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Marine heatwaves (MHWs)—extremely warm, persistent sea surface tempera-
ture (SST) anomalies causing substantial ecological and economic con-
sequences—have increased worldwide in recent decades. Concurrent increases
in global temperatures suggest that climate change impacted MHW occur-
rences, beyond random changes arising from natural internal variability.
Moreover, the long-term SST warming trend was not constant but instead had
more rapid warming in recent decades. Here we show that this nonlinear trend
can—on its own—appear to increase SST variance and hence MHW frequency.
Using a Linear Inverse Model to separate climate change contributions to SST
means and internal variability, both in observations and CMIP6 historical
simulations, we find that most MHW increases resulted from regional mean
climate trends that alone increased the probability of SSTs exceeding a MHW
threshold. Our results suggest the need to carefully attribute global warming-
induced changes in climate extremes, which may not always reflect underlying

changes in variability.

Marine heatwaves (MHWs) are events characterized by prolonged
anomalously warm ocean surface or subsurface temperatures'?, seen
in many regions of the world’s oceans®” as shown in Fig. 1a. Over the
past several decades, these events have appeared to occur more often
and become more extreme and longer-lasting®’, concurrent with long-
term global warming’°. The severe ecological and economic con-
sequences of MHWs, including widespread mortality of marine spe-
cies, adaptive reconfiguration of species ranges, and decline of farmed
aquaculture production in commercial fisheries*'°, have motivated
numerous studies aimed at understanding their drivers and occur-
rences. Under current warming projections®’, future MHWs are likely
to occur at an accelerated rate?, creating increased urgency regard-
ing the attribution of climate change impacts.

Quantifying the impact of climate change on MHW characteristics
relies on identifying the long-term externally-forced warming trend
separately from the changes in internal variability (e.g., ref. 13-16). An

increase in internal variability of sea surface temperature (SST) acts to
widen the probability distribution function (PDF) of ocean tempera-
tures, making extreme warm temperatures more likely. In addition,
mean changes due to the warming trend shift the center of the PDF to
higher values, also resulting in increased MHW occurrences. However,
the long-term SST warming has been observed to occur at a nonlinear
rate in the past few decades”'®, which is particularly evident in some
specific oceanic regions such as the western boundary currents”. One
example is the Northwest Atlantic (NWA; Fig. 1c), where a slow mean
warming was replaced by an accelerated trend in the late 1980s.
Comparing PDFs of the consecutive 1958-1987 and 1988-2017 periods
(right panel of Fig. 1b, derived from thin line of Fig. 1c) shows not only a
positive mean shift but also a broadening of the distribution, sug-
gesting an increase in variance during the later period. However, if we
remove the nonlinear trend (i.e., thick line of Fig. 1c) from the NWA
index (thin line), the PDFs of the detrended data have almost identical
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Fig. 1| Historical Marine Heatwave (MHW) events and example of nonlinear
trend influencing Probability Distribution Function (PDF). a Sea Surface Tem-
perature Anomaly (SSTA) of historical MHW events during their peak months,
following previous studies®” and references therein. Outlines mark regions of
interest for this study, and the year in which the historical event occurred is also
indicated. Peak months of these events are listed in Supplementary. Beng. Ben-
guela, BoB Bay of Bengal*®, CCS California Current System, ECS East China Sea’*?,
GOA Gulf of Alaska, KOE Kuroshio-Oyashio Extension®***, Med. Mediterranean,

NA Northern Australia, NWA Northwest Atlantic, Tas. Tasman Sea, WA Western
Australia, WSA Western South Atlantic. Insets show historical MHWs in the CCS and
along the coast of Peru. b Histograms (bars) of NWA SSTA during 1958-1987 (gray)
and during 1988-2017 (orange), before (right of b) and after detrending (left).
Lines are PDFs from Gaussian distribution. ¢ SSTA time series (thin line) spatially
averaged within NWA and the overlaid regional trend (thick line) identified from
trend mode (see Methods). Dotted line separates 1958-1987 from 1988 to 2017.

mean and variance over the two periods (left panel of Fig. 1b). That is,
the changing trend acts to make the distribution wider, resulting in an
apparent increase in variability that can lead to an actual increase of
MHW occurrences, despite little change in the natural internal varia-
bility itself. This example highlights the importance of carefully dis-
tinguishing the long-term warming trend from the internal variability,
to avoid conflation of the two on the climate change attribution to
MHWs?’. While attempts have been made to determine the relative
role of trend and internal variability in the increasing frequency of
MHWSs'® under continued anthropogenic forcing, no study to date has
assessed the potentially important additional role of the trend’s
nonlinearity.

In this paper, we conduct a global analysis of MHW events over
the past 60 years that separates the long-term trend, including its
nonlinear change over time, from the internal ocean variability,
thereby allowing for better estimates of the impact of climate change
on both MHWs and overall SST variability. We note, however, that the
nonlinearity of the trend shown in Fig. 1c primarily stems from the
acceleration of the trend starting in the late 1980s. This period
approximately coincides with the advent of the satellite era, which
led to a dramatic increase in the density of SST observations”, and
could potentially result in an apparent change of the magnitude of
the trend. To ascertain that the nonlinear trend we discuss in this
study is not an artifact of the changes in the observing techniques,
we repeat a similar analysis on the Coupled Model Intercomparison
Project phase 6* (CMIP6; see Methods) multi-model ensemble,
focusing on the same historical period covered by the observations.
As we will see, the similarity of the climate models’ results suggests
that the nonlinear character of the trend is a real climate signal and
not a result of the changes in observational sampling. In addition, to
increase the sample size, we also use a long integration of a linear
inverse model”** (LIM; see Methods). Both CMIP6 and LIM simula-
tions provide long records of “alternative histories” of what could
have happened, allowing a more robust assessment of the sig-
nificance of our results. The LIM, a multivariate empirical dynamical

model, represents spatially-varying climate anomalies as a combi-
nation of linearly deterministic (i.e., predictable) dynamics plus an
unpredictable nonlinear residual approximated by white noise?*.
The LIM has been extensively used in predicting seasonal-to-
interannual surface ocean conditions (e.g., ref. 25-27), but it has
also been run as a climate simulation model. In this case, the LIM
can generate climate realizations whose spatiotemporal evolution is
statistically consistent with past observations, which has allowed the
LIM’s use for testing hypotheses including whether El Nifio has sig-
nificantly changed over the last several decades®, the extent to which
tropical Pacific decadal variability is a residual of El Nifio events®’, and
the impact of tropical and extratropical processes upon evolving
Northeast Pacific MHW events®. Motivated by these earlier results,
we generate large LIM ensembles that realistically represent the
dynamics of anomalous SST evolution over 1958-2017, allowing us to
identify large samples of simulated MHWs and to diagnose the
impact of climate change on SSTs, analogous to our use of CMIP6
realizations. Using both LIM and CMIP6 ensembles, we provide a
comprehensive analysis of MHW changes in both ensembles and how
those compare to the observed changes.

