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Evaluation of photosynthetic quantum yield is important for analyzing the phenotype of plants. Chlorophyll a 
fluorescence (ChlF) has been widely used to estimate plant photosynthesis and its regulatory mechanisms. 
The ratio of variable to maximum fluorescence, Fv/Fm, obtained from a ChlF induction curve, is commonly 
used to reflect the maximum photochemical quantum yield of photosystem II (PSII), but it is measured 
after a sample is dark-adapted for a long time, which limits its practical use. In this research, a least-squares 
support vector machine (LSSVM) model was developed to explore whether Fv/Fm can be determined 
from ChlF induction curves measured without dark adaptation. A total of 7,231 samples of 8 different 
experiments, under diverse conditions, were used to train the LSSVM model. Model evaluation with different 
samples showed excellent performance in determining Fv/Fm from ChlF signals without dark adaptation. 
Computation time for each test sample was less than 4 ms. Further, the prediction performance of test 
dataset was found to be very desirable: a high correlation coefficient (0.762 to 0.974); a low root mean 
squared error (0.005 to 0.021); and a residual prediction deviation of 1.254 to 4.933. These results clearly 
demonstrate that Fv/Fm, the widely used ChlF induction feature, can be determined from measurements 
without dark adaptation of samples. This will not only save experiment time but also make Fv/Fm useful in 
real-time and field applications. This work provides a high-throughput method to determine the important 
photosynthetic feature through ChlF for phenotyping plants.

Introduction

Photosynthesis is the source of food, energy, fiber, and oxygen 
for all living organisms including humans. Evaluation of photo-
synthetic quantum yield is important for analyzing plant pheno-
types; however, the research of current plant phenomics is often 
limited to external geometry features. When the chloroplasts in 
plants and algae absorb sunlight, pigments, mainly chlorophyll 
molecules, in the light-harvesting pigment protein (antenna) 
complexes are excited and the absorbed energy is transferred to 
photosystem II (PSII) and photosystem I (PSI) reaction centers 
[1]. The absorbed light energy is used mostly for photosynthesis 
but is partly dissipated in the form of chlorophyll a fluores-
cence (ChlF) or heat [2]. Background on the various steps of 
photosynthesis is available in several publications [3,4].

Environmental or plant physiological changes that affect PSII 
lead to changes in ChlF, which can be used as a fast, sensitive, 
and a nondestructive indicator of the status of PSII [5,6]. Analysis 
of ChlF changes is one of the most powerful and widely used 
techniques to study the effects of various types of stress on the 

photosynthetic process [7–9]. At present, ChlF is widely used 
as a probe for not only PSII but overall photosynthesis [10], 
photosynthetic systems [11], photochemistry and heat dissi-
pation [12], several photosynthetic reactions [13], and pho-
toinhibition [14]. Furthermore, it is used to monitor different 
types of abiotic stress [15], including drought [16], heat [17,18], 
environmental pollution [19], nutrient status [20], and plant 
phenotyping [21]. ChlF measurement can serve as a plant phys-
iological variable related to photosynthesis in phenotypic anal-
ysis. Advances in optical phenotyping (including that by ChlF) 
of cereal crops have been summarized by Sun et al. [22].

Although ChlF has been used for many purposes, as men-
tioned above, the interpretation of ChlF measurement is quite 
complex. A very important feature derived from the ChlF induc-
tion curve is Fv/Fm [23], which allows us to provide information 
on effects of carbon metabolism and has been successfully used 
as a sensitive indicator of the photosynthetic performance of 
plants [24]. To determine the Fv/Fm ratio, dark adaptation is 
needed to open all the PSII reaction centers, and only then can 
the minimal fluorescence (Fo) be measured. (For a discussion 
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on the timing for measuring Fo, see the study by Padhi et al. 
[25].) After excitation with strong continuous light, most, if not 
all, the reaction centers are closed, and thus, ChlF reaches a 
maximum value (Fm). The difference, Fv = Fm − Fo, is referred 
to as the variable fluorescence. The ratio, Fv/Fm = (Fm − Fo)/Fm, 
reflects an intrinsic PSII efficiency and measures the quantum 
yield of the primary PSII photochemistry in dark-adapted pho-
tosynthetic samples [26,27]. Fv/Fm has been successfully used 
as an indicator of plant photosynthetic performance [28]. It has 
also been used to obtain information on photoinhibition induced 
by abiotic stress [29]. The Fv/Fm can also reflect the severity of 
plant phenotypic diseases, and it is an important indicator of 
plant stress. Rousseau et al. [21] focused on phenotyping by 
analyzing Fv/Fm images, and their results showed that there was 
a clear strong difference between the infected tissues and the 
healthy tissues. Zhou et al. [30] used ChlF in the phenotypic 
analysis of faba beans (Vica faba L.) under both cold and heat 
stress and found that Fv/Fm is a very effective parameter in detect-
ing the damage by low and high temperatures to PSII; further, 
they identified high-temperature-tolerant broad bean geno-
types. Therefore, Fv/Fm can be used as a physiological marker 
for phenotyping.

