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ships across the evolutionary history of a group of organisms. Unfortunately,
most existing methods fail to accommodate high-dimensional data with dozens
or even thousands of observations per taxon. Phylogenetic factor analysis of-
fers a solution to the challenge of dimensionality. However, scientists seeking
to employ this modelling framework confront numerous modelling and imple-
mentation decisions, the details of which pose computational and replicability

challenges.

. We develop new inference techniques that increase both the computational

efficiency and modelling flexibility of phylogenetic factor analysis. To facilitate
adoption of these new methods, we present a practical analysis plan that guides
researchers through the web of complex modelling decisions. We codify this
analysis plan in an automated pipeline that distils the potentially overwhelming

array of decisions into a small handful of (typically binary) choices.

. We demonstrate the utility of these methods and analysis plan in four real-world

problems of varying scales. Specifically, we study floral phenotype and pollina-
tion in columbines, domestication in industrial yeast, life history in mammals and

brain morphology in New World monkeys.

. General and impactful community employment of these methods requires

a data scientific analysis plan that balances flexibility, speed and ease of use,
while minimizing model and algorithm tuning. Even in the presence of non-trivial
phylogenetic model constraints, we show that one may analytically address la-

tent factor uncertainty in a way that (a) aids model flexibility, (b) accelerates
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1 | INTRODUCTION

Biological phenotypes are the result of numerous evolutionary
forces acting in complex and often conflicting ways throughout an
organism's evolutionary history. Phylogenetic comparative methods
seek to untangle this web of selective pressures and elucidate the
forces that have shaped organisms over time. As implied by their
name, these methods compare phenotypes across numerous bi-
ological taxa connected by a phylogenetic tree that captures their
shared evolutionary history. Accounting for shared evolutionary
history via the phylogeny is necessary to avoid biased inference,
as this shared history implies phenotypes are non-independent
across taxa. Statistical models that inappropriately ignore this de-
pendence can identify spurious associations between phenotypes
(Felsenstein, 1985). However, accounting for these relationships be-
tween taxa poses challenges to statistical inference.

Starting with Felsenstein (1985), there has been much work devel-
oping computationally efficient phylogenetic comparative methods
(see Rohlf, 2001; Revell and Harmon, 2008; Pybus et al., 2012; Ho
and Ané, 2014). While methods development has typically focused
on scaling inference to large trees, these methods struggle to ac-
commodate data with a large number of traits or high-dimensional
phenotypes. The computational complexity (i.e. run time) of most
approaches scales quadratically or cubically with the number of
traits, making inference intractable as the number of traits increases.
Additionally, methods that estimate the evolutionary correlation
structure between traits are difficult to interpret for datasets with
high-dimensional phenotypes, as the number of pairwise correlations

requiring interpretation scales quadratically with the number of traits.

1.1 | Why phylogenetic factor analysis?

Phylogenetic factor analysis (PFA, Tolkoff et al., 2018) provides
an all-in-one approach to high-dimensional comparative analyses
that simultaneously simplify complex data via dimension reduc-
tion, similar to phylogenetic principal component analysis (pPCA,
Revell, 2009), and statistically evaluates evolutionary correlations
between groups of phenotypes, as with phylogenetic independent
contrasts (Felsenstein, 1985). In Section 6.1, for example, we use
PFA to understand the relationship between 11 floral phenotypes
and pollinator species in columbines. We identify two axes along
which floral phenotypes evolve: a first differentiating hummingbird

computation (by as much as 500-fold) and (c) decreases required tuning. These
efforts coalesce to create an accessible Bayesian approach to high-dimensional

phylogenetic comparative methods on large trees.

Bayesian inference, BEAST, latent factor model, Geodesic Hamiltonian Monte Carlo,
phylogenetic comparative methods, Stiefel manifold

pollination from hawk moth pollination and a second capturing phe-
notypes differentiating bumblebee pollination from the latter two
pollination strategies. Similarly, in Section 6.2, we explore evolu-
tionary relationships between 82 phenotypes of industrial yeast:
growth rates under 62 different stress conditions, production of 16
metabolites and 4 metrics related to reproduction. In this example,
we identify a group of phenotypes characterizing the early domes-
tication of beer yeast. Additionally, PFA allows for flexible model
specifications. For example, in Section 6.3, we study the evolution
of life-history strategies in mammals. We structure the PFA model
to isolate the influence of a particular trait (body size) so that we can
infer size-independent patterns of life-history evolution. Finally, as
with pPCA, researchers can employ PFA as a descriptive technique
useful for identifying and visualizing low-dimensional structure in
high-dimensional data (see Section 6.4 for an example of this with
New World monkey brain shape). Unlike pPCA, however, Bayesian
PFA incorporates uncertainty into the loadings (the analogues of the

pPCA weights) and factors (the analogues of the pPCA scores).

1.2 | Statistical developments in high-dimensional
trait analyses

As the primary motivation of PFA is analysing high-dimensional
trait data, we briefly discuss existing methods that deal with the
computational and interpretive burden of high-dimensional pheno-
types. As mentioned above, pPCA (Revell, 2009) is one such solu-
tion that constructs a low-dimensional, phylogenetically informed
summary of the relationships between traits. More recently, several
distance-based methods have been developed by Adams (2014a);
Adams (2014b); Adams (2014c) to study phylogenetic signal, high-
dimensional phylogenetic regression and evolutionary rates, re-
spectively. While these methods are statistically efficient for
high-dimensional phenotypes, they rely on operations that scale
cubically with the number of taxa and may struggle computationally
with very large trees or in cases where they must be applied over
many large trees. Additionally, existing implementations of pPCA
and the Adams (2014a); Adams (2014b); Adams (2014c) distance-
based methods do not readily accommodate missing data, a com-
mon scourge in many relevant datasets. PFA (Tolkoff et al., 2018)
adapts the Bayesian latent factor model of Aguilar and West (2000)
to the phylogenetic context. Like pPCA, PFA is a linear dimension
reduction approach that assumes the P-dimensional data arise from
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K latent factors that evolve independently along a phylogenetic tree.
Unlike pPCA, PFA readily accommodates missing data without data
imputation or augmentation. Additionally, PFA fits seamlessly into
Bayesian phylogenetic inference and estimates the uncertainty of
the influence of a particular factor on a particular trait. However, the
inference regime proposed by Tolkoff et al. (2018) scales quadrati-
cally with the number of taxa and is intractable for large trees.
Finally, Clavel et al. (2019) propose a penalized likelihood frame-
work for studying high-dimensional phenotypes. While this pro-
cedure involves an operation that scales quadratically in number
of taxa, the rate-limiting calculations scale linearly in the number
of taxa but cubically in the number of traits. Nevertheless, Clavel
et al. (2019) demonstrate success handling datasets with more than a
thousand traits. While PFA reduces the size of the parameter space
by assuming the between-trait covariance is low rank, the penalized
likelihood approach of Clavel et al. (2019) achieves a similar goal by
assuming a priori that relatively few of the between-trait covariances
are non-zero. The specific implementations also differ in that Clavel
etal. (2019) rely on maximum likelihood inference while our work here

and Tolkoff et al. (2018) approach PFA from a Bayesian perspective.

