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a b s t r a c t

We consider two modifications of the Arrow–Hurwicz (AH) iteration for solving the
incompressible steady Navier–Stokes equations for the purpose of accelerating the
algorithm: grad–div stabilization, and Anderson acceleration. AH is a classical iteration
for general saddle point linear systems and it was later extended to Navier–Stokes
iterations in the 1970’s which has recently come under study again. We apply recently
developed ideas for grad–div stabilization and divergence-free finite element methods
along with Anderson acceleration of fixed point iterations to AH in order to improve its
convergence. Analytical and numerical results show that each of these methods improves
AH convergence, but the combination of them yields an efficient and effective method
that is competitive with more commonly used solvers.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We consider in this paper solving the incompressible steady Navier–Stokes equations (NSE) with the Arrow–Hurwicz
AH) iteration. The steady NSE defined on a domain Ω ⊂ Rd (d=2 or 3) are given by

− ν∆u+ (u · ∇)u+∇p = f in Ω, (1.1a)

∇ · u = 0 in Ω, (1.1b)

u = 0 on ∂Ω, (1.1c)

here u and p represent the unknown velocity and pressure, f a given forcing, and ν the kinematic viscosity which is
nversely proportional to the Reynolds number Re. Extension of this work to one time step in a temporal discretization
f the time dependent NSE is straight-forward.
Among various novel iterative methods for solving saddle point systems, the AH algorithm for the steady NSE was

eemingly first studied by Temam in 1977 in [1], and also more recently in [2]. The AH iteration is given with the
ollowing decoupled equations:

−
1
ρ

∆(um+1
− um)− ν∆um

+ um
· ∇um+1

+∇pm = f ,

α(pm+1
− pm)+ ρ∇ · um+1

= 0,
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with ρ and α being user determined parameters. We note that if ρ = ν−1 then AH is exactly the modified Uzawa algorithm
from [3]. This iteration is interesting because it is efficient since the two equations decouple, with the second equation
being simple and the first equation requiring a typical convection–diffusion solver where one controls the diffusion
coefficient (in each iteration) with ρ. Hence from an implementation (i.e. linear algebraic) point of view, the cost of
one AH iteration is very cheap compared to that of a typical Picard or Newton iteration which needs to resolve a saddle
point system. However, a serious drawback of the AH method is that its convergence properties are not particularly good
and even though each iteration is cheap, the total number of iterations can be very large. The purpose of this paper is to
improve the AH algorithm so that it is a competitive and even attractive method for efficient computing of accurate steady
NSE solutions. We enhance the AH method with two recently developed ideas, one from computational fluid dynamics
(grad–div stabilization) and the other from nonlinear solver theory (Anderson acceleration). Indeed, we show that the
combination of these two improvements theoretically and computationally yields that AH method can become a very
good solver.

The classical AH iteration developed in 1958 by Arrow and Hurwicz [4] is a stationary iterative method to solve saddle
point linear systems. As noted in [5], this linear algebraic AH iteration can be regarded as an inexpensive alternative to
the (linear algebraic) Uzawa method [6] whenever solves with the matrix arising from the convection–diffusion operators
are expensive. Temam seems to be the first to export the AH iteration ideas to Galerkin methods for solving the steady
NSE, and was able to prove convergence (although without a rate) under certain choices of parameters. The iteration was
(finally) proven to be contractive in 2017 [2], where it was shown to be linearly convergent under very small data and
certain choices of parameters. While this was a big step forward for AH and the convergent rate was proven less than
1, the exact rate was not easy to decipher and in practice could be very close to 1. The numerical tests in [2] for some
relatively easy problem revealed that the AH method could be made to converge with good parameter choices, but the
number of iterations could be very large (e.g. over 700 iterations with Re = 100 for a 2d driven cavity problem, and over
10,000 for a 2d steady flow past a cylinder). While iterations of AH would likely be 5–20 times cheaper than one iteration
of usual Picard (e.g. if Krylov solvers with preconditioners such as those in [7–9] to solve the saddle point linear systems
at each iteration), such high iteration counts still make AH uncompetitive.

Herein we aim to improve the convergence properties of the AH method by enhancing it with two techniques. The
first is the addition of grad–div stabilization which refers to consistent penalization term that adds 0 = −γ∇(∇ · u)
to the NSE momentum equation before discretizing, where γ > 0 is a user defined parameter (how large it should be
depends on many factors, see e.g. [10]). It was first proposed by Hughes and Franca in 1988 [11], and has been shown
to improve accuracy of finite element approximations [12], improve saddle point linear solvers [7,9,12], and help various
NSE nonlinear iterative solvers converge faster, e.g. [13,14]. The grad–div stabilized AH iteration takes the form

−
1
ρ

∆(um+1
− um)− ν∆um

+ um
· ∇um+1

− γ∇(∇ · um+1)+∇pm = f ,

α(pm+1
− pm)+ ρ∇ · um+1

= 0.

e show that the existing convergence theory can dramatically be improved with the use of grad–div stabilization
heory. Moreover, we show that under a certain choice of parameters and in a particular (but commonly used) discrete
etting, grad–div stabilized AH method is equivalent to the classical iterated penalty Picard iteration. By establishing this
onnection, we are able to bring to bear the long established theory for this classical iteration to the AH setting, which
stablishes a linear convergence rate close to that of Picard for sufficiently large γ .
The second enhancement we provide to the AH method is Anderson acceleration (AA). AA is an extrapolation technique

sed to improve convergence of fixed point iterations. It was first developed in 1965 by D.G. Anderson [15], and its use
as exploded in the last decade after the paper of Walker and Ni in 2011 showed how effective AA can be on a wide range
f problems [16]. It has recently been used to improve convergence and robustness of solvers for various types of flow
roblems [17–19], geometry optimization [20], radiation diffusion and nuclear physics [21,22], molecular interaction [23],
nd many others e.g. [16,17,24–28]. In [29], AA was shown to significantly improve the convergence and robustness for
he IPP method for the NSE and allow for a much wider range of penalty parameter choices. Given the success AA has
ad in improving other types of nonlinear iterations for the NSE, applying it to the AH method seems a natural next step.
oreover, due to its dramatic improvement of the IPP method in [29] and our showing the strong connection of grad–div
tabilized AH method to IPP method, applying AA to grad–div stabilized AH seems an optimal combination to improve AH
onvergence behavior. A general convergence framework was developed for AA in [30] and then sharpened in [31] which
llows for theoretical justification of improved linear convergence from AA, if the associated fixed point function satisfies
ufficient smoothness properties. We will set up the AH iteration as a fixed point problem and prove that its fixed point
perator satisfies the assumptions needed to apply the AA convergence theory. Furthermore, extensive computations of
H with AA are performed, and AA is observed to provide a dramatic improvement in convergence behavior, with the
est convergence coming from combining AA with grad–div stabilization.
This article is arranged as follows. Section 2 provides the necessary notation and mathematical preliminaries used

hroughout the paper. In Section 3 we consider the theoretical improvement provided by grad–div stabilization, while in
Section 4 we show how the fixed point operator associated with the AH iteration allows for the AA theory from [31] to
e applied. Finally, in Section 5, we give results of several numerical tests that show AH method enhanced with AA and
rad–div stabilization can be a very effective nonlinear solver for the steady NSE.
2



P.G. Geredeli, L.G. Rebholz, D. Vargun et al. Journal of Computational and Applied Mathematics 422 (2023) 114920

T
d

a

e

w

2

w

2. Preliminaries

In this section we provide some mathematical preliminaries and notation that will be used throughout the paper. We
begin by defining the following function spaces on a domain Ω that either has smooth boundary or is a convex polygon:

L2(Ω) := {w : Ω ↦→ R : ∥w∥L2(Ω) :=

(∫
Ω

|w|
2 dx

)1/2

< ∞},

Hm(Ω) := {w : Ω ↦→ R : ∥w∥Hm(Ω) :=

⎛⎝∑
|β|≤m

∥Dβw∥
2
L2(Ω)

⎞⎠1/2

< ∞}.

hroughout this paper, (., .) and ∥ · ∥ denote the inner product and norm on L2(Ω), respectively. All other norms will be
enoted with subscripts. Also, we define the following natural spaces for NSE:

Q := {w ∈ L2(Ω) :
∫

Ω

w dx = 0},

X := {w ∈ H1(Ω) : w|∂Ω = 0},

nd we do not distinguish vector and scalar valued spaces, as it will be clear from context.
The skew-symmetric trilinear form b∗ : X × X × X → R is defined by

b∗(u, v, w) =
1
2
(((u · ∇)v, w)− ((u · ∇)w, v)), (2.1)

and it can easily be observed that

b∗(u, v, v) = 0. (2.2)

We will also utilize the well known bound resulting from Hölder’s and Sobolev inequalities [32]:⏐⏐b∗(u, v, w)
⏐⏐ ≤ M∥∇u∥∥∇v∥∥∇w∥, (2.3)

where M is a constant depending only on Ω .