Results

Mean change of sea surface temperature and the observed
nonlinear trend

We begin by identifying the pattern and amplitude of the observed
long-term trend and estimating where it is statistically significant. We
use the least damped eigenmode of the LIM’s dynamical operator to
extract the trend component (see Methods), a technique established
by several previous studies”*"*%. The resulting trend pattern (Fig. 2a)
appears generally robust since we found a similar pattern using other
approaches, including computing the “mean shift” as the difference
between the 1958-1987 and 1988-2017 means (Fig. 2b and Supple-
mentary Fig. 1) or fitting a piecewise linear trend at each grid point (see
supplementary information), and other studies have also obtained
similar results”>***, The time series associated with the trend pattern
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Fig. 2 | Sea Surface Temperature (SST) trends over the historical period.

a Pattern of the trend mode (Unit: dimensionless) over 1958-2017 (see Methods).
b Regional mean changes, calculated as differences between mean SST Anomaly
(SSTA) during 1958-1987 (1;) and 1988-2017 (u,) at each targeted region. Hor-
izontal lines are observed mean changes. Bars mark the edges of the 95% con-
fidence interval of mean changes, obtained from a 3000-member LIM ensemble.
The LIM was constructed from detrended observations and reanalyses over the
1958-2017 period (the “LIM5817” ensemble; see Methods). ¢ Regional trend time

series, determined from the pattern (a) and the time series (gray line) of the trend
mode. d Probability Distribution Functions (PDFs) of Northwest Atlantic (NWA)
SSTA during 1958-1987 (gray) and 1988-2017 (blue), before (top of d) and after
detrending (bottom). Bars show the observed SSTA histograms (same as Fig. 1b).
Solid curves represent the ensemble mean PDFs determined from the LIM5817
ensemble (bottom) and from the trend+LIMS5817 ensemble (top), respectively. The
dotted lines represent the 95% confidence intervals.

(gray line in Fig. 2c) shows an acceleration during the second half of the
observational period, which is also seen in the evolution of regionally
averaged SST anomalies (Fig. 2c). However, in some regions like the
Nifio 3.4 domain and the California current system, the trend identified
from the least damped eigenmode is very weak (Fig. 2c and Supple-
mentary Fig. 1), consistent with the overall SST trend in those regions
being linked to residual El Nifo-Southern Oscillation (ENSO)
variability™.

We test the statistical significance of the observed local trends
against a large set of climate realizations (or alternative histories)
based on the LIM’s realistic representation of the observed dynamical
system”. First, we remove the least-damped eigenmode from the LIM
so that it represents “detrended” dynamics. Then this LIM is used to
generate a 3000-member ensemble of 60-year-long realizations which
overall share the same spatial and temporal covariability statistics as
the observations during 1958-2017. For each ensemble member,
however, while SSTA variations are governed by the same determi-
nistic dynamics, representing predictable anomaly evolution, they are
driven by different random noise realizations, representing unpre-
dictable internal variability. This simulation is hereafter denoted
LIM5817; see Methods. For each region of interest, a mean shift in
observations is then considered 95% significant only if it falls outside
the 2.5-97.5% range of the 3000 mean shifts (shown by the bars in
Fig. 2b) drawn from the LIM5817 ensemble. By this criterion, Fig. 2b
shows that the regions of Benguela, Bay of Bengal, East China Sea,
Mediterranean, Northern Australia, Northwest Atlantic, Tasman Sea,

Western Australia and Western South Atlantic all experienced sig-
nificant mean shifts (see also Supplementary Fig. 1).

Impact of the observed nonlinear trend on variance

As noted in the introduction, the accelerated historical trend in the
Northwest Atlantic (Fig. 1c) has led to an apparent variance increase
(Fig. 1b). This effect is largely removed after nonlinear detrending
(Fig. 1b). We can use the LIM ensembles to better understand these
results.

First, note that the PDFs determined from the LIM5817 ensemble
are a good fit to the (independently constructed) histograms of
detrended SSTA over both 1958-1987 and 1988-2017 (solid and dotted
lines in bottom panel of Fig. 2d), indicating that the two periods are-
statistically indistinguishable when the trend is removed. Next, the
observed trend component is added back to each LIM5817 ensemble
member, so that the resulting “trend+LIM5817” ensemble now repre-
sents both the trend and the variability during 1958-2017. PDFs are
then determined from the trend+LIM5817 ensembles, separately for
the first half (i.e., 1958-1987) and the second half (i.e., 1988-2017) of
the 60-yr period. By construction, any difference between these two
simulated PDFs is only due to the externally forced trend, since the
dynamical system driving the underlying internal variability is
unchanged (i.e., it is generated by a single LIM, whose ensemble-mean
distribution is shown by the solid line in the bottom panel of Fig. 2d).
The top panel of Fig. 2d shows that the simulated PDFs of the two
periods match the observed PDFs, notably capturing the change
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Fig. 3 | CMIP6 Sea Surface Temperature (SST) trends over the historical period.
a Pattern of the CMIP6 trend mode (Unit: dimensionless) over 1958-2017.

b Regional mean changes derived from CMIP6 (bars), compared with observed
changes (horizontal lines; same as Fig. 2b). Bars are 95% confidence interval of mean
changes from CMIP6 realizations. ¢ Regional trend time series, (top) determined by
applying 60-month moving average to the CMIP6 ensemble mean time series, vs.

1965 1980 1995 2010

(bottom) determined by computing the trend mode for the CMIP6 models.

d Probability distribution functions (PDFs) of Mediterranean SST Anomaly (SSTA)
during 1958-1987 (dashed lines) and during 1988-2017 (solid lines), before (top)
and after (bottom) detrending. Mean PDFs of each CMIP6 model are separately
plotted in a different color. Light (dark) gray dotted lines are PDFs of each CMIP6
realization during 1958-1987 (1988-2017).

between the two periods. This suggests that the accelerating trend was
responsible not only for the overall shift to warmer values but also for
the widening of the PDF. A similar result is seen in other regions with
strong nonlinear trends (e.g., the Mediterranean region, Fig. 2c; see
also Supplementary Fig. 2), while the effect is weaker in regions with
weaker trends (see Supplementary Fig. 2 for other regions).

The CMIP6 nonlinear trend and its effect on variance

To assess how well the observed trend and its impact on the dis-
tributions are reproduced by the CMIP6 historical simulations, we
repeat the analysis of Fig. 2 on the output of 10 models (in total 133
realizations; see Methods) from the CMIP6 set of ensembles (Fig. 3).
Similar to our approach in the observational analysis, we first derive
the trend from the least damped eigenmode of LIMs separately con-
structed from each CMIP6 realization of each model (Supplementary
Fig. 3). The ensemble mean of these trend patterns, in which each
model’s average is first calculated prior to computing the multi-model
ensemble mean, is shown in Fig. 3a. As we found for observations, the
LIM-based trend pattern reproduces the trend pattern determined
instead by using the mean shift between the two periods of the CMIP6
realizations (Supplementary Fig. 4 and bars of Fig. 3b), again demon-
strating that the least damped mode can robustly identify the trend.
The time series associated with the trend pattern (gray line in lower
portion of Fig. 3c) and its expression in the different regions of interest
(lower portion of Fig. 3c) exhibit a nonlinear character as seen in
observations (Fig. 2c). These time series derived from the LIM’s least
damped eigenmode are also consistent with those directly obtained
from the ensemble average of the CMIP6 models (upper portion of

Fig. 3c), which is expected to yield the long-term forcing signal by
averaging out the internal variations of individual ensemble members.
Notably, the regional trends identified from the least damped mode
(lower portion of Fig. 3c) sharply capture the sudden temperature
decrease around 1991, which is likely associated with the Mount
Pinatubo eruption and which is also present, albeit less well-defined, in
the CMIP6 simulations?*°. These results further indicate the robust-
ness of using the LIM’s least damped mode to identify the externally
forced signal, as well as supporting the hypothesis that the long-term
trends over the historical period have been evolving nonlinearly.

