Journal of Computational and Applied Mathematics 422 (2023) 114920

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Improved convergence of the Arrow-Hurwicz iteration for the = M)

Navier-Stokes equation via grad-div stabilization and e
Anderson acceleration

Pelin G. Geredeli®, Leo G. Rebholz **, Duygu Vargun?, Ahmed Zytoon "

2 Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA
b Department of Mathematics, lowa State University, Ames IA, 50011, USA

ARTICLE INFO ABSTRACT

Article history: We consider two modifications of the Arrow-Hurwicz (AH) iteration for solving the
Received 25 February 2022 incompressible steady Navier-Stokes equations for the purpose of accelerating the
Received in revised form 18 October 2022 algorithm: grad-div stabilization, and Anderson acceleration. AH is a classical iteration
Keywords: for general saddle point linear systems and it was later extended to Navier-Stokes
Anderson acceleration iterations in the 1970’s which has recently come under study again. We apply recently
Arrow-Hurwicz developed ideas for grad-div stabilization and divergence-free finite element methods
Navier-Stokes equations along with Anderson acceleration of fixed point iterations to AH in order to improve its
Finite element method (FEM) convergence. Analytical and numerical results show that each of these methods improves

AH convergence, but the combination of them yields an efficient and effective method
that is competitive with more commonly used solvers.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We consider in this paper solving the incompressible steady Navier-Stokes equations (NSE) with the Arrow-Hurwicz
(AH) iteration. The steady NSE defined on a domain £2 c R? (d=2 or 3) are given by

—vAu+(u-Viu+Vp=f in £, (1.1a)
V.u=0 in £2, (1.1b)
u=20 on 052, (1.1¢)

where u and p represent the unknown velocity and pressure, f a given forcing, and v the kinematic viscosity which is
inversely proportional to the Reynolds number Re. Extension of this work to one time step in a temporal discretization
of the time dependent NSE is straight-forward.

Among various novel iterative methods for solving saddle point systems, the AH algorithm for the steady NSE was
seemingly first studied by Temam in 1977 in [1], and also more recently in [2]. The AH iteration is given with the
following decoupled equations:

1
_7A(um+l _ um) —pAu™ + um . Vum+1 + me =f,

P
a(p™ ! —p™) + pV U™ =0,
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with p and « being user determined parameters. We note that if p = v~! then AH is exactly the modified Uzawa algorithm
from [3]. This iteration is interesting because it is efficient since the two equations decouple, with the second equation
being simple and the first equation requiring a typical convection-diffusion solver where one controls the diffusion
coefficient (in each iteration) with p. Hence from an implementation (i.e. linear algebraic) point of view, the cost of
one AH iteration is very cheap compared to that of a typical Picard or Newton iteration which needs to resolve a saddle
point system. However, a serious drawback of the AH method is that its convergence properties are not particularly good
and even though each iteration is cheap, the total number of iterations can be very large. The purpose of this paper is to
improve the AH algorithm so that it is a competitive and even attractive method for efficient computing of accurate steady
NSE solutions. We enhance the AH method with two recently developed ideas, one from computational fluid dynamics
(grad-div stabilization) and the other from nonlinear solver theory (Anderson acceleration). Indeed, we show that the
combination of these two improvements theoretically and computationally yields that AH method can become a very
good solver.

The classical AH iteration developed in 1958 by Arrow and Hurwicz [4] is a stationary iterative method to solve saddle
point linear systems. As noted in [5], this linear algebraic AH iteration can be regarded as an inexpensive alternative to
the (linear algebraic) Uzawa method [6] whenever solves with the matrix arising from the convection-diffusion operators
are expensive. Temam seems to be the first to export the AH iteration ideas to Galerkin methods for solving the steady
NSE, and was able to prove convergence (although without a rate) under certain choices of parameters. The iteration was
(finally) proven to be contractive in 2017 [2], where it was shown to be linearly convergent under very small data and
certain choices of parameters. While this was a big step forward for AH and the convergent rate was proven less than
1, the exact rate was not easy to decipher and in practice could be very close to 1. The numerical tests in [2] for some
relatively easy problem revealed that the AH method could be made to converge with good parameter choices, but the
number of iterations could be very large (e.g. over 700 iterations with Re = 100 for a 2d driven cavity problem, and over
10,000 for a 2d steady flow past a cylinder). While iterations of AH would likely be 5-20 times cheaper than one iteration
of usual Picard (e.g. if Krylov solvers with preconditioners such as those in [7-9] to solve the saddle point linear systems
at each iteration), such high iteration counts still make AH uncompetitive.

Herein we aim to improve the convergence properties of the AH method by enhancing it with two techniques. The
first is the addition of grad-div stabilization which refers to consistent penalization term that adds 0 = —yV(V - u)
to the NSE momentum equation before discretizing, where y > 0 is a user defined parameter (how large it should be
depends on many factors, see e.g. [10]). It was first proposed by Hughes and Franca in 1988 [11], and has been shown
to improve accuracy of finite element approximations [12], improve saddle point linear solvers [7,9,12], and help various
NSE nonlinear iterative solvers converge faster, e.g. [13,14]. The grad-div stabilized AH iteration takes the form

_%A(um+l _ um) _ UAum + um . Vuﬂ’H—l _ )/V(V . um+1) + me :f’

a(pm+1 _ pm) + pv . un’H—l — O

We show that the existing convergence theory can dramatically be improved with the use of grad-div stabilization
theory. Moreover, we show that under a certain choice of parameters and in a particular (but commonly used) discrete
setting, grad-div stabilized AH method is equivalent to the classical iterated penalty Picard iteration. By establishing this
connection, we are able to bring to bear the long established theory for this classical iteration to the AH setting, which
establishes a linear convergence rate close to that of Picard for sufficiently large y.

