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We calculate the eccentricity dependence of the high-order post-Newtonian (PN) series for the
generalized redshift invariant hutiτ for eccentric-orbit extreme-mass-ratio inspirals on a Schwarzschild
background. These results are calculated within first-order black hole perturbation theory using Regge-
Wheeler-Zerilli (RWZ) gauge. Our Mathematica code is based on a familiar procedure, using PN
expansion of the Mano-Suzuki-Takasugi analytic function formalism for l modes up to a certain maximum
and then using a direct general-l PN expansion of the RWZ equation for arbitrarily high l. We calculate dual
expansions in PN order and in powers of eccentricity, reaching 10PN relative order and e20. Detailed
knowledge of the eccentricity expansion at each PN order allows us to find within the eccentricity
dependence numerous closed-form expressions and multiple infinite series with known coefficients. We
find leading logarithm sequences in the PN expansion of the redshift invariant that reflect a similar behavior
in the PN expansion of the energy flux to infinity. A set of flux terms and special functions that appear in the
energy flux, like the Peters-Mathews flux itself, are shown to reappear in the redshift PN expansion.
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I. INTRODUCTION

Using a recently developed method and Mathematica
code [1,2], we calculated previously high-order post-
Newtonian (PN) expansions of the energy and angular
momentum radiated to infinity by nonspinning eccentric-
orbit extreme-mass-ratio inspirals (EMRIs) in first-order
black hole perturbation theory (BHPT) (see also [3]).
The resulting expansions, in both PN order and eccen-
tricity e, were taken to high PN order (19PN) and e10

and to somewhat lower PN order (10PN) and higher
order (e20) in eccentricity. The detailed behavior in
eccentricity allowed us to find numerous closed-form
expressions and infinite series in e with identifiable
coefficient sequences. In the process we found a set of
leading-logarithm connections between low-order multi-
pole moments of the orbital motion and arbitrarily high
PN order sequences in the fluxes [2,4,5]. Since then,
fluxes at the horizon have also been found, to 18PN
(relative to the leading horizon flux) and e10 as well as
to 10PN and e20 [2,6]. Taken together these expansions
are useful since fluxes are the most significant contrib-
utors to EMRI orbital phase evolution [7]. High-order
PN expansions of the fluxes and ultimately waveform
amplitudes associated with Kerr EMRIs could make
important early-phase baseline contributions to more
comprehensive efforts to develop “fast” waveform mod-
els for the LISA mission [8].

These deep PN expansions in first-order BHPT in the
dissipative sector can also be extended to perturbations of
the metric and of local, conservative, gauge-invariant
quantities. The first such local quantity to be examined
for its connections between BHPT and PN theory was
Detweiler’s redshift invariant [9] for circular orbits, ut,
which was initially calculated through 3PN order [10].
Ultimately, Kavanagh, Ottewill, and Wardell [11] used
analytic expansion methods to compute this term to 21.5PN
for circular orbits. The redshift invariant was generalized to
eccentric orbits by Barack and Sago [12], who defined it in
that case as the average of ut taken in proper time over one
radial libration, hutiτ. Its behavior was calculated to 3PN
order in [13] using results from the full PN theory (see [14]
for review of status of PN theory). The redshift is one of
multiple gauge invariants that can be calculated in both
BHPT and PN theory and compared. Others that have been
identified, either for circular or eccentric orbits, include the
first order in the mass-ratio effects on apsidal advance of
eccentric orbits [12], location of the innermost stable
circular orbit [15], spin-precession invariant ψ (correction
to geodetic precession) [11,16–19], tidal invariants [11,20],
and octupole invariants [21]. Conservative-sector invariants
calculated in BHPT may supply calibration of effective-
one-body (EOB) potentials (see, e.g., [22–34]), which is
important since EOB allows rapid evaluation of the
dynamics of merging binaries and covers broad regions
of parameter space. Recent work has also shown that the
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redshift invariant, in particular, can be directly translated to
the local sector of post-Minkowskian (PM) dynamics,
allowing derivation of higher-order PM scattering mechan-
ics [32–34]. This paper turns the use of our recently
developed code to the task of uncovering the higher-order
(10PN and e20) behavior of the redshift invariant and in the
process we show intriguing physical connections between
the conservative and dissipative sectors.
The present method derives from work of [29,35,36].

Mode functions for l ≥ 2 are computed in the Regge-
Wheeler-Zerilli (RWZ) gauge [37,38]. For l modes up to a
certain order, PN expansions of the mode functions are
found using the Mano-Suzuki-Takasugi (MST) formalism
[39], as shown in previous applications [11,17,25,29,40,41].
Modes of the metric perturbation are derived from the mode
functions, and the modes of the redshift invariant hutilτ are
found through projection of the metric perturbation on the
four velocity. Finite local value of the redshift invariant is
then obtained by directly applying mode-sum regularization
to the scalar quantity. Mode-sum regularization requires
knowledge of all l modes. Beyond the range in l covered by
the MSTexpansion, we use a direct PN expansion ansatz for
general-l solutions of the Regge-Wheeler (RW) equation
[40]. Themodes of hutilτ derived at low l byMSTand general
l by the ansatz are augmented by direct solution of the l ¼ 0,
1 modes to complete the regularization.
The structure of this paper is as follows. In Sec. II we