1.3 | A new approach to PFA

We propose two new PFA inference regimes that each scale linearly
with both the number of traits P and the number of taxa N. While Tolkoff
et al. (2018) rely on data augmentation, our new methods rely on a
novel likelihood-calculation algorithm that analytically integrates out
the latent factors. We also address two other shortcomings of PFA and
latent factor models generally. First, Tolkoff et al. (2018) constrain the
factor loadings matrix to be upper triangular, which induces an implicit
ordering to the phenotypes. Specifically, the first trait is influenced only
by the first factor, the second trait is influenced only by the first two
factors, etc. until the Kth trait and beyond which are influenced by all
K factors (see Table 1 for an example). As justifying a specific order-
ing of the phenotypes a priori can be difficult, we extend an alterna-
tive constraint proposed by Holbrook et al. (2016) that eliminates such
ordering. Second, a common challenge in exploratory factor analysis
generally is determining an appropriate number of factors. As such, we
implement a cross-validation model selection procedure that identifies
the number of factors that confers the best predictive performance.
To facilitate use among researchers seeking to employ these
methods, we develop an analysis plan with practical guidance on the

most significant modelling and inference decisions. We codify this

TABLE 1 Example of how the ordering
of three hypothetical traits (A, B and C)
influences results in a simple two-factor
model under the assumptions made by
Tolkoff et al. (2018)

First factor

Second factor

plan in the Julia package PhylogeneticFactorAnalysis.jl, which uses
relatively simple instructions to automatically perform model selec-
tion and run more complex analyses in the Bayesian phylogenetic
inference software BEAST (Suchard et al., 2018).

For clarity, we emphasize which methods below are com-
pletely new statistical innovations and which are novel applications
of previously developed statistical practices. The calculations in
Sections 3.1.2 and 3.2.1that allow inference of the loadings without
conditioning on the latent factors are novel, and we are unaware of
any similar work in the statistics literature. The fast likelihood calcula-
tions in Section 2.1.1 are based on earlier work by Hassler et al. (2020)
but require non-trivial adjustment for application to this context (see
Section S1). Finally, the modelling decisions described in Section 2.2
and inference techniques described in Sections 3.1.1,3.1.3 and 3.2
are previously developed statistical procedures that find novel appli-

cation to phylogenetic comparative methods here.

1.4 | Brief overview

PFA allows researchers to identify high-dimensional patterns of trait
variation using a model that reduces the computational and interpre-
tive burden of high-dimensional analyses. We begin by specifying the
technical details of the PFA model in Section 2. Intuitively, PFA assumes
that the evolution of high-dimensional trait data can be approximated
by the evolution of some small number of latent (unobserved) factors,
with each of these latent factors influencing the observed traits in some
estimable way. In Section 3, we present the technical details of several
approaches to statistical inference under this model, and in Section 4
we compare the computational efficiency of these various approaches.
As we recognize that researchers seeking to use these methods face an
array of technical modelling and inference decisions, we devote Section 5
to practical guidance on how to make these decisions. Finally, in Section

6, we demonstrate the utility of PFA on four real-world examples.

2 | PHYLOGENETIC LATENT FACTOR
MODEL

We approach inference from a Bayesian perspective and propose two
statistical models which share a likelihood but have distinct priors. As we
discuss below, each model has advantages under different circumstances,
and allowing researchers to choose a model (with our guidance) offers

maximum flexibility while keeping modelling decisions to a minimum.

Trait order 1: A, B, C Trait order 2: B, A, C

Captures relationships of trait A
with traits Band C

Captures relationships of
trait B with traits A
and C

Captures relationships between Captures relationships
traits B and C independent between traits A and C
of A independent of B
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2.1 | Likelihood

Both statistical models share the same latent factor likelihood intro-
duced by Tolkoff et al. (2018). This likelihood assumes the N x P trait
dataY = (yq, ...,yN)t arise from N x K latent factors F = (fy, ...,fN)t via
the linear transformation Y = FL + ¢, where L is a K x P loadings ma-
trix that must be inferred and e ~ MN(0, IN,A‘l) is matrix-normally
distributed with mean 0, between row variance I, and diagonal be-
tween column precision A = diag[Ay, ..., 4p]. The latent factors F arise
from K-independent Brownian diffusion processes on the phyloge-
netic tree F. The tree F is rooted and bifurcating with degree-two
root node v,y _;, degree-three internal nodes {vy,1,...,vay_»} and
degree-one leaf nodes {vi,...,vy}. Under the Brownian diffusion
model, all internal and tip factors are normally distributed as
f; ~ N (fa, tilk ). where f . are the factors of the parent of node v,
and t; is the distance (time) between nodes Vpagy @nd v;. Following

from Pybus et al. (2012), we assume the ancestral root traits
fon_1~ N(ﬂo, lIK>, where kg is some (typically small) predeter-
Ko

mined prior sample size. This construction implies the tip factors are
jointly matrix-normally distributed as F ~ MN(lNuof,‘I’ + 1y, |,<),
0

where 1 is an N-vector of ones, Jy = 1N1f\, and ¥ is the standard
variance-covariance (VCV) representation of the phylogeny F.
Specifically, the diagonal elements ¥;; are the sum of the edge lengths
connecting v; to the root v,y _4. The off-diagonal elements ¥; are the
total amount of shared evolutionary history or time from the most

recent common ancestor of v; and v; to the root node vy _;.

Given this model, the vectorized data vec(Y) are multivariate nor-
mally distributed as

vec(Y) | L,A,F~j\/(vec(1Nyg),LtL® [T+K1JN] +A’1®IN>, (1)
0

where ® is the Kronecker product operator. Computing the like-
lihood in this form, however, requires inverting the NP xNP
-dimensional variance matrix, which has computational complexity
O(N3P®). Tolkoff et al. (2018) avoid this by treating the latent fac-
tors F as model parameters that they integrate out via Markov
chain Monte Carlo (MCMC) simulation. This augmented likelihood
pY,F | LA F)=pY | LAFpF | F)isfareasier to compute,
but sampling from the full conditional distribution of F (i.e. the pos-
terior distribution of F conditional on the data and all other model
parameters) as proposed by Tolkoff et al. (2018) scales quadrati-
cally with the size of the phylogenetic tree and is intractable for
big-N.