The long-term trends simulated in the CMIP6 ensemble are,
overall, similar to the observed trend. However, it is worth noting that
large regions of the North Pacific, especially the Kuroshio-Oyashio
Extension, warmed more substantially over the historical period in the
CMIP6 ensemble-mean (Fig. 3a) than was observed (Fig. 2a). Similarly,
the Nino3.4 region in the tropical Pacific displays a faster warming in
the CMIP6 simulations compared to observations” (Fig. 3b). These
issues may suggest a systematic bias of CMIP6 models®, which is
beyond the scope of this study.

To examine the influence of the nonlinear trend upon the CMIP6
model SST distributions, we choose the Mediterranean region, which
has experienced significant warming both in observations (Fig. 2b, c)
and in the CMIP6 simulations (Fig. 3c). Figure 3d shows the resulting
PDFs derived from each CMIP6 realization (dotted lines) and the
averaged PDFs for each CMIP6 model (dashed and solid lines). As in
observations (Fig. 2d), the accelerating trend in the CMIP6 simulations
leads to both a mean shift and a widening of the distribution. For other
regions with smaller simulated trends, the impact on the distribution is
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Fig. 4 | Changes of detrended Sea Surface Temperature (SST) variance over the
historical period. a Observed and b CMIP6-simulated variance changes from
1958-1987 to 1988-2017, in units of (°C)% Hatched regions indicate locations where
the observed variance changes are significant, i.e., outside the 95% range of var-
iance changes derived from a the LIM5817 ensemble, and b CMIP6. ¢ Probability
Distribution Functions (PDFs) of detrended SST Anomaly (SSTA) during 1958-1987
(gray) and 1988-2017 (orange) in the Kuroshio-Oyashio Extension (KOE) region.

Bars show the histogram of observed detrended SSTA. Solid curves and dotted
lines are the ensemble mean PDFs and 95% confidence interval, respectively,
obtained from LIMs constructed over the two periods separately (“LIM5887” and
“LIM8817”; see Methods). d Variance of detrended SSTA during 1958-1987 (circles)
and during 1988-2017 (triangles) derived from each CMIP6 model in the KOE
region. Upward (downward) triangles represent variance has increased (decreased)
between the two periods.

correspondingly weaker (not shown). This result also suggests that
where the CMIP6 models overestimate the trends, they therefore may
also overestimate changes to the distributions.

Modest changes in internal variability of sea surface
temperature

While the intensifying trend has been shown to contribute to an
apparent increase in variance, it remains possible that the underlying
internal variance could also be changing under anthropogenic forcing,
at least in some regions. To assess such potential changes, we first
determine the “detrended variance” from the observed detrended
SSTA. The resulting difference map between the detrended variance
for the two periods 1958-1987 and 1988-2017 (Fig. 4a) shows notable
increases in the detrended variance within the Nifio 3.4 and the
Northeast Pacific regions and decreases in the Kuroshio-Oyashio
Extension, East China Sea and large regions of the Southern Oceans.
Such variance changes are also reflected in the SSTA distributions,
such as a narrowing of the PDFs from 1958-1987 to 1988-2017 in the
Kuroshio-Oyashio Extension region (histogram bars in Fig. 4c). The
increase in variance in the Northeast Pacific is consistent with the
increase in variance in the central equatorial Pacific seen in Fig. 4a, as
Northeast Pacific MHWs appear to be associated with the occurrence
of Central Pacific El Nifio events®*°. However, the variance decrease in
the KOE region remains difficult to explain.

Next, we assess the significance of the observed changes in
detrended variance, by asking whether they could have occurred by
chance within a statistically stationary system. This question is
addressed by comparing these observed changes against the range of
potential variance changes from the first to second halves of each
realization of the LIM5817 ensemble (see Methods); 95% significance
levels are indicated by hatching in Fig. 4a. Interestingly, in those
regions where high-impact MHWs have occurred (e.g., outlines in
Fig. 4a), changes in the detrended variance are not significant. That is,
these observed variance changes are small enough that they could
have occurred because of random changes in internal variability,

without being associated with a systematic change in variability related
to the external forcing. For example, we know that ENSO variability in
the equatorial Pacific undergoes naturally occurring decadal variations
(e.g., ref. 41). Thus, it is not surprising that the changes in variance in
the tropical Pacific are within the range of internal variability and
cannot be attributed to climate change.

Despite the lack of significance in the variance changes, however,
many aspects of the observed pattern of detrended variance changes
are reproduced by the CMIP6 historical simulations, or at least by the
multi-model ensemble mean. We repeat the above analysis for all the
CMIP6 model ensembles, finding the changes in the detrended var-
iance between period 1958-1987 and 1988-2017 for each CMIP6 rea-
lization (Supplementary Fig. 5). The CMIP6 ensemble mean result
(Fig. 4b) shares some notable features with the observational map in
Fig. 4a, including the detrended variance increase within the Nifio 3.4
region and the decrease in the Kuroshio-Oyashio extension region. The
CMIP6 models also indicate a detrended variance increase in the
northeast Pacific, although much weaker than observed. On the other
hand, the CMIP6 ensemble-mean variance changes differ from the
observations in the North Atlantic and in much of the Southern
Oceans.

These differences may be due to large model spread and low
model resolution of CMIP6. Indeed, several models do not reproduce
the overall observed detrended variance changes. This is illustrated for
the Kuroshio-Oyashio extension region in Fig. 4d. The majority of the
CMIP6 models simulate a decrease in the detrended variance: 6 out of
10 models have decreases, 3 models have almost no changes, and 1
model shows an increase. These inter-model differences as well as
those found in other regions (Supplementary Fig. 5) indicate the
necessity of using many realizations to improve the modeled repre-
sentation of the observed changes, although this does not rule out
model disagreement. These biases between models and observation
may be linked to the underestimated upper-ocean heat flux con-
vergence due to the low model resolution and hence the lack of
resolving mesoscale ocean eddies (e.g., ref. 42, 43).
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Fig. 5| Impact of changes in the trend on Marine Heatwave (MHW) occurrences.
a Northwest Atlantic (NWA) MHW frequencies (events per decade) over a range of
intensities and duration, i.e., Intensity-Duration-Frequency (IDF) plot, during
1958-1987 (first column), 1988-2017 (second column) and their difference (third
column). First/second/third row is derived from observed Sea Surface Temperature
Anomaly (SSTA)/trend+(LIM5887 ensemble, LIM8817 ensemble)/CMIP6 (see
Methods). Dashed lines represent the contour level of 0.1 events (red) or —0.1
events (blue) per decade (i.e., +1 event per century). Black dots in the third column
mark observed values that are 95% significantly different from the climate
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Quantifying the impact of climate change on marine heatwaves
in observations and models

MHWs may be quantified using measures of their intensity and
duration®***, and then the effects of climate change on MHWs may be
assessed by changes in these measures. For example, in the Northwest
Atlantic (top row of Fig. 5a), MHW occurrences during the years
1958-1987 and 1988-2017 are quantified by determining how often
events reaching given intensity and duration thresholds occurred in
each period, with the results displayed as intensity-duration-frequency
(IDF) plots (see ref. 44 and Methods). The frequency of MHW events
for any given threshold value notably increased between the two
periods, i.e., events that rarely occurred during 1958-1987 occurred
substantially more often during 1988-2017.