Before measuring Fo, it is necessary to dark-adapt a plant 
sample for 15 to 30 min [31] or even longer [32]. This dark-
adaptation process is time-consuming. Far-red light, absorbed 
mainly by PSI, might be used to speed up the oxidation of the 
reduced plastoquinone (PQ) pool and thus suppress the measured 
Fo, i.e., Fo′ (minimum ChlF intensity in the light-adapted state) 
increase, and this method is often applied following dark adap-
tation. It is thus desirable to find a method to determine Fv/Fm 
from ChlF measurement without dark adaptation. The exact 
relationship between ChlF with dark adaptation and that with-
out dark adaptation is complex and has not yet been established. 
By using contemporary computational methods, this hidden 
relationship can be explored to determine accurate Fv/Fm from 
ChlF measurement without dark adaptation, but this has not 
yet been done by any research group.

Artificial intelligence methods have been widely used to 
identify hidden relationships in many fields. Using these meth-
ods to analyze ChlF data can identify complex relationships in 
plant responses to stresses [33]. Tyystjärvi et al. [34] have iden-
tified species of crops and weeds by analyzing ChlF induction 
curve with an artificial neural network method. This method 
has been used to identify plant species by analyzing ChlF 
induced by different types of illumination [35]. Furthermore, 
Goltsev et al. [36] have constructed and trained an artificial 
neural network by using photoinduced prompt ChlF, delayed 
ChlF, and 820-nm modulated reflection signal (measuring PSI) 
to identify changes in the photosynthetic activity in bean leaves 
during drying. Yao et al. [37] have applied kinetic ChlF and 
multi-color fluorescence imaging technology for phenotypic 
analysis of Arabidopsis drought stress response, and, from it, they 
have successfully classified Arabidopsis under different drought 
stress levels by a support vector machine (SVM). Artificial intel-
ligence methods may be potentially used to find the hidden 
relationship between the Fv/Fm and ChlF measurement, without 
any dark adaptation of plants, but by using a general learning 
strategy (i.e., a mathematical method), so that Fv/Fm under dark 
adaptation can be predicted from ChlF measurement without 
dark adaptation.

In our present study, a least-squares SVM (LSSVM), an arti-
ficial intelligence method, was used to determine Fv/Fm from 

ChlF measurement without dark adaption for multiple plant 
species and conditions, which allows one to save tremendous 
amount of experimental time and provides an important feature 
for plant phenomics.

Materials and Methods

Plant samples
Eight sets of experiments with a total of 7,231 samples were 
performed on 6 plant species (Oryza sativa L. [rice], Camellia 
japonica, Euonymus japonicus Thunb, Osmanthus sp, Cerasus 
lannesiana var. speciosa, and Capsicum annuum). These plant 
species are under different drought stress, ambient growth tem-
perature, growing seasons, and measured environments. Details 
are described below in the order they were done from the sum-
mer of 2019 until the winter of 2021 for different plant species, 
described below.

Rice (Oryza sativa L.)
The first set of experiments was conducted on rice plants (Oryza 
sativa L.) under 4 different drought stress conditions. Rice plants 
were taken with roots from a production field in Jiangsu, China, 
in the early mornings, during the growing season in the sum-
mer of 2019, when the ambient temperature was ~28 °C. To 
reduce the effects of variations in moisture in different samples, 
during ChlF measurements, the roots of the plants were com-
pletely immersed in water for at least 2 h. Then, the roots were 
placed in 20% polyethylene glycol for different durations (0, 1, 
2, and 4 h) of treatment to achieve different levels of drought 
stress or physiological state [38]. The number of samples of rice 
plants without drought or with drought treatment for 1, 2, and 
4 h was 1,335, 1,093, 1,322, and 1,146, respectively. The tem-
perature during ChlF measurement was between 30 and 36 °C, 
and the ambient photosynthetic photon flux density (PPFD) 
was between 3 and 7 μmol photons m−2 s−1.

Camellia japonica and Euonymus japonicus Thunb
The second set of experiments was carried out on Japanese 
Camellia (Camellia japonica) leaves, using 314 samples. The third 
set of experiments was done on leaves of Euonymus japonicus 
Thunb, also using 314 samples. Both Camellia japonica and 
Euonymus japonicus Thunb were grown on the campus of 
Jiangnan University (Wuxi, China). Leaves from these 2 plants 
were picked in the mornings in April 2021 and were transferred 
immediately to the laboratory for measurements. To reduce the 
effect of variations in the water condition, the sampled leaves 
of the second and the third sets of experiments were floated 
on water for at least an hour. The temperature during ChlF 
measurement was ~23 °C and the ambient PPFD was ~5 μmol 
photons m−2 s−1.