The second enhancement we provide to the AH method is Anderson acceleration (AA). AA is an extrapolation technique
used to improve convergence of fixed point iterations. It was first developed in 1965 by D.G. Anderson [15], and its use
has exploded in the last decade after the paper of Walker and Ni in 2011 showed how effective AA can be on a wide range
of problems [16]. It has recently been used to improve convergence and robustness of solvers for various types of flow
problems [17-19], geometry optimization [20], radiation diffusion and nuclear physics [21,22], molecular interaction [23],
and many others e.g. [16,17,24-28]. In [29], AA was shown to significantly improve the convergence and robustness for
the IPP method for the NSE and allow for a much wider range of penalty parameter choices. Given the success AA has
had in improving other types of nonlinear iterations for the NSE, applying it to the AH method seems a natural next step.
Moreover, due to its dramatic improvement of the IPP method in [29] and our showing the strong connection of grad-div
stabilized AH method to IPP method, applying AA to grad-div stabilized AH seems an optimal combination to improve AH
convergence behavior. A general convergence framework was developed for AA in [30] and then sharpened in [31] which
allows for theoretical justification of improved linear convergence from AA, if the associated fixed point function satisfies
sufficient smoothness properties. We will set up the AH iteration as a fixed point problem and prove that its fixed point
operator satisfies the assumptions needed to apply the AA convergence theory. Furthermore, extensive computations of
AH with AA are performed, and AA is observed to provide a dramatic improvement in convergence behavior, with the
best convergence coming from combining AA with grad-div stabilization.

This article is arranged as follows. Section 2 provides the necessary notation and mathematical preliminaries used
throughout the paper. In Section 3 we consider the theoretical improvement provided by grad-div stabilization, while in
Section 4 we show how the fixed point operator associated with the AH iteration allows for the AA theory from [31] to
be applied. Finally, in Section 5, we give results of several numerical tests that show AH method enhanced with AA and
grad-div stabilization can be a very effective nonlinear solver for the steady NSE.
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2. Preliminaries

In this section we provide some mathematical preliminaries and notation that will be used throughout the paper. We
begin by defining the following function spaces on a domain §2 that either has smooth boundary or is a convex polygon:

1/2
P(2)={w:2+—R: lwllze) = (/ |w|2dx> < oo},
2

1/2
HY2) = {w: 2> R: [wlyne) = | Y IDP Wi g < o0}
|Bl=m
Throughout this paper, (., .) and | - || denote the inner product and norm on L?(£2), respectively. All other norms will be

denoted with subscripts. Also, we define the following natural spaces for NSE:

Q :={wel*R): f wdx = 0},

2
X = {weHY(2): wlye =0},

and we do not distinguish vector and scalar valued spaces, as it will be clear from context.
The skew-symmetric trilinear form b* : X x X x X — R is defined by

b*(u, v, w) = %(((u-V)v,w)—((wV)w, v)), (2.1)
and it can easily be observed that

b*(u, v,v)=0. (2.2)
We will also utilize the well known bound resulting from Hoélder's and Sobolev inequalities [32]:

|b*(u, v, w)| < M|[Vul[| Vo] Vw], (2.3)

where M is a constant depending only on £2.
2.1. Finite element preliminaries

Let Xy X Q C X x Q be conforming and finite dimensional finite element spaces for the velocity and pressure.
Then a finite element method for (1.1), based on the standard velocity-pressure formulation and equipped with grad-div
stabilization seeks (u, p) € Xn x Qn such that V(v, q) € X x Q, we have

v(Vu, Vo) + (V- u, V-v)+ b*(u,u, v) — (V- v,p) = (f, v) (2.4a)
(V-u,q)=0. (2.4b)

Here, y > 0 is referred to as the grad-div stabilization parameter. The discrete problem (2.4) is well-posed if the pair
satisfies the inf-sup condition

(V : UJ])

> Blgll Vg € Qu,
o+vex, IVl

for some B > 0, and the small data condition ¥ := Mv~2|f|—1 < 1 holds. The small data condition is needed for
uniqueness (although precisely how sharp it is remains an open question), although existence and boundedness can be
proven for any given data. Common choices that satisfy the inf-sup condition with 8 independent of h, and the ones we
make herein are X; x Q, = P(,)NX x Py_1(74)NCO(£2) Taylor Hood elements (with 7, representing a regular conforming
mesh of §2) and X; x Qn = Pp(th) N X x Pr_1(71) N Q Scott-Vogelius elements with appropriate k and mesh structure (see
e.g. [10,33] for more details).

We will utilize the bound

IVull < v If -1, (2.5)

which is proven in [32,34] and can be easily deduced from (2.4).
2.2. The Arrow-Hurwicz method

We recall the Arrow-Hurwicz (AH) method from [2] for steady Navier-Stokes equations. The method is given in [1]
with a slight change of parameter variables.
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Algorithm 2.1. Let p, @ > 0 be user selected parameters, then

1. Let u® € X, and p° € Q; be the solution of the mixed formulation: Y(v, q) € X; x Qy :

(Vu®, Vo) = (V -0, %) = (f, v) (2.6a)
(V-u’,q)=0, (2.6b)
2. For m > 0, we define u™*! € Xj, to be the solution of the following variational

formulation : Yv € X, u™! satisfies

1
—(V™" —u™), Vo) + v(Vu™, Vo) + b*(™; u™ ! v) — (V- v, p") = (f, v), (2.7)
P

and p™*! e Qy, to be the solution of the following variational formulation : Yq € Q;, p™! satisfies

a((p™ = p™)., @)+ p(V - u™, q) = 0. (2.8)

Remark 2.2. The well-posedness and convergence of the AH scheme was shown in [1], under some assumptions on the
parameter choices for p and «. Under similar choices and additional data restrictions beyond the small data condition, the
AH method was shown to be contractive in [2]. While contractive, the linear convergence rate is rather hard to decipher
from the analysis, which is rather technical (although still an important step forward). Indeed the rate could be very close
to 1, and in the computations with the AH method in [2], it appears that it often is.

3. Convergence analysis of a grad-div stabilized AH method

In this section we consider the following grad-div stabilized AH method, and will show that it has improved con-
vergence properties over the usual AH method.

