,, value of the i-th test sample,

Y, is the true F,/F,, value of the i-th test sample, Y is the true
F,/F,, mean value of the test samples, and » is the number of
samples in the test dataset. All these metrics measure the devi-
ation of the predicted F,/F,, values from the true values. As is
commonly known, the smaller RMSE or the closer to unity CC
is, the higher the prediction performance. For most applica-
tions, models with RPD values lower than 1.5 are considered
insufficient, while models with values greater than 2.0 have good
robustness [42].

In the training of the LSSVM model, a 10-fold cross-validation,
and a grid optimization, was used to optimize the 2 parameters
(regularization coefficient and parameter of the Gaussian radial
basis kernel function) that affect the accuracy and the com-
plexity of the model. In each of the 10 runs, 10%, 20%, ..., and

90% of each sample type was randomly selected as the training
dataset, and the remaining was used as the testing dataset. The
average values of RMSE, CC, and RPD obtained in the 10 runs

(RMSE, CC, and RPD) were used to evaluate model perform-
ance. The LSSVM model was implemented in MATLAB 2019b
(Mathworks, Inc., Natwick, MA, USA).

Results

Variations in F /F,_, with dark adaptation and without
dark adaptation

To explore the difference between different sample types of the
F,/F, measured with and without dark adaptation, statistical
comparisons on the F,/F,, from different sample types are pre-
sented in Table 2. Values indicated with different letters in a
column are significantly (P < 0.05) different from one another
by the LSD (least signification difference) test. The F,/F,, mea-
sured with and without dark adaptation show statistical differ-
ences between most different sample types and treatments, as
shown below in Table 2.

Tablel. Plant samples and experiment specifics (the light intensity of exciting the ChIF was 2,400 pmol photons m~2 s for all experimental

samples).
Plant and treatment ~ Symbol NIFT1237 O Measurgment Measurement date ATIEET! Ambient PPFD
samples location temperature

All plant samples P 7231

All rice samples A 4,896

All Osmanthus sp. B 616

samples (Osmanthus

sp. samples in sum-

mer and winter)

Rice without drought AO 1,335 Laboratory  July and August 2019  Between 30 Between 3 and 7 pmol

treatment and 36 °C photons m2s7*

Rice with 1 h of Al 1,093 Laboratory  July and August 2019  Between 30 Between 3 and 7 pmol

drought treatment and 36°C photons m™2s~"

Rice with 2 h of A2 1,322 Laboratory  July and August 2019  Between 30 Between 3 and 7 pmol

drought treatment and 36 °C photons m2s7*

Rice with 4 h of A3 1146 Laboratory  July and August 2019  Between 30 Between 3 and 7 pmol

drought treatment and 36°C photons m2s~"

Osmanthus sp. in Bl 237 Wild field July 2021 About33°C  Between 58 and 1,960 pmol

summer photons m~? 57!

Osmanthus sp. in B2 379 Wild field December 2021 Between8  between 78 and 1,380 pmol

winter and15°C photons m™2 57!

Euonymus japonicus C 314 Laboratory April 2021 About 23 °C About 5 pmol

Thunb photons m~2 57!

Camellia japonica D 314 Laboratory April 2021 About23°C  About 5 pmol E)hotons m2

S

Capsicum annuum E 356 Greenhouse August 2021 Between36 ~ Between 58 and 1,770 pmol
and 40 °C photons m2s7!

Cerasus lannesiana F 335 Wild field July 2021 About33°C  Between 58 and 1,960 pmol

var. speciosa photons m~?s~!

Camellia japonica G 400 Wild field December 2021 Between8  Between 78 and 1,380 pmol
and15°C photons m™2s~!
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Table 2. Statistical analysis of the F,/F,, measured with dark adaptation or without dark adaptation for different samples (the results are

presented as mean + SD).