Osmanthus sp. and Cerasus lannesiana var. speciosa
The fourth and the fifth sets of experiments were carried out 
on intact plants in the wild field, using leaves of Osmanthus sp. 
with 237 samples and those of Cerasus lannesiana var. speciosa 
with 335 samples. These plants in the fourth and the fifth exper-
iments were grown naturally on the campus of Jiangnan University 
(Wuxi, China). The ChlF data of the fourth and the fifth exper-
iments were collected at the end of July 2021, the ambient tem-
perature was ~33 °C, and the ambient PPFD was between 58 and 
1,960 μmol photons m−2 s−1.
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Capsicum annuum
The sixth set of experiments was performed on attached leaves 
of Capsicum annuum. Here, 356 samples were tested in the field, 
which were grown in a greenhouse in Wuxi, China. The ChlF 
data were collected at the beginning of August 2021. The tem-
perature was between 36 and 40 °C, and the ambient PPFD was 
between 58 and 1,770 μmol photons m−2 s−1 during measure-
ments in the greenhouse.

Camellia japonica and Osmanthus sp.
The seventh and eighth experiments were carried out on intact 
plants on the campus of Jiangnan University (Wuxi, China), 
which included leaves of Osmanthus sp. with 379 samples and 
of Camellia japonica with 400 samples. These experiments 
were done in December 2021; the ambient temperature was 
between 8 and 15 °C, and the ambient PPFD was between 78 
and 1,380 μmol photons m−2 s−1. Table 1 shows all plant sam-
ples and experiment specifics.

Instrumentation and measurements
The ChlF parameter Fv/Fm (ratio of variable to maximum flu-
orescence) was measured under 2 conditions: with and with-
out dark adaptation of the leaves. The illumination condition 
without dark adaptation means that the plant leaves are not 
dark-adapted before the ChlF measurement. The leaves were 
measured without dark adaptation, and then they were mea
sured in dark-adapted state after dark adaptation. Twenty-
minute dark adaptation was applied through dark-adaptation 
clips [39]. A FluorPen ChlF measurement device (Photon Sys
tems Instruments, Drásov, Czech Republic) was used to mea
sure ChlF transient, ChlF induction of the leaves, where O is 
the minimum fluorescence, J and I are inflection steps, and P 
is for the peak (the maximum). The illumination light inten-
sity to excite the ChlF of leaves was set as 2,400 μmol photons 
m−2 s−1 for all samples.

The ambient light intensities for all our experiments were 
measured by a light intensity meter (VC1010A, Victor, Shenzhen, 
China). The light intensity read in Lux, from the measured light 
intensity meter, was converted to PPFD. The conversion rela-
tionships are 1 Klux = 19.5 μmol photons m−2 s−1 for daylight 
PPFD [40] and 1 Klux = 12 μmol photons m−2 s−1 for white 
fluorescent light [41]. The values of ambient light intensities in 
this work are only used to show that measurements were made 
on samples illuminated with a wide range of initial lighting 
conditions. Estimation errors of PPFD from Lux have no effect 
on the conclusion of this work.

Development of an LSSVM model
An SVM maps high-dimensional data from an input space to 
a feature space through a nonlinear mapping process. LSSVM 
is an extension of SVM; it uses inequality constraints instead 
of equality constraints and the sum of squared-error loss func-
tion as the “experience loss” to transform a problem into a linear 
one. In this work, an LSSVM model was employed to map the 
relationship between the ChlF induction feature Fv/Fm with and 
without dark adaptation of the photosynthetic samples. The 
LSSVM regression equation is:

where x is the ChlF response without dark adaptation, f(x) is 
the corresponding output, φ(x) is a nonlinear mapping func-
tion that maps x to a high-dimensional feature space, w is a 

weighting vector, and b is a bias variable. Based on the principle 
of structural risk minimization, the function becomes:

where K is a kernel function, ai is the Lagrangian multiplier, i is 
an integer, and m is the number of samples in a training dataset. 
According to the Mercer condition, the kernel function can be 
written as:

The following radial basis function was used as the kernel 
function in our research:

where τ represents the parameter of the Gaussian radial basis 
kernel function.

For the training dataset {(xi, yi), i = 1, 2, …, m}, xi∈Rm rep-
resents the input of the i-th training sample (ChlF measured 
without dark adaptation), yi∈R is the target value of the i-th 
training dataset (Fv/Fm measured with dark adaptation), and 
m is the number of samples in the training dataset.