To examine the global extent of the increases in MHW occur-
rences, we repeat the analysis of Fig. 5a at each ocean grid location, i.e.,
we compute IDFs at each grid point. To condense this analysis into a
single figure, we show results using one representative definition of
MHW events, those that reach at least 20 intensity and persist for at
least 1-month duration (Fig. 5c). Using this representative definition,
we find that the observed MHW frequencies have increased almost
worldwide, especially in the Western Pacific warm pool, Indian Ocean,
and Atlantic.

We next evaluate how well these observed MHW increases are
reproduced in the large climate ensemble of LIM. Recall that, by con-
struction, within our trend+LIM5817 ensemble any statistically sig-
nificant change in MHWs is due only to the externally-forced trend. To
capture changes in MHW statistics induced by significant changes in
the internal variability (i.e., due to changes in the dynamical system),
we construct two distinct LIMs—one from the detrended anomalies of
each 30-year subperiod (referred to as LIM5887 and LIM8817; see
Methods)—and then use each of them to generate 3000-member 30-
year ensembles for each period. We then add the observed trend
component during 1958-1987 (1988-2017) back to each member of
the LIM5887 (LIM8817) ensemble. The resulting “trend + (LIM5887,
LIM8817)” ensemble allows us to assess the influence of climate
change, combining changes in the internal dynamics controlling the
variability (e.g., solid and dotted lines in Fig. 4c) and the externally-
forced trend, on MHW statistics. For example, we find that the
trend + (LIM5887, LIM8817) ensemble can simulate the increased
occurrences of extreme Northwest Atlantic MHW events for a wide
range of intensities and durations (second row of Fig. 5a), similar to the
observed changes (first row) with 95% statistical significance. The
global extent of the observed MHW increases (Fig. 5¢) is also repro-
duced in this LIM ensemble (Fig. 5d) with 95% statistical significance
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Fig. 6 | Impact of changes in the internal (detrended) variability on Marine
Heatwave (MHW) occurrences. a-¢ Same as Fig. 5c-e except that MHWs are
derived from detrended dataset: a observed detrended Sea Surface Temperature
Anomaly (SSTA), b LIM5887 and LIM8817, and ¢ detrended CMIP6. d Same as Fig. 5b
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(only 2% of the ocean area show the observed values outside 95%
ranges of the LIM ensemble).

Similarly, the CMIP6 ensemble can also reproduce the overall
MHW increases, both in the Northwest Atlantic region (third row of
Fig. 5a) and in large regions of the global ocean (Fig. 5e). Note that the
overwarmed CMIP6 ensemble (Fig. 3a) also appear to overestimate the
changes in MHW events, significantly so in the tropical regions (gray
dots of Fig. 5e). Choosing other regions or other pairs of thresholds, to
examine changes in observed MHWs and evaluate how those are
reproduced by the LIM and the CMIP6 ensemble, yields a qualitatively
similar picture (Supplementary Figs. 6-7).

Separating the effects of changes in trend and variability upon
marine heatwave frequency
If we now remove the long-term trend and examine the frequencies of
MHWs from the detrended time series, for instance for the Northwest
Atlantic region, we find that the large increases of MHW occurrences
seen in the last column of Fig. 5a have been reduced to only minor
changes after the trend is removed (last column of Fig. 5b). This is
evident in the observed record, the LIM ensemble and the CMIP6
models. This is also seen globally. That is, the global increase in MHWs
(Fig. 5a—c) is considerably reduced after removing the long-term trend
(Fig. 6a—c), and in some regions MHW occurrences even decrease (e.g.,
Fig. 6d). The comparison of MHW statistics before and after detrend-
ing suggests that the long-term trend is the major contributor to the
increase of MHW occurrences in both observations, LIM and CMIP6
models and may on its own explain most, if not all, global changes in
MHW occurrences.

The trend similarly impacts the frequency of MHW events for the
other regions examined in this study, with the intensity of this effect
related to the strength of the warming (Supplementary Fig. 6). We also

find that if we had only considered detrended variability, changes in
the MHW occurrences would be spatially heterogenous, with increas-
ing (decreasing) variance leading to increasing (decreasing) MHW
frequencies (cf. Figs. 4a with 6a). These MHW changes driven solely by
changes to the internal variability are generally reproduced by the
(LIM5887, LIM8817) ensembles (Fig. 6b), whereas MHWs have changed
only slightly in the CMIP6 multi-model ensemble (less than 1 event
per decade; Fig. 6¢).

Changes in CMIP6 MHW statistics, although small, might have
inter-model differences as was seen for the detrended variance
(Fig. 4d). To examine this, we return to the Kuroshio-Oyashio Exten-
sion and show in Fig. 6e the changes of MHW occurrence in each
CMIP6 model. Results show that the majority of the CMIP6 models
simulate a decrease in MHW occurrences -6 out of 10 models have
decreases, and 4 models are slightly increasing. These inter-model
differences are overall consistent with those shown for the detrended
variance (cf. Figs. 4d with 6e), supporting that the changes in the
detrended variance are linked to changes in MHW occurrence. This
also suggests that an improved model representation through, e.g.,
increasing model resolution, may improve the capture of observed
SST variance and the associated MHW occurrences.

So far, we have analyzed the impact of internal variability on the
MHWs identified from representative thresholds, i.e., 20 intensity and
1-month duration (Fig. 6a-c, e). To show that these are a robust
representation of the internal variability, we examine the MHW fre-
quencies associated with a range of intensities and durations, derived
from the detrended datasets for the KOE region (Fig. 6d). The IDF plots
derived from the observed record show overall decreases of MHW
occurrences, except for small portions of the IDF diagram. The general
decrease of events, as well as the small increase in low intensity events,
are reproduced by the (LIM5887, LIM8817) ensembles and CMIP6.
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Fig. 7| Changes in Marine Heatwave (MHW) occurrences at regions of historical
events, before (circles) and after detrending (triangles). Circles (triangles)
represent increased or decreased MHW frequencies between 1958-1987 and
1988-2017, derived from dataset with the trend (without trend): (top) observed,
(mid) LIM, and (bottom) CMIP6. Note that MHW events are identified based on the
20 intensity and 1 month duration. Qualitatively similar results are found using
other pairs of thresholds to define MHW events (Supplementary Fig. 8).

Similar changes are also seen in other regions with increases or
decreases in MHW frequency generally consistent with the corre-
sponding change in variance (Supplementary Figs. 6-7).