briefly outline the problem setup and the MST formalism,
with a focus on how the mode functions in the RWZ gauge
can be PN expanded. That section includes discussion of the
metric perturbations and how they are likewise PNexpanded.
Themetric perturbations evaluated at the location of the small
body are needed to find the regularized (conservative sector)
self-force. As mentioned, for conservative sector quantities
the l-mode expansion of the metric must be made for all l.
TheMST formalism is used to find l-modes up to a modest l
related to the sought-after PN order. Section III details the
separate procedure used to obtain general, higher l-modes. In
Sec. IV we briefly recall the final two, nonradiative modes
that are not covered by the RWZ formalism and discuss the
mode-sum regularization procedure, which is specialized
here for extracting the redshift invariant. SectionVis then the
heart of the paper, outlining the expected form of the
eccentric-orbit PN expansion of the redshift and displaying
our results for the numerous nonlog and log parts of the
eccentricity dependence up to 10PN order. (We show results
in this paper up to 8.5PN with the remainder being posted
at [42,43].) The redshift invariant is expressed using two
different compactness parameters, 1=p involving the dimen-
sionless semilatus rectump and y ¼ ðMΩφÞ2=3 involving the
mean azimuthal frequencyΩφ. This section then summarizes
the results, including a discussion of the uncovered con-
nection between the redshift PN expansion and the PN
expansion of the energy flux to infinity.We also compare our
PN expansion numerically to self-force results published

previously for compact orbits. Section VI concludes with a
summary and outlook.
Throughout this paper we primarily choose units

such that c ¼ G ¼ 1, though in making PN expansions
we reintroduce η ¼ 1=c as a PN (slowmotion) parameter for
bookkeeping purposes. Our metric signature is ð−þþþÞ.
Our notation for the RWZ formalism follows that found in
[3,44], which in part derives from notational changes for
tensor spherical harmonics and perturbation amplitudes
introduced by Martel and Poisson [45]. For the MST
formalism, we largely make use of the discussion and
notation found in the review by Sasaki and Tagoshi [46].

II. BRIEF REVIEW OF RWZ AND MST
FORMALISMS

We briefly outline the setup of the problem of calculating
conservative sector perturbations for bound EMRI motion
on a Schwarzschild background. We further summarize the
MST analytic function expansions, the use of which are
required for modes with small l in the PN expansion. This
process is more extensively detailed in [1] and is based on
earlier work in [11,29,35,40,41].

A. Bound orbits on a Schwarzschild background

The secondary is treated as a point mass μ in bound
geodesic orbit about a Schwarzschild black hole of massM
with ε ¼ μ=M ≪ 1. The line element in Schwarzschild
coordinates xμ ¼ ft; r; θ;φg is

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð2:1Þ
with f ¼ 1–2M=r. For motion xα ¼ xαpðτÞ confined to the
equatorial plane, the four-velocity is

uαðτÞ ¼ dxαpðτÞ
dτ

¼
�
E
fp

; ur; 0;
L
r2p

�
; ð2:2Þ

where E and L are the conserved specific energy and
angular momentum, respectively. The radial proper
velocity ur is then found from the normalization of uμ.
Orbital motion is conveniently described by an alternative
(Darwin) parameter set fχ; p; eg [47–49] with

E2¼ðp−2Þ2−4e2

pðp−3−e2Þ ; L2¼ p2M2

p−3−e2
; rpðχÞ¼

pM
1þecosχ

:

ð2:3Þ
One radial libration occurs with each 2π advance in χ.
The dimensionless quantity 1=p can thus immediately
serve as a PN compactness parameter. Integrals can be
written down from separate ordinary differential equations
(ODEs) for the evolution of φ, t, and τ in terms of χ [44,50].
Each integrand can be expanded as a PN series (e.g., in
1=p) and the integrals can be solved order by order in
powers of 1=p. Definite integrals yield the fundamental
frequencies Ωr and Ωφ. The radial period is given by
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Tr ¼
Z

2π

0

rpðχÞ2
Mðp − 2 − 2e cos χÞ

� ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

�
1=2

dχ;

with Ωr ¼ 2π=Tr. The azimuthal frequency is given by

Ωφ ¼ 4

Tr

�
p

p − 6 − 2e

�
1=2

K

�
−

4e
p − 6 − 2e

�
; ð2:4Þ

whereKðmÞ is the complete elliptic integral of the first kind
[51]. Each frequency is PN expanded. Once the azimuthal
frequency is known, the usual PN compactness parameter
y ¼ ðMΩφÞ2=3 can obtained as a power series in 1=p, or
vice versa. Eccentric motion also leads to expansions in
powers of Darwin eccentricity e.