For the testing dataset {(Xi, Yi), (i = 1, 2, …, n)}, Xi is the input 
of the i-th test sample (ChlF measured without dark adapta-
tion), Yi is the real target value of the i-th test data sample (Fv/Fm 
measured with dark adaptation), and n is the number of samples 
in the test dataset. Xi is fed to the trained LSSVM model (Eq. 2) 
to calculate the corresponding predicted Fv/Fm value, and the 
i-th predicted Fv/Fm value is expressed as YYi (i = 1, 2, …, n).

Data normalization
To reduce the influence of differences in data magnitudes, the 
following zero-mean normalization method (Z-score nor-
malization) was used to normalize both the ChlF signal data 
without dark adaptation and the Fv/Fm target values with dark 
adaptation so that both were in the same order of magnitude:

where μ denotes the mean and σ is the SD of the original data 
x, and Z represents standard normal distribution.

The predicted Fv/Fm values from the model were denor-
malized to their original scale for testing and evaluation.

Model testing and evaluation
To evaluate the performance and generalization ability of the 
model, the following metrics computed from the test samples 
were used to assess the predicted Fv/Fm: (a) root mean square 
error (RMSE); (b) correlation coefficient (CC); and (c) residual 
predictive deviation (RPD), as shown below in Eqs. 6 to 8.
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where YYi is the predicted Fv/Fm value of the i-th test sample, 
Yi is the true Fv/Fm value of the i-th test sample, Y  is the true 
Fv/Fm mean value of the test samples, and n is the number of 
samples in the test dataset. All these metrics measure the devi-
ation of the predicted Fv/Fm values from the true values. As is 
commonly known, the smaller RMSE or the closer to unity CC 
is, the higher the prediction performance. For most applica-
tions, models with RPD values lower than 1.5 are considered 
insufficient, while models with values greater than 2.0 have good 
robustness [42].

In the training of the LSSVM model, a 10-fold cross-validation, 
and a grid optimization, was used to optimize the 2 parameters 
(regularization coefficient and parameter of the Gaussian radial 
basis kernel function) that affect the accuracy and the com-
plexity of the model. In each of the 10 runs, 10%, 20%, …, and 

90% of each sample type was randomly selected as the training 
dataset, and the remaining was used as the testing dataset. The 
average values of RMSE, CC, and RPD obtained in the 10 runs 
(RMSE, CC, and RPD) were used to evaluate model perform
ance. The LSSVM model was implemented in MATLAB 2019b 
(Mathworks, Inc., Natwick, MA, USA).

Results

Variations in Fv/Fm with dark adaptation and without 
dark adaptation
To explore the difference between different sample types of the 
Fv/Fm measured with and without dark adaptation, statistical 
comparisons on the Fv/Fm from different sample types are pre-
sented in Table 2. Values indicated with different letters in a 
column are significantly (P < 0.05) different from one another 
by the LSD (least signification difference) test. The Fv/Fm mea
sured with and without dark adaptation show statistical differ-
ences between most different sample types and treatments, as 
shown below in Table 2.

(8)RPD =

����
�

∑n
i=1

�
Yi−Y

�2

∑n
i=1

�
YYi−Yi

�2

Table 1. Plant samples and experiment specifics (the light intensity of exciting the ChlF was 2,400 μmol photons m−2 s−1 for all experimental 
samples).

Plant and treatment Symbol
Number of 

samples
Measurement 

location
Measurement date

Ambient 
temperature

Ambient PPFD

All plant samples P 7,231 --- --- --- ---

All rice samples A 4,896 --- --- --- ---

All Osmanthus sp. 
samples (Osmanthus  
sp. samples in sum-
mer and winter)

B 616 --- --- --- ---

Rice without drought 
treatment

A0 1,335 Laboratory July and August 2019 Between 30 
and 36 °C

Between 3 and 7 μmol 
photons m−2 s−1

Rice with 1 h of 
drought treatment

A1 1,093 Laboratory July and August 2019 Between 30 
and 36 °C

Between 3 and 7 μmol 
photons m−2 s−1

Rice with 2 h of 
drought treatment

A2 1,322 Laboratory July and August 2019 Between 30 
and 36 °C

Between 3 and 7 μmol 
photons m−2 s−1

Rice with 4 h of 
drought treatment

A3 1,146 Laboratory July and August 2019 Between 30 
and 36 °C

Between 3 and 7 μmol 
photons m−2 s−1

Osmanthus sp. in 
summer

B1 237 Wild field July 2021 About 33 °C Between 58 and 1,960 μmol 
photons m−2 s−1

Osmanthus sp. in 
winter

B2 379 Wild field December 2021 Between 8 
and 15 °C

between 78 and 1,380 μmol 
photons m−2 s−1

Euonymus japonicus 
Thunb

C 314 Laboratory April 2021 About 23 °C About 5 μmol  
photons m−2 s−1

Camellia japonica D 314 Laboratory April 2021 About 23 °C About 5 μmol photons m−2 
s−1