Marine heatwave changes more pronouncedly induced by trend
than by variability

Lastly, we summarize the changes of MHW occurrences induced by the
long-term trend as opposed to those induced by changes to the
internal variability, in regions where historical MHW events occurred.
This is done by quantifying, in each region of interest (as shown in
Fig. 1a), the change in MHW occurrence between 1958-1987 and
1988-2017 (circles in Fig. 7) relative to the changes obtained between
the two detrended periods (triangles).

From the observed record, we find increases of 20 MHW occur-
rences in all regions of interest (positive circles in top panel of Fig. 7),
with the most pronounced increase seen in the Mediterranean,
Northwest Atlantic and Western South Atlantic. These increases are
largely reduced after detrending (the downward changes from circles
to triangles). That difference (the line segment between a circle and a
triangle) thus solely represents the impact of trend on MHW occur-
rences. For example, the increased 26 MHW occurrences in the
Northwest Atlantic (positive circle) can be entirely attributed to the
long-term trend (line segment), as the minimal change in internal
variability has no effect (triangle near 0).

The impact of trend vs. variability on the observed MHWs is
overall reproduced by the LIM ensembles (middle panel of Fig. 7) and
the CMIP6, although CMIP6 attributes almost all changes of MHW
occurrences to the trend at all regions of interest (bottom panel).
Moreover, changes in MHW occurrences induced by changes in
internal variability are overall statistically insignificant, as they are not
significantly different from O (Supplementary Fig. 9). Overall, our

results suggest that the long-term trend is responsible for a large
portion of the increased MHW events, whereas externally-forced
changes to the internal variability is secondary.

Discussion

Recent research has identified many regions worldwide where MHWs
appear to be occurring more frequently and with increased severity.
However, in most regions with historical events, the SST variance has
either stayed relatively constant or even decreased. Although these
increases and decreases in the SST internal variance may eventually be
attributed to climate change as longer data records become available,
at this time results from the LIM and CMIP6 analyses show that these
changes are generally not statistically significant.

Due solely to the influence of these variance changes, the occur-
rence of MHWs would have changed only slightly, with increasing
(decreasing) variance leading to increasing (decreasing) MHW fre-
quencies. Yet instead, we found increasing occurrences of MHWSs over
a wide range of intensity and duration in almost all the regions of
interest. These increases are mainly attributable to the historical trend,
which recently accelerated, shifting the mean background climatology
to become increasingly warmer at a faster rate in most regions. This
intensifying trend has therefore led to both a mean warming effect and
even, in some locations, to an apparent increase of the variance, both
shifting the probability distribution to warmer values and widening it.
The impact of the observed warming trend on MHW frequency either
amplified or offset, respectively, the regional increase or decrease in
SST variance driven by internal variability. The main contribution of
the nonlinearly evolving trend is also evident in large ensembles of LIM
simulations and CMIP6 multi-model realizations.

Still, there are a few regions where SST variance—even relative to
the background trend—has increased over the past 60 years (i.e., in the
Northeast and tropical Pacific). By acting to widen the distribution of
SSTA, the variance increase in these few regions may have driven
increased occurrences of extreme events (e.g., the Northeast Pacific
MHW event during 2013-2015), although even in these cases the
impact of the nonlinear trend may have mattered more.

Although the historical period has experienced a nonlinearly
growing trend and minor changes in internal variability, it remains to
be seen whether such changes will continue in the remaining portion
of the 21st century. For instance, we might in the future experience
an increasing rate of greenhouse gas emissions, causing the non-
linear aspect of the trend as well as its impact on marine extremes to
be more pronounced. In addition to the trend, changes in the climate
system may alter the variability. In a future projection study”,
the variability changes were found to be small and spatially
heterogenous over most of the global ocean; however, in the high-
latitude regions (>60°N) that are seasonally or constantly covered
by ice, the melting of sea ice leads to a large increase in SST varia-
bility in the future, since SSTs are no longer constrained to remain
near the freezing point of sea water. That is, in high-latitude regions,
we might expect that both the warming trend as well as the
increasing variability play an important role in increasing warm
ocean anomalies.

Finally, our findings and analyses highlight the importance of
carefully distinguishing between the long-term warming trend and
externally forced changes in the dynamical system, and their impacts
upon MHWs as well as other climate and marine extremes. Our LIM
diagnostic approach provides a clear path for future assessment of
separating the relative influence of trend and variability on extreme
ocean events.

Methods

Sea surface temperature (SST) and sea surface height (SSH) data
Monthly SSTs from the Hadley Centre Sea Ice and Sea Surface
Temperature (HadISST)?, the Extended Reconstructed Sea Surface
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Table 1| Number of historical runs, and future runs of CMIP6
models analyzed in this study

Model Historical SSP3-7.0
ACCESS-ESM1-5 40 40
CESM2 il &
CanESM5 25 25
EC-Earth3 22 2
EC-Earth3-CC 10 0]
GISS-E2-1-G 12 0
GISS-E2-1-H 10 (0]
INM-CM5-0 10 4
IPSL-CMBA-LR 33 n
MIROC6 50 8
MPI-ESM1-2-HR 10 10
MPI-ESM1-2-LR 30 30
MRI-ESM2-0 10 5
NorCPM1 30 (0]
Total 303 133

Temperature version 5 (ERSSTv5)*, and the Centennial in situ

Observation-Based Estimates (COBE)*®, were used in our analysis.
These SST products were interpolated onto the same grid as the
HadISST dataset (1°x1° spatial resolution), and the averaged SST
products were analyzed, following a previous study®. The monthly
SSHs from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Ocean Reanalysis System 4 (ORAS4)", were analyzed.
The global domain extended from 60°S to 64°N. The temporal range
was for the period 1958-2017. The climatological annual cycle com-
puted from the full length of the historical record at each grid point
was removed to obtain the SST anomaly (SSTA) and SSH anom-
aly (SSHA).

While our study focuses on changes during the historical period of
1958-2017, the mid-point of splitting this period into two halves (i.e.,
1958-1987 and 1988-2017) coincides approximately with the time
when satellites are introduced (around 1980). To assess whether our
results are sensitive to data coverage, we examined the variance
changes during the post-satellite era, by subtracting the SST variance
during 1982-1999 from the SST variance during 2000-2017 (Supple-
mentary Fig. 10). We found that the changes in SST variance during the
post-satellite era were overall consistent with the historical period of
1958-2017 (Fig. 4a), suggesting our key results are not merely due to
changes in data coverage but reflect real observed changes.

In addition, we examined the large climate ensemble of CMIP6*
realizations, which did not assimilate any observations but were con-
trolled by the prescribed external forcing (e.g., greenhouse gases,
aerosols) and climate model dynamics. Assessing the CMIP6 runs
serves as an independent confirmation that our results are not an
artifact of the changes in data coverage associated with the introduc-
tion of satellite data.

Note that CMIP6 historical runs end in 2014. To utilize the CMIP6
realizations, we initially retrieved SSTs and SSHs from all CMIP6
models with more than 10 historical runs for the period between 1955
and 2014. Results based on this period (not shown) are qualitatively
similar to the period 1958-2017. Still, to analyze the same period as we
used for observations, we retrieved the shared socioeconomic path-
way scenario 7.0 (SSP3-7.0) future runs, representing the business-as-
usual future projections. We then concatenated the historical runs
during 1958-2014 with the future runs during 2015-2017, so that we
analyzed CMIP6 1958-2017 data. Each CMIP6 realization had its cli-
matological annual cycle separately determined and removed to
obtain the SSTA and SSHA. Table 1 lists all models analyzed; note that

our analysis is constrained by the available number of future runs,
which is less than historical runs.