2.1. Finite element preliminaries

Let Xh × Qh ⊂ X × Q be conforming and finite dimensional finite element spaces for the velocity and pressure.
Then a finite element method for (1.1), based on the standard velocity–pressure formulation and equipped with grad–div
stabilization seeks (u, p) ∈ Xh × Qh such that ∀(v, q) ∈ Xh × Qh we have

ν(∇u,∇v)+ γ (∇ · u,∇ · v)+ b∗(u, u, v)− (∇ · v, p) = (f , v) (2.4a)

(∇ · u, q) = 0. (2.4b)

Here, γ ≥ 0 is referred to as the grad–div stabilization parameter. The discrete problem (2.4) is well-posed if the pair
satisfies the inf–sup condition

sup
0̸=v∈Xh

(∇ · v, q)
∥∇v∥

≥ β∥q∥ ∀q ∈ Qh,

for some β > 0, and the small data condition κ := Mν−2
∥f ∥−1 < 1 holds. The small data condition is needed for

uniqueness (although precisely how sharp it is remains an open question), although existence and boundedness can be
proven for any given data. Common choices that satisfy the inf–sup condition with β independent of h, and the ones we
make herein are Xh×Qh = Pk(τh)∩X×Pk−1(τh)∩C0(Ω) Taylor Hood elements (with τh representing a regular conforming
mesh of Ω) and Xh ×Qh = Pk(τh)∩ X × Pk−1(τh)∩Q Scott–Vogelius elements with appropriate k and mesh structure (see
.g. [10,33] for more details).
We will utilize the bound

∥∇u∥ ≤ ν−1
∥f ∥−1, (2.5)

hich is proven in [32,34] and can be easily deduced from (2.4).

.2. The Arrow–Hurwicz method

We recall the Arrow–Hurwicz (AH) method from [2] for steady Navier–Stokes equations. The method is given in [1]
ith a slight change of parameter variables.
3
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Algorithm 2.1. Let ρ, α > 0 be user selected parameters, then

1. Let u0
∈ Xh and p0 ∈ Qh be the solution of the mixed formulation: ∀(v, q) ∈ Xh × Qh :

(∇u0,∇v)− (∇ · v, p0) = (f , v) (2.6a)

(∇ · u0, q) = 0, (2.6b)

2. For m ≥ 0, we define um+1
∈ Xh to be the solution of the following variational

formulation : ∀v ∈ Xh, um+1 satisfies

1
ρ
(∇(um+1

− um),∇v)+ ν(∇um,∇v)+ b∗(um
; um+1, v)− (∇ · v, pm) = (f , v), (2.7)

and pm+1
∈ Qh to be the solution of the following variational formulation : ∀q ∈ Qh, pm+1 satisfies

α((pm+1
− pm), q)+ ρ(∇ · um+1, q) = 0. (2.8)

Remark 2.2. The well-posedness and convergence of the AH scheme was shown in [1], under some assumptions on the
parameter choices for ρ and α. Under similar choices and additional data restrictions beyond the small data condition, the
H method was shown to be contractive in [2]. While contractive, the linear convergence rate is rather hard to decipher
rom the analysis, which is rather technical (although still an important step forward). Indeed the rate could be very close
o 1, and in the computations with the AH method in [2], it appears that it often is.

. Convergence analysis of a grad–div stabilized AH method

In this section we consider the following grad–div stabilized AH method, and will show that it has improved con-
ergence properties over the usual AH method.

Algorithm 3.1. Let ρ, α > 0 be parameters, then

1. Let u0
∈ Xh and p0 ∈ Qh be the solution of the Stokes problem (2.6)

2. For m ≥ 0, we define um+1
∈ Xh to be the solution of: ∀v ∈ Xh, um+1 satisfies

1
ρ
(∇(um+1

− um),∇v)+ ν(∇um,∇v)+ b∗(um
; um+1, v)

+ γ (∇ · um+1,∇ · v) − (∇ · v, pm) = (f , v) (3.1)

where the grad–div parameter γ > 0 is a user selected parameter, and pm+1
∈ Qh to be the solution of:

∀q ∈ Qh, pm+1 satisfies

α((pm+1
− pm), q)+ ρ(∇ · um+1, q) = 0. (3.2)

We show in this section how grad–div stabilization can provide improved convergence for AH . First we show linear
convergence through a connection to the classical iterated Picard penalty method, and then we show the classical
convergence analysis with the grad–div term included. Throughout this section u and p represent the solution of (2.4),
nd we assume the small data condition κ < 1 holds.

.1. Linear convergence of the grad–div stabilized AH iteration via a connection to the iterated Picard penalty method

In this section we show that with certain discretizations, linear convergence for the grad–div stabilized AH iteration can
e established under a small data condition. In particular, we consider the case of velocity and pressure spaces satisfying
oth the inf–sup stability condition and ∇·X = Q . For example, (P , Pdisc) Scott–Vogelius elements on Alfeld splits satisfy
h h 2 1

4
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this property [10]. We prove that with the right parameters, linear convergence that is equivalent to that of the iterated
Picard penalty (IPP) method is achieved (which in practice is close to that of the well known Picard method [29,34–36]).

The IPP method for the steady NSE is a classical method that has been well studied and extensively used [13,35–37],
and is defined [35] by: Given uk ∈ Xh, pk ∈ Qh, solve for uk+1 ∈ Xh, pk+1 ∈ Qh satisfying

b∗(um, um+1, v)− (pm+1,∇ · v)+ ν(∇um+1,∇v) = (f , v) ∀v ∈ Xh, (3.3)

ϵ(pm+1, q)+ (∇ · um+1, q) = ϵ(pm, q) ∀q ∈ Qh, (3.4)

here ϵ > 0 is a penalty parameter which is generally taken small. It is proven by Codina in [35] that if the penalty
arameter ϵ <

νβ2

M2 and small data condition κ < 1 holds then both ∥pm+1
− p∥ and ∥∇(um

− u)∥ converge linearly to 0,
with rate at most

rateIPP =

(
1
2
+

1
2

(
1+

2
r

)1/2
)(

κ + ϵν−1β−2(MC1 + rν)2
)
, (3.5)

here

C1 =
(
ν−1

∥f ∥−1 + ϵ1/2ν−1/2 (ανβ−1
∥∇(u− u0)∥ + ∥p− p0∥ + ∥p∥

))
/
(
1− ϵ1/2ν−1/2β−1M

)
nd r ≥ 2 (the optimal r ≥ 2 will depend on the other parameters). While this is a complex expression, the convergence
ate of the usual Picard iteration [34] is typically observed (which is recovered when ϵ = 0). However, even with larger
enalty parameter such as ϵ = 1, IPP enhanced with Anderson acceleration can be very effective, even for larger data [29].
We now establish that if γ = ρα−1, ρ = ν−1 and α =

ϵ
ν
, then the grad–div stabilized AH method is identical to IPP.

From (3.2) since ∇ · Xh = Qh, we observe that pm+1
≡ pm − ρα−1

∇ · um+1
≡ pm − γ∇ · um+1, by taking γ = ρα−1.