Capsicum annuum E 356 Greenhouse August 2021 Between 36 
and 40 °C

Between 58 and 1,770 μmol 
photons m−2 s−1

Cerasus lannesiana 
var. speciosa

F 335 Wild field July 2021 About 33 °C Between 58 and 1,960 μmol 
photons m−2 s−1

Camellia japonica G 400 Wild field December 2021 Between 8 
and 15 °C

Between 78 and 1,380 μmol 
photons m−2 s−1
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Training performance of the model for prediction of 
Fv/Fm using ChlF without dark adaptation
We note that 10%, 20%, …, and 90% of A0, A1, A2, A3, B1, B2, 
C, D, E, F, and G were randomly selected as the training dataset 
to establish the initial LSSVM model, and the remaining sam-
ples were used as the verification dataset to test the prediction 
performance of the established LSSVM model for Fv/Fm under 
dark adaptation. The all-rice test datasets were composed of 
rice samples with 4 different drought levels. All Osmanthus sp. 

test datasets were composed of Osmanthus sp. samples in 
summer and winter. The CC, RMSE, and RPD represent the 
average values of the CC, RMSE, and RPD, respectively.

LSSVM model performance evaluation indices (CC, RMSE, 
and RPD) for determining Fv/Fm values of training dataset from 
ChlF without dark adaptation under different training dataset 
sample numbers are shown in Tables 3 to 5. When the training 
dataset sample exceeds 70%, the CC of most sample types for 

Table 2. Statistical analysis of the Fv/Fm measured with dark adaptation or without dark adaptation for different samples (the results are 
presented as mean ± SD).

Sample type a Without dark adaptation With dark adaptation Sample type Without dark adaptation With dark adaptation

P 0.786 ± 0.051 0.818 ± 0.036 B1 0.803 ± 0.017ab 0.837 ± 0.016a

A 0.803 ± 0.012 0.831 ± 0.010 B2 0.735 ± 0.115f 0.783 ± 0.076d

B 0.761 ± 0.097 0.804 ± 0.066 C 0.746 ± 0.043e 0.780 ± 0.044b

A0 0.807 ± 0.012a 0.831 ± 0.013a D 0.778 ± 0.018d 0.807 ± 0.018c

A1 0.805 ± 0.010ab 0.834 ± 0.007a E 0.706 ± 0.047h 0.768 ± 0.027f

A2 0.803 ± 0.011b 0.830 ± 0.009a F 0.801 ± 0.014bc 0.834 ± 0.009a

A3 0.798 ± 0.013c 0.828 ± 0.010b G 0.713 ± 0.096g 0.755 ± 0.058g

a P: all plant samples; A: all the rice samples; B: all Osmanthus sp. samples; A0: rice without drought treatment; A1: rice with 1 h of drought treatment; A2: 
rice with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus 
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

Table 3. LSSVM model performance evaluation index CC in determining Fv/Fm values of training dataset from ChlF without dark adaptation 
under different training dataset sample numbers (10%, 20%, …, and 90% of the total sample size).

Sample type a 10% 20% 30% 40% 50% 60% 70% 80% 90%

P 0.973 0.975 0.975 0.974 0.974 0.975 0.974 0.976 0.976

A 0.772 0.788 0.808 0.808 0.805 0.809 0.818 0.821 0.825

B 0.974 0.975 0.971 0.970 0.971 0.973 0.973 0.974 0.975

A0 0.677 0.720 0.745 0.736 0.739 0.739 0.792 0.792 0.765

A1 0.865 0.875 0.882 0.879 0.888 0.886 0.891 0.889 0.891

A2 0.778 0.783 0.817 0.821 0.814 0.812 0.822 0.815 0.824

A3 0.867 0.871 0.891 0.887 0.881 0.896 0.895 0.899 0.901

B1 0.851 0.920 0.939 0.961 0.944 0.962 0.968 0.970 0.970

B2 0.970 0.970 0.966 0.965 0.966 0.968 0.968 0.970 0.970

C 0.986 0.987 0.989 0.985 0.985 0.986 0.984 0.986 0.987

D 0.957 0.968 0.969 0.969 0.968 0.967 0.966 0.967 0.965

E 0.940 0.969 0.958 0.946 0.946 0.944 0.940 0.958 0.959

F 0.809 0.888 0.874 0.857 0.876 0.890 0.865 0.877 0.887

G 0.968 0.972 0.972 0.969 0.970 0.968 0.968 0.969 0.970

a P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; A0: rice without drought treatment; A1: rice with 1 h of drought treatment; A2: rice 
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus 
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.
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the training dataset is greater than 0.80 in Table 3, and the 
RPD of most sample types for the training dataset is greater 
than 1.5 for the training dataset in Table 5. The RMSE of differ-
ent sample types for the training dataset is less than 0.016 in 
Table 4.