2.1.1 | Fast likelihood calculation
To avoid costly data augmentation, we adapt the likelihood-

computation algorithm independently developed by Bastide
et al. (2018), Mitov et al. (2020) and Hassler et al. (2020). This

algorithm analytically integrates out latent traits (in our case factors)
and missing data to compute the likelihood P(YObS | LyAyJ\f) of the
observed data Y in ©(NPK? + NK®) via a post-order traversal of
the tree (i.e. computations start at the tips and are carried up the
tree to the root). This procedure naturally accommodates missing
data assuming an ignorable missing data mechanism (Rubin, 1976).
We also utilize a more numerically stable modification of this post-
order algorithm proposed by Bastide et al. (2021). We detail these

calculations in Section S1.

2.1.2 | Loadings identifiability

A major challenge in latent factor models generally is the non-
identifiability of the loadings matrix L (see Shapiro, 1985). In sta-
tistical models, non-identifiability occurs when there are multiple
parameter values that result in the same probability density over the
data. In these cases, inference procedures cannot distinguish be-
tween the equally valid parameter values. This lack of identifiability
in PFA stems from the fact that the likelihood as defined in Equation 1
depends only on L'L rather than L itself. As such, for any K x K ortho-
normal matrix Q (i.e. Q' Q= 1), p(Y | L,..)=pY | QL,...) because
(QL)'(QL) = L'L. This identifiability problem inspires our choice of
priors below.

2.2 | Priors

We assume the diagonal precisions 4; ~ Gamma(aA, bA)forj =1,..P
(shape/rate parameterization). For the loadingsL = {Z);), we propose
two different priors. Each prior on L admits a different inference re-
gime for sampling from L which, in turn, have their own strengths

and weaknesses that we discuss in Section 3.

2.2.1 | Independent Gaussian priors on the
loadings L

The standard assumption in Bayesian latent factor models is that
each element of the loadings #; i'i'~d'/¢/(0, 62), where typically 62 = 1.
As this prior is also invariant with respect to orthogonal rotations,
additional constraints are required for posterior identifiability.
One solution is to assume certain elements of the loadings matrix
L (typically those below the diagonal) are fixed at zero (Geweke and
Zhou, 1996; Aguilar and West, 2000). This approach solves the iden-
tifiability problem, but it induces an implicit ordering to the data (see
Table 1). While this ordering may be well informed in some cases,
there is typically no principled way to choose such an ordering a
priori.

An alternative to the sparsity constraint is to assume that the
loadings matrix has rows that (a) are orthogonal and (b) have decreas-
ing norms (Holbrook et al., 2016). This constraint does not require
any a priori ordering of the traits. However, it does require sampling
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from the space of orthogonal matrices, which is a notoriously chal-
lenging problem (see Hoff, 2009; Byrne and Girolami, 2013; Jauch
et al., 2021; Pourzanjani et al., 2021). We address this challenge via
post-processing in Section 3.1.3.

2.2.2 | Orthogonal shrinkage prior

While post-processing to orthogonality is often sufficient, we find
in practice that the loadings may be only loosely identifiable with
this procedure in small-N problems. As such, we seek an alternative
prior that enforces the orthogonality constraint directly. Following
from Holbrook et al. (2017), we decompose the loadings L =XV
where X = diag[c] is a K x K diagonal matrix whose diagonals ¢ have
descending absolute values and V is a Kx P orthonormal matrix
(i.e. VVi = lx). We assume V!is uniformly distributed over the Stiefel
manifold VK(RP) (i.e. the space of P x K orthonormal matrices). For
the scale component X = diag[oy, ..., 6k], we assume a multiplicative
gamma prior inspired by Bhattacharya and Dunson (2011):

o ~N (0,7 1) for k=1,...,K, where
K

T = H v, and (2)

1
v, ~Gamma(a,,b,) for £=1,... K.

For # > 1, we constrain the prior shape a, and rate b, such thata, > b,
(i.e. [E[vf] > 1). This constraint implies that the 7, are (stochastically)
increasing with k, which results in scale parameters ¢, with (stochasti-
cally) decreasing magnitudes.

This prior induces posterior identifiability, as it is not invari-
ant under rotations of the loadings. However, in some cases, we
find that this prior does not induce sufficient identifiability in
practice, particularly when K is relatively large (i.e. > 5). For these
cases, we multiply the joint prior on ¥ by an indicator function
1|oy| < a|oy_4| for k=2,...,K}. Setting « < 1 forces spacing be-
tween the diagonals of X, which results in more identifiable posteriors.

3 | INFERENCE

Our Bayesian inference regime seeks to approximate the posterior
distribution of the parameters of scientific interest via MCMC sim-
ulation. We typically use molecular sequence data S to simultane-
ously infer the factor model parameters and phylogenetic tree by

approximating
p(LAF | Y. S)xp(Y™ | LAF)oF.SpLp@),  (3)

where the model of sequence evolution P(F,S) is developed else-
where (see Suchard et al., 2018). For cases where we lack se-
quence data or F is too large to infer efficiently, we simply fix the

tree F.

3.1 | Loadings under the i.i.d. Gaussian prior

We propose two different samplers to draw from the full condi-
tional distribution of the loadings L under the i.i.d. Gaussian prior
from Section 2.2.1. The first relies on the Gibbs sampler used by
Tolkoff et al. (2018), where we sample fromL | Y°*,F,A. The sec-
ond avoids data augmentation and can sample directly from the
full conditional distributionL | Y°bs A F without conditioning on

the latent factorsF.

3.1.1 | Gibbs sampler with data augmentation

Tolkoff et al. (2018) use the conjugate Gibbs sampler of Lopes and
West (2004) to sample from L | Y°°,F,A. As this sampler condi-
tions on the latent factors F, Tolkoff et al. (2018) simultaneously
infer the factors by sequentially drawing from f; | F,, Y™, LA, F
fori=1,...,N, where F/,- represents all factors except f;. As sampling
f; for all N taxa requires O(NZKZ) work, this procedure quickly be-
comes intractable with increasing taxa.

Rather than relying on this per-taxon sampling scheme, we
employ the pre-order data augmentation algorithm of Hassler
et al. (2020) that uses statistics from the post-order likelihood
computation to draw jointly from F | Y°® L A, F in O(NK?®) via
a single pre-order traversal of the tree (see Section S2.1 for de-
tails). After sampling from F | Y°bs L A, F, we can draw directly
from L | Yo F A using the procedure developed by Lopes and
West (2004) with computational complexity (9(NPK2) (see Section
$2.2 for details).

3.1.2 | Hamiltonian Monte Carlo sampler

We also propose an alternative Hamiltonian Monte Carlo (HMC;
Neal, 2010) sampler for the loadings that does not require data
augmentation. Intuitively, HMC (a form of MCMC) treats param-
eter values as the position of a particle in a landscape informed
by the posterior distribution. Parameter proposals are the end-
point of a trajectory initiated by ‘kicking’ the particle and al-
lowing it to traverse this landscape according to Hamiltonian
dynamics for a pre-determined amount of time. As the param-
eter trajectories are informed by the geometry of the posterior,
HMC tends to propose parameter updates that are both rela-
tively far away from the current position and have high accept-
ance probabilities.