Sample type? Without dark adaptation ~ With dark adaptation Sample type Without dark adaptation With dark adaptation
P 0.786 + 0.051 0.818 + 0.036 Bl 0.803 + 0.017ab 0.837 +0.016a
A 0.803 + 0.012 0.831 + 0.010 B2 0.735 + 0.115f 0.783 + 0.076d
B 0.761 + 0.097 0.804 + 0.066 c 0.746 + 0.043e 0.780 + 0.044b
AO 0.807 + 0.012a 0.831+0.013a D 0.778 + 0.018d 0.807 + 0.018¢c
Al 0.805 + 0.010ab 0.834 + 0.007a E 0.706 + 0.047h 0.768 + 0.027f
A2 0.803 + 0.011b 0.830 + 0.009a F 0.801 + 0.014bc 0.834 + 0.009a
A3 0.798 + 0.013c 0.828 + 0.010b G 0.713 + 0.096g 0.755 + 0.058¢

2 P: all plant samples; A: all the rice samples; B: all Osmanthus sp. samples; AQ: rice without drought treatment; AL: rice with 1 h of drought treatment; A2:
rice with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

Table 3. LSSVM model performance evaluation index CC in determining F,/F,, values of training dataset from ChIF without dark adaptation
under different training dataset sample numbers (10%, 20%, ..., and 90% of the total sample size).

Sample type ® 10% 20% 30% 40% 50% 60% 70% 80% 90%
P 0.973 0.975 0.975 0.974 0.974 0.975 0.974 0.976 0.976
A 0.772 0.788 0.808 0.808 0.805 0.809 0.818 0.821 0.825
B 0.974 0.975 0.971 0.970 0.971 0.973 0.973 0.974 0.975
AO 0.677 0.720 0.745 0.736 0.739 0.739 0.792 0.792 0.765
Al 0.865 0.875 0.882 0.879 0.888 0.886 0.891 0.889 0.891
A2 0.778 0.783 0.817 0.821 0.814 0.812 0.822 0.815 0.824
A3 0.867 0.871 0.891 0.887 0.881 0.896 0.895 0.899 0.901
Bl 0.851 0.920 0.939 0.961 0.944 0.962 0.968 0.970 0.970
B2 0.970 0.970 0.966 0.965 0.966 0.968 0.968 0.970 0.970

C 0.986 0.987 0.989 0.985 0.985 0.986 0.984 0.986 0.987
D 0.957 0.968 0.969 0.969 0.968 0.967 0.966 0.967 0.965
E 0.940 0.969 0.958 0.946 0.946 0.944 0.940 0.958 0.959
F 0.809 0.888 0.874 0.857 0.876 0.890 0.865 0.877 0.887
G 0.968 0.972 0.972 0.969 0.970 0.968 0.968 0.969 0.970

2 P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; AQ: rice without drought treatment; Al: rice with 1 h of drought treatment; A2: rice
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

Training performance of the model for prediction of

F,/F,, using ChiIF without dark adaptation
We note that 10%, 20%, ..., and 90% of A0, A1, A2, A3, B1, B2,
C, D, E, E and G were randomly selected as the training dataset

test datasets were composed of Osmanthus sp. samples in
summer and winter. The CC, RMSE, and RPD represent the
average values of the CC, RMSE, and RPD, respectively.
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to establish the initial LSSVM model, and the remaining sam-
ples were used as the verification dataset to test the prediction
performance of the established LSSVM model for F,/F,, under
dark adaptation. The all-rice test datasets were composed of
rice samples with 4 different drought levels. All Osmanthus sp.
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LSSVM model performance evaluation indices (CC, RMSE,
and RPD) for determining F,/F,, values of training dataset from
ChIF without dark adaptation under different training dataset
sample numbers are shown in Tables 3 to 5. When the training
dataset sample exceeds 70%, the CC of most sample types for
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Table 4. LSSVM model performance evaluation index RMSE in determining F,/F,, values of training dataset from ChIF without dark adapta-
tion under different training dataset sample numbers (10%, 20%, ..., and 90% of the total sample size).

Sample type ? 10% 20% 30% 40% 50% 60% 70% 80% 90%
P 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
A 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
B 0013 0015 0015 0015 0016 0015 0015 0015 0015
AO 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008
AL 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
A2 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005
A3 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004
Bl 0.005 0.005 0.004 0.005 0.004 0.004 0.004 0.004 0.004
B2 0.017 0.019 0019 0.019 0.020 0.019 0019 0018 0018

C 0.009 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007
D 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
E 0.008 0.007 0.007 0.009 0.009 0.008 0.009 0.007 0.007
F 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
G 0.015 0.014 0.015 0.016 0.015 0.016 0.016 0.015 0.015

2 P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; AQ: rice without drought treatment; Al: rice with 1 h of drought treatment; A2: rice
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

Table 5. LSSVM model performance evaluation index RPDin determining F,/F,, values of training dataset from ChIF without dark adaptation
under different training dataset sample numbers (10%, 20%, ..., and 90% of the total sample size).