Algorithm 3.1. Let p, @ > 0 be parameters, then
1. Let u® € X, and p° € Q; be the solution of the Stokes problem (2.6)

2. For m > 0, we define u™! € X, to be the solution of: Vv € Xj,, u™"! satisfies

1
—(VU™ —u™), V) + v(Vu™, Vo) + b*@™; u™, v)
0

—|—y(V~u"‘+],V~U)—(V-v,p"‘) =(f,v) (3.1)

where the grad-div parameter y > 0 is a user selected parameter, and p™*! € Q; to be the solution of:
Vq € Qp, p™! satisfies

al(@™ =p™), q)+ p(V - u™', q) = 0. (32)

We show in this section how grad-div stabilization can provide improved convergence for AH . First we show linear
convergence through a connection to the classical iterated Picard penalty method, and then we show the classical
convergence analysis with the grad-div term included. Throughout this section u and p represent the solution of (2.4),
and we assume the small data condition ¥ < 1 holds.

3.1. Linear convergence of the grad-div stabilized AH iteration via a connection to the iterated Picard penalty method

In this section we show that with certain discretizations, linear convergence for the grad-div stabilized AH iteration can
be established under a small data condition. In particular, we consider the case of velocity and pressure spaces satisfying
both the inf-sup stability condition and V-X; = Qy. For example, (P5, Pf'“) Scott-Vogelius elements on Alfeld splits satisfy

4
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this property [10]. We prove that with the right parameters, linear convergence that is equivalent to that of the iterated
Picard penalty (IPP) method is achieved (which in practice is close to that of the well known Picard method [29,34-36]).

The IPP method for the steady NSE is a classical method that has been well studied and extensively used [13,35-37],
and is defined [35] by: Given uy € Xj,, px € Qp, solve for uy,q € Xp,, prs1 € Qp satisfying

b*™, u™!, v) — (p™t, V- v) + v(Vu™ !, Vo) = (f, v) Vv € Xp, (3.3)

€™ q)+(V-u™, q) = e(p™. q) Vg € Q. (3.4)

where € > 0 is a penalty parameter which is generally taken small. It is proven by Codina in [35] that if the penalty
vB

parameter € < 5> and small data condition ¥ < 1 holds then both |[p™"! — p|| and ||V(u™ — u)]|| converge linearly to 0,
with rate at most

1

1 2\ 172
ratepp = (2 + 5 (1 + ;) (K +ev ' B7HMC; + TV)Z) ) (3.5)

where
Cr= (Il + €272 (v IV —u®)| + I = p°ll + Ipll)) / (1 — /2071287 M)

and r > 2 (the optimal r > 2 will depend on the other parameters). While this is a complex expression, the convergence
rate of the usual Picard iteration [34] is typically observed (which is recovered when € = 0). However, even with larger
penalty parameter such as € = 1, IPP enhanced with Anderson acceleration can be very effective, even for larger data [29].
We now establish thatif y = pa™!, p = v !land a = ¢, then the grad-div stabilized AH method is identical to IPP.
From (3.2) since V - X, = Q;, we observe that p™! = p™ — pa~'V . ™! = p™ — yV . u™*! by taking y = pa~.
Substituting into (3.1) we obtain
%(V(u'"“ —u™), Vo) 4+ v(Vu™, Vo) + b*™, u™ ! v) — (p™, V - v) = (f, v),

and so setting p = v~! yields
V(Vu™, Vo) + b, u™ T v) — (p"TL V) = (f, v).

Note that the grad-div stabilized AH momentum equation now exactly matches with the IPP momentum Eq. (3.3).
Substituting p = v~ into (3.2)e obtain

va(p™tt —p™, q)+ (V- u™, q) = 0.

Finally setting o = £, we recover (3.4), thus establishment of the grad-div stabilized AH and IPP methods are equivalent
when parameters are chosen so that y = pa™!, p =v~'and a = . With this connection, we have proved the following

theorem for grad-div stabilized AH method.

1 1

Theorem 3.2. Suppose grad-div stabilized AH is computed with parameters p = v~ a = S and y = pa™' = €1, with user

v

2
selected penalty parameter ¢ < -L5. Then, under the small data condition k < 1, grad-div stabilized AH method converges
linearly with a rate at most rate;pp defined in (3.5).

Remark 3.3. Just as with IPP, the convergence rate of x will typically be observed in practice for sufficiently small e.
Moreover, with AA, larger penalty parameters such as ¢ = 1 can be used and yield a very efficient and effective iteration
even for ¥ > 1 as shown in [29].

Remark 3.4. While we do not prove it in our current manuscript, we expect that the parameters ‘near’ those in the
theorem will still provide a linear convergence by continuity. We believe that it can be proved by using the similar
argument followed in [35], however the additional terms will create a quite challenging theory that is beyond the scope
of this paper. Our numerical tests show that grad-div stabilized AH is effective with a rather wide range of parameter
choices, especially for smaller € and with AA.

3.2, Improvement to classical analysis of AH method via grad-div stabilization
We now consider the improvements to the classical convergence arguments for AH method, without assuming certain
choices of finite elements or meshes other than X, x Q, which satisfy the inf-sup condition. Begin the analysis by adding
and subtracting the true solution (u, p) from (3.1)-(3.2) and then subtracting (2.4) yields
1
—(VW™! —u+u—u™), Vo) + (VU™ — u), Vo) + b*(u™, u™1 v)
0

—bw,u, )+ p(V- - —u),V-v)=(V-v,p" —p)=0, (3.6)

5
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and
a((@™ =p+p—p"). Q)+ p(V- W™ —u+u),q) =0, (37)

respectively.
Denote e™ ! = u™*! —u and ej'*! = p™*! — p. Taking v = e™*! and q = ej'*" in (3.6)-(3.7) respectively gives us

1
7(V(em+1 _ em)’ Vem+]) + V(Vem, Vem+]) + b*(um, um+]7 em+1)
—b*(u,u, ™)+ y(V- ML VM) — (V™ el = 0, (3.8)

a((eyt —ep) et + p(V e et = 0. (3.9)

Since b* is skew-symmetric with respect to its last two arguments,
b*@™, u™?, ™) — b*(u, u, e™ 1) = b*@™, u™ !, u™ ) — b W™, u™ Y, u) — b*(u, u, U™,
= b*(e™, u, u™"),
= b*(e™, u, u™ ") — b*(e™, u, u),
= b*(e™, u, ™).