Linear Inverse Model (LIM)
The time evolution of a climate state x may often be approximated by
the stochastically forced linear dynamical system,

dx
E—Lx+£ @)

where x(¢) is the climate state, L is a linear dynamical operator, § is a
vector of temporally white noise that may have spatial structure
(determined from a balance condition derived from (1)), and ¢ is time.
Determining (1) from observed covariances results in a linear inverse
model (LIM**). LIMs are typically low-order models, where the state
vector is expressed in a reduced empirical orthogonal function (EOF)
space. In this paper, for the observed LIMs, x(¢) represents the leading
principal components (PCs) of observed SSTA (29 PCs) and reanalysis
SSHA (22 PCs), where the EOFs for each field were separately
determined, explaining 78.6% and 73.7% of each corresponding field’s
total variance. The lag-covariance used to determine the LIM operators
was computed using a training lag of 7, =1 month. We also tested to
make sure the results were not sensitive to this choice, as is generally
done when constructing a LIM. See?*”*°“8 for other details concerning
the LIM and its construction.

Process of identifying the trend from the linear dynamical
operator

Several studies™***> have shown how the externally forced trend is
captured by the least damped eigenmode of L. To identify the trend,
we performed an eigenanalysis on L; that is,

LU=UA 2

where U is the matrix of eigenvectors and 4 is the diagonal matrix of
eigenvalues (4;). V, the eigenvectors of L’s adjoint, is simply deter-
mined by V?'=U"!, such that L"V=VA’, where " is the conjugate
transpose and " is the conjugate. The eigenmodes of L capture lagged
feedbacks between different climate states that evolve over different
time scales. The least damped mode is the mode with the longest
decay time, thus representing the slowest varying component—the
trend; that is, it is associated with the eigenvalue A; with the largest
value of |1/Re(4;)|. The spatial pattern (Fig. 2a) of the least damped
mode (u;) is obtained as the i-th column of U, with its time series (gray
line in Fig. 2c) obtained by vt'x(t), where v; is the i-th column of V.
Thus, we identify the trend component, as the projection
of Xzp(t) = w;vHx(e).

Note that we derive X;x(t) from the observed record as well as
from each of the CMIP6 realizations. To derive the trend for each
CMIP6 realization, we also need to solve the linear operator L sepa-
rately (from 12/6 PCs of SSTA/SSHA of each CMIP realization). The
presented spatial pattern in Figs. 2a and 3a is normalized by its spatial
maximum. The presented time series (the gray line in Fig. 2c and the
gray line in the bottom panel of Fig. 3c) is normalized by its temporal
maximum.

LIM climate simulations

LIM simulations may be generated by integrating Eq. (1) forward in
time, driven by white noise forcing with observationally constrained
spatial structure®. In addition, the remaining variance (i.e., contained
in the unresolved PCs that were not used in LIM construction), deno-
ted as X, is approximated as purely white noise,

dx,

=t 3)
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where the time-varying white noise is simply approximated by
randomly energizing the amplitude of the PCs. See* for details of
incorporating the unresolved PCs to construct an untruncated LIM.

In this study, we constructed the LIM by first determining the
linear dynamical operator using the observational record of the entire
60-year period. We conducted the eigenanalysis on the dynamical
operator, obtained the least damped eigenmode as the LIM trend, and
removed the trend component from the observed anomalies. The
detrended anomalies were then used to construct the LIM for gen-
erating 3000-member ensemble of 60-year-long realizations, repre-
senting the detrended dynamical system of 1958-2017 years, i.e., the
LIM5817 ensemble. Since the ensemble was generated using a dyna-
mical operator that did not discriminate between the 1958-1987 and
1988-2017 periods, differences between the first and second halves of
each 60-year periods can only arise from the system noise, i.e., the
ensemble-mean internal variability of the two periods is unchanged.

To represent the full dynamical system, we added the trend
component back to each LIM5817 ensemble member, i.e., trend
+LIMS5817 ensemble. By construction, any statistically significant dif-
ferences between the two 30-year periods of the trend+LIM5817
ensemble is only due to the externally-forced trend.

We also construct two new LIMs to represent each 30-year period,
i.e., these LIMs do not see the two periods as having equivalent
dynamics. One LIM was constructed using the detrended anomalies of
the 1958-1987 period, with the ensemble generated by it therefore
providing the detrended realizations of the 1958-1987 period, i.e.,
LIM5887 ensemble. Similarly, we constructed the other new LIM using
the detrended anomalies during 1988-2017, with its generated
ensemble denoted as LIM8817 ensemble. The two ensembles repre-
sent the detrended dynamical system of each 30-year period, and any
possible difference between the two ensembles can also reflect sta-
tistically significant changes of the underlying internal variability dur-
ing the two periods. Note that LIM ensembles of this study are
untruncated LIM (see* for details).

MHW frequency

Frequency was determined by calculating the number of events that
exceed (>) a given intensity for a period longer than (>) a given
duration, divided by the total number of years in the observational
record, in units of events per 10 years. The IDF plot was derived from
calculating the frequency for each intensity and duration threshold
pair, including intensities from 0.10 to 3.10 and durations from 1 to
16 months. For the spatial maps of frequency differences, we first
determined the frequency, for each 30 yr period at each location, for
MHW events defined by the 2o °C intensity and 1 month duration
threshold pair, as in a previous study". Then the frequencies of the two
periods were differenced for these global maps.

Significance tests

Multiple significance tests were carried out in this study, including
testing the significance of the mean shifts and the variance changes,
and whether the LIM reproduces the observed SST records. In general,
the process was as follows: we obtained the observed value and
compared that with the range of simulated values provided by the LIM
or the CMIP6 ensembles. If the observed value was within (outside) the
95% LIM or CMIP6 ranges, we determined that as insignificant (sig-
nificant). Details are as follows.

Significance of mean shifts and variance changes

We obtained the observed mean shifts by subtracting the mean of
1958-1987 from the mean of 1988-2017, in the observational dataset.
For each 60-yr LIM5817 ensemble, i.e., alternative 1958-2017 realiza-
tion, we then computed its simulated mean shift. Since we constructed
a3000-member LIM5817 ensemble, we then have 3000 mean changes
at each grid point; that is, 3000 potential changes which can be

compared to the observed value. From these 3000 changes, we
obtained the 2.5% and the 97.5% values, whose bounds represented the
95% confidence interval. These 95% ranges were compared to the
observed mean shifts to determine significance. Results are shown in
Fig. 2b and Supplementary Fig. 1.

A similar process was carried out for testing the significance of the
variance changes (Fig. 4a). We obtained simulated variance changes by
subtracting the variance of the first 30 year from the second in each of
the LIM5817 ensemble and compared their 95% ranges to the observed
detrended variance changes.

We also repeated these significance tests for CMIP6, including
whether the observed mean shifts were within the 95% of the CMIP6
mean shifts, as well as whether the observed variance changes were
within the 95% of the CMIP6 variance changes. Results are shown in
Figs. 3b and 4b.