While we cannot compute these continuous trajectories
analytically, we can approximate them numerically. Each trajec-
tory approximation, however, requires numerous gradient
calculations, and we must efficiently compute the gradient
V,_Iogp(L | Y"b“,A,P>=V,_Iogp<Y°bs | L,A,F‘)+V,_Iogp(L) to ef-
fectively employ HMC to update the loadings L. As we assume each
element of the loadings are a priori i.i.d. N'(0, 1), the gradient of the
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f)
log-prior Vilog p(L) can be computed simply as Ebg )= —7y for
j=1,...Pk=1..K
As computing VLIogp(Y‘Jbs | L,A,F) directly via Equation 1

scales (9(N3P3) and is intractable for most problems, we use the
highly structured nature of the phylogeny to compute this gradient
in O(NPK? + NK?). We calculate the gradient of the likelihood with
respect to each column of the loadings ¢; individually to accommo-

date variation in the missing data structure across traits.

v, log p(Y"hs I LA, P) =
HE[FIY L APy - 4E[FSF Y, LA P2, @)

where y}“bs’ is the jth column of Y°* and 8 = diaglsy, ..., ;] is a diago-
nal matrix of observed data indicators (i.e. §; = 1if y; is observed and O
otherwise). Note that these calculations rely only on the conditional
mean and variance of the factors, not the factors themselves. We com-
pute the expectations using statistics from the post-order likelihood
calculation (see Section S1) in a pre-order tree traversal (Bastide
et al., 2018; Fisher et al., 2020) that takes (‘)(NK3) additional time. See

Section S3 for detailed calculations.

3.1.3 | Orthogonality constraint and post-
processing

While both the Gibbs and HMC samplers above can enforce the struc-
tured sparsity constraint, neither can enforce the orthogonality constraint
directly. However, as both the likelihood and i.i.d. prior are invariant with
respect to orthonormal rotations of L, applying such a rotation to all poste-
rior samples via post-processing results in a valid posterior. We can easily
rotate the loadings to have orthogonal rows with descending norms via

singular value decomposition (see Section S4 for details).

3.2 | Loadings under the orthogonal
shrinkage prior

Both samplers above are incompatible with the orthogonal shrinkage
prior from Section 2.2.2 as (a) they cannot enforce the orthogonality
constraint directly and (b) post-processing is invalid because the prior
is not rotationally invariant. Therefore, we sample directly from the full
conditional distributions of both X and V rather than their productL.

3.21 | Geodesic HMC sampler on the orthonormal
component V

Requiring V! to be orthonormal allows us to employ existing tech-
niques for sampling from the Stiefel manifold (i.e. the space of ortho-
normal matrices). Geodesic HMC (Byrne and Girolami, 2013) uses
the same fundamental principles of standard HMC, but progresses
parameters along geodesics on manifolds (e.g. an arc on a sphere)
rather than through Euclidean space. This procedure also relies on

the gradient of the log-posterior with respect to the parameter of
interest. As such, to efficiently employ geodesic HMC to update the

orthonormal matrix V, we must efficiently compute the gradient
Vylog p(V | YOO, 2 A, 7’) =Vylog p(Y‘Jbs |V,Z,A, F) +Vylogp(V). (5)

As noted in Section 2.2.2, we place a uniform prior on V and can there-
foreignoreVylog p(V).Usingour calculationsforV log p<Y°bs | L, A,F)

from Section 3.1.2, the chain rule provides a simple formula for the
gradient of the likelihood with respect to V asL = £V:

Vylog p(YObs | V,Z,A,F) =XV, log p(Yobs |L, A,F). (6)

We then use this gradient in the geodesic HMC algorithm of Holbrook
et al. (2016) to sample from the full conditional distribution of V.

3.2.2 | Gibbs sampler on the diagonal scale
component X

While we can employ HMC to sample from £ | Y° V, A, F, our
implementation did not mix well in practice. We develop a Gibbs
sampler to draw from = | Y°,V, A, F as an efficient alternative that
relies on the data augmentation of F in Section S2.1. See Section S5
for details.

3.2.3 | Gibbs sampler on the precision multipliers

We must also sample from the shrinkage multipliers vq,...,vg
when using the shrinkage prior on the loadings. Bhattacharya and
Dunson (2011, section 3.1, Step 5) develop a conjugate Gibbs sam-
pler for these multipliers that we apply directly to this model.

3.3 | Sign constraint on the loadings

Regardless of which prior (i.i.d. vs. orthogonal shrinkage) or con-
straint (sparsity vs. orthogonality) we choose, we must enforce a
sign constraint on a single element in each row of L for full identifi-
ability (see Section Sé for details).

3.4 | Gibbs sampler on the error precisions A

We sample from A | F, Y% L using the same procedure as Tolkoff
et al. (2018) in conjunction with the data augmentation algorithm in
Section S2.1 (see Section S7 for details).

4 | COMPUTATIONAL EFFICIENCY

We compare the computational efficiency of the inference re-
gimes discussed in Sections 3.1.1, 3.1.2 and 3.2 with that of Tolkoff
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et al. (2018). To understand performance across a wide range of situ-
ations, we simulate three unique datasets for all 36 combinations
of N € {50,100, 500, 1000}, P € {10, 100, 1000} and K € {1,2,4}(see
Section S$8.1 for simulation details). To understand the relative per-
formance of each inference regime, we compare the effective sam-
ple size (ESS) per second of the loadings across all four samplers (see
Section $8.2 for details) and report our results in Figure 1.
Compared against the conditional Gibbs sampler of Tolkoff
et al. (2018), both our joint Gibbs and HMC samplers under the i.i.d.
prior consistently yield efficiency gains of an order of magnitude
in small-N datasets and two orders of magnitude in big-N datasets.
While the sampling regime under the orthogonal shrinkage prior is
slower than either the joint Gibbs or HMC sampler (and even the
conditional Gibbs sampler for small-N, big-P), it has clear advantages

over the others that we discuss in Section 5.2.

5 | PRINCIPLED ANALYSIS PLAN

The modelling decisions required for Bayesian factor analysis can
be daunting. In addition to the priors, identifiability constraints and
sampling procedures discussed above, researchers must also choose
an appropriate number of factors K. Making such choices in a princi-
pled manner is challenging, and experimenting with different combi-
nations to determine which ‘work best’ is time-consuming and opens

the door to modelling decisions based on publication concerns. We

propose a generalizable analysis plan to guide researchers through
this process. To aid researchers seeking to employ phylogenetic fac-
tor analysis specifically, we also develop software tools that codify

this plan and automate core procedures.