Sample type ® 10% 20% 30% 40% 50% 60% 70% 80% 90%
P 4.577 4.500 4.519 4404 4457 4.490 4493 4.600 4.652
A 1.637 1.632 1.700 1.706 1.689 1704 1743 1749 1770
B 4.727 4.530 4.238 4.170 4.257 4.334 4.355 4454 4.501
AO 1416 1420 1472 1460 1.453 1459 1.602 lell 1.524
Al 1767 1778 1.817 1.850 1.854 1.862 1.900 1.897 1.920
A2 1725 1.679 1.768 1769 1714 1.694 1729 1.687 1720
A3 2.042 2.053 2.230 2.153 2111 2.236 2.225 2.261 2.297
Bl 2454 3.371 3.278 3723 3.317 3.625 3.934 4.021 4163
B2 4422 4.170 3.919 3.851 3.910 3.990 4.007 4101 4131
C 6.253 6.001 6.462 5489 5.584 5.846 5.590 6.039 6.235
D 3.344 3.749 3725 3728 3.629 3.622 3.504 3.549 3479
E 3.875 4422 3676 3.219 3.304 3.500 3.370 3.683 3.929
F 1.525 1.909 1816 1.637 1.815 1.963 1753 1.865 1.973
G 4.017 4.052 4.056 3734 3.847 3.785 3.755 3.854 3.892

2 P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; AO: rice without drought treatment; AL rice with 1 h of drought treatment; A2: rice
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

the training dataset is greater than 0.80 in Table 3, and the  Prediction of F,/F,, using ChIF without dark

RPD of most sample types for the training dataset is greater  aclaptation on the test dataset

than 1.5 for the training dataset in Table 5. The RMSE of differ- ~ The test dataset results of using the LSSVM model to determine
ent sample types for the training dataset is less than 0.016 in ~ F,/F,, from ChlF measured without dark adaptation under dif-
Table 4. ferent training dataset sample numbers are presented in Tables
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Table 6. LSSVM model performance evaluation index CC in determining F,/F,, values of test dataset from ChiF without dark adaptation
under different training dataset sample numbers (10%, 20%, ..., and 90% of the total sample size).

Sample type ® 10% 20% 30% 40% 50% 60% 70% 80% 90%
P 0.947 0.955 0958 0.960 0.961 0.962 0.963 0.964 0.962
A 0706 0.751 0.765 0.757 0.779 0780 0.772 0.806 0.802
B 0.959 0.965 0.966 0.967 0.967 0.966 0.966 0972 0.969
AO 0570 0645 0662 0652 0683 0688 0690 0.763 0.762
Al 0.841 0.857 0.865 0.872 0.872 0.872 0.871 0.888 0.892
A2 0743 0758 0773 0.757 0778 0799 0.765 0.841 0.831
A3 0.817 0.859 0.865 0.864 0.884 0.866 0.869 0.880 0.882
Bl 0.907 0.934 0.953 0939 0.958 0.950 0.949 0917 0.837
B2 0953 0.959 0.960 0.962 0.962 0.960 0.960 0.966 0.964

C 0.946 0.939 0.963 0.961 0.962 0.954 0.973 0.974 0.939
D 0.956 0.959 0.962 0.963 0.965 0.961 0.963 0.958 0.962
E 0.674 0.655 0.647 0.699 0.746 0.783 0.771 0.810 0.838
F 0.777 0.776 0.790 0.829 0.800 0.786 0.788 0.876 0.847
G 0.955 0.958 0.959 0.962 0.958 0.962 0.961 0.961 0.963

2 P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; AO: rice without drought treatment; Al: rice with 1 h of drought treatment; A2: rice
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

Table 7. LSSVM model performance evaluation index RMSE in determining F,/F,, values of test dataset from ChlF without dark adaptation
under different training dataset sample numbers (10%, 20%, ..., and 90% of the total sample size).