Substituting into (3.1) we obtain
1
ρ
(∇(um+1

− um),∇v)+ ν(∇um,∇v)+ b∗(um, um+1, v)− (pm+1,∇ · v) = (f , v),

and so setting ρ = ν−1 yields

ν(∇um+1,∇v)+ b∗(um, um+1, v)− (pm+1,∇ · v) = (f , v).

ote that the grad–div stabilized AH momentum equation now exactly matches with the IPP momentum Eq. (3.3).
ubstituting ρ = ν−1 into (3.2)e obtain

να(pm+1
− pm, q)+ (∇ · um+1, q) = 0.

Finally setting α =
ϵ
ν
, we recover (3.4), thus establishment of the grad–div stabilized AH and IPP methods are equivalent

hen parameters are chosen so that γ = ρα−1, ρ = ν−1 and α =
ϵ
ν
. With this connection, we have proved the following

theorem for grad–div stabilized AH method.

Theorem 3.2. Suppose grad–div stabilized AH is computed with parameters ρ = ν−1, α =
ϵ
ν
and γ = ρα−1

= ϵ−1, with user
elected penalty parameter ϵ <

νβ2

M2 . Then, under the small data condition κ < 1, grad–div stabilized AH method converges
inearly with a rate at most rateIPP defined in (3.5).

emark 3.3. Just as with IPP, the convergence rate of κ will typically be observed in practice for sufficiently small ϵ.
Moreover, with AA, larger penalty parameters such as ϵ = 1 can be used and yield a very efficient and effective iteration
even for κ > 1 as shown in [29].

Remark 3.4. While we do not prove it in our current manuscript, we expect that the parameters ‘near’ those in the
theorem will still provide a linear convergence by continuity. We believe that it can be proved by using the similar
argument followed in [35], however the additional terms will create a quite challenging theory that is beyond the scope
of this paper. Our numerical tests show that grad–div stabilized AH is effective with a rather wide range of parameter
choices, especially for smaller ϵ and with AA.

3.2. Improvement to classical analysis of AH method via grad–div stabilization

We now consider the improvements to the classical convergence arguments for AH method, without assuming certain
choices of finite elements or meshes other than Xh ×Qh which satisfy the inf–sup condition. Begin the analysis by adding
and subtracting the true solution (u, p) from (3.1)-(3.2) and then subtracting (2.4) yields

1
ρ
(∇(um+1

− u+ u− um),∇v)+ ν(∇(um
− u),∇v)+ b∗(um, um+1, v)

− b∗(u, u, v)+ γ (∇ · (um+1
− u),∇ · v)− (∇ · v, pm − p) = 0, (3.6)
5
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α((pm+1
− p+ p− pm), q)+ ρ(∇ · (um+1

− u+ u), q) = 0, (3.7)

espectively.
Denote em+1

= um+1
− u and em+1

p = pm+1
− p. Taking v = em+1 and q = em+1

p in (3.6)–(3.7) respectively gives us

1
ρ
(∇(em+1

− em),∇em+1)+ ν(∇em,∇em+1)+ b∗(um, um+1, em+1)

− b∗(u, u, em+1)+ γ (∇ · em+1,∇ · em+1)− (∇ · em+1, emp ) = 0, (3.8)

α((em+1
p − emp ), e

m+1
p )+ ρ(∇ · em+1, em+1

p ) = 0. (3.9)

ince b∗ is skew-symmetric with respect to its last two arguments,

b∗(um, um+1, em+1)− b∗(u, u, em+1) = b∗(um, um+1, um+1)− b∗(um, um+1, u)− b∗(u, u, um+1),

= b∗(em, u, um+1),

= b∗(em, u, um+1)− b∗(em, u, u),

= b∗(em, u, em+1).

ext adding (3.8)–(3.9), using the polarization identity, rearranging and simplifying the terms, we get
1
2ρ

(∥∇(em+1
− em)∥2 + ∥∇em+1

∥
2)+ ν∥∇em+1

∥
2
+ γ ∥∇ · em+1

∥
2
+

α

2ρ
(∥em+1

p − emp ∥
2
+ ∥em+1

p ∥
2)

=
1
2ρ

∥∇em∥2 +
α

2ρ
∥emp ∥

2
+ ν(∇(em+1

− em),∇em+1)− b∗(em, u, em+1)+ (∇ · em+1, emp − em+1
p ). (3.10)

To bound the nonlinear term on the right hand side of last relation, we use (2.3) and (2.5):

| − b∗(em, u, em+1)| ≤ M∥∇em∥∥∇u∥∥∇em+1
∥ ≤ Mν−1

∥f ∥−1∥∇em∥∥∇em+1
∥ = κν∥∇em∥∥∇em+1

∥.

For the third and the last terms in (3.10), we utilize Cauchy–Schwarz and Young’s inequalities via

ν(∇(em+1
− em),∇em+1)+ (∇ · em+1, emp − em+1

p )

≤
1
4ρ

∥∇(em+1
− em)∥2 + ρν2

∥∇em+1
∥
2
+

α

4ρ
∥emp − em+1

p ∥
2
+

ρ

α
∥∇ · em+1

∥
2.

sing Young’s and the triangle inequalities provides

κν∥∇em∥∥∇em+1
∥ ≤ κν(∥∇(em+1

− em)∥ + ∥∇em+1
∥)∥∇em+1

∥ ≤
κν

2
∥∇(em+1

− em)∥2 +
3κν

2
∥∇em+1

∥
2,

and now combining the above bounds, we obtain(
1
4ρ

−
κν

2

)
∥∇(em+1

− em)∥2 +
(

1
2ρ

+ ν − ρν2
−

3κν

2

)
∥∇em+1

∥
2

+

(
γ −

ρ

α

)
∥∇ · em+1

∥
2
+

α

2ρ
∥em+1

p ∥
2
+

α

4ρ
∥emp − em+1

p ∥
2
≤

1
2ρ

∥∇em∥2 +
α

2ρ
∥emp ∥

2. (3.11)

Provided that ρ ≤ ν−1 max
{
κ−1, 1

}
and γ ≥

ρ

α
along with the additional small data assumption κ < 2

3 , the estimate
3.11) is sufficient to provide convergence of the grad–div stabilized AH method. Comparing to analysis without the grad–
iv term from [2], we observe that with grad–div the coefficient of the left hand side term ∥∇em+1

∥
2 is larger and there

are less restrictions on the parameters (including no restriction now on α). The key difference arises from utilizing the
eft hand side term ∥∇ · em+1

∥, allowing for a larger coefficient of ∥∇ · em+1
∥. Since this is not a proof of contraction, it

ffers less of a comparison of rates than the previous section did. Note that if ∇ · Xh ⊂ Qh then we can follow the proof
of [2] to prove a contraction, however these results would be similar to that of [2] and not nearly as strong as what is
proven above in Theorem 3.2.

4. Anderson acceleration applied to the grad–div stabilized AH method

In this section, we show that the Anderson acceleration (AA) method can be applied to the grad–div stabilized AH
method (Algorithm 3) and will improve its linear convergence rate. We begin this section with a review of AA and recent
theoretical results. We will proceed to show how the grad–div stabilized AH method fits into this framework, which
in turn allows for invoking the AA theory. Throughout this section, we assume that the data is sufficiently small and
parameters are chosen so that grad–div stabilized AH provides a contractive iteration; we specify this assumption below
precisely, after we give some notation.
6
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4.1. Anderson acceleration

In this subsection, we provide AA procedure and its convergence properties. Consider a fixed-point operator g : Y → Y
where Y is a Hilbert space equipped with induced norm ∥·∥Y , and denote wj = g(xj−1)−xj−1 as the nonlinear residual, also
sometimes is called the update step. Then, the AA algorithm with depth m (if m = 0, it returns to usual Picard iteration)
applied to the fixed-point problem g(x) = x, reads as follows.

Algorithm 4.1 (Anderson Acceleration with Depth m and Damping Factors βk).
Step 0: Choose x0 ∈ Y .

Step 1: Find w1 ∈ Y such that w1 = g(x0)− x0. Set x1 = x0 + w1.
Step k: For k = 2, 3, . . . Set mk = min{k− 1,m}.