Prediction of Fv/Fm using ChlF without dark 
adaptation on the test dataset
The test dataset results of using the LSSVM model to determine 
Fv/Fm from ChlF measured without dark adaptation under dif-
ferent training dataset sample numbers are presented in Tables 

Table 4. LSSVM model performance evaluation index RMSE in determining Fv/Fm values of training dataset from ChlF without dark adapta-
tion under different training dataset sample numbers (10%, 20%, …, and 90% of the total sample size).

Sample type a 10% 20% 30% 40% 50% 60% 70% 80% 90%

P 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

A 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

B 0.013 0.015 0.015 0.015 0.016 0.015 0.015 0.015 0.015

A0 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008

A1 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

A2 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005

A3 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004

B1 0.005 0.005 0.004 0.005 0.004 0.004 0.004 0.004 0.004

B2 0.017 0.019 0.019 0.019 0.020 0.019 0.019 0.018 0.018

C 0.009 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007

D 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

E 0.008 0.007 0.007 0.009 0.009 0.008 0.009 0.007 0.007

F 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

G 0.015 0.014 0.015 0.016 0.015 0.016 0.016 0.015 0.015

a P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; A0: rice without drought treatment; A1: rice with 1 h of drought treatment; A2: rice 
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus 
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

Table 5. LSSVM model performance evaluation index RPD in determining Fv/Fm values of training dataset from ChlF without dark adaptation 
under different training dataset sample numbers (10%, 20%, …, and 90% of the total sample size).

Sample type a 10% 20% 30% 40% 50% 60% 70% 80% 90%

P 4.577 4.500 4.519 4.404 4.457 4.490 4.493 4.600 4.652

A 1.637 1.632 1.700 1.706 1.689 1.704 1.743 1.749 1.770

B 4.727 4.530 4.238 4.170 4.257 4.334 4.355 4.454 4.501

A0 1.416 1.420 1.472 1.460 1.453 1.459 1.602 1.611 1.524

A1 1.767 1.778 1.817 1.850 1.854 1.862 1.900 1.897 1.920

A2 1.725 1.679 1.768 1.769 1.714 1.694 1.729 1.687 1.720

A3 2.042 2.053 2.230 2.153 2.111 2.236 2.225 2.261 2.297

B1 2.454 3.371 3.278 3.723 3.317 3.625 3.934 4.021 4.163

B2 4.422 4.170 3.919 3.851 3.910 3.990 4.007 4.101 4.131

C 6.253 6.001 6.462 5.489 5.584 5.846 5.590 6.039 6.235

D 3.344 3.749 3.725 3.728 3.629 3.622 3.504 3.549 3.479

E 3.875 4.422 3.676 3.219 3.304 3.500 3.370 3.683 3.929

F 1.525 1.909 1.816 1.637 1.815 1.963 1.753 1.865 1.973

G 4.017 4.052 4.056 3.734 3.847 3.785 3.755 3.854 3.892

a P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; A0: rice without drought treatment; A1: rice with 1 h of drought treatment; A2: rice 
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus 
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.
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7 and 8. By all the measures (see Tables 7 and 8), the model, 
used in our research, showed strong prediction performance 
when the training dataset sample is more than 80% of all sample 
size. Under this condition, the CC values for the test dataset 
show (Table 6) that the predicted Fv/Fm by the LSSVM model 

are nearly perfectly in most cases, correlated with the true Fv/Fm 
values, the most CC values being more than 0.80. The RMSE 
values for the test dataset in Table 8 show nearly negligible 
differences between the predicted and the real Fv/Fm, the RPD 
values of the most sample types are much greater than 2, and 

Table 6. LSSVM model performance evaluation index CC in determining Fv/Fm values of test dataset from ChlF without dark adaptation 
under different training dataset sample numbers (10%, 20%, …, and 90% of the total sample size).

Sample type a 10% 20% 30% 40% 50% 60% 70% 80% 90%

P 0.947 0.955 0.958 0.960 0.961 0.962 0.963 0.964 0.962

A 0.706 0.751 0.765 0.757 0.779 0.780 0.772 0.806 0.802

B 0.959 0.965 0.966 0.967 0.967 0.966 0.966 0.972 0.969

A0 0.570 0.645 0.662 0.652 0.683 0.688 0.690 0.763 0.762

A1 0.841 0.857 0.865 0.872 0.872 0.872 0.871 0.888 0.892

A2 0.743 0.758 0.773 0.757 0.778 0.799 0.765 0.841 0.831

A3 0.817 0.859 0.865 0.864 0.884 0.866 0.869 0.880 0.882

B1 0.907 0.934 0.953 0.939 0.958 0.950 0.949 0.917 0.837

B2 0.953 0.959 0.960 0.962 0.962 0.960 0.960 0.966 0.964

C 0.946 0.939 0.963 0.961 0.962 0.954 0.973 0.974 0.939

D 0.956 0.959 0.962 0.963 0.965 0.961 0.963 0.958 0.962

E 0.674 0.655 0.647 0.699 0.746 0.783 0.771 0.810 0.838

F 0.777 0.776 0.790 0.829 0.800 0.786 0.788 0.876 0.847

G 0.955 0.958 0.959 0.962 0.958 0.962 0.961 0.961 0.963

a P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; A0: rice without drought treatment; A1: rice with 1 h of drought treatment; A2: rice 
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus 
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

Table 7. LSSVM model performance evaluation index RMSE in determining Fv/Fm values of test dataset from ChlF without dark adaptation 
under different training dataset sample numbers (10%, 20%, …, and 90% of the total sample size).