5.1 | Choosing the loadings constraint

The decision to apply the sparsity constraint versus the orthogonal-
ity constraint depends on the biological question of interest. While
the sparsity constraint induces ordering onto the traits, this ordering
can be desirable under certain circumstances. For example, if one is
trying to isolate the effects of a particular set of traits, placing those
traits first in conjunction with the upper triangular constraint en-
sures that they will load only onto the first few factors and all subse-
quent factors will be independent of their influence. If one does not
want to apply such an ordering, the orthogonality constraint may be
a better alternative. We emphasize, however, that the orthogonality
constraint is no less restrictive than the sparsity constraint; rather, it
replaces a series of potentially arbitrary modelling decisions (i.e. the
ordering of the first K traits) with a single, perhaps equally arbitrary,
constraint.

Researchers can also apply a hybrid approach where one or
more traits load only onto a certain factor(s) while the remain-
ing traits are free to load onto all factors. If the specific spar-

sity structure is not sufficient to induce identifiability, then any

N =50 N =100 N =500 N =1000
100 [To—_
D\
o\
1 =,
I
0.01 3
0.0001
- 100 sampler
§ 1 Sy — \\ ~ - conditional Gibbs
3 R joint Gibbs
) 0.01 3
n —— HMC
L 0.0001
orthogonal
100
o
1 '\\ \ c
0.01 — S
—— 8
0.0001

FIGURE 1 Timing comparison between inference regimes. We run three MCMC chain simulations for each combination of N (the number
of taxa), P (the number of traits), K (the number of factors) and sampler and present the average minimum ESS per second for each. The
‘conditional Gibbs’ sampler refers to the methods used by Tolkoff et al. (2018). The ‘joint Gibbs’, ‘'HMC’ and ‘orthogonal’ samplers refer to the
methods presented in Sections 3.1.1, 3.1.2 and 3.2, respectively. Our joint Gibbs and HMC samplers are an order of magnitude faster than
the conditional Gibbs sampler with relatively few taxa (N = 50) but more than two orders of magnitude faster with many taxa (N = 1000). The
orthogonal sampler is slower than the joint Gibbs and HMC samplers (and even the conditional Gibbs in the case of small-N, big-P) but scales

well to large trees. Values are available in Table S1.
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unconstrained sub-matrices of the loadings would require ro-
tation to orthogonality. We present a simple example of this in
Section 6.3, where the first trait (body mass) loads only onto the
first factor and the remaining traits load onto all K factors. In this
case, the first row of the loadings is identifiable and captures
mass-dependent relationships, while the sub-matrix composed of
rows 2,...,K and columns 2,...,P is rotated to orthogonality via

post-processing.

5.2 | Choosing the loadings prior

Those choosing the sparsity (or hybrid) constraint must use the i.i.d.
prior on the loadings, as orthogonality is implicit in our definition
of the shrinkage prior. For those opting for the orthogonality con-
straint, we recommend choosing a prior based on the characteristics
of the specific application. For big-N datasets (N > 1,000), the geo-
desic HMC sampler on V under the shrinkage prior may be prohibi-
tively slow (particularly when combined with big-P), and we suggest
using the i.i.d. prior with post-processing.

One serious limitation of the post-processing regime, however,
is the potential for label switching (Celeux, 1998). This phenomenon
occurs when the posterior distributions of certain scale parameters
o overlap enough that a given factor switches its ordering. When
this occurs, the resulting estimated factor (e.g. factor 1) may actually
be a mixture of factors that shuffle in order during MCMC and post-
processing. Figure 2 provides an example of this phenomenon and
shows how the orthogonal shrinkage prior can address it. Examining
the MCMC trace plots (i.e. plots of parameter values over each sam-
ple from the MCMC chain) in software such as the CODA R package
(Plummer et al., 2006) or Tracer (Rambaut et al., 2018) is the best
way to check for label switching. If the trace plot of the scale param-
eters ¢ appear to be touching (as in the top, left panel of Figure 2),
then label switching is likely occurring. See Section S9 for a more
thorough discussion of identifying label switching in the context of
PFA.

Conveniently, label switching does not typically occur in big-N
analyses, so we recommend the more computationally efficient i.i.d.
prior with post-processing in these situations. For small- or moder-
ate-N analyses, we still suggest attempting the i.i.d. sampler with
post-processing, but we caution users to look for evidence of label
switching. If such evidence exists, we recommend using the shrink-

age prior with forced ordering and separation.

5.3 | Constraining the number of factors

We propose cross-validation for identifying the number of factors
with optimal predictive performance. In the case of the i.i.d. prior,
this procedure compares models with different number of factors
directly, while in the case of the orthogonal shrinkage prior it tunes
the strength of the shrinkage on the loading scales. See Section S10
for details.

We fully recognize that complex evolutionary processes do
not, in reality, conform exactly to the phylogenetic latent factor
model (or any tractable statistical model) and caution against
seeking to identify the ‘true’ number of underlying evolutionary
processes driving the phenotypes of interest, as such ground truth
likely does not exist. Rather, we encourage researchers to use this
model selection procedure to identify the limitations of the infor-
mation available in a particular dataset and the model's ability to
extract it. For example, if model selection determines that a four-
factor model provides optimal predictive performance, one should
be wary of interpreting results from a model with greater than four
factors as it is likely some of the perceived signal is an artifact of
noise in the data.

Prior to model selection, one must choose some maximum num-
ber of factors K., that balances model interpretability, flexibility,
identifiability and tractability. Models with more factors are inher-
ently more flexible and can potentially capture more information
about underlying biological phenomena. However, interpretation
becomes challenging as the number of factors increases. While the
model with optimal predictive performance may have K < K,.,,, one
should be open to interpreting a model where K = K|,,,. Limiting K,
provides additional benefits, as (a) the identifiability challenges dis-
cussed in Section 5.2 intensify with increasing K and (b) inference
scales cubically with K and some big-K models may be intractable.
In practice, we settle on K., =5 for most examples below, as we
find that the computation time and identifiability issues are typically
manageable at K = 5 and feel most researchers would rarely need to

interpret more than five factors.

5.4 | Software implementation

We implement all inference procedures in Section 3 in the Bayesian
phylogenetic inference software BEAST (Suchard et al., 2018). While
BEAST is an extraordinarily flexible tool, this flexibility can resultin a
user experience that is overwhelming for the uninitiated.

We develop the Julia package PhylogeneticFactorAnalysis.
jl to both simplify the BEAST user experience (in the context of
PFA) and automate model selection, post-processing, diagnostics
and plotting. Users must input the trait data, a phylogenetic tree,
the identifiability constraint on the loadings and the prior on the
loadings. Users may also optionally specify other modelling de-
cisions such as whether to standardize the trait data (which we
recommend) and the model selection meta-parameters as well as
a BEAST input file with instructions for inferring the phylogenetic
tree from sequence data.