[a.] Find wk = g(xk−1)− xk−1.
[b.] Solve the minimization problem for the Anderson coefficients {αk

j }
k−1
k−mk

{αk
j }

k−1
k−mk

= argmin


(
1−

k−1∑
j=k−mk

αk
j

)
wk +

k−1∑
j=k−mk

αk
j wk−j


Y

. (4.1)

[c.] For damping factor 0 < βk ≤ 1, set

xk = (1−
k−1∑

j=k−mk

αk
j )xk−1 +

k−1∑
j=k−mk

αk
j xj−1 + βk

⎛⎝(1−
k−1∑

j=k−mk

αk
j )wk +

k−1∑
j=k−mk

αk
j wk−j

⎞⎠ . (4.2)

To understand how AA improves convergence, we define the optimization gain factor θk by

θk =

(1−∑k−1
j=k−mk

αk
j )wk +

∑k−1
j=k−mk

αk
j wk−j


Y

∥wk∥Y
,

which characterizes the improvement in fixed-point convergence rate as proposed in [18,31].
The following assumptions from [31] provide sufficient conditions on the fixed point operator g for the convergence

and acceleration results.

Assumption 4.2. Assume g ∈ C1(Y ) has a fixed point x∗ in Y , and there are positive constants C0 and C1 with

1. ∥g ′(x)∥Y ≤ C0 for all x ∈ Y , and
2. ∥g ′(x)− g ′(y)∥Y ≤ C1∥x− y∥Y for all x, y ∈ Y .

Assumption 4.3. Assume there is a constant σ > 0 for which the differences between consecutive residuals and iterates
satisfy

∥wk+1 − wk∥Y ≥ σ∥xk − xk−1∥Y , k ≥ 1. (4.3)

Assumption 4.2 will be verified for Picard fixed-point operator grad–div stabilized AH method in next sections. Also,
Assumption 4.3 can be verified easily for this method which is contractive under small data and particular parameter
choices. Under Assumptions 4.2 and 4.3, the following result from [31], generates a bound on the residual ∥wk+1∥ in
terms of the previous residual ∥wk∥.

Theorem 4.4 (Pollock et al. 2021). Let Assumptions 4.2 and 4.3 hold, and suppose the direction sines between each column j
of matrix

Fj :=
(
(wj − wj−1)(wj−1 − wj−2) . . . (wj−mj+1 − wj−mj )

)
and the subspace spanned by the preceding columns satisfy | sin(fj,i, span {fj,1, . . . , fj,i−1})| ≥ cs > 0, for j = k−mk, . . . , k−1.
Then the residual wk+1 = g(xk)− xk from Algorithm Algorithm 4.1 (depth m) satisfies the following bound.

∥wk+1∥ ≤ ∥wk∥

(
θk((1− βk)+ C0βk)+

CC1

√
1− θ2

k

2

(
∥wk∥ h(θk)

+ 2
k−1∑

n=k−mk+1

(k− n) ∥wn∥ h(θn)+mk
wk−mk

 h(θk−mk )
))

, (4.4)

here each h(θ ) ≤ C
√
1− θ2

+ β θ , and C depends on c and the implied upper bound on the direction cosines.
j j j j s

7
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In (4.4), the optimization gain θk is scaling the first-order term, which is residual in the standard fixed-point iteration.
On the other hand, the higher-order terms are scaled by a factor of

√
1− θ2

k , which implies if the optimization works, the
elative weight of the higher-order terms increase, otherwise the relative weight of the first-order term increase in (4.4).

.2. Grad–div stabilized AH method as a fixed point iteration

In this subsection, we define the fixed-point operator G which is associated with grad–div stabilized AH iteration. Note
that in this section, u, p are generic functions and are not the steady NSE solution as in the previous section.

efinition 4.5. Define mapping G : (Xh,Qh) → (Xh,Qh), G(u, p) = (G1(u, p),G2(u, p)) such that for any (v, q) ∈ (Xh,Qh)

ρ−1(∇(G1(u, p)− u),∇v)+ ν(∇u,∇v)+ b(u;G1(u, p), v)

+ γ (∇ · G1(u, p),∇ · v)− (p,∇ · v) = (f , v), (4.5)

α(G2(u, p)− p, q)+ ρ(∇ · G1(u, p), q) = 0. (4.6)

Now, we show that G is well-defined and bounded with respect to the norm ∥(v, q)∥H =:

√
∥∇v∥2 + α∥q∥2 on Xh×Qh.

emma 4.6. The operator G is well-defined. Moreover, if G(u, p) = (G1(u, p),G2(u, p)) is the solution of (4.5)–(4.6), then the
ollowing inequality holds

∥G(u, p)∥H ≤

√
1+ 4ρ2ν2

N
∥∇u∥ +

√
α

2N
∥p∥ +

√
4ρ2

N
∥f ∥−1, (4.7)

here N =
1
2 − 2α−1ρ2.

Proof. Assume that a solution exists. Then, choosing v = G1(u, p) and q = G2(u, p) eliminates the nonlinear term and
yields

1
2

(
∥∇G1(u, p)∥2 − ∥∇u∥2 + ∥∇(G1(u, p)− u)∥2

)
+ ργ ∥∇ · G1(u, p)∥2 − ρ(p,∇ · G1(u, p))

= ρ(f ,G1(u, p))− ρν(∇u,∇G1(u, p)),
α

2

(
∥G2(u, p)∥2 − ∥p∥2 + ∥G2(u, p)− p∥2

)
+ ρ(∇ · G1(u, p),G2(u, p)) = 0.

thanks to the polarization identity. Then, combining the above equations and multiplying the both sides of the last relation
by 2, then dropping positive terms ∥∇(G1(u, p) − u)∥2, ργ ∥∇ · G1(u, p)∥2 and α∥ρ(G2(u, p) − p)∥2 on the left hand side
ives that

∥∇G1(u, p)∥2 ∥2 +α∥G2(u, p)∥2

= ∥∇u∥2 + α∥p∥2 + 2ρ(f ,G1(u, p))− 2ρν(∇u,∇G1(u, p))− 2ρ(G2(u, p)− p,∇ · G1(u, p)). (4.8)

he third term on the right hand side is bounded using the dual norm of X and Young’s inequality,

|2ρ(f ,G1(u, p))| ≤ 4ρ2
∥f ∥2

−1 +
1
4
∥∇G1(u, p)∥2.

For the last two terms on the right hand side, we apply Cauchy–Schwarz and Young’s inequality to get

| − 2ρν(∇u,∇G1(u, p))| ≤ 4ρ2ν2
∥∇u∥2 +

1
4
∥∇G1(u, p)∥2,

nd

| − 2ρ(G2(u, p)− p,∇ · G1(u, p))| ≤
α

2
∥G2(u, p)∥2 +

α

2
∥p∥2 + 2α−1ρ2

∥∇G1(u, p)∥2

thanks to ∥∇ · G1(u, p)∥ ≤ ∥∇G1(u, p)∥.
Collecting the above bounds, we reduce (4.8) to(

1
2
− 2α−1ρ2

)
∥∇G1(u, p)∥2 +

α

2
∥G2(u, p)∥2 ≤ (1+ 4ρ2ν2)∥∇u∥2 +

α

2
∥p∥2 + 4ρ2

∥f ∥2
−1.

Letting N =
1
2 − 2α−1ρ2, and dividing both sides by N , we get

∥G(u, p)∥2H ≤
1+ 4ρ2ν2

N
∥∇u∥2 +

α

2N
∥p∥2 +

4ρ2

N
∥f ∥2

−1.

Then, taking the square root of both sides reduces it to (4.7). Since G is linear and finite dimensional, showing that the
solution G(u, p) is bounded continuously by the data implies solution uniqueness and thus existence as well. □
8
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We now rewrite the grad–div stabilized AH method in terms of a mapping G : (Xh,Qh) → (Xh,Qh) that satisfies for
m ≥ 0

G(um, pm) = (G1(um, pm),G2(um, pm)) := (um+1, pm+1),

here (um, pm) is the mth iteration of the A-H method described in Algorithm 3.

.3. Applying AA to the grad–div stabilized AH iteration

In this subsection, we show the sufficient smoothness properties of the associated fixed point operator G for the
grad–div stabilized AH iteration to apply AA theory. Now, we show Lipschitz continuity of G.