Next adding (3.8)-(3.9), using the polarization identity, rearranging and simplifying the terms, we get

1 o
g(nvw’"“ — ™2 4+ [IVe™ ) + v Ve |2 + p |V - e™T) 2 + %(Ile,’f“ — |12+ [lemt2)

1
— Ve 4 ™2 4 u(V(e™ — ™), Vet 1y — b¥(e™, u, ™) 4 (V - e e — g+, (3.10)
2,0 2,0 p p p

To bound the nonlinear term on the right hand side of last relation, we use (2.3) and (2.5):
| —b*(e™, u, &™) < M[[Ve" ||| Vull[Ve™ | < My If[| 4[| Ve™ || Ve™ | = kv Ve ||| Ve .
For the third and the last terms in (3.10), we utilize Cauchy-Schwarz and Young’s inequalities via

v(v(em+l _ em)’ vem+1) + (V A em«H! epm _ eZhL])

1 o 0
< — V(™ —eM|? 4+ pv? Ve 2 + —lept — ef 1P + =V - e
4p 4p o

Using Young’s and the triangle inequalities provides

KV 3kv
k([ VeI Ve < k([ V(™ — ™) + Ve Ve || < TIIV(«’:‘erl —eM|* + TIIVEm“IIZ,

and now combining the above bounds, we obtain

1 KV 1 3kv
" \v/ em+1 —_em 2 - _ 2 Vem+1 2
(4p 2)n ( WP (5, +v =t =5 ) Iver

p metg2 L @ omi2 % om o m12 1 mi2 . % om2
+ (y a) 1V €™ e I+ ey — I < IV + ol (3.11)

Provided that p < v~'max {x~', 1} and y > £ along with the additional small data assumption x < £, the estimate
(3.11) is sufficient to provide convergence of the grad-div stabilized AH method. Comparing to analysis without the grad-
div term from [2], we observe that with grad-div the coefficient of the left hand side term ||Ve™!||? is larger and there
are less restrictions on the parameters (including no restriction now on «). The key difference arises from utilizing the
left hand side term ||V - e™*!||, allowing for a larger coefficient of |V - e™*1||. Since this is not a proof of contraction, it
offers less of a comparison of rates than the previous section did. Note that if V - X, C Q; then we can follow the proof
of [2] to prove a contraction, however these results would be similar to that of [2] and not nearly as strong as what is
proven above in Theorem 3.2.

4. Anderson acceleration applied to the grad-div stabilized AH method

In this section, we show that the Anderson acceleration (AA) method can be applied to the grad-div stabilized AH
method (Algorithm 3) and will improve its linear convergence rate. We begin this section with a review of AA and recent
theoretical results. We will proceed to show how the grad-div stabilized AH method fits into this framework, which
in turn allows for invoking the AA theory. Throughout this section, we assume that the data is sufficiently small and
parameters are chosen so that grad-div stabilized AH provides a contractive iteration; we specify this assumption below
precisely, after we give some notation.
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4.1. Anderson acceleration

In this subsection, we provide AA procedure and its convergence properties. Consider a fixed-point operatorg : Y — Y
where Y is a Hilbert space equipped with induced norm || ||y, and denote w; = g(x;_1)—x;_1 as the nonlinear residual, also
sometimes is called the update step. Then, the AA algorithm with depth m (if m = 0, it returns to usual Picard iteration)
applied to the fixed-point problem g(x) = x, reads as follows.

Algorithm 4.1 (Anderson Acceleration with Depth m and Damping Factors By)-
Step 0: Choose xg € Y.
Step 1: Find wy € Y such that wq = g(xg) — Xo. Set x; = Xo + wy.
Step k: For k =2, 3, ... Set m, = min{k — 1, m}.
[a.] Find wy = g(Xk—1) — Xk—1.
[b.] Solve the minimization problem for the Anderson coefficients {« }k me

k—1 k—1
{a"}k m, = argmin || { 1— > a}‘ wr+ Y. a}‘wk,j (4.1)
j=k—my j=k—my v
[c.] For damping factor 0 < B, < 1, set
k—1 k—1 k—1 k—1
X =(1— Z O[}()Xk,1 + Z otij;1 + B | (1— Z O[jk)wk + Z a}‘wk,j . (4.2)
j=k—my Jj=k—my Jj=k—my Jj=k—my

To understand how AA improves convergence, we define the optimization gain factor 6, by

H(l_Z] k—m;, &; wk+z =k—my % wk—]HY

[lwilly

which characterizes the improvement in fixed-point convergence rate as proposed in [18,31].
The following assumptions from [31] provide sufficient conditions on the fixed point operator g for the convergence
and acceleration results.

O =

)

Assumption 4.2. Assume g € C!(Y) has a fixed point x* in Y, and there are positive constants Cy and C; with
1. lg'xX)|ly < Gy for all x € Y, and
2. 1g'x)—gWly = CGlix—ylly forallx,y € Y.

Assumption 4.3. Assume there is a constant o > 0 for which the differences between consecutive residuals and iterates
satisfy

lwitr — willy = o llXe — Xe—1lly, k> 1. (4.3)

Assumption 4.2 will be verified for Picard fixed-point operator grad-div stabilized AH method in next sections. Also,
Assumption 4.3 can be verified easily for this method which is contractive under small data and particular parameter
choices. Under Assumptions 4.2 and 4.3, the following result from [31], generates a bound on the residual ||wys1] in
terms of the previous residual || wy]|.

Theorem 4.4 (Pollock et al. 2021). Let Assumptions 4.2 and 4.3 hold, and suppose the direction sines between each column j
of matrix

Fi = ((wj — wi)(wj—1 — wj-2) - (Wim1 — Wiom))

and the subspace spanned by the preceding columns satisfy | sin(f;;, span {fj1, ..., fji-i)| = ¢ >0, forj=k—my, ..., k—1.
Then the residual wy1 = g(xx) — xi from Algorithm Algorithm 4.1 (depth m) satisfies the following bound.

CCiy/1 - 9,?
lweeall < flwll <9k((1 = B) + CoPr) + — (”wk” h(6k)
k-1
+2 Z (k = n) [lwnll h(6n) + my H Wik—my, ” h(‘gl(—mk)))’ (44)
n=k—my+1

where each h(6;) < C,/1— (9 + B8, and C depends on c; and the implied upper bound on the direction cosines.

7
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In (4.4), the optimization gain 6y is scaling the first-order term, which is residual in the standard fixed-point iteration.