Sample type ® 10% 20% 30% 40% 50% 60% 70% 80% 90%
P 0.012 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010
A 0.007 0.007 0.007 0.007 0.006 0.006 0.007 0.006 0.006
B 0.019 0.018 0.017 0.017 0.017 0.017 0.017 0.016 0.017
AO 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009
Al 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
A2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005
A3 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Bl 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005
B2 0.024 0.022 0.022 0.022 0.021 0.021 0.021 0.020 0.021

C 0.015 0.015 0.012 0.013 0.012 0.012 0.010 0.010 0.017
D 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006
E 0.025 0.023 0.023 0.002 0.019 0.017 0.018 0.021 0.018
F 0.012 0.008 0.007 0.006 0.007 0.007 0.006 0.007 0.006
G 0.019 0.018 0.018 0.017 0.017 0.017 0.016 0.017 0.017

2 P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; AO: rice without drought treatment; Al: rice with 1 h of drought treatment; A2: rice
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

7 and 8. By all the measures (see Tables 7 and 8), the model, are nearly perfectly in most cases, correlated with the true F,/F,,
used in our research, showed strong prediction performance  values, the most CC values being more than 0.80. The RMSE
when the training dataset sample is more than 80% of all sample ~ values for the test dataset in Table 8 show nearly negligible
size. Under this condition, the CC values for the test dataset ~ differences between the predicted and the real F,/F,, the RPD
show (Table 6) that the predicted F,/F,, by the LSSVM model  values of the most sample types are much greater than 2, and
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Table 8. LSSVM model performance evaluation index RPD in determining F,/F,, values of test dataset from ChIF without dark adaptation
under different training dataset sample numbers (10%, 20%, ..., and 90% of the total sample size).

Sample type ? 10% 20% 30% 40% 50% 60% 70% 80% 90%
p 3.095 3.362 3468 3.566 3626 3689 3706 3757 3724
A 1402 1511 1,552 1528 1600 1604 1581 1692 1695
B 3491 374 3.87 3.901 3.941 3918 3.884 4209 4176
AO 1187 1300 1322 1309 1362 1365 1376 1556 1548
Al 1627 1672 1763 1753 1803 1780 1794 1884 1925
A2 1469 1504 1547 1506 1581 1652 1549 1837 1831
A3 1702 1910 1985 1971 2130 1987 2.050 2.110 2272
Bl 2.330 2790 3.292 2.960 3.371 3.282 3158 3071 2.507
B2 3.245 3466 3.556 3.589 3635 3608 3.569 3.849 3.858
c 3127 3.006 3700 3625 3670 3.802 4.784 4.933 4141
D 3.179 3.256 3.299 3441 3.364 3.285 3528 3.079 3336
E 1168 1189 1184 1311 1387 1578 1451 2104 1726
F 0926 1165 1336 1454 1293 1271 1334 1.254 1512
G 3.086 3.240 3241 3377 3.222 3414 3497 3462 3520

2 P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; AQ: rice without drought treatment; Al: rice with 1 h of drought treatment; A2: rice
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

all RPD values are greater than 1.5, which shows that the model
has good robustness for the test dataset.

Figure 1 shows a comparison of the F,/F,, values predicted
by the LSSVM model obtained from different training dataset
sample numbers with the experimental values measured after
dark adaptation for all the tested samples. It is obvious from
the plots that the predicted F,/F,, values by the LSSVM model
match the real values of F,/F,, well. To further evaluate model
prediction performance, we computed a regression line to
verify whether it is close to the 1:1 line. As shown in Figure 1,
the fitted regression lines have small slopes and intercept errors;
further, the predicted values for F,/F,, almost coincide with
the perfect 1:1 line for the sample types used. The data points
are tightly distributed around the ideal straight line, which means
that the predicted values are linearly related to the real values.
The coefficient of determination (R?) values between the
predicted F,/F,, and the measured F,/F,, values with dark adap-
tation is 0.970 for all plant samples, which is close to 1, and the
Pvalue 0of 0.000 is less than the default significance level of 0.05.
We emphasize that a significant linear regression relationship
exists between the predicted F,/F,, from ChIF signal without
dark adaptation and the F,/F,, with dark adaptation. Our data
clearly show that the LSSVM model is highly effective in pre-
dicting F,/F,, from ChIF measured without dark adaptation.

Discussion

Understanding the physiological mechanism of plant genetic
phenotype is of great significance for improving the growth and
yield of crops. ChlF is a very useful phenotypic tool for plant
phenotyping and photosynthesis, and the F,/F,, is subject to
genetic control. The genetic phenotype of ChlF parameters is
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affected under stress conditions. It is very important to study
the correlation between the internal difference of F,/F,, among
different varieties and the growth and yield of crops.