Lemma 4.7. For any (u, p), (w, z) ∈ (Xh,Qh), we have

∥G(u, p)− G(w, z)∥H ≤ CL∥(u, p)− (w, z)∥H (4.9)

here CL = max{
√

2
K ,

(
1−ρν
√
K

+
ρ

√
2KN

(
(1+ 2ρν)∥∇u∥ +

√
α∥p∥ + 2ρ∥f ∥−1

))
}.

Remark 4.8. Note that we have already discussed that in case of sufficiently small data and particularly chosen
parameters, Algorithm 3 is contractive. In this section we assume to be in the contractive setting, and thus we have
that the Lipschitz constant CL in Lemma 4.7 is less than 1.

Proof. Subtracting (4.5) with (w, z) from (4.5) with (u, p) gives

(∇(G1(u, p)− G1(w, z)),∇v)− (∇(u− w),∇v)+ ρν(∇(u− w),∇v)+ ρb∗(u;G1(u, p)− G1(w, z), v)

+ρb∗(u− w;G1(w, z), v)+ ργ (∇ · (G1(u, p)− G1(w, z)),∇ · v) = ρ(p− z,∇ · v),

α(G2(u, p)− G2(w, z), q)− α(p− z, q)+ ρ(∇ · (G1(u, p)− G1(w, z)), q) = 0.

Then, setting v = G1(u, p)− G1(w, z) and q = G2(u, p)− G2(w, z) which eliminates the first nonlinear term on the left
and side of the first equation, and combining these equations provide

∥∇(G1(u, p)− G1(w, z))∥2 + α∥G2(u, p)− G2(w, z)∥2

= ρ(p− z,∇ · (G1(u, p)− G1(w, z)))+ (1− ρν)(∇(u− w),∇(G1(u, p)− G1(w, z)))

− ρb∗(u− w;G1(w, z),G1(u, p)− G1(w, z))+ α(p− z,G2(u, p)− G2(w, z))

− ρ(∇ · (G1(u, p)− G1(w, z)),G2(u, p)− G2(w, z)).

here positive term ργ ∥∇ · (G1(u, p)− G1(w, z))∥2 on the left hand side is dropped.
Applying Cauchy–Schwarz and Young’s inequalities provides

(1− ρν)(∇(u− w),∇(G1(u, p)− G1(w, z))) ≤ (1− ρν)2∥∇(u− w)∥2 +
1
4
∥∇(G1(u, p)− G1(w, z))∥2,

nd

α(p− z,G2(u, p)− G2(w, z)) ≤ α∥p− z∥2 +
α

4
∥G2(u, p)− G2(w, z)∥2.

hen, by using (2.3) and Lemma 4.6 and Young’s inequality, we obtain

ρb∗(u− w;G1(w, z),G1(u, p)− G1(w, z))

≤ ρ2M2
(
1+ 4ρ2ν2

N
∥∇u∥2 +

α

2N
∥p∥2 +

4ρ2

N
∥f ∥2

−1

)
∥∇u− w∥

2
+

1
4
∥∇(G1(u, p)− G1(w, z))∥2.

ast, by using Cauchy–Schwarz and Young’s inequalities, and ∥∇ · (G1(u, p) − G1(w, z))∥ ≤ ∥∇(G1(u, p) − G1(w, z))∥, we
et

ρ(p− z,∇ · (G1(u, p)− G1(w, z))) ≤ α∥p− z∥2 +
ρ2α−1

4
∥∇(G1(u, p)− G1(w, z))∥2,

and

ρ(∇ · (G1(u, p)− G1(w, z)),G2(u, p)− G2(w, z))

≤
α
∥G2(u, p)− G2(w, z)∥2 +

ρ2α−1
∥∇(G1(u, p)− G1(w, z))∥2.
2 2
9
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Combining the above bounds provides(
1
2
−

3ρ2α−1

4

)
∥∇(G1(u, p)− G1(w, z))∥2 +

α

4
∥G2(u, p)− G2(w, z)∥2 ≤ 2α∥p− z∥2

+

(
(1− ρν)2 + ρ2M2

(
(1+ 4ρ2ν2)

N
∥∇u∥2 +

α

2N
∥p∥2 +

4ρ2

N
∥f ∥2

−1

))
∥∇(u− w)∥2.

efining K = min{
(

1
2 −

3ρ2α−1

4

)
, 1

4 } and then dividing both sides by K yields (4.9). □

Next, we define an operator G′ and show it is indeed the Fréchet derivative of the operator of G.

Definition 4.9. Given (u, p) ∈ Xh × Qh, define an operator G′(u, p; ·, ·) : Xh × Qh → Xh × Qh by

G′(u, p;w, s) =: (G′

1(u, p;w, s),G′

2(u, p;w, s))

satisfying for all (w, s) ∈ Xh × Qh.

(∇(G′

1(u, p;w, s)− w),∇v)+ ρν(∇w,∇v)+ρb∗(w;G1(u, p), v)+ ρb∗(u;G′

1(u, p;w, s), v)
ργ (∇ · G′

1(u, p;w, s),∇ · v)− ρ(s,∇ · v) = 0,
α(G′

2(u, p;w, s)− s, q)+ ρ(∇ · G′

1(u, p;w, s), q) = 0.
(4.10)

Lemma 4.10. The operator G′ is well-defined for all (u, p), (w, s) ∈ Xh × Qh such that

∥G′(u, p;w, s)∥H ≤ CL∥(w, s)∥H (4.11)

Proof. Adding equations in (4.10) and setting v = G′

1(u, p;w, s) and q = G′

2(u, p;w, s) produces

∥∇G′

1(u, p;w, s)∥2 + ργ ∥∇ · G′

1(u, p;w, s)∥2 + α∥G′

2(u, p;w, s)∥2

= (1− ρν)(∇w,∇G′

1(u, p;w, s))+ α(s,G′

2(u, p;w, s))− ρb∗(w;G1(u, p),G′

1(u, p;w, s))
+ ρ(s,∇ · G′

1(u, p;w, s))− ρ(∇ · G′

1(u, p;w, s),G′

2(u, p;w, s)).
(4.12)

Then, by dropping positive term ργ ∥∇ · G′

1(u, p;w, s)∥2 on the left hand side, applying Cauchy–Schwarz and Young’s
inequalities produces

∥∇G′

1(u, p;w, s)∥2 + α∥G′

2(u, p;w, s)∥2

≤ (1− ρν)2∥∇h∥2 +
1
4
∥∇G′

1(u, p;w, s)∥2 + α∥s∥2 +
α

4
∥G′

2(u, p;w, s)∥2

+ ρ2M2
(
(1+ 4ρ2ν2)

N
∥∇u∥2 +

α

2N
∥p∥2 +

4ρ2

N
∥f ∥2

−1

)
∥∇h∥2 +

1
4
∥∇G′

1(u, p;w, s)∥2

+ α∥s∥2 +
ρ2α−1

4
∥∇G′

1(u, p;w, s)∥2 +
ρ2α−1

2
∥∇G′

1(u, p;w, s)∥2 +
α

2
∥G′

2(u, p;w, s)∥2

thanks to Lemma 4.6 and (2.3). To see the details of the estimates on the right hand side, follow the same steps as in the
proof of Lemma 4.7. After rearranging the terms, we get(

1
2
−

3ρ2α−1

4

)
∥∇G′

1(u, p;w, s)∥2 +
α

4
∥G′

2(u, p;w, s)∥2

≤

(
(1− ρν)2 + ρ2M2

(
(1+ 4ρ2ν2)

N
∥∇u∥2 +

α

2N
∥p∥2 +

4ρ2

N
∥f ∥2

−1

))
∥∇h∥2 + 2α∥s∥2

Taking the square root of both sides and considering constant K which is defined in proof of Lemma 4.7 finishes the
roof. □

Now, we prove that G′ is Fréchet derivative operator of G.

emma 4.11. For any (u, p) ∈ Xh × Qh

∥ G(u+ w, p+ s)− G(u, p)− G′(u, p;w, s)∥H ≤
ρMCL√
1− ρα−1

∥(w, s)∥2H . (4.13)
10
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Proof. Denote η1 = G1(u+w, p+ s)−G1(u, p)−G′