On the other hand, the higher-order terms are scaled by a factor of ,/1 — 62, which implies if the optimization works, the

relative weight of the higher-order terms increase, otherwise the relative weight of the first-order term increase in (4.4).
4.2, Grad-div stabilized AH method as a fixed point iteration

In this subsection, we define the fixed-point operator G which is associated with grad-div stabilized AH iteration. Note
that in this section, u, p are generic functions and are not the steady NSE solution as in the previous section.

Definition 4.5. Define mapping G : (Xi, Qn) — (Xi, Qn), G(u, p) = (G1(u, p), G2(u, p)) such that for any (v, q) € (Xi, Qn)
o~ M(V(Gi(u, p) — u), Vv) + v(Vu, Vv) + b(u; Gi(u, p), v)
+ (V- -Gi(u,p), V-v) = (., V-v)=(f, v), (4.5)
a(Ga(u, p) — p, q) + p(V - Gi(u, p), q) = 0. (4.6)
Now, we show that G is well-defined and bounded with respect to the norm ||(v, q)||lp =: \/m on Xp, X Qp.

Lemma 4.6. The operator G is well-defined. Moreover, if G(u, p) = (G1(u, p), Go(u, p)) is the solution of (4.5)—(4.6), then the
following inequality holds

1+ 4p%v2 a 402
G(u, <, —|V — —fll=1, 47
G, Pl </ N IVull + SN Ipll + 4/ N I 1l-1 (4.7)

where N = 5 — 20~ ' p2.

Proof. Assume that a solution exists. Then, choosing v = G{(u, p) and q¢ = G,(u, p) eliminates the nonlinear term and
yields

1
5 (IIVG1(u, P> = IVull® + IV(Gi(u, p) — wI*) + py IV - Gi(u, p)II* = p(p. V - Gy(u, p))
= p(f, Gi(u, p)) — pv(Vu, VGy(u, p)),
% (I1G2(u, P)I* = 1P + 1Ga(u, p) — pII*) + p(V - Gi(u, p), Ga(u, p)) = 0.

thanks to the polarization identity. Then, combining the above equations and multiplying the both sides of the last relation
by 2, then dropping positive terms ||V(Gy(u, p) — w)||%, py IV - Gi(u, p)||?> and a| p(G,(u, p) — p)||?> on the left hand side
gives that

IVGi(u, p)II* 1> +e[|Ga(u, p)II?
= [|Vull* + a|ipll* + 2p(f. Gi(u, p)) — 2pv(Vu, VGi(u, p)) — 2p(Ga(u, p) — p, V - Gi(u, p)). (4.8)
The third term on the right hand side is bounded using the dual norm of X and Young’s inequality,
1

120(F, Ga(u, P < 4p%IF 124 + 7 IVGa(u, P,

For the last two terms on the right hand side, we apply Cauchy-Schwarz and Young'’s inequality to get
1

| = 2pv(Vu, VGi(u, p))| < 40°v?||Vul® + levcl(u, DI,

and
a o _

| —2p(Gz(u, p) = p, V - Gi(u, p))I < EIIGz(u,p)II2 + EIIPII2 + 227 p?IVGi(u, p)II?

thanks to |V - Gi(u, p)|| < [IVGy(u, p)||.
Collecting the above bounds, we reduce (4.8) to

1 _ o o
(2 — 2« 1/)2) IVGi(u, p)II* + EIIGz(u,P)II2 < (1+4p*v?)||Vul* + EIIPII2 +40°|If 1%,

Letting N = 3 — 2~ 'p?, and dividing both sides by N, we get

14+ 4p%2

o 4p?
G, p)IF < IVul* + ﬁllpll2 + Tllfllz,l-

Then, taking the square root of both sides reduces it to (4.7). Since G is linear and finite dimensional, showing that the
solution G(u, p) is bounded continuously by the data implies solution uniqueness and thus existence as well. O

8
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We now rewrite the grad-div stabilized AH method in terms of a mapping G : (X, Qn) — (Xp, Qn) that satisfies for
m=>0

G™, p™) = (Gi(u™, p™), Go(u™, p™)) == (u™H, p™t1),

where (u™, p™) is the mth iteration of the A-H method described in Algorithm 3.
4.3. Applying AA to the grad-div stabilized AH iteration

In this subsection, we show the sufficient smoothness properties of the associated fixed point operator G for the
grad-div stabilized AH iteration to apply AA theory. Now, we show Lipschitz continuity of G.

Lemma 4.7. For any (u, p), (w, z) € (Xp, Qn), we have
IG(u, p) = G(w, 2)lln = Gill(u, p) — (w, 2)lIn (4.9)

where C, = max{\/% (l;% + 7= (1 +2pv)IVull + Vallpl + 2p||f||-1))}-

Remark 4.8. Note that we have already discussed that in case of sufficiently small data and particularly chosen
parameters, Algorithm 3 is contractive. In this section we assume to be in the contractive setting, and thus we have
that the Lipschitz constant C; in Lemma 4.7 is less than 1.

Proof. Subtracting (4.5) with (w, z) from (4.5) with (u, p) gives
(V(Gi(u, p) = Gi(w, 2)), Vv) = (V(u — w), Vv) + pv(V(u — w), Vv) + pb*(u;Gi(u, p) — Gi(w, 2), v)
+pb*(u — w; Gi(w, 2), v) + py(V - (Gi(u, p) — G1(w,2)), V- v) = p(p — 2, V - v),
a(Gy(u, p) — Go(w, 2), q) —a(p — 2, q) + p(V - (Gi(u, p) — G1(w, 2)), ) = 0.

Then, setting v = Gy(u, p) — G1(w, z) and q = G,(u, p) — G2(w, z) which eliminates the first nonlinear term on the left
hand side of the first equation, and combining these equations provide

IV(Gi(u, p) — Gi(w, 2))I* + e[|Ga(u, p) — Ga(w, 2)II?

= p(p —2, V- (Gi(u, p) = Gi(w, 2))) + (1 — pv)(V(u — w), V(Gi(u, p) — Gi(w, 2)))
— pb*(u — w; Gy(w, 2), Gi(u, p) — Gi(w, 2)) + a(p — 2, Go(u, p) — Ga(w, 2))

— p(V - (Gi(u, p) — Gi(w, 2)), Ga(u, p) — Ga(w, 2)).

where positive term py ||V - (Gi(u, p) — Gi(w, z))||? on the left hand side is dropped.