Sample type a 10% 20% 30% 40% 50% 60% 70% 80% 90%

P 0.012 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010

A 0.007 0.007 0.007 0.007 0.006 0.006 0.007 0.006 0.006

B 0.019 0.018 0.017 0.017 0.017 0.017 0.017 0.016 0.017

A0 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009

A1 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

A2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005

A3 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

B1 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005

B2 0.024 0.022 0.022 0.022 0.021 0.021 0.021 0.020 0.021

C 0.015 0.015 0.012 0.013 0.012 0.012 0.010 0.010 0.017

D 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006

E 0.025 0.023 0.023 0.002 0.019 0.017 0.018 0.021 0.018

F 0.012 0.008 0.007 0.006 0.007 0.007 0.006 0.007 0.006

G 0.019 0.018 0.018 0.017 0.017 0.017 0.016 0.017 0.017

a P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; A0: rice without drought treatment; A1: rice with 1 h of drought treatment; A2: rice 
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus 
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.

D
ow

nloaded from
 https://spj.science.org on M

ay 15, 2023



Xia et al. 2023 | https://doi.org/10.34133/plantphenomics.0034 8

all RPD values are greater than 1.5, which shows that the model 
has good robustness for the test dataset.

Figure 1 shows a comparison of the Fv/Fm values predicted 
by the LSSVM model obtained from different training dataset 
sample numbers with the experimental values measured after 
dark adaptation for all the tested samples. It is obvious from 
the plots that the predicted Fv/Fm values by the LSSVM model 
match the real values of Fv/Fm well. To further evaluate model 
prediction performance, we computed a regression line to 
verify whether it is close to the 1:1 line. As shown in Figure 1, 
the fitted regression lines have small slopes and intercept errors; 
further, the predicted values for Fv/Fm almost coincide with 
the perfect 1:1 line for the sample types used. The data points 
are tightly distributed around the ideal straight line, which means 
that the predicted values are linearly related to the real values. 
The coefficient of determination (R2) values between the 
predicted Fv/Fm and the measured Fv/Fm values with dark adap-
tation is 0.970 for all plant samples, which is close to 1, and the 
P value of 0.000 is less than the default significance level of 0.05. 
We emphasize that a significant linear regression relationship 
exists between the predicted Fv/Fm from ChlF signal without 
dark adaptation and the Fv/Fm with dark adaptation. Our data 
clearly show that the LSSVM model is highly effective in pre-
dicting Fv/Fm from ChlF measured without dark adaptation.

Discussion

Understanding the physiological mechanism of plant genetic 
phenotype is of great significance for improving the growth and 
yield of crops. ChlF is a very useful phenotypic tool for plant 
phenotyping and photosynthesis, and the Fv/Fm is subject to 
genetic control. The genetic phenotype of ChlF parameters is 

affected under stress conditions. It is very important to study 
the correlation between the internal difference of Fv/Fm among 
different varieties and the growth and yield of crops.

Dark adaptation has been the usual treatment before ChlF 
induction measurement, and it can often be used as a refer-
ence for plant stress research. Papageorgiou et al. [43] reported 
that different dark adaptation times had an important impact 
on the ChlF results. In addition, dark adaptation needs addi-
tional equipment and is very time-consuming. In this work, 
ChlF signals measured without dark adaptation have been 
used to obtain true Fv/Fm successfully by using an LSSVM 
model.

The experiments in this work involved the use of 6 different 
genetic varieties of plants, 4 levels of drought stress conditions, 
several different environmental temperatures (8 to 40 °C), 3 dif
ferent growing seasons (spring, summer, and winter), wide 
range of PPFD (between 3 and 1,960 μmol photons m−2 s−1), 
and 3 different measured locations (wild field, greenhouse, and 
laboratory) (Table 1). All of the above lead to enormous differ-
ences in the ChlF parameters under a large variety of physiological 
conditions among different plants under different conditions 
(Table 2). As is well known, Fv/Fm is closely related to physiological 
status of plants. Our results clearly show that the developed 
model predicts the Fv/Fm among different samples with only 
very small errors (Tables 3 to 5). These data clearly prove that 
the LSSVM model can indeed discern the hidden relationship 
between ChlF signal without dark adaptation and Fv/Fm val-
ues with good robustness.