After receiving appropriate input, PhylogeneticFactorAnalysis.
jl automatically performs model selection and outputs a series of
files including the sub-sampled MCMC realizations and plots of both
the loadings (see Figures 3b, 4a and 5a) and factors on the tree (see
Figures 4b, 5b and 6b) using the ggplot2 (Wickham, 2016) and gg-
tree (Yu et al., 2017) plotting libraries. PhylogeneticFactorAnalysis.
jl is registered under the Julia General registry. Source code and
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FIGURE 2 Trace plots of relevant parameters from analysis in Section 6.2. Estimates under the i.i.d. Gaussian prior are characteristic of
poorly identifiable conditions (the scales & are overlapping resulting in label switching/row-wise convolution of the loadings). The shrinkage

prior with forced spacing (a« = 0.8) largely eliminates this problem.

documentation can be accessed at: https://github.com/gabehassle
r/PhylogeneticFactorAnalysis.jl

6 | EXAMPLE ANALYSES

We demonstrate the utility of these methods in the four examples
below. Unless otherwise noted, all data are standardized on a per-
trait basis (i.e. subtracting the trait mean and dividing the by the trait

standard deviation) prior to analysis.

6.1 | Pollinator-flower co-evolution in Aquilegia

The intimate relationship between plants and their pollinators has
played a defining role in the evolution of angiosperms (see Kay
and Sargent, 2009; Van der Niet and Johnson, 2012). Here, we re-
evaluate the relationship between floral phenotypes and pollinators
in the genus Aquilegia (columbines). Whittall and Hodges (2007)

identify three primary Aquilegia ‘pollination syndromes’ associated
with bumblebees, hummingbirds and hawk moths, respectively.
Tolkoff et al. (2018) apply phylogenetic factor analysis to study the
relationship between 11 floral phenotypes and these pollination
syndromes in Aquilegia and identify two factors, only one of which is
associated with pollinator type.

We re-evaluate this previous work for two reasons. First, Tolkoff
et al. (2018) assume the upper-triangular constraint on the loadings
which requires that the vertical angle of the flower loads only onto
the first factor. Our orthogonality constraint eliminates arbitrarily
singling out this phenotype. Additionally, we compare our cross-
validation model selection procedure with the marginal likelihood-
based approach of Tolkoff et al. (2018), which identifies a two-factor
model as having greatest posterior support.

As four of the traits (anthocyanin production and the three pol-
lination syndromes) are binary, we follow Tolkoff et al. (2018) in
adapting the latent-liability model of Cybis et al. (2015) to the la-
tent factor model (see Section S11). We use the i.i.d. prior with or-
thogonality constraint, and our model selection procedure, indeed,
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FIGURE 3 Aquilegia results. (a) Factor values coloured by pollinator(s) for each species of Aquilegia. Large, solid points represent posterior
means for each species. Small, transparent points represent a random sample from the posterior distribution of the factors. (b) Posterior
summary of the loadings matrix. Dots represent posterior means while bars cover the 95% highest posterior density (HPD) interval. Colours
represent the posterior probability that the parameter is greater than 0. While the second factor clearly separates the bumblebee-pollinated
plants from the others, the first factor captures a more gradual transition from hummingbird pollination to hawk moth pollination.

identifies two factors. We present our results in Figure 3. The first
factor captures patterns differentiating hummingbird-pollinated
plants from hawk moth-pollinated plants, while the second factor
appears to separate the bumblebee-pollinated flowers from the
other two pollination syndromes. Note that in Figure 3a, the first
factor falls along a relatively uniform continuum, while the second
factor has a clear out-group consisting of the bumblebee-pollinated
plants. While only two taxa are coded as being pollinated by both
hummingbirds and hawk moths, this suggests that non-bumblebee
Aquilegia pollination strategies may lie on a continuum rather than
strict a hawk moth/hummingbird dichotomy, and it is possible that
many of the plants listed as having a single pollinator in reality at-
tract both hummingbirds and hawk moths.

6.2 | Yeast domestication

The brewer's yeast Saccharomyces cerevisiae is essential to a va-
riety of industrial applications due to its ability to convert sugars
into ethanol, carbon dioxide and aroma compounds. In addition to
its well-known role in the production of fermented food and bever-
ages, it also plays a key role in the production of bio-fuels and serves
as model organism for basic biological research. Industrial strains
within this species adapted to thrive within specialized environments

and can withstand stress conditions often suited to the specific in-
dustrial niche they evolved in, such as ethanol, osmotic, acidic and
temperature stresses.

Recent work by Gallone et al. (2016) and Gallone et al. (2019)
uses phylogenetic methods to study the domestication of S. cerevi-
siae within industrial environments. To elucidate the effects of do-
mestication on yeast phenotypes, Gallone et al. (2016) sequence
and phenotype 154 strains of industrial and wild S. cerevisiae. The
82 phenotypes include numerous measurements of growth rates
under varying environmental and nutrient stresses, the levels of
production of various metabolites and the ability to reproduce
sexually.

Domestication in plants and animals is typically characterized by
limited reproduction outside of domestic contexts, increased yield
and decreased tolerance to rare or novel environmental stressors
(Doebley et al., 2006; Larson and Fuller, 2014). Gallone et al. (2016)
observe these same patterns in the yeast strains they study, with
additional niche-specific patterns of covariation. While their analysis
examines the specific hypotheses above, they do not employ a data-
generative model of phenotypic evolution capable of studying broad
changes across all measured phenotypes.

The phylogenetic latent factor model, however, is ideally suited
for such a task. We first infer a phylogenetic tree for the 154 phe-
notyped strains using the 2.8 megabase DNA sequence alignment
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FIGURE 4 Results associated with first factor in yeast analysis. (a) Posterior summary of first row of the loadings of five-factor PFA

on yeast dataset. This first factor primarily captures differences associated with tolerance to environment and nutrient stress as well as
reproductive ability. See Figure 3b for description of plot elements. (b) The first factor plotted on yeast phylogeny with strain origin. Stars
at the tips indicate mosaic strains as identified by Gallone et al. (2016). Low factor values in the Beer 1 clade indicate poor tolerance of
environmental and nutrient stress generally and a lower capacity to reproduce sexually, all of which are signs of domestication. The Beer 1
clade includes strains from Belgium, Germany, Britain and the United States, and Gallone et al. (2016) estimate its origin ca. 1590 AD that
coincides with the transition from home-brewing to large-scale beer production across Europe.

of Gallone et al. (2016) (see Section 512.1). We fix this tree during
model selection due to the computational costs of inferring the phy-
logeny. Based on the principles discussed in Section 5, we opt for the
orthogonality constraint, the orthogonal shrinkage prior with forced
spacing (@ = 0.8) and K,,,, = 5. Our model selection procedure yields

a final model with five significant factors. For the final analysis, we
infer the tree jointly with factor model parameters using the same
tree model in Section S12.1. As the number of significant factors K

is equal to the maximum K, ., we are confident any signal is biolog-

max’

ically relevant but recognize we have not completely captured the
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full phenotypic covariance structure. That being said, the final factor
captures only 7% (5%-9% HPD interval) of the heritable variance
and 3% (2%—-4%) of the total variance, suggesting that adding addi-
tional factors will yield diminishing returns at the expense of exacer-
bating identifiability challenges.