Applying Cauchy-Schwarz and Young’s inequalities provides

(1= pv)(V(u—w), V(Gi(u, p) — Gi(w, 2))) < (1 = pv)? | V(u — w)||* + %IIV(Gl(u, p) — Gi(w, 2))II%,
and

olp — 2. Ga(u. p) = Gaw. 2)) < @l — 2I* + Gt p) = Ga(w. )|
Then, by using (2.3) and Lemma 4.6 and Young's inequality, we obtain

pb*(u — w; Gy(w, z), G1(u, p) — Gi(w, 2))
14 4p%2 o 4p? 1
< M2 —Z—Vull? + = IplI2 + = If 1%, ) IVu — w|® + = | V(G1(u, p) — G1(w, 2))|12.
<p ( N [ Vull +2N||p|| + N A1, ) wll +4|| (G1(u, p) — Gi(w, 2))|l

Last, by using Cauchy-Schwarz and Young’s inequalities, and ||V - (G1(u, p) — G1(w, 2))|| < |IV(G1(u, p) — G1(w, 2))]|, we
get

2,.,—1
p(p —2,V - (Gi(u, p) — Gi(w,2))) < ellp — z|I> + %IIV(Gl(u,p) — Gi(w, 2)I1%,

and

IO(V : (Gl(u5 p) - Gl(w7 Z))» Gz(u7 p) - Gz(w! Z))

2,.,—1
o peo
S 1Ga(u, p) = Go(w, 2)I” + 5

=

IV(Gi(u, p) — Gi(w, 2))|I.

9
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Combining the above bounds provides

1 3p%a! o
(5 i IV(Gi(u, p) — Gi(w, 2))[1> + ZHGz(U,P)—Gz(W,Z)Hz <2afp—z|?

14 4p%1?) o 4p?
1—pv)? + p’M? (1 +4p7v7) Vul? + —IplI> + —IIf I V(u—w)|?.
+ (( pv)Y +p N IVul| +2N||p|| tx IFIZq ) IV (u = w)l

Defining K = min{( 3”2“71> , %} and then dividing both sides by K yields (4.9). O

% T T a
Next, we define an operator G’ and show it is indeed the Fréchet derivative of the operator of G.
Definition 4.9. Given (u, p) € X;, x Qy, define an operator G'(u, p; -, -) : Xp X Qn — X, x Qp by
G'(u, p; w, s) = (Gi(u, p; w, 5), Gy(u, p; w, 5))

satisfying for all (w, s) € X; x Q.

(V(Gy(u, p; w, s) — w), Vv) + pv(Vw, Vv)+pb*(w; Gi(u, p), v) + pb*(u; Gy(u, p; w, s), v)
py(V - Gy(u, p; w,s), V-v)— p(s, V-v) =0, (4.10)
a(Gy(u, py w, ) —s, q) + p(V - Gy(u, p; w, ), q) = 0.

Lemma 4.10. The operator G' is well-defined for all (u, p), (w, s) € Xp x Qy such that
IG'(u, p; w, $)llu < Cull(w, $)llu (4.11)

Proof. Adding equations in (4.10) and setting v = G)(u, p; w, s) and q = G(u, p; w, s) produces

IVG(u, p: w, s)I* + py IV - Gy(u, p; w, $)[1> + ]| Gy(u, p; w, 5)|>
= (1 - pv)(Vw, VG(u, p; w, 5)) + a(s, Gy(u, p; w, 5)) — pb*(w; Gi(u, p), Gj(u, p; w, 5)) (4.12)
+ p(s, V- Gy(u, p; w, 5)) — p(V - Gy (u, p; w, s), Gy(u, p; w, s)).
Then, by dropping positive term py |V - G,(u, p; w, s)|1?
inequalities produces

on the left hand side, applying Cauchy-Schwarz and Young’s

VG, (u, p; w, $)II” + el|Gy(u, p; w, s)|?
1, a.
<(1—pv)’IVh|* + ZHVGl(U,P; w, s)|1% + asl* + lecz(uylﬂ; w, s)|?

e (4 4p°v?) 2 o 2 4p° 2 2, 1 , 2
M| —||Vu — —_— Vh —|IVGi(u, p; w, s
+p ( N Vull© + N lpll + N IFI=y ) VRIS + 4|| 1(u, p; w, s)||

2 2

o o
4 2

thanks to Lemma 4.6 and (2.3). To see the details of the estimates on the right hand side, follow the same steps as in the
proof of Lemma 4.7. After rearranging the terms, we get

<l 30201

—1
o o
+alsl® + VG, (u, p; w, s)|I* +

-1
o
IVG)(u, p; w, 9)|1* + EIIGQ(u,p; w, s)|?

2 4

o
) VG, (u, p; w, s)|1* + ZIIGg(u,p; w, s)|?

1+ 40°0°
< ((1 — pV)? + p2M? ((4_1\]7'0”)

Taking the square root of both sides and considering constant K which is defined in proof of Lemma 4.7 finishes the
proof. O

o 4p?
IVul® + ﬁllpll2 + TIIfIIZ)) IVhI? + 2a|s]|?

Now, we prove that G’ is Fréchet derivative operator of G.

Lemma 4.11. For any (u,p) € X x Qu
pMC,

V1= pal

10

I Gu+w,p+s)—Gup)—Gup;w,s)ly < lI(w, $)II7- (4.13)
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Proof. Denote 1y = Gi(u+w, p+5)—Gi(u, p)—G;(u, p; w, 8), N2 = Go(u+w, p+s)—Gy(u, p) — G5(u, p; w, s). Subtracting
the sum of (4.5) and (4.10) from Eq. (4.5) with (u + w, p + s) yields
(Vn1, Vu) + py(V - 01, V - v) + pb*(u; 11, v) + pb*(w; G1(u + w, p +5) — Gi(u, p), v) = 0,
a(n2, q)+ p(V-m,q)=0.
Choosing v = 1y and q = 1, vanishes first nonlinear term on the left hand side, and combining these equations gives
IV l® + elln2ll® + oy IV - n1ll> = —p(V - 01, m2) — pb*(w; Gi(u 4+ w, p + ) — Gi(u, p), m1). (4.14)
Applying Cauchy-Schwarz and (2.3) on the right hand side and dropping py ||V - n1]|> on the left hand side yields
IVml? 4+ ellnzll* < oIV - mllllnzll + MplVwl| | VGi(u + w, p + ) — Gi(w, P V.