The computation time for each test sample is less than 4 ms 
(processor: Intel Core i5-9400F CPU @ 2.90GHz) and much 
less than the dark-adaptation time (almost 20 min) taken in the 
traditional experiments. The machine learning method proved 

Table 8. LSSVM model performance evaluation index RPD in determining Fv/Fm values of test dataset from ChlF without dark adaptation 
under different training dataset sample numbers (10%, 20%, …, and 90% of the total sample size).

Sample type a 10% 20% 30% 40% 50% 60% 70% 80% 90%

P 3.095 3.362 3.468 3.566 3.626 3.689 3.706 3.757 3.724

A 1.402 1.511 1.552 1.528 1.600 1.604 1.581 1.692 1.695

B 3.491 3.74 3.87 3.901 3.941 3.918 3.884 4.209 4.176

A0 1.187 1.300 1.322 1.309 1.362 1.365 1.376 1.556 1.548

A1 1.627 1.672 1.763 1.753 1.803 1.780 1.794 1.884 1.925

A2 1.469 1.504 1.547 1.506 1.581 1.652 1.549 1.837 1.831

A3 1.702 1.910 1.985 1.971 2.130 1.987 2.050 2.110 2.272

B1 2.330 2.790 3.292 2.960 3.371 3.282 3.158 3.071 2.507

B2 3.245 3.466 3.556 3.589 3.635 3.608 3.569 3.849 3.858

C 3.127 3.006 3.700 3.625 3.670 3.802 4.744 4.933 4.141

D 3.179 3.256 3.299 3.441 3.364 3.285 3.528 3.079 3.336

E 1.168 1.189 1.184 1.311 1.387 1.578 1.451 2.104 1.726

F 0.926 1.165 1.336 1.454 1.293 1.271 1.334 1.254 1.512

G 3.086 3.240 3.241 3.377 3.222 3.414 3.497 3.462 3.520

a P: all plant samples; A: all rice samples; B: all Osmanthus sp. samples; A0: rice without drought treatment; A1: rice with 1 h of drought treatment; A2: rice 
with 2 h of drought treatment; A3: rice with 4 h of drought treatment; B1: Osmanthus sp. in summer; B2: Osmanthus sp. in winter; C: Euonymus japonicus 
Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.
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effective in uncovering the hidden relationships between ChlF 
signals of plant leaves with and without dark adaptation. The ability 
to measure Fv/Fm without dark adaptation will save experimen-
tal time and cost. More important, this will allow Fv/Fm to be 
used in the field and in real time, which will make Fv/Fm a much 
more convenient measure in probing the physiological status 
of plants. This work provides a high-throughput method for 
determining the important photosynthetic feature through ChlF, 
which would provide plant physiological features in phenotyping.

This work also implies that the hidden nonlinear biolog-
ical photosynthetic behavior can be discerned by artificial 
intelligence. The concept in this work is not only limited to 
predicting Fv/Fm, but it may be also used to predict other ChlF 
parameters, such as effective photochemical quantum yield 
of PSII (Y[II]), quantum yield of regulated energy dissipa-
tion in PSII (Y[NPQ]), and quantum yield of nonregulated 
heat energy dissipation and fluorescence emission (Y[NO]) 
after model retraining.

Recently, there have been many updated deep learning net-
works in the literature [44], such as Extreme Gradient Boosting 
(XGboost) [45] and Light Gradient Boosting Machine (LightGBM) 
[46]. The performance of XGboost and LightGBM were tested 
for predicting Fv/Fm values from ChlF measurements without 
dark adaptation in this work for comparison, but their perform
ance is similar to the LSSVM model, which implies that an 
LSSVM model is enough for this application. In this work, we 
thus report only the results from the simple LSSVM model as 
its performance is already very promising. The LSSVM model, 
used here, has shown great promise with small prediction errors, 
but, as is the case for other neural network-based tools, more 
experiments are needed to build a much bigger public training 
and testing dataset like the well-known imageNet for human 
face recognition [47] to call for improvements of the predic-
tion model.

Dark adaptation of photosynthetic samples has been essential 
in measuring quantum yield of PSII via Fv/Fm through ChlF-
based analysis of photosynthesis and plant responses. We devel-
oped an LSSVM model that can obtain Fv/Fm from ChlF signals 

measured without dark adaptation. The model was validated 
with data collected from many different plants under varied 
conditions. Our results have established that the LSSVM model 
could indeed determine Fv/Fm from ChlF measurements without 
dark adaptation. We emphasize that this work demonstrates 
that Fv/Fm can be determined without dark adaptation of plants, 
which will make the measurement more convenient and enhance 
the research of plant physiology and phenotyping.
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