B. The RWZ master equation

Bound motion acts as a periodic source for the first-order
gravitational perturbations. On a Schwarzschild back-
ground these can encoded by a pair (even and odd parity)
of RWZ-gauge master functions [37,38,45]. The master
equations in the frequency domain (FD) take the form

�
d2

dr2�
þ ω2 − VlðrÞ

�
XlmnðrÞ ¼ ZlmnðrÞ: ð2:5Þ

Here r� ¼ rþ 2M ln jr=2M − 1j is the tortoise coordinate,
the frequency spectrum is discrete ω≡ωmn ¼mΩφ þ nΩr,
and the source functions are given by

ZlmnðrÞ ¼
1

Tr

Z
2π

0

ðGlmðtÞδ½r − rpðtÞ�

þ FlmðtÞδ0½r − rpðtÞ�Þeiωtdt: ð2:6Þ
The functions GlmðtÞ and FlmðtÞ [52] follow from the
point-particle stress-energy tensor. Both the source term
and the potential VlðrÞ are (lþm) parity dependent.
The homogeneous form of this equation yields two

independent solutions: Xin
lmn ¼ X−

lmn, with causal (down-
going wave) behavior at the horizon, and Xup

lmn ¼ Xþ
lmn,

with causal (outgoing wave) behavior at infinity. The odd-
parity homogeneous solutions can be determined directly
using the MST formalism [39], which we outline below.
The corresponding even-parity solutions are derived from
the odd-parity solutions using one form of the Detweiler-
Chandrasekhar transformation [44,53–56].

C. The MST homogeneous solutions
and the source integration

The MST solution for Xþ
lmn can be expressed [11] as

Xþ
lmn ¼ eizzνþ1

�
1 −

ϵ

z

�
−iϵ X∞

j¼−∞
ajð−2izÞj

Γðjþ νþ 1 − iϵÞΓðjþ ν − 1 − iϵÞ
Γðjþ νþ 3þ iϵÞΓðjþ νþ 1þ iϵÞ

×Uðjþ νþ 1 − iϵ; 2jþ 2νþ 2;−2izÞ; ð2:7Þ
where U is the irregular confluent hypergeometric function, ϵ ¼ 2Mωη3, z ¼ rωη, and η ¼ 1=c (which serves as a 0.5PN
expansion parameter). In this equation, ν is the renormalized angular momentum, which is an eigenvalue chosen to make the
series coefficients aj converge in both limits as j → �∞. Both ν and aj are determined through a continued fraction method
[39,46], which leads to series in ϵ for both (which are then PN series).

Similarly, the solution for X−
lmn is given by

X−
lmn ¼ e−iz

�
z
ϵ
− 1

�
−iϵ

�
ϵ

z

�
iϵþ1 X∞

j¼−∞
aj

Γðjþ ν − 1 − iϵÞΓð−j − ν − 2 − iϵÞ
Γð1 − 2iϵÞ

× 2F1ðjþ ν − 1 − iϵ;−j − ν − 2 − iϵ; 1 − 2iϵ; 1 − z=ϵÞ; ð2:8Þ

which is expressed in terms of the ordinary (Gauss) hyper-
geometric function. The ν and aj appearing here are the same
as those found in solving for the up (þ) solution (2.7).
The process of expanding these homogeneous solutions

by collecting on powers of η is fully described in [1], based
on the methods initially presented in [40,11]. The homo-
geneous solutions are normalized initially by making the
choice a0 ¼ 1 in solving the recurrence relation for aj.

However, it proves useful to remove z-independent factors
from these solutions to reduce their size and complexity, as
described in [1,11]. This step temporarily rescales the
solutions, which are then used to form a Green’s function
to find the inner and outer solutions that reflect the behavior
of the source. Integration with the Green’s function yields
normalization coefficients on both sides of the source
region

C�
lmn ¼

1

WlmnTr

Z
2π

0

�
dt
dχ

��
1

fp
GlmðχÞX∓

lmn þ
�

2M
r2pf2p

X∓
lmn −

1

fp

dX∓
lmn

dr

�
FlmðχÞ

�
eiωtðχÞdχ; ð2:9Þ
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where a subscript p denotes functions that are evaluated
along the worldline of the particle and Wlmn is the
Wronskian. In the dissipative sector, it is necessary to
rescale these coefficients in order that their complex square
yields the fluxes [1]. To find local conservative quantities,
the time domain (TD) extended solutions, Ψ�

lm, are con-
structed from the combinations Cþ

lmnX
þ
lmn and C−

lmnX
−
lmn

[1,52], which automatically produce the proper normali-
zation. In the present application, these time domain
functions are then PN expanded.