Dark adaptation has been the usual treatment before ChlF
induction measurement, and it can often be used as a refer-
ence for plant stress research. Papageorgiou et al. [43] reported
that different dark adaptation times had an important impact
on the ChlF results. In addition, dark adaptation needs addi-
tional equipment and is very time-consuming. In this work,
ChlIF signals measured without dark adaptation have been
used to obtain true F,/F,, successfully by using an LSSVM
model.

The experiments in this work involved the use of 6 different
genetic varieties of plants, 4 levels of drought stress conditions,
several different environmental temperatures (8 to 40 °C), 3 dif-
ferent growing seasons (spring, summer, and winter), wide
range of PPFD (between 3 and 1,960 pmol photons m72s™h,
and 3 different measured locations (wild field, greenhouse, and
laboratory) (Table 1). All of the above lead to enormous differ-
ences in the ChlF parameters under a large variety of physiological
conditions among different plants under different conditions
(Table 2). Asis well known, F,/F,, is closely related to physiological
status of plants. Our results clearly show that the developed
model predicts the F,/F,, among different samples with only
very small errors (Tables 3 to 5). These data clearly prove that
the LSSVM model can indeed discern the hidden relationship
between ChlF signal without dark adaptation and F,/F,, val-
ues with good robustness.

The computation time for each test sample is less than 4 ms
(processor: Intel Core i5-9400F CPU @ 2.90GHz) and much
less than the dark-adaptation time (almost 20 min) taken in the
traditional experiments. The machine learning method proved
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Fig. 1The F,/F,, predictions for test dataset using the LSSVM model obtained by different training dataset sample numbers. (A) The number of training dataset is 80% of
the total sample. (B) The number of training dataset is 90% of the total sample. (AO: rice without drought treatment; Al: rice with 1 h of drought treatment; A2: rice with 2 h
of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus Thunb in the laboratory; D:
Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.)

effective in uncovering the hidden relationships between ChIF
signals of plant leaves with and without dark adaptation. The ability
to measure F,/F, without dark adaptation will save experimen-
tal time and cost. More important, this will allow F,/F,, to be
used in the field and in real time, which will make F,/F,, a much
more convenient measure in probing the physiological status
of plants. This work provides a high-throughput method for
determining the important photosynthetic feature through ChlE,
which would provide plant physiological features in phenotyping.

This work also implies that the hidden nonlinear biolog-
ical photosynthetic behavior can be discerned by artificial
intelligence. The concept in this work is not only limited to
predicting F,/F,, but it may be also used to predict other ChIF
parameters, such as effective photochemical quantum yield
of PSII (Y[II]), quantum vyield of regulated energy dissipa-
tion in PSII (Y[NPQ]), and quantum yield of nonregulated
heat energy dissipation and fluorescence emission (Y[NO])
after model retraining.

Recently, there have been many updated deep learning net-
works in the literature [44], such as Extreme Gradient Boosting
(XGboost) [45] and Light Gradient Boosting Machine (Light GBM)
[46]. The performance of XGboost and LightGBM were tested
for predicting F,/F,, values from ChlF measurements without
dark adaptation in this work for comparison, but their perform-
ance is similar to the LSSVM model, which implies that an
LSSVM model is enough for this application. In this work, we
thus report only the results from the simple LSSVM model as
its performance is already very promising. The LSSVM model,
used here, has shown great promise with small prediction errors,
but, as is the case for other neural network-based tools, more
experiments are needed to build a much bigger public training
and testing dataset like the well-known imageNet for human
face recognition [47] to call for improvements of the predic-
tion model.

Dark adaptation of photosynthetic samples has been essential
in measuring quantum yield of PSII via F,/F,, through ChIF-
based analysis of photosynthesis and plant responses. We devel-
oped an LSSVM model that can obtain F,/F,, from ChlF signals
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measured without dark adaptation. The model was validated
with data collected from many different plants under varied
conditions. Our results have established that the LSSVM model
could indeed determine F,/F,, from ChlF measurements without
dark adaptation. We emphasize that this work demonstrates
that F,/F,, can be determined without dark adaptation of plants,
which will make the measurement more convenient and enhance
the research of plant physiology and phenotyping.
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