1(u, p;w, s), η2 = G2(u+w, p+ s)−G2(u, p)−G′

2(u, p;w, s). Subtracting
the sum of (4.5) and (4.10) from Eq. (4.5) with (u+ w, p+ s) yields

(∇η1,∇v)+ ργ (∇ · η1,∇ · v)+ ρb∗(u; η1, v)+ ρb∗(w;G1(u+ w, p+ s)− G1(u, p), v) = 0,
α(η2, q)+ ρ(∇ · η1, q) = 0.

hoosing v = η1 and q = η2 vanishes first nonlinear term on the left hand side, and combining these equations gives

∥∇η1∥
2
+ α∥η2∥

2
+ ργ ∥∇ · η1∥

2
= −ρ(∇ · η1, η2)− ρb∗(w;G1(u+ w, p+ s)− G1(u, p), η1). (4.14)

pplying Cauchy–Schwarz and (2.3) on the right hand side and dropping ργ ∥∇ · η1∥
2 on the left hand side yields

∥∇η1∥
2
+ α∥η2∥

2
≤ ρ∥∇ · η1∥∥η2∥ +Mρ∥∇w∥∥∇G1(u+ w, p+ s)− G1(u, p)∥∥∇η1∥.

ow with Young’s inequality and Lemma 4.7, we obtain using ∥∇ · η1∥ ≤ ∥∇η1∥ that

∥∇η1∥
2
+ α∥η2∥

2
≤

ρ2α−1

2
∥∇η1∥

2
+

α

2
∥η2∥

2
+

ρ2

2
M2C2

L ∥(w, s)∥2H∥∇w∥
2
+

1
2
∥∇η1∥

2.

hen, rearranging and using the fact that ∥∇w∥
2
≤ ∥∇w∥

2
+ α∥s∥2 = ∥(w, s)∥2H produce(

1
2
−

ρ2α−1

2

)
∥∇η1∥

2
+

α

2
∥η2∥

2
≤

ρ2

2
M2C2

L ∥(w, s)∥4H .

Then, applying the definition of η1 and η2, dividing both sides by
(

1
2 −

ρ2α−1

2

)
and taking square roots give that G′ is

ndeed the Fréchet derivative of G which satisfies (4.13). □

We now proceed to show that G′ is Lipschitz continuous over Xh × Qh.

emma 4.12. G is Lipschitz continuously differentiable on Xh × Qh, such that for all u, w, θ ∈ Xh and p, s, ξ ∈ Qh,

∥G′(u+ w, p+ s; θ, ξ )− G′(u, p; θ, ξ )∥H ≤

(
4ρ2M2C2

L

1− ρ2α−1

)1/2

∥(θ, ξ )∥H∥(w, s)∥H . (4.15)

roof. Subtracting (4.10) with G′(u, p; θ, ξ ) from (4.10) with G′(u + w, p + s; θ, ξ ) and denoting e1 =: G′

1(u + w, p +

s; θ, ξ )− G′

1(u, p; θ, ξ ) and e2 =: G′

2(u+ w, p+ s; θ, ξ )− G′

2(u, p; θ, ξ ) yield

(∇e1,∇v)+ ρb∗(θ;G1(u+ w, p+ s)− G1(u, p), v)+ ρb∗(u; e1, v)
+ ρb∗(w;G′

1(u+ w, p+ s; θ, ξ ), v)+ ργ (∇ · e1,∇ · v) = 0,
α(e2, q)+ ρ(∇ · e1, q) = 0.

Setting v = e1 and q = e2 vanishes the third term on the left hand side of the first equality and adding these equations
provide

∥∇e1∥2 + α∥e2∥2 + ργ ∥∇ · e1∥2

= −ρ(∇ · e1, e2)− ρb∗(θ;G1(u+ w, p+ s)− G1(u, p), e1)− ρb∗(w;G′

1(u+ w, p+ s; θ, ξ ), e1).

Dropping the positive term ργ ∥∇ · e1∥2 on the left hand side, applying Cauchy–Schwarz and Young’s inequalities and
(2.3), using Lemmas 4.7 and 4.10, we get(

1
2
−

ρ2α−1

2

)
∥∇e1∥2 +

α

2
∥e2∥2 ≤ ρ2M2C2

L ∥∇θ∥2∥(w, s)∥2H + ρ2M2C2
L ∥∇w∥

2
∥(θ, ξ )∥2

≤ 2ρ2M2C2
L ∥(θ, ξ )∥2H∥(w, s)∥2H ,

hanks to the fact that ∥∇θ∥2 ≤ ∥∇θ∥2 + α∥ξ∥2 = ∥(θ, ξ )∥2H and ∥∇w∥
2
≤ ∥∇w∥

2
+ α∥s∥2 = ∥(w, s)∥2H . Dividing both

ides by
(

1
2 −

ρ2α−1

2

)
gives

∥(e1, e2)∥2H = ∥∇e1∥2 + α∥e2∥2 ≤
4ρ2M2C2

L

1− ρ2α−1 ∥(θ, ξ )∥2H∥(w, s)∥2H .

hen taking the square roots of both sides gives that G′ is Lipschitz continuous, and (4.15) holds. □

.4. Convergence of the Anderson accelerated AH algorithm for steady NSE

In previous subsection, we proved that the solution operator G associated with grad–div stabilized AH iteration
4.5)–(4.6) satisfies Assumption 4.2 which is the one of sufficient conditions to apply the one-step residual bound of [31].
lso, Assumption 4.3 is satisfied since G is contractive under small data condition and certain parameter choices.
11
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Under these assumptions and with Lemmas 4.7, 4.11, 4.12 and Theorem 4.4, we have established the convergence of
(4.5)–(4.6) where G is the solution operator associated with grad–div stabilized AH iteration.

Theorem 4.13. For any step k > m with αk
m ̸= 0, the following bound holds for the grad–div stabilized AH iteration (4.5)–(4.6)

∥(wk+1, zk+1)∥H ≤θk(1− βk + βkCL)∥(wk, zk)∥H

+ C
√
1− θ2

k ∥(wk, zk)∥H
m∑
j=1

∥(wk−j+1, zk−j+1)∥H ,

for the residual (wk, zk), where θk is the gain from the optimization problem, CL is the Lipschitz constant of G defined in
Lemma 4.7, and C depending on θk, βk, CL.

This theorem tells us that (4.5)–(4.6), with a good initial guess, converges linearly with rate θk(1 − βk + βkCL) < 1,
which improves on Algorithm 3 due to the scaling θk and the damping factor βk. In the case G is contractive, i.e. CL < 1,
then the optimal choice for relaxation is βk = 1.

5. Numerical experiments

In this section, we perform several numerical tests to illustrate the theory above and to show how the grad–div
stabilized, Anderson accelerated AH algorithm can be an effective and efficient solver for the steady NSE. The stopping
criteria for all of our tests is ∥uk − uk−1∥ ≤ 10−6. Good criteria for choosing ρ and α is seemingly missing from the
literature, although some loose criteria are given in [1,2]. Our numerical results indicate α = ν−1 is a good choice, and
then taking ρ ∼ α/2 is typically a good choice, in particular when using AA since there is significantly less sensitivity to
changes in ρ in this case.

5.1. Lid-driven cavity

We first test the AH method for steady NSE on the lid-driven cavity problem. The domain for the problem is the unit
square Ω = (0, 1)2 and we impose Dirichlet boundary conditions by u|y=1 = (1, 0)T and u = 0 everywhere else. We
choose the parameter α = ν−1. We first illustrate how grad–div stabilization improves the AH method, and show the
dramatic improvement offered by (P2, Pdisc

1 ) Scott–Vogelius (SV) over (P2, P1) Taylor–Hood (TH). The second test shows
even further dramatic improvement by incorporating AA.

5.1.1. The effect of grad–div stabilization and comparison of Scott–Vogelius vs Taylor–Hood
Our analysis above suggests that convergence of AH will be improved from using grad–div stabilization, and also

from using SV elements instead of TH since the connection to the iterated Picard penalty method is only made for SV
elements. Hence we now compare the AH method for both element choices, with and without grad–div stabilization
(using parameter γ = 1). We run the tests for varying ρ (to try to find a good choice of parameter ρ) and with varying
Re = ν−1. For these tests a uniform mesh with h = 1/32 is used.