D. The metric perturbations

The first-order generalized redshift invariant is a quantity
that depends upon the metric perturbation and its regular-
ized behavior evaluated along the particle worldline. The
general metric perturbation expressions all involve prod-
ucts of the normalization coefficients C�

lmn with some linear
functional of the homogeneous solutions X�

lmn, prior to

summing to transfer from the FD to TD [29,52]. As
discussed in [29], singular and discontinuous parts of the
FD metric perturbations cancel on the particle’s worldline
in summing over m, leaving the l-dependent functions
being C0. The even-parity TD amplitudes are

Klm;�ðt; rÞ ¼ f∂rΨe;�
lm þ AðrÞΨe;�

lm ;

hlm;�
rr ðt; rÞ ¼ Λ

f2

�
λþ 1

r
Ψe;�

lm − Klm;�
�
þ r
f
∂rKlm;�;

hlm;�
tr ðt; rÞ ¼ r∂t∂rΨe;�

lm þ rBðrÞ∂tΨe;�
lm ;

hlm;�
tt ðt; rÞ ¼ f2hlm;�

rr ; ð2:10Þ

whereΨe
lm is the solution to theTDZerilli-Moncrief equation

[52]. The þ and − superscripts correspond to whether the
solution is constructed from Cþ

lmnX
þ
lmn or C−

lmnX
−
lmn (see

below). The expressions above use the following definitions:

λ ¼ 1

2
ðlþ 2Þðl − 1Þ; Λ ¼ λþ 3M

r
;

AðrÞ ¼ 1

rΛ

�
λðλþ 1Þ þ 3M

r

�
λþ 2M

r

��
; BðrÞ ¼ 1

rfΛ

�
λ

�
1 −

3M
r

�
−
3M2

r2

�
: ð2:11Þ

The l-mode decomposition of the full even-parity metric perturbation pμν can then be written as

pl
rrðt; r; θ;φÞ ¼

Xl

m¼−l
½hlm;þ

rr ðt; rÞΘ½r − rpðtÞ� þ hlm;−
rr ðt; rÞΘ½rpðtÞ − r��Ylmðθ;φÞ;

pl
trðt; r; θ;φÞ ¼

Xl

m¼−l
½hlm;þ

tr ðt; rÞΘ½r − rpðtÞ� þ hlm;−
tr ðt; rÞΘ½rpðtÞ − r��Ylmðθ;φÞ;

pl
ttðt; r; θ;φÞ ¼ f2pl

rr;

pl
ABðt; r; θ;φÞ ¼

Xl

m¼−l
r2ΩAB½Klm;þðt; rÞΘ½r − rpðtÞ� þ Klm;−ðt; rÞΘ½rpðtÞ − r��Ylmðθ;φÞ: ð2:12Þ

Here, ΩAB is the unit-radius metric on the two-sphere (i.e., Ωθθ ¼ 1, Ωφφ ¼ sin2 θ, Ωθφ ¼ Ωφθ ¼ 0), as utilized in [45].
Likewise we can express the odd-parity TD amplitudes as follows:

hlm;�
t ðt; rÞ ¼ f

2
∂rðrΨo;�

lm Þ; hlmr ðt; r; θ;φÞ ¼ r
2f

∂tΨo;�
lm ; ð2:13Þ

with the l-mode decomposition of the full odd-parity metric perturbation given by

pl
tBðt; r; θ;φÞ ¼

Xl

m¼−l
½hlm;þ

t ðt; rÞΘ½r − rpðtÞ� þ hlm;−
t ðt; rÞΘ½rpðtÞ − r��Xlm

B ðθ;φÞ;

pl
rBðt; r; θ;φÞ ¼

Xl

m¼−l
½hlm;þ

r ðt; rÞΘ½r − rpðtÞ� þ hlm;−
r ðt; rÞΘ½rpðtÞ − r��Xlm

B ðθ;φÞ; ð2:14Þ

where Xlm
B ðθ;φÞ is the odd-parity vector spherical harmonic defined in [45].

CHRISTOPHER MUNNA and CHARLES R. EVANS PHYS. REV. D 106, 044004 (2022)

044004-4



These reconstructions of the metric are valid for all t and
for r > 2M. The redshift invariant, however, merely
requires the behavior along the trajectory r ¼ rpðtÞ itself.
To parametrize the background motion, and therefore the
self-force, it is computationally convenient to use χ instead

of t. Accordingly, we modify the notation so that quantities
are thought to be functions of χ [e.g., r¼ rpðχÞ; f ¼ fpðχÞ;
t¼ tpðχÞ, etc.]. Expressing everything, including deriva-
tives, in terms of χ, we find the following local behavior for
the l-modes of the even-parity metric perturbation:

pl
rrðχÞ ¼

�
dχ
dr

�X
mn

Ylmðπ=2; 0Þ
f

C�
lmne

imφ−iωt
���

dr
dχ

�
Λðλþ 1Þ

fr
−
�
dr
dχ

�
Λ
f
AðχÞ þ r

�
dAðχÞ
dχ

��
X�
lmnðχÞ

þ ðrAðχÞ − ΛÞ
�
dX�

lmnðχÞ
dχ

�
þ r

d
dχ

�
f

�
dχ
dr

��
dX�

lmnðχÞ
dχ

���
;

pl
trðχÞ ¼

X
mn

Ylmðπ=2; 0ÞC�
lmne

imφ−iωtð−iωÞ
�
r

�
dχ
dr

��
dX�

lmnðχÞ
dχ

�
þ rBðχÞX�

lmnðχÞ
�
;

pl
ttðχÞ ¼ f2pl;�

rr ;