Now with Young’s inequality and Lemma 4.7, we obtain using ||V - n1]| < ||Vn1]|| that
2.,—1
pa
IV l* + elln2)l* <

2
o 0 1
IV + 2 lnall* + Z-M*CEll(w, IV + S 1V

Then, rearranging and using the fact that |[Vw||? < |[Vwl* + «|ls||?> = [[(w, s)||Z produce

1 pla! o 0?
- IVmI? + S lnall* < 5-M*Cll(w, )l
2 2 2
Then, applying the definition of 7, and n,, dividing both sides by (% — "23771) and taking square roots give that G’ is
indeed the Fréchet derivative of G which satisfies (4.13). O

We now proceed to show that G’ is Lipschitz continuous over X x Q.

Lemma 4.12. G is Lipschitz continuously differentiable on Xy, x Qu, such that for all u, w,6 € X, and p, s, & € Qu,

4p2M2C2 1/2
————L )10, E)lluli(w, $)lln- (4.15)
~ 7w

IGu+w,p+s0,6)—Gup;0,8)ln < (1

Proof. Subtracting (4.10) with G'(u, p; 0, &) from (4.10) with G'(u + w,p + s; 6, &) and denoting e; =: Gj(u + w,p +
5;0,6)—Gi(u,p;0,&)and e; = Gy(u+w,p+5;0,&) — Gy(u, p; 0, &) yield
(Vey, Vu) + pb*(0; Gi(u + w, p +5) — Gi(u, p), v) + pb*(u; €1, v)
+ pb*(w; Gi(u+w,p+5;6,8),v)+ py(V-e;,V-v) =0,
alez, q)+ p(V-e1,q)=0.

Setting v = ey and q = e, vanishes the third term on the left hand side of the first equality and adding these equations
provide

Vel + allexll® + py IV - eq]|®
= —p(V -ey,e3) — pb*(0; Gi(u+ w, p+5) — G1(u, p), e1) — pb*(w; Gi(u+ w,p+5; 6, €), e1).

Dropping the positive term py ||V - e]|> on the left hand side, applying Cauchy-Schwarz and Young’s inequalities and
(2.3), using Lemmas 4.7 and 4.10, we get

1 pa! o
(5 - Vel + §||€2||2 < p°MPCE VO > (w, $)lIF + p°M>CE [ Vw]*[1(6. &)IIP

< 20*M2C2II0, ENF I (w, $)IIE,
thanks to the fact that [|[ V8|2 < [VO|? + «||€]12 = [I(6. &) and [Vw|? < [Vw|? + «|s|* = [|(w, s)|2. Dividing both

) 1 2,1\ .
sides by (5 -5 ) gives

4p2 M2 (2
Iter. el = IVerl” +alles]” < T2 Lo 6. ) 1w, I

Then taking the square roots of both sides gives that G’ is Lipschitz continuous, and (4.15) holds. O
4.4. Convergence of the Anderson accelerated AH algorithm for steady NSE

In previous subsection, we proved that the solution operator G associated with grad-div stabilized AH iteration
(4.5)-(4.6) satisfies Assumption 4.2 which is the one of sufficient conditions to apply the one-step residual bound of [31].
Also, Assumption 4.3 is satisfied since G is contractive under small data condition and certain parameter choices.

11
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Under these assumptions and with Lemmas 4.7, 4.11, 4.12 and Theorem 4.4, we have established the convergence of
(4.5)-(4.6) where G is the solution operator associated with grad-div stabilized AH iteration.

Theorem 4.13. For any step k > m with oz,’j1 # 0, the following bound holds for the grad-div stabilized AH iteration (4.5)-(4.6)
(wit15 Zk+1)llm <O(1 — B + BrCOI (Wi, zie)llu

m
+ €\ 1= 021w 20l Y N(wicjy1, Zicjsn) s
j=1

for the residual (wy, zi), where 6y is the gain from the optimization problem, C; is the Lipschitz constant of G defined in
Lemma 4.7, and C depending on 6y, By, C..

This theorem tells us that (4.5)-(4.6), with a good initial guess, converges linearly with rate 6,(1 — B; + BcC.) < 1,
which improves on Algorithm 3 due to the scaling 6, and the damping factor S;. In the case G is contractive, i.e. C; < 1,
then the optimal choice for relaxation is gy = 1.

5. Numerical experiments

In this section, we perform several numerical tests to illustrate the theory above and to show how the grad-div
stabilized, Anderson accelerated AH algorithm can be an effective and efficient solver for the steady NSE. The stopping
criteria for all of our tests is |luy — ux_1]| < 107%. Good criteria for choosing p and « is seemingly missing from the
literature, although some loose criteria are given in [1,2]. Our numerical results indicate « = v~! is a good choice, and
then taking p ~ «/2 is typically a good choice, in particular when using AA since there is significantly less sensitivity to
changes in p in this case.

5.1. Lid-driven cavity

We first test the AH method for steady NSE on the lid-driven cavity problem. The domain for the problem is the unit
square £2 = (0, 1)?> and we impose Dirichlet boundary conditions by u[,—; = (1,0)" and u = 0 everywhere else. We
choose the parameter @ = v~!. We first illustrate how grad-div stabilization improves the AH method, and show the
dramatic improvement offered by (P,, Pfi“) Scott-Vogelius (SV) over (P,, P;) Taylor-Hood (TH). The second test shows
even further dramatic improvement by incorporating AA.

5.1.1. The effect of grad-div stabilization and comparison of Scott-Vogelius vs Taylor-Hood

Our analysis above suggests that convergence of AH will be improved from using grad-div stabilization, and also
from using SV elements instead of TH since the connection to the iterated Picard penalty method is only made for SV
elements. Hence we now compare the AH method for both element choices, with and without grad-div stabilization
(using parameter ¥ = 1). We run the tests for varying p (to try to find a good choice of parameter p) and with varying
Re = v~!. For these tests a uniform mesh with h = 1/32 is used.