Results are shown in Fig. 1. We observe the best AH results clearly come from using SV instead of TH, and using γ = 1
with SV gives by far the best results. In most cases, TH fails to converge for any ρ. Based on these results, we use SV
elements for the rest of the numerical tests in this paper.

5.1.2. Anderson accelerated grad–div stabilized AH method with SV elements
We now consider the same test problem, using the AH iteration only with SV elements and γ = 1, but now adding

AA. We test AA depths m = 0 (no acceleration), 1,5 and 10. Figs. 2 and 3 show convergence results obtained by Anderson
accelerated grad–div stabilized AH method for Re = 100 and 1000, respectively, for varying ρ. As depth increases, the
number of iterations decreases significantly. The fastest convergence is obtained with depths m = 5, but there is not
much improvement past m = 5.

We also note that for optimally chosen ρ in this setting (i.e. ρ = 20 for Re = 100 and ρ = 50 for Re = 1000 based on
test above) with SV elements and grad–div stabilization, there is not much difference in convergence from AA. However,
for slightly non optimal ρ, there can be a dramatic improvement from AA. Since one often does not know optimal ρ a
priori, the expected case in practice is using a non-optimal ρ.

Comparing to existing literature, for Re = 100 driven cavity it is reported in [2] that 731 iterations of AH were needed to
converge to the same tolerance used herein and with Taylor–Hood elements, ρ = 1.2 and α = 70. Our results with Taylor–
Hood elements and no grad–div stabilization were similarly bad, see Fig. 1 in row 1; in fact, that they got convergence
at all for this test is rather extraordinary. With SV elements and grad–div stabilization, Fig. 1 (row 4, column 2) shows
that with α = Re = 100 and ρ = 20, convergence is achieved in 80 iterations. With less optimal parameter choices, AA

can still keep the total iteration count low, see Fig. 2.

12
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Fig. 1. Shown above is convergence behavior for the AH method applied to the driven cavity problem with varying Re and ρ. The top plots are
without grad–div stabilization and the bottom plots are with it. The first and third rows are for TH elements, and the second and last rows are SV.

5.1.3. Driven cavity with Re=5000 and Re=10,000
As a final test with the driven cavity, we consider the case of Re=5000 and Re=10,000 with h=1/64. This is a difficult

problem for nonlinear solvers [18,31], and we show now that with the right parameter choices, the AH method can be
effective for this problem. For 5000, ρ = 100, γ = 1, m = 100 were used to obtain convergence in 464 iterations. For
10,000, ρ = 150, γ = 10, m = 100 was used to obtain convergence in 217 iterations. Streamlines for both solutions are
shown in Fig. 4, and they are in good agreement with those from [38] even though we use a coarser mesh. We note that,
to date, the highest Re for successful lid driven cavity computations using the AH method in the literature is 1000 in [2].

This choice of very large m was shown to be successful for the NSE computations using the Picard iteration in [31],
and also when using a penalty type iteration for NSE in [29], and again here. This is seemingly one of a very few problems
where very it is beneficial to use very large m, as most problems in the literature use m ≤ 10 or even smaller [24]. While
it is an open problem why very large m is more effective for NSE, one possible reason could be that the constants in the
13
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Fig. 2. Convergence of Anderson accelerated grad–div stabilized Arrow–Hurwicz method for Re = 100, different ρ’s, γ = 1 with varying m.

Fig. 3. Convergence of Anderson accelerated grad–div stabilized Arrow–Hurwicz method for Re = 1000, different ρ’s, γ = 1 with varying m.

Fig. 4. Show above are streamlines for Re = 5, 000 and 10,000 driven cavity solutions.

higher order terms in the estimate (4.4) could be small, in particular C1. That is, if the fixed point operator is close to
linear in a neighborhood around the root then C1 would be small, which in turn would allow for m to be taken large and
for the iteration to enjoy smaller θk but with less impact of the higher order terms in the expansion.

5.2. Channel flow past a step

For our last test, we consider 2D channel flow past a step with Re = ν−1
= 100. The domain for this problem is a

40 × 10 rectangular channel, with a 1 × 1 ‘step’ placed 5 units into the channel at the bottom. The triangulation we use
is shown in Fig. 5, along with the Re = 100 solution found with our solver (which is consistent with solutions from the
literature [39–41]). The discretization uses (P2, Pdisc

1 ) SV elements that provided 32,682 velocity degrees of freedom.
First we consider γ = 10 = ε−1, noting that obtaining convergence with γ = 1 proved very difficult and we were

not able to find a parameter set that gave convergence. With γ = 10, we computed four parameter sets: (ρ = 50, α =
ε
ν
= 10), (ρ = 50, α =

1
ν
= 100), (ρ = 100, α =

ε
ν
= 10) - which is exactly the iterated penalty Picard method,

and (ρ = 100, α =
1
ν
= 100). Convergence plots for each of these parameter sets and varying m are shown in Fig. 6,

and we observe that m = 100 is the best choice for AA for all cases, and that AH with parameters chosen to match IPP
performs significantly worse than other parameter choices. The choice ρ = 50 and α = ν−1 with m = 100 was very
14
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Fig. 5. Shown above are the mesh for channel flow past a step (left) and Re = 100 velocity solution (right).

Fig. 6. Convergence of Anderson accelerated grad–div stabilized AH method and IPP iteration for Re = 100 for varying parameters and γ = 10.

Fig. 7. Convergence of Anderson accelerated grad–div stabilized AH method and IPP iteration for Re = 100 for varying parameters and γ = 100.

ffective. Results improve with γ = 100 for all parameter sets, see Fig. 7. Here, again AH improves on IPP, with ρ = 50
nd ρ = 100 withe m = 100 were very effective parameter choices.

. Conclusions

This paper developed multiple improvements to the AH method for solving the steady Navier–Stokes equations, and
howed that with grad–div stabilization, SV elements and Anderson acceleration, the AH method can be a very effective
nd efficient solver. SV elements and grad–div stabilization allowed us to connect AH to the well known iterated penalty
icard method, which has good convergence properties under small data [29]. We also proved that the AH iteration,
nder certain conditions on the data and parameters, fits into the Anderson acceleration analysis framework developed
n [31] and thus AA improves the linear convergence rate of the AH method by the gain of the underlying AA optimization
roblem. We also gave results of several numerical tests that show how each of these improvements is important for good
onvergence behavior, and when used together the AH method can be very effective.

ata availability

Data will be made available on request.

cknowledgments

Author PG acknowledges partial support from National Science Foundation, USA, grants DMS 1907823 and DMS
206200. Authors LR and DV acknowledge partial support from NSF, USA, grant DMS 2011490.
15



P.G. Geredeli, L.G. Rebholz, D. Vargun et al. Journal of Computational and Applied Mathematics 422 (2023) 114920
References

[1] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, in: Studies in Mathematics and its Applications, vol. 2, North-Holland
Publishing Co., Amsterdam, 1977.

[2] P. Chen, J. Huang, H. Sheng, Solving steady incompressible Navier-Stokes equations by the Arrow-Hurwicz method, J. Comput. Appl. Math. 311
(2017) 100–114.

[3] P. Chen, J.H. P, H. Sheng, Some Uzawa methods for steady incompressible Navier-Stokes equations discretized by mixed element methods, J.
Comput. Appl. Math. 273 (2015) 313–325.

[4] K.J. Arrow, L. Hurwicz, Gradient method for concave programming I: Local results, in: K.J. Arrow, L. Hurwicz, H. Uzawa (Eds.), Studies in Linear
and Nonlinear Programming, Stanford University Press, Stanford, CA, 1958, pp. 117–126.

[5] M. Benzi, G. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer. (2005) 1–137.
[6] H. Uzawa, Iterative methods for concave programming, in: K.J. Arrow, L. Hurwicz, H. Uzawa (Eds.), Studies in Linear and Nonlinear Programming,

Stanford University Press, Stanford, CA, 1958, pp. 154–165.
[7] T. Heister, G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div stabilization, Internat. J. Numer.