pl
ABðχÞ ¼ r2ΩAB

X
mn

Ylmðπ=2; 0ÞC�
lmne

imφ−iωt
�
f

�
dχ
dr

�
∂χX�

lmn þ AðχÞX�
lmn

�
; ð2:15Þ

and of the odd-parity metric perturbation

pl
tBðχÞ ¼

�
f
2

�X
mn

Xlm
B ðπ=2; 0ÞC�

lmne
imφ−iωt

�
dχ
dr

�
d
dχ

ðrX�
lmnÞ;

pl
rBðχÞ ¼

�
r
2f

�X
mn

Xlm
B ðπ=2; 0ÞC�

lmne
imφ−iωtð−iωÞX�

lmn: ð2:16Þ

Since the l-modes are C0 at r ¼ rpðχÞ, the same result
emerges in using either the þ or − side mode functions.

III. GENERAL-l EXPANSIONS

The MST formalism, as briefly summarized in Sec. II,
provides mode functions for specific l. We used that pro-
cedure in several previous papers [1,3–6,44] that dealt with
gravitational wave fluxes, taking advantage of the fact that the
PN expansions of higher l fluxes begin at successively higher
PN order. To determine the redshift invariant or other
conservative quantities, l modes of the local behavior of
the metric perturbation are needed. This introduces a diffi-
culty not encountered with the fluxes—the PN expansions of
higher l contributions,pl

μνðχÞ, do not beginwith successively
higher PN order. Thus, to obtain correct PN coefficients in the
expansionof themetricpl

μνðχÞ, a sumoverall lmust bemade.
This necessitates finding analytic expansions for arbitrary l.

A. The homogeneous solutions
and normalization constants

To generate expansions for general l, we might try
directly expanding the odd-parity MST solutions (2.7)

and (2.8) while leaving l arbitrary. However, the Γ
functions in the summations make such an approach
apparently intractable. An alternative method utilizes an
ansatz [11,40] for the homogeneous solutions of the RW
equation

X−
lmn¼

�
ϵ

z

�
−ν−1

ð1þA2η
2þA4η

4þ���þA2lη
2lþOðη2lþ1ÞÞ;

Xþ
lmn¼ðzÞ−νð1þB2η

2þB4η
4þ���þB2lη

2lþOðη2lþ1ÞÞ;
ð3:1Þ

as a general-l PN expansion with undetermined coeffi-
cients. Here Ai and Bi are functions of z, ϵ, l. The original
ansatz [40] employed different prefactors, namely rlþ1 and
r−l. This was modified [11] to use ν in the exponents,
which removes logarithmic terms from the Ai and Bi
coefficients. The PN expansion of ν itself is found using
the continued fraction method (but for general l) and then
the expansions are plugged into the homogeneous RW
equation
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��
1 −

ϵ

z

�
∂

∂z

��
1 −

ϵ

z

�
∂

∂z

�
þ η2 þ

�
1 −

ϵ

z

��
lðlþ 1Þ

z2
−
3ϵ

z3

�
η2
�
X�
lmn ¼ 0: ð3:2Þ

The ODE is then solved order-by-order. For even parity, Zerilli equation solutions are derived from the RW solutions via the
Detweiler-Chandrasekhar transformation [1]. The ansatz (3.1) does not fully incorporate the boundary conditions, which
makes it break down at PN orders at and aboveOðη2lÞ. If a target PN order P is set, the ansatz will be useless for l ≤ P and
portions of the solution for those values of l must be determined separately with the MST formalism.
Proceeding in this way, we obtain a general-l PN expansion for ν, the first few terms of which are

ν ¼ lþ 24þ 13lþ 28l2 þ 30l3 þ 15l4

6lþ 10l2 − 20l3 − 40l4 − 16l5
ϵ2 þ ð51840þ 102816l − 850608l2 − 1855326l3 − 675625l4 þ 733273l5

þ 1217380l6 þ 1397512l7 þ 1355518l8 þ 1520455l9 þ 1678310l10 þ 1096830l11 − 8295l12 − 605640l13

− 456120l14 − 147840l15 − 18480l16Þϵ4=½8ðl − 1Þl3ð1þ lÞ3ð2þ lÞð2l − 3Þð2l − 1Þ3ð1þ 2lÞ3ð3þ 2lÞ3ð5þ 2lÞ�
þOðϵ6Þ; ð3:3Þ

and we obtain the general-l expansions for the mode functions, which are again truncated after the first few terms

ðzlÞXþ
lmn ¼ Xser

up ¼ 1þ
�
ϵð−3þ 2lþ l2Þ
ð1þ lÞð2zÞ þ z2

−2þ 4l

�
η2

þ
�
ϵ2lð12 − 29lþ 4l2 þ 11l3 þ 2l4Þ

4ð3þ 2lÞð−1þ lþ 2l2Þz2 þ ϵð4 − lþ 8l2 þ l3Þz
4lð−1þ lþ 2l2Þ þ ð1þ lÞz4

8ð−3þ 2lÞð−1þ lþ 2l2Þ
�
η4 þOðη6Þ;