Results are shown in Fig. 1. We observe the best AH results clearly come from using SV instead of TH, and using y = 1
with SV gives by far the best results. In most cases, TH fails to converge for any p. Based on these results, we use SV
elements for the rest of the numerical tests in this paper.

5.1.2. Anderson accelerated grad-div stabilized AH method with SV elements

We now consider the same test problem, using the AH iteration only with SV elements and y = 1, but now adding
AA. We test AA depths m = 0 (no acceleration), 1,5 and 10. Figs. 2 and 3 show convergence results obtained by Anderson
accelerated grad-div stabilized AH method for Re = 100 and 1000, respectively, for varying p. As depth increases, the
number of iterations decreases significantly. The fastest convergence is obtained with depths m = 5, but there is not
much improvement past m = 5.

We also note that for optimally chosen p in this setting (i.e. o = 20 for Re = 100 and p = 50 for Re = 1000 based on
test above) with SV elements and grad-div stabilization, there is not much difference in convergence from AA. However,
for slightly non optimal p, there can be a dramatic improvement from AA. Since one often does not know optimal p a
priori, the expected case in practice is using a non-optimal p.

Comparing to existing literature, for Re = 100 driven cavity it is reported in [2] that 731 iterations of AH were needed to
converge to the same tolerance used herein and with Taylor-Hood elements, p = 1.2 and & = 70. Our results with Taylor-
Hood elements and no grad-div stabilization were similarly bad, see Fig. 1 in row 1; in fact, that they got convergence
at all for this test is rather extraordinary. With SV elements and grad-div stabilization, Fig. 1 (row 4, column 2) shows
that with @« = Re = 100 and p = 20, convergence is achieved in 80 iterations. With less optimal parameter choices, AA
can still keep the total iteration count low, see Fig. 2.
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Fig. 1. Shown above is convergence behavior for the AH method applied to the driven cavity problem with varying Re and p. The top plots are
without grad-div stabilization and the bottom plots are with it. The first and third rows are for TH elements, and the second and last rows are SV.

5.1.3. Driven cavity with Re=5000 and Re=10,000

As a final test with the driven cavity, we consider the case of Re=5000 and Re=10,000 with h=1/64. This is a difficult
problem for nonlinear solvers [18,31], and we show now that with the right parameter choices, the AH method can be
effective for this problem. For 5000, p = 100, y = 1, m = 100 were used to obtain convergence in 464 iterations. For
10,000, p = 150, y = 10, m = 100 was used to obtain convergence in 217 iterations. Streamlines for both solutions are
shown in Fig. 4, and they are in good agreement with those from [38] even though we use a coarser mesh. We note that,
to date, the highest Re for successful lid driven cavity computations using the AH method in the literature is 1000 in [2].

This choice of very large m was shown to be successful for the NSE computations using the Picard iteration in [31],
and also when using a penalty type iteration for NSE in [29], and again here. This is seemingly one of a very few problems
where very it is beneficial to use very large m, as most problems in the literature use m < 10 or even smaller [24]. While
it is an open problem why very large m is more effective for NSE, one possible reason could be that the constants in the
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Fig. 2. Convergence of Anderson accelerated grad-div stabilized Arrow-Hurwicz method for Re = 100, different p’s, y = 1 with varying m.
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Fig. 3. Convergence of Anderson accelerated grad-div stabilized Arrow-Hurwicz method for Re = 1000, different p’s, y = 1 with varying m.
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Fig. 4. Show above are streamlines for Re = 5, 000 and 10,000 driven cavity solutions.

higher order terms in the estimate (4.4) could be small, in particular C;. That is, if the fixed point operator is close to
linear in a neighborhood around the root then C; would be small, which in turn would allow for m to be taken large and
for the iteration to enjoy smaller 6, but with less impact of the higher order terms in the expansion.

5.2. Channel flow past a step

For our last test, we consider 2D channel flow past a step with Re = v~! = 100. The domain for this problem is a
40 x 10 rectangular channel, with a 1 x 1 ‘step’ placed 5 units into the channel at the bottom. The triangulation we use
is shown in Fig. 5, along with the Re = 100 solution found with our solver (which is consistent with solutions from the
literature [39-41]). The discretization uses (P, Pf"sc) SV elements that provided 32,682 velocity degrees of freedom.

First we consider y = 10 = ¢!, noting that obtaining convergence with y = 1 proved very difficult and we were
not able to find a parameter set that gave convergence. With y = 10, we computed four parameter sets: (p = 50, o =
£ =10), (p =50, a = % = 100), (p = 100, « = £ = 10) - which is exactly the iterated penalty Picard method,
and (p = 100, a = % = 100). Convergence plots for each of these parameter sets and varying m are shown in Fig. 6,
and we observe that m = 100 is the best choice for AA for all cases, and that AH with parameters chosen to match IPP
performs significantly worse than other parameter choices. The choice p = 50 and @ = v~ with m = 100 was very
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Fig. 6. Convergence of Anderson accelerated grad-div stabilized AH method and IPP iteration for Re = 100 for varying parameters and y = 10.
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Fig. 7. Convergence of Anderson accelerated grad-div stabilized AH method and IPP iteration for Re = 100 for varying parameters and y = 100.

effective. Results improve with y = 100 for all parameter sets, see Fig. 7. Here, again AH improves on IPP, with p = 50
and p = 100 withe m = 100 were very effective parameter choices.

6. Conclusions

This paper developed multiple improvements to the AH method for solving the steady Navier-Stokes equations, and
showed that with grad-div stabilization, SV elements and Anderson acceleration, the AH method can be a very effective
and efficient solver. SV elements and grad-div stabilization allowed us to connect AH to the well known iterated penalty
Picard method, which has good convergence properties under small data [29]. We also proved that the AH iteration,
under certain conditions on the data and parameters, fits into the Anderson acceleration analysis framework developed
in [31] and thus AA improves the linear convergence rate of the AH method by the gain of the underlying AA optimization
problem. We also gave results of several numerical tests that show how each of these improvements is important for good
convergence behavior, and when used together the AH method can be very effective.
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Data will be made available on request.
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