Methods Fluids 71 (2013) 118–134.
[8] S. Börm, S. Le Borne, H-LU factorization in preconditioners for augmented Lagrangian and grad-div stabilized saddle point systems, Internat.

J. Numer. Methods Fluids 68 (1) (2012) 83–98.
[9] M. Benzi, M. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput. 28 (2006) 2095–2113.

[10] V. John, A. Linke, C. Merdon, M. Neilan, L.G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows,
SIAM Rev. 59 (3) (2017) 492–544.

[11] L. Franca, T. Hughes, Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg. 69 (1) (1988) 89–129.
[12] M.A. Olshanskii, A. Reusken, Grad-div stabilization for the Stokes equations, Math. Comp. 73 (2004) 1699–1718.
[13] L. Rebholz, M. Xiao, On reducing the splitting error in Yosida methods for the Navier-Stokes equations with grad-div stabilization, Comput.

Methods Appl. Mech. Engrg. 294 (2015) 259–277.
[14] L. Rebholz, A. Viguerie, M. Xiao, Efficient nonlinear iteration schemes based on algebraic splitting for the incompressible Navier-Stokes equations,

Math. Comp. 88 (2019) 1533–1557.
[15] D. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach. 12 (4) (1965) 547–560.
[16] H.F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal. 49 (4) (2011) 1715–1735.
[17] P.A. Lott, H.F. Walker, C.S. Woodward, U.M. Yang, An accelerated picard method for nonlinear systems related to variably saturated flow, Adv.

Water Resour. 38 (2012) 92–101.
[18] S. Pollock, L. Rebholz, M. Xiao, Anderson-accelerated convergence of picard iterations for incompressible Navier-Stokes equations, SIAM J.

Numer. Anal. 57 (2019) 615–637.
[19] S. Pollock, L. Rebholz, M. Xiao, Acceleration of nonlinear solvers for natural convection problems, J. Numer. Math. 29 (4) (2021) 323–341.
[20] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, L. Liu, Anderson acceleration for geometry optimization and physics simulation, ACM Trans. Graph.

42 (2018) 1–14.
[21] H. An, X. Jia, H. Walker, Anderson acceleration and application to the three-temperature energy equations, J. Comput. Phys. 347 (2017) 1–19.
[22] A. Toth, C. Kelley, S. Slattery, S. Hamilton, K. Clarno, R. Pawlowski, Analysis of Anderson acceleration on a simplified neutronics/thermal

hydraulics system, in: Proceedings of the ANS MC2015 Joint International Conference on Mathematics and Computation (M&C), Supercomputing
in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Vol. ANS MC2015 CD, 2015, pp. 1–12.

[23] P. Stasiak, M. Matsen, Efficiency of pseudo-spectral algorithms with Anderson mixing for the SCFT of periodic block-copolymer phases, Eur.
Phys. J. E 34:110 (2011) 1–9.

[24] C. Kelley, Numerical methods for nonlinear equations, Acta Numer. 27 (2018) 207–287.
[25] J. Loffeld, C. Woodward, Considerations on the implementation and use of Anderson acceleration on distributed memory and GPU-based parallel

computers, Adv. Math. Sci. (2016) 417–436.
[26] A. Fu, J. Zhang, S. Boyd, Anderson accelerated Douglas-Rachford splitting, SIAM J. Sci. Comput. 42 (6) (2020) A3560–A3583.
[27] D. Wicht, M. Schneider, T. Bohlke, Anderson-accelerated polarization schemes for fast Fourier transform-based computational homogenization,

Internat. J. Numer. Methods Engrg. 122 (2021) 2287–2311.
[28] N. Higham, N. Strabic, Anderson acceleration of the alternating projections method for computing the nearest correlation matrix, Numer.

Algorithms 72 (2016) 1021–1042.
[29] L. Rebholz, D. Vargun, M. Xiao, Enabling fast convergence of the iterated penalty Picard iteration with O(1) penalty parameter for incompressible

Navier-Stokes via Anderson acceleration, Comput. Methods Appl. Mech. Engrg. 387 (114178) (2021) 1–17.
[30] C. Evans, S. Pollock, L. Rebholz, M. Xiao, A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point

methods (but not in those converging quadratically), SIAM J. Numer. Anal. 58 (2020) 788–810.
[31] S. Pollock, L. Rebholz, Anderson acceleration for contractive and noncontractive operators, IMA J. Numer. Anal. 41 (4) (2021) 2841–2872.
[32] W. Layton, An Introduction to the Numerical Analysis of Viscous Incompressible Flows, SIAM, Philadelphia, 2008.
[33] J. Guzman, L. Scott, The Scott-Vogelius finite elements revisited, Math. Comp. 88 (316) (2019) 515–529.
[34] V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, in: Springer Series in Computational Mathematics, vol. 5,

Springer-Verlag, Berlin, 1986, p. x+374, Theory and algorithms.
[35] R. Codina, An iterative penalty method for the finite element solution of the stationary Navier-Stokes equations, Comput. Methods Appl. Mech.

Engrg. 110 (1993) 237–262.
[36] H. Morgan, L. Scott, Towards a unified finite element method for the Stokes equations, SIAM J. Sci. Comput. 40 (1) (2018) A130–A141.
[37] M. Gunzburger, Iterative penalty methods for the Stokes and Navier-Stokes equations, in: Proceedings from Finite Element Analysis in Fluids

Conference, University of Alabama, Huntsville, 1989, pp. 1040–1045.
[38] U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput.

Phys. 48 (1982) 387–411.
[39] V. John, A. Liakos, Time dependent flow across a step: The slip with friction boundary condition, Internat. J. Numer. Methods Fluids 50 (2006)

713–731.
[40] P. Gresho, R. Lee, Don’t suppress the wiggles. - They’re telling you something, Comput. & Fluids 9 (1981) 223–253.
[41] M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithm (Computer Science and

Scientific Computing, Academic Press Inc., Boston, MA, 1989.
16

http://refhub.elsevier.com/S0377-0427(22)00518-0/sb1
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb1
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb1
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb2
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb2
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb2
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb3
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb3
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb3
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb4
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb4
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb4
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb5
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb6
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb6
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb6
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb7
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb7
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb7
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb8
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb8
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb8
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb9
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb10
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb10
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb10
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb11
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb12
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb13
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb13
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb13
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb14
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb14
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb14
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb15
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb16
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb17
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb17
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb17
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb18
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb18
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb18
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb19
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb20
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb20
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb20
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb21
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb22
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb22
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb22
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb22
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb22
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb23
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb23
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb23
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb24
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb25
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb25
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb25
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb26
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb27
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb27
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb27
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb28
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb28
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb28
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb29
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb29
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb29
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb30
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb30
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb30
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb31
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb32
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb33
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb34
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb34
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb34
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb35
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb35
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb35
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb36
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb37
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb37
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb37
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb38
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb38
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb38
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb39
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb39
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb39
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb40
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb41
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb41
http://refhub.elsevier.com/S0377-0427(22)00518-0/sb41

	Improved convergence of the Arrow–Hurwicz iteration for the Navier–Stokes equation via grad–div stabilization and Anderson acceleration
	Introduction
	Preliminaries
	Finite element preliminaries
	The Arrow–Hurwicz method

	Convergence analysis of a grad–div stabilized AH method
	Linear convergence of the grad–div stabilized AH  iteration via a connection to the iterated Picard penalty method
	Improvement to classical analysis of AH  method via grad–div stabilization

	Anderson Acceleration applied to the grad–div stabilized AH Method
	Anderson acceleration
	Grad–div stabilized AH method as a fixed point iteration
	Applying AA to the grad–div stabilized AH iteration
	Convergence of the Anderson Accelerated AH algorithm for steady NSE

	Numerical Experiments
	Lid-driven cavity
	The effect of grad–div stabilization and comparison of Scott–Vogelius vs Taylor–Hood
	Anderson accelerated grad–div stabilized AH method with SV elements
	Driven cavity with Re=5000 and Re=10,000

	Channel flow past a step

	Conclusions
	Data availability
	Acknowledgments
	References