ð3:4Þ
�
ϵ

z

�
lþ1

X−
lmn ¼ Xser

in ¼ 1 −
�
ϵ

2z

�
−
4

l
þ l

�
þ z2

6þ 4l

�
η2

þ
�
ϵ2ð−3þ lÞð−2þ lÞð1þ lÞð2þ lÞ

lð−1þ 2lÞ4z2 þ ϵð−12þ ð−7þ lÞlð2þ lÞÞz
lð1þ lÞð3þ 2lÞ4 þ z4

ð15þ 16lþ 4l2Þ8
�
η4 þOðη6Þ:

ð3:5Þ

Here we defined Xser as the normalized PN series that begin
at Oð1Þ. It is useful to factor out leading terms ðz−lÞ and
ðϵ=zÞ−l−1 at each step of the calculation so that PN orders
do not depend on l. Eventually, all l-dependent powers of η
will cancel in the metric perturbation due to their corre-
sponding presence in the Wronskian.
The next few steps in the general-l procedure are

identical to the specific-l case [1,29]. The Wronskian
and source terms are expanded and then the C�

lmn normali-
zation coefficients are computed using (2.9). The general-l
expansions are significantly lengthier than their specific-l
counterparts, making this step a bottleneck in the calcu-
lation. Of course, in applications to the orbital phase
evolution in EMRI waveforms, the accuracy requirements
on the conservative part of the self-force are relaxed relative
to those on dissipative terms by a factor of the mass
ratio [7].

B. Sums of spherical harmonics over m

The construction of the full metric perturbation invol-
ves summation over all three mode indices l, m, n.

The summation over n is straightforward, as only finite
n are needed to reach any particular order in the expansion
over eccentricity e. The summation over l will range from
l ¼ 0 to l ¼ ∞, but the form of the summands will involve
products and quotients of polynomials in l. Infinite sums
over these expressions are still trivial to execute in
Mathematica. This leaves the more difficult task of sum-
ming m modes from −l to l for general l. In the process of
constructing the l-modes of the metric perturbation (2.15),
we find the following two classes of sums:

Xl

m¼−l
mN jYlmðπ=2; 0Þj2 ðeven parityÞ; ð3:6Þ

Xl

m¼−l
mN j∂θYlmðπ=2; 0Þj2 ðodd parityÞ; ð3:7Þ

where N is any positive integer. Sums of these types occur
because one spherical harmonic factor explicitly appears in
(2.15) while a second spherical harmonic implicitly resides
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in the calculation of C�
lmn. Powers of m come from powers

of ϵ and PN expansion of the Fourier kernel. Closed-form
expressions must be derived for both of these sums.
The evaluation of the first (even-parity) summation starts

by using the spherical harmonic addition theorem, reduced
to the following form for this case:

Xl

m¼−l
eimφjYlmðθ; 0Þj2 ¼

�
2lþ 1

4π

�
Plðcos2θ þ sin2θ cosφÞ:

ð3:8Þ
Then, the even-parity sum can be derived by differentiating
multiple times

Xl

m¼−l
mN jYlmðπ=2; 0Þj2 ¼

∂
N

∂φN

�Xl

m¼−l
ð−iÞNeimφjYlmðπ=2; 0Þj2

�
φ¼0

¼ ð−iÞN
�
2lþ 1

4π

�
∂
N

∂φN ½PlðcosφÞ�φ¼0: ð3:9Þ

When N is odd, the LHS is real while the RHS is imaginary. Thus, sums for odd N must vanish. Equivalently, we can set
z ¼ iφ and make the Taylor expansion of Plðcosð−izÞÞ in z. Except for the added factor of ð2lþ 1Þ=4π, the coefficient of
the zN=ðN!Þ term in the expansion will correspond to the desired sum over mN.

The odd-parity summation requires more effort but it can be derived by taking a pair of θ derivatives of the even-parity
addition formula

∂
2

∂θ2

�Xl

m¼−l
emzjYlmðθ; 0Þj2

�
¼ 2

Xl

m¼−l
emzj∂θYlmðθ; 0Þj2 þ 2

Xl

m¼−l
emzð∂2θYlmðθ; 0ÞÞYlmðθ; 0Þ: ð3:10Þ

Rearranging and fixing the polar angle, we find

Xl

m¼−l
emzj∂θYlmðπ=2; 0Þj2 ¼

1

2

∂
2

∂θ2

�Xl

m¼−l
emzjYlmðθ; 0Þj2

�
θ¼π=2

−
Xl

m¼−l
emz½∂2θYlmðπ=2; 0Þ�Ylmðπ=2; 0Þ: ð3:11Þ

The first portion can be easily written in terms of Pl and the second term can be reduced using the spherical harmonic
differential equation itself. We then find