Reproduction of probability distribution

To show that our LIM ensembles realistically reproduce the observed
record, we computed the PDFs of each LIM ensemble member and
compared them to the observed PDFs. This was first carried out in
the trend+LIM5817 ensemble, to validate that the ensemble is a rea-
listic representation of the observed trend. That is, for each 60-yr
trend+LIM5817 ensemble member, we computed the PDFs of the
simulated 1958-1987 and the PDFs of the simulated 1988-2017. Given
the 3000-member trend+LIM5817 ensemble, we have therefore
3000 PDFs for each period. We then obtained the mean, the 2.5% and
the 97.5% values of each bin of the PDFs. These are the ensemble
mean PDFs and their 95% confidence interval. If the ensemble-mean
PDFs overall overlap with the observed PDFs, within the 95% con-
fidence interval, we consider our LIM ensemble able to track the
observations. Results are shown in Fig. 2d, and in Supplemen-
tary Fig. 2.

A similar process is carried out on the LIM5887 and LIM8817
ensembles, to validate that they realistically capture the internal
variability of each 30-yr period. One example is shown by comparing
the observed and simulated Kuroshio-Oyashio Extension PDFs
(Fig. 4¢). Our result shows the ensemble mean PDFs becoming nar-
rower from 1958-1987 to 1988-2017, consistent with the observed PDF
changes. Other regions also consistently show observed PDFs cap-
tured by these two LIMs (Supplementary Fig. 2).

Reproduction of MHWSs

To show that our LIM ensembles reproduce the MHW statistics of
various intensities and durations, we first computed the observed IDF
plots of the two 30-yr period and their differences at each grid loca-
tion. We then derived the simulated IDF plots and their differences
from each LIM ensemble member, i.e., resulting in 3000 IDF difference
plots at each grid point. These therefore give us the local 2.5% and the
97.5% IDF difference plots. We also focused on a representative pair of
thresholds—20 intensity and 1-month duration—and checked whether
the observed frequency is within or outside the 95% range of LIM
frequency. This was analysed at each grid point, using the trend
+(LIM5887, LIM8817) ensemble, with results shown by the gray dots in
Fig. 5d, and using the LIM5887 and LIM8817 ensemble, shown in
Fig. 6b. We next conducted the analysis on several other pairs of
thresholds to show how our results are not sensitive to the choice of
the representative thresholds (Supplementary Fig. 7). A similar process
was carried out for CMIP6 models, to check whether the observed
frequency is within or outside the 95% range of CMIP6 frequency
(Figs. 5e and 6¢).

Data availability

The observations and reanalyses that support the findings of this study
are publicly available. This includes the HadISST* (https:/www.
metoffice.gov.uk/hadobs/hadisst/), the ERSSTv5* (https:/psl.noaa.
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gov/data/gridded/data.noaa.ersst.v5.html), the COBE* (https://psl.
noaa.gov/data/gridded/data.cobe.html), and the ORAS4* (https://
www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-ocean/ecmwf-
ocean-reanalysis-system-4-oras4.html). CMIP6** multi-model realiza-
tions are publicly available at https://esgf-node.linl.gov/search/cmipé/.
Large LIM ensembles are available by running the MATLAB code pro-
vided at https://github.com/Tongtong-Xu-PSL/LIM or upon request.

Code availability

All analyses were performed using MATLAB. Codes can be accessed at
https://github.com/Tongtong-Xu-PSL/LIM and https://github.com/
Tongtong-Xu-PSL/global-MHW.

References

1.

10.

1.

12.

13.

14.

15.

16.

17.

18.

Hobday, A. J. et al. A hierarchical approach to defining marine
heatwaves. Prog. Oceanogr. 141, 227-238 (2016).

Hobday, A. J. et al. Categorizing and naming MARINE HEATWAVES.
Oceanography 31, 162-173 (2018).

Oliver E. C. J. et al. Marine Heatwaves. Ann. Rev. Marine Sci.

13 (2021).

Frolicher, T. L. & Laufkotter, C. Emerging risks from marine heat
waves. Nat. Commun. 9, 4 (2018).

Holbrook N. J. et al. Keeping pace with marine heatwaves. Nat. Rev.
Earth Environ. 1, 482-493 (2020).

Oliver, E. C. J. et al. Longer and more frequent marine heatwaves
over the past century. Nat. Commun. 9, 12 (2018).

Laufkétter, C., Zscheischler, J. & Frélicher, T. L. High-impact marine
heatwaves attributable to human-induced global warming. Science
369, 1621 (2020).

Stocker T. Climate change 2013: the physical science basis: Working
Group | contribution to the Fifth assessment report of the Inter-
governmental Panel on Climate Change. Cambridge university
press, 2014.

Masson-Delmotte V. et al. Climate change 2021: the physical sci-
ence basis. Contribution of working group I to the sixth assessment
report of the intergovernmental panel on climate change 2021: 2.
Smale, D. A. et al. Marine heatwaves threaten global biodiversity
and the provision of ecosystem services. Nat. Clim. Change 9,
306 (2019).

Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under
global warming. Nature 560, 360 (2018).

Oliver E. C. J. et al. Projected marine heatwaves in the 21st
century and the potential for ecological impact. Front. Marine Sci.
6 (2019).

Alexander, M. A., Shin, S.-I. & Battisti, D. S. The influence of the
trend, basin interactions, and ocean dynamics on Tropical Ocean
Prediction. Geophys. Res. Lett. 49, e2021GL096120 (2022).

Wills, R. C., Schneider, T., Wallace, J. M., Battisti, D. S. & Hartmann,
D. L. Disentangling global warming, multidecadal variability, and El
Nifo in pacific temperatures. Geophys. Res. Lett. 45,

2487-2496 (2018).

Alexander M. A. et al. Projected sea surface temperatures over the
21st century: Changes in the mean, variability and extremes for
large marine ecosystem regions of Northern Oceans. Elementa-Sci
Anthrop. 6 (2018).

Oliver, E. C. J. Mean warming not variability drives marine heatwave
trends. Clim. Dyn. 53, 1653-1659 (2019).

Hartmann D. L. et al. Observations: atmosphere and surface. Cli-
mate change 2013 the physical science basis: Working group |
contribution to the fifth assessment report of the intergovernmental
panel on climate change. Cambridge University Press, 2013, pp
159-254.

Seidel, D. J. & Lanzante, J. R. An assessment of three alternatives to
linear trends for characterizing global atmospheric temperature
changes. J. Geophys. Res. Atmosph. 109, D14108 (2004).

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Wu, L. et al. Enhanced warming over the global subtropical western
boundary currents. Nat. Clim. Change 2, 161-166 (2012).

Jacox, M. G. Ocean science marine heatwaves in a changing cli-
mate. Nature 571, 485-487 (2019).

Rayner N. A. et al. Global analyses of sea surface temperature, sea
ice, and night marine air temperature since the late nineteenth
century. J. Geophys. Res.-Atmosph. 108, 4407 (2003).

Eyring, V. et al. Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization.
Geosci. Model Dev. 9, 1937-1958 (2016).