We plot the loadings associated with the first factor and the first
factor on the tree in Figure 4(see Figures 52 and S3 for the full results).
For the first factor that accounts for 44% (33%—52%) of the heritable
variance, we observe a clear separation between strains in the Beer
1 clade and strains isolated from other fermentation processes and
from the wild. Notably, the domestication of beer strains in this clade
led to an impaired sexual cycle as observed in the reduced sporulation
efficiency and spore viability. This loss of a functional sexual cycle is
paired with the additional loss of tolerance to environment and nu-
trient stresses generally. These stresses are not encountered during
continuous growth in the nutrient-rich wort medium. The higher
tolerance to high temperature outside of Beer 1 might reflect other
more cryptic specializations of non-Beer clade 1 strains selected for
different industrial processes (e.g. bioethanol or cocoa fermentation).
Beyond these general patterns, we also note specific traits selected
for in the Beer 1 clade. For example, strains within this clade do not
produce 4-vinyl guaiacol (4-VG), a renown off-flavour in beer that is
less relevant to other industrial niches. Additionally, the first factor
in this clade is associated with efficient utilization of maltotriose, an
important carbon source in beer wort but rarely found in high con-
centrations in natural environments. These results overall recapitu-
late one of the main findings of Gallone et al. (2016): the transition
from complex and variable natural niches to the stable, nutrient-rich,
beer medium favoured certain adaptations (e.g. efficient utilization
of maltotriose) and accentuation of certain traits (loss of beer off-
flavours) at the cost of becoming sub-optimal for survival in the wild.

We emphasize that in this dataset there are different domesti-
cation trajectories targeted to very diverse industrial processes, and
the life histories of the different clades took separate paths that the
additional factors likely capture.

6.3 | Mammalian life history

Life-history strategies vary greatly across the tree of life. Generally
speaking, organismsexistalongaspectrumbetween fast-reproducing
species that produce many offspring with little investment into any
single child and slow-reproducing species that invest relatively great
time and energy into each of their (comparatively fewer) offspring
(Pianka, 1970). While allometric (size-dependent) constraints clearly
influence these life-history strategies (Boukal et al., 2014), pace-of-
life theory predicts size-independent life-history variation as a major
driver of phenotypic covariation (Reynolds, 2003; Réale et al., 2010).
Much work has been done evaluating these hypotheses across nu-
merous taxonomic groups (see Blackburn, 1991; Bielby et al., 2007,
Salguro-Gomez, 2017), but most studies are limited by methodolo-
gies that require complete data and scale poorly to very large trees
and many traits.

We explore the evolution of mammalian life history using the
PanTHERIA ecological database (Jones et al., 2009). We select a
sub-set of this data including body mass and 10 life-history traits for
the 3,691 species with at least one non-missing observation. While
Hassler et al. (2020) explore a similar subset of the PanTHERIA data
using a multivariate Brownian diffusion (MBD) model, the MBD
model cannot partition the covariance structure into size-dependent
and size-independent components.

PFA, however, is ideally suited to this task as we can struc-
ture the loadings matrix a priori to reveal these relationships.
Specifically, we apply the hybrid constraint introduced in Section
5.1 where elements ¢y, ..., £k, are fixed to zero, forcing body mass
to load only onto the first factor. To avoid ordering the other life-
history traits, we assume that the sub-matrix consisting of rows
2,...,K and columns 2,...,P is orthogonal (which we enforce via
post-processing). We use the fixed tree of Fritz et al. (2009), which
we prune to include only the 3,691 taxa for which we have trait
data. We perform model selection assuming K., = 5, with the op-
timal model having K = 5. However, the first three factors explain
85% of the heritable variance (with the last factor explaining only
4%), suggesting that K = 5 is sufficient to capture the major pat-
terns of variation in mammalian life-history evolution. We plot our
results in Figure 5.

Consistent with the Hassler et al. (2020) analysis, body size is
clearly associated with the ‘slow’ life-history strategy (i.e. smaller
and less frequent litters, longer lives). Notably, this allometric factor
is not the dominant factor and explains only 16% (14%—18%) of the
heritable variance. The second factor, however, explains 46% (42%—
51%) of this variance and clearly captures a size-independent fast-
slow life-history axis, suggesting that size-independent life-history
strategies play a major role in mammalian evolution. As evident in
Figure 5, this primary life-history axis (factor 2) varies independently
of the allometric one (factor 1) with examples of large/slow (ce-
taceans), large/fast (lagomorphs), small/slow (bats) and small/
fast (rodents) taxonomic groups. This primary life-history factor is
well conserved across the phylogenetic tree, with large taxonomic
groups sharing life-history strategies.

Factors 3, 4 and 5 explain comparatively less of the heritable
variance (23%, 11% and 4%, respectively). Factors 3 and 4 appear to
capture trade-offs between litter size and litter frequency, while the
5th factor primarily captures a negative relationship between wean-
ing age and gestation length and is strongly expressed in mono-
tremes and marsupials that employ different reproductive strategies

than placental mammals.

6.4 | New world monkey cranial morphology

While much effort has been devoted to studying the evolution of pri-
mate brain size, relatively few studies have focused on understand-
ing diversity in brain morphology or shape. Notable exceptions to this
trend include Aristide et al. (2016) and Sansalone et al. (2020). Here
we re-analyse the data presented in Aristide et al. (2016), that consist
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FIGURE 5 Mammalian life-history results. (a) Posterior summary of the loadings. Loadings of body size onto factors 2-5 is set to O a
priori. See Figure 3b for detailed description of figure elements. The first factor captures allometric relationships (by design) and explains
only 16% of the heritable variance, while the remaining factors capture size-independent relationships. The second factor, accounting for the
plurality (46%) of the heritable variance, captures a fast-slow life-history axis. Remaining factors capture more specific strategies (e.g. factors
three and four appear to support the energy trade-off between litter size and litter frequency). This suggests that body size is not the main
driver of life-history evolution and that natural selection primarily acts on life history directly. (b) Evolution of factors along the mammalian
phylogeny. Most factors are strongly phylogenetically conserved throughout the tree, with large clades sharing similar factor values. There

is relatively little correlation between the first and second factors, with clades of small, slow species (e.g. bats) and large, fast species (e.g.