Xl

m¼−l
emzj∂θYlmðπ=2; 0Þj2 ¼

�
2lþ 1

8π

�
∂
2

∂θ2
ðPlðcos2θ þ sin2θ cosð−izÞÞÞθ¼π=2

þ lðlþ 1Þ
�
2lþ 1

4π

�
Plðcosð−izÞÞ −

�
2lþ 1

4π

�
∂
2
zPlðcosð−izÞÞ; ð3:12Þ

with the Nth term in the Taylor series in z giving the desired odd-parity summation over mN.
An alternative means of evaluating the two classes of summations involves expressing them in terms of the Gauss 2F1

hypergeometric functions. Indeed, it can be shown [57] that

Xl

m¼−l
emzjYlmðπ=2; 0Þj2 ¼

�
2lþ 1

4π

�
elz2F1ð1=2;−l; 1; 1 − e−2zÞ; ð3:13Þ

which is readily Taylor expanded in zwith theNth power term directly providing the even-parity result. The approach based
around expanding Legendre functions in (3.9) for calculating the even-parity sums is slightly faster than this second,
alternative route with hypergeometric functions, so we retain use of the former in our Mathematica code.
The same paper gives the following odd-parity summation (except for an errant factor of 1=4)

Xl

m¼−l
emzj∂θYlmðπ=2; 0Þj2 ¼

�
2lþ 1

π2

�
eðl−1Þz

Γð3=2ÞΓðlþ 1=2Þ
ΓðlÞ 2F1ð3=2;−lþ 1;−lþ 1=2; e−2zÞ: ð3:14Þ

This expression is not immediately easily expanded in z. Instead, we can apply the hypergeometric identity

2F1ða; b; c; zÞ ¼
Γðc − a − bÞΓðcÞ
Γðc − aÞΓðc − bÞ 2F1ða; b;aþ bþ 1 − c; 1 − zÞ

þ Γðaþ b − cÞΓðcÞ
ΓðaÞΓðbÞ ð1 − zÞc−a−b2F1ðc − a; c − b; cþ 1 − a − b; 1 − zÞ; ð3:15Þ
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to make headway. When substituted in (3.14), the second term on the right-hand side in the identity vanishes for all l of
interest here since there is a Gamma function in the denominator ΓðbÞ ¼ Γð−lþ 1Þ with negative argument. Hence, the
hypergeometric function itself in (3.14) can be replaced with the following:

Γð−2ÞΓð1=2 − lÞ
Γð−1=2ÞΓð−l − 1Þ 2F1ð3=2; 1 − l; 3; 1 − e−2zÞ ¼ ð−1Þl Γðlþ 2Þ

4
ffiffiffi
π

p Γð1=2 − lÞ2F1ð3=2; 1 − l; 3; 1 − e−2zÞ; ð3:16Þ

where we have canceled the formally diverging terms using

Γð−2Þ
Γð−l − 1Þ ¼

� Y−3
k¼−l−1

k

�
¼ 1

2
ð−1Þlþ1Γðlþ 2Þ: ð3:17Þ

Including the rest of the factors from (3.14) and noting

Γð−lþ 1=2ÞΓðlþ 1=2Þ ¼ π sec lπ ¼ πð−1Þl; ð3:18Þ

we arrive at

Xl

m¼−l
emzj∂θYlmðπ=2; 0Þj2 ¼

�
2lþ 1

8π

�
eðl−1Þzlðlþ 1Þ2F1ð3=2;−lþ 1; 3; 1 − e−2zÞ: ð3:19Þ

Taylor expanding the right-hand side this expression in z
and plucking off the mN term provides the desired odd-
parity sums and turns out to be much faster to execute in
Mathematica than its Legendre function alternative.
With a means of handling the sums over m, the general-l

PN expansions for the mode functions can be inserted in
(2.9) to obtain the PN expansion of C�

lmn and in (2.15) to
obtain the l-modes of the metric perturbation. The calcu-
lation proceeds much the sameway as in the specific-l case,
though the general-l expansions are found to be orders of
magnitude larger and more cumbersome to manipulate.

IV. ADDITIONAL CONSIDERATIONS
IN THE CONSERVATIVE SECTOR

Our previous papers [1,3,5] utilizing this code have focu-
sed on the dissipative sector. In the present effort, leading to a
PN expansion of the redshift invariant, there are additional
considerations that arise exclusively in the conservative
sector. The first of these is the computation of the low-order
modes (l ¼ 0; 1) and the second is mode-sum regularization.

A. Nonradiative modes

The l ¼ 0 and l ¼ 1 modes are not addressed by the
RWZmaster equation and the metric perturbations for these
modes must be found directly [38,58–61]. We follow the
presentation found in [29]. The l ¼ m ¼ 0monopole mode
is even parity and was found by Zerilli to be

p0
tt ¼ 2μ

�
E
r
−

f
Efprp

�
2E2 − fp

�
1þ L2

r2p

���
Θ½r − rpðtÞ�;

p0
rr ¼

2μE
f2r

θ½r − rpðtÞ�: ð4:1Þ

However, in this particular gauge the metric perturbation is
not asymptotically flat, which can be seen by inspecting the
ptt component. Recovering asymptotic flatness is effected
by introducing a gauge transformation [29,61] involving
just the ξ0 component of the gauge generator. This affects
only ptt (for the l ¼ 0 mode) and leaves

p0
tt ¼ 2μ

E
r
Θ½r − rpðtÞ� þ

2μf
Efprp

�
2E2 − fp

�
1þ L2

r2p

��

× Θ½rpðtÞ − r�: ð4:2Þ

For l ¼ 1, both even-parity (m ¼ 1) and odd-parity
(m ¼ 0) contributions are present. Gauge freedom allows
the odd-parity mode to appear in a single metric component,

p1
tφ ¼ −2μL sin2 θ

�
1

r
Θ½r − rpðtÞ� þ

r2

r3p
Θ½rpðtÞ − r�

�
;