Penland, C. & Matrosova, L. A balance condition for stochastic
numerical-models with application to the El-Nino-Southern Oscil-
lation. J. Clim. 7, 1352-1372 (1994).

Penland, C. & Sardeshmukh, P. D. The optimal-growth of

tropical Sea-surface temperature anomalies. j. clim. 8,

1999-2024 (1995).

Dias, D. F., Subramanian, A., Zanna, L. & Miller, A. J. Remote and
local influences in forecasting Pacific SST: a linear inverse model
and a multimodel ensemble study. Clim. Dyn. 52, 3183-3201(2019).
Newman, M. & Sardeshmukh, P. D. Are we near the predictability
limit of tropical Indo-Pacific sea surface temperatures? Geophys.
Res. Lett. 44, 8520-8529 (2017).

Shin, S. I, Newman, M. Seasonal predictability of global and north
american coastal sea surface temperature and height anomalies.
Geophys. Res. Lett. 48, €2020GL091886 (2021).

Capotondi, A. & Sardeshmukh, P. D. Is El Nifo really changing?
Geophys. Res. Lett. 44, 8548-8556 (2017).

Ault, T., Deser, C., Newman, M. & Emile-Geay, J. Characterizing
decadal to centennial variability in the equatorial Pacific during the
last millennium. Geophys. Res. Lett. 40, 3450-3456 (2013).

Xu, T., Newman, M., Capotondi, A., Di & Lorenzo, E. The continuum
of northeast pacific marine heatwaves and their relationship to the
tropical pacific. Geophys. Res. Lett. 48, 2020GL0O90661 (2021).
Newman, M. An empirical benchmark for decadal forecasts of
global surface temperature anomalies. J. Clim. 26,

5260-5269 (2013).

Frankignoul, C., Gastineau, G. & Kwon, Y. O. Estimation of the SST
response to anthropogenic and external forcing and its impact on
the Atlantic multidecadal oscillation and the Pacific Decadal
Oscillation. J. Clim. 30, 9871-9895 (2017).

Belkin, I. M. Rapid warming of large marine ecosystems. Prog.
Oceanogr. 81, 207-213 (2009).

Lorenzo E. D. et al. Modes and mechanisms of pacific decadal-scale
variability. Ann. Rev. Marine Sci. 15, https://doi.org/10.1146/
annurev-marine-040422-084555 (2022).

Solomon, A. & Newman, M. Reconciling disparate twentieth-
century Indo-Pacific ocean temperature trends in the instrumental
record. Nat. Clim. Change 2, 691-699 (2012).

Rieger, L. A. et al. Quantifying CanESM5 and EAMV1 sensitivities to
Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment.
Geosci. Model Dev. 13, 4831-4843 (2020).

Power, S. et al. Decadal climate variability in the tropical Pacific:
Characteristics, causes, predictability, and prospects. Science 374,
eaay9165 (2021).

Seager, R. et al. Strengthening tropical Pacific zonal sea surface
temperature gradient consistent with rising greenhouse gases. Nat.
Clim. Change 9, 517-522 (2019).

Capotondi, A., Newman, M., Xu, T. & Di Lorenzo, E. An optimal
precursor of Northeast Pacific Marine heatwaves and Central Pacific
El Nifio events. Geophys. Res. Lett. 49, e2021GL0O97350 (2022).
Capotondi, A., Sardeshmukh, P. D., Di Lorenzo, E., Subramanian, A.
C. & Miller, A. J. Predictability of US West Coast Ocean Tempera-
tures is not solely due to ENSO. Sci. Rep. 9, 10 (2019).

Wittenberg, A. T. Are historical records sufficient to constrain ENSO
simulations? Geophys. Res. Lett. 36, 12 (2009).

Nature Communications | (2022)13:7396

n



Article

https://doi.org/10.1038/s41467-022-34934-x

42. Kirtman, B. P. et al. Impact of ocean model resolution on CCSM
climate simulations. Clim. Dyn. 39, 1303-1328 (2012).

43. Chang, P. et al. An unprecedented set of high-resolution earth
system simulations for understanding multiscale interactions in
climate variability and change. J. Adv. Model Earth Sy 12,
€2020MS002298 (2020).

44. Scannell, H. A., Pershing, A. J., Alexander, M. A., Thomas, A. C. &
Mills, K. E. Frequency of marine heatwaves in the North Atlantic and
North Pacific since 1950. Geophys. Res. Lett. 43, 2069-2076 (2016).

45. Huang, B. et al. NOAA extended reconstructed sea surface tem-
perature (ERSST), version 5. NOAA Natl Cent. Environ. Inf. 30,
8179-8205 (2017).

46. Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective ana-
lyses of sea-surface temperature and marine meteorological vari-
ables for the 20th century using ICOADS and the Kobe collection.
Int. J. Climatol.: A J. R. Meteorological Soc. 25, 865-879 (2005).

47. Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the
ECMWF ocean reanalysis system ORASA4. Q J. R. Meteor Soc. 139,
132-1161 (2013).

48. Newman, M., Alexander, M. A. & Scott, J. D. An empirical model of
tropical ocean dynamics. Clim. Dyn. 37, 1823-1841 (2011).

49. ZhaoY., Newman M., Capotondi A., Di Lorenzo E., Sun D. Removing
the effects of tropical dynamics from north pacific climate varia-
bility. J. Clim. 1-49 (2021).

50. Saranya, J. S., Roxy, M. K., Dasgupta, P. & Anand, A. Genesis and
trends in marine heatwaves over the Tropical Indian Ocean and
their interaction with the indian summer monsoon. J. Geophys. Res.:
Oceans 127, €2021JC017427 (2022).

51. Gao, G. et al. Drivers of Marine Heatwaves in the East China Sea and
the South Yellow Sea in three consecutive summers during
2016-2018. J. Geophys. Res.: Oceans 125, €2020JC016518 (2020).

52. Tan, H. J. & Cai, R. S. What caused the record-breaking warming in
East China Seas during August 2016? Atmos. Sci. Lett. 19, 8 (2018).

53. Miyama T., Minobe S., Goto H. Marine heatwave of sea surface
temperature of the oyashio region in summer in 2010-2016. Front.
Marine Sci. 7 (2021).

54. Du, Y., Feng, M., Xu, Z., Yin, B. & Hobday, A. J. Summer marine
heatwaves in the Kuroshio-Oyashio extension region. Remote Sens-
Basel 14, 2980 (2022).

Acknowledgements

T.X. was funded by the NOAA Physical Sciences Laboratory
through National Research Council (NRC) Research Associateship
Programs. M.N., E.D.L., and S.S. were funded by Department of
Energy (grant # 0000238382). A.C. was supported by the NOAA

Climate Program Office Modeling, Analysis, Prediction and Projection
(MAPP) Program.

Author contributions

M.N. and T.X. conceived the study. T.X. performed the analysis. E.D.L.,
M.N., A.C. and T.X. contributed to the design of the study. T.X., M.N.,
A.C., S.S., E.D.L., M.A. contributed to the interpretation and presentation
of results, and writing and revision of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34934-x.

Correspondence and requests for materials should be addressed to
Tongtong Xu.

Peer review information Nature Communications thanks Kay McMoni-
gal and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Nature Communications | (2022)13:7396

12