lagomorphs).

minimum maximum

factor 1

factor 2

factor 3

factor value Alouatta seniculus

Alouatta macconnelli
Alouatta caraya
Alouatta guariba
Alouatta belzebul
Alouatta palliata
B Alouatta pigra
Ateles chamek
Ateles paniscus
Ateles marginatus
Ateles geoffroyi
Brachyteles arachnoides
Brachyteles hypoxanthus
Lagothrix lagotricha
Chiropotes chiropotes
Chiropotes satanas
Cacajao calvus
Cacajao melanocephalus
Pithecia monachus
Pithecia irrorata
Pithecia pithecia
Callicebus brunneus
Callicebus moloch
Callicebus donacophilus
Callicebus personatus
Callithrix jacchus
Callithrix penicillata
Callithrix kuhlii
Callithrix aurita
Mico argentatus
Mico humeralifer
Cebuella pygmaea
Callimico goeldii
Leontopithecus chrysomelas
Leontopithecus rosalia
Saguinus midas
Saguinus bicolor
Saguinus mystax
Saguinus fuscicollis
Aotus azarae
Aotus nigriceps
Aotus vociferans
Cebus robustus
Cebus apella
Cebus capucinus
Cebus albifrons
Saimiri boliviensis
Saimiri sciureus

factor 123

FIGURE 6 (a)Influence of each factor on New World monkey brain shape. (b) Brain shape factors plotted along New World monkey
phylogeny. The coefficients of the first three principal components (PCs) from Aristide et al. (2016) are highly correlated with the
corresponding rows of the loadings matrix. While we do not explore such an analysis here, Aristide et al. (2016) provide evidence of
association of PC1 (strongly correlated with our first factor) with relative brain size and PC2 (strongly correlated with our second factor) with

diet.

of 399 endocranial landmarks in three-dimensional Euclidean space
(standardized by generalized Procrustes analysis) for 48 species of
New World monkey (NWM). While Aristide et al. (2016) perform prin-
cipal component analysis on the Procrustes coordinates and use the
principal component scores as traits in a larger evolutionary analysis,
this procedure lacks a complete data-generative statistical model that
explicitly accounts for uncertainty or noise in the shape data.

We simultaneously infer the phylogeny with the PFA parame-
ters using DNA sequence alignments from Aristide et al. (2015) (see

Section S12.2 for details). Preliminary results suggest that (a) opti-
mal predictive performance requires a very large number of factors
(> 20), which is unsurprising given the complexity of this dataset,
and (b) identifiability poses an unusually great challenge due to the
‘small-N big-P’ nature of the data. As such, we settle on a three-factor
model with orthogonal shrinkage prior and strong shrinkage to max-
imize identifiability. To maintain differences in scale between traits,
we do not re-scale on a per-trait basis but rather divide all traits by
the maximum per-trait standard deviation.
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We plot the influence of each factor on brain shape and the
evolution of these factors on the tree in Figure 6. These three fac-
tors capture similar patterns of variation as the first three principal
components in Aristide et al. (2016), who identify several ecolog-
ical processes associated with the evolution of these principal
components. As the latent factor model can capture uncertainty
that PCA cannot, we are eager to re-evaluate these relationships
via a more structured latent factor model that directly models
the relationship between the brain shape factors and ecological
phenotypes such as social structure or diet. While preliminary re-
sults suggest that the first factor is correlated with relative brain
volume (i.e. brain volume divided by body mass) and social group
size and that the second factor is correlated with body mass and
absolute brain volume, we leave this more structured analysis as

future work.

7 | DISCUSSION

We develop a practical and scalable analysis plan requiring mini-
mal user decisions enabled by computationally innovative infer-
ence procedures. Previously, researchers performing phylogenetic
factor analysis were limited by computational constraints and
had to determine a priori the ordering of the traits and optimal
number of factors. These computational and modelling advances
are not independent but rather complement each other. Our de-
fault model selection procedure requires 26 individual MCMC
chain simulations (fivefold cross validation with five sets of meta-
parameters plus the final run). Such an analysis would be intrac-
table for all but the smallest datasets using existing inference
techniques. However, our new inference procedures take only a
few hours to run all 26 simulations for even the largest datasets
we analyse. Additionally, we have made these tools both flexible
and accessible with the Julia package PhylogeneticFactorAnalysis.
jl, which assembles and runs all BEAST input files, automatically
performs model selection, plots the results and performs basic
quality control. Our implementation allows researchers to focus
on big-picture modelling decisions and leave low-level implemen-
tation details to the software.

Limitations of this work that we plan to address in the future
include the following. First, while we can accommodate discrete
phenotypes through the latent probit model of Cybis et al. (2015)
(see Section S11), we notice both in our analysis and Tolkoff
et al. (2018) that the discrete parameters tend to have a far higher
influence than their continuous counterparts (i.e. the loadings en-
tries associated with the discrete traits have greater magnitude
than those associated with continuous traits). This is likely due
to the fact that we control the variance of the latent liabilities
indirectly by fixing the discrete trait precisions A to a constant
as do Tolkoff et al. (2018). It is possible that the (potentially) in-
flated significance of these discrete traits can influence the load-

ings structure in unexpected ways, and we seek an alternative

solution that places the continuous and discrete traits on more
equal footing.

Second, there may be cases where label switching persists
despite our efforts to induce identifiability. Additional post-
processing procedures developed for Bayesian mixture models
(Rodriguez and Walker, 2014) or multidimensional scaling (Okada
and Mayekawa, 2018) may serve as solutions to these unusually
convolved posteriors. While preliminary work suggests that these
methods can efficiently identify and deconvolve individual modes
of multi-modal posteriors, we are concerned about their potential to
identify non-existent signal in the data and believe a careful analysis
of their properties is warranted.

Additionally, as proposed in Section 6.4, this work can be readily
extended to incorporate parallel evolutionary models for different
suites of traits. In this framework, we could simultaneously perform
factor analysis on a high-dimensional trait (e.g. brain shape) and
infer the evolutionary correlation between the latent factors and
other phenotypes of interest (e.g. brain size, diet, group size) using
an MBD model. Note that we could study relationships between
multiple, distinct high-dimensional phenotypes as well from struc-
tural equation modelling paradigm (Lee and Song, 2012). While
likelihood calculations under such models are straightforward given
this and previous work, inferring the joint evolutionary covariance
matrix requires additional inference machinery that we leave as fu-
ture work.

Finally, while we focus on the multivariate Brownian diffusion
model of phenotypic evolution for simplicity, all inference machinery
can be readily adapted to other Gaussian processes, such as the mul-
tivariate Ornstein-Uhlenbeck (OU) process (Hansen, 1997). Indeed,
the OU model and inference procedure of Bastide et al. (2018) have
already been implemented in BEAST and are easily integrated with

the methods presented in this article.
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