ð4:3Þ

which is in a form suitable for our first-order perturbation
calculations [29]. The even-parity l ¼ m ¼ 1 dipole mode is
more complicated and expressions can be found in
[29,38,58]. However, this multipole part of the metric
perturbation is understood to be a pure-gauge mode and
its contribution to the redshift invariant (and presumably all
other gauge-invariant quantities) vanishes locally [29].

B. Mode-sum regularization

The last major hurdle in the computation of local
conservative quantities is that of regularization. The
retarded-time metric perturbation emerges from (2.15)
after summing over l, which diverges on the worldline
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of the particle. A local gauge-invariant quantity (like the
redshift invariant) computed from the retarded field would
itself diverge. What is needed instead is to extract the
effective (regular) metric perturbation experienced by the
particle, which is found through regularization.
Regularization can be approached by using the splitting

prescription of Detweiler and Whiting [62], which decom-
poses the retarded metric perturbation into regular and
singular fields

pμνðxÞ ¼ pS
μνðxÞ þ pR

μνðxÞ: ð4:4Þ

As its name implies, the singular field is divergent at the
location of the particle, sharing this aspect with the retarded
field. The singular and retarded fields satisfy the same
inhomogeneous field equation but with different boundary
conditions. A consequence is that the regular field pR

μν is a
solution to the homogeneous field equation. Because of
symmetry, the singular field makes no contribution to the
self-force, leaving those effects to the regular part. In this
way, the regular metric perturbation added to the back-
ground Schwarzschild metric can be thought of as a smooth
effective metric in which the point particle executes
(perturbed) geodesic motion.
The regular-singular decomposition can be incorporated

as part of mode-sum regularization [63,64]. This approach
takes advantage of the fact that while the retarded and
singular fields are divergent on the worldline, their indi-
vidual l-modes are finite. Thus, if the l-modes of the
singular field can be determined, they can be subtracted
from the l-modes of the retarded field, allowing a con-
vergent sum to be formed for the regular metric perturba-
tion. Like the retarded metric, the singular metric is gauge
dependent. The singular metric, or alternatively the self-
force itself, has l dependence that can be represented as an
expansion in which each term has dependence that is
polynomial in l or reciprocal of a product of polynomials
in l. Most work has focused on expanding the singular field
in Lorenz gauge and there the l-independent coefficients
(i.e., regularization parameters) of these terms have been
calculated for multiple orders [65]. Only the first regulari-
zation parameter is needed in the case of the metric itself to
achieve a convergent result, while the first two parameters
are needed to regularize the self-force. Because our
approach is analytic, only the regularization parameters
that are essential for convergence are needed.
However, because our focus in this paper is on a gauge-

invariant scalar quantity (i.e., the redshift invariant), we can
instead directly regularize the redshift invariant, avoiding
the complications of components and gauge. As noted by
Detweiler [10], the regularization scheme becomes gauge
invariant when working with gauge-invariant quantities.
Furthermore, we avoid the whole usual issue of whether
to regularize the metric components in a tensor spherical
harmonic basis or by treating each component in an

expansion over scalar harmonics [66]. We are thus able
to extract the finite result using a single regularization
parameter found by using Lorenz gauge.

V. THE GENERALIZED REDSHIFT INVARIANT

A. Background and implementation

For an eccentric orbit, the redshift invariant is the average
of ut ¼ dt=dτ integrated over proper time τ for one radial
libration period [12,13,29]. This quantity is equivalent to
the coordinate-time period, Tr, divided by the proper-time
period, T r, and generalizes Detweiler’s original redshift
invariant, which was defined as the instantaneous value of
ut for circular orbits [10,67]. All of the necessary tools to
calculate the redshift invariant have been summarized in the
previous sections.
As mentioned before, this particular gauge-invariant

quantity encodes important details of the conservative
motion of the system. The first-order conservative dynam-
ics contribute at Oðε0Þ in the cumulative EMRI phase (i.e.,
post-1 adiabatic order), a level needed for the generation of
accurate waveform templates in the LISA mission, making
the redshift invariant especially valuable. In addition, there
is an exact correspondence between the PN expansion of
hutiτ and the expansion of theQð1=r; pr; νÞ EOB potential,
which governs the deviation from geodesic behavior in the
EOB Hamiltonian [27–29,35,36,68]. The transformation
between these quantities is outlined in [27].
Given our first-order self-force calculation, we seek

the first-order correction to the ratio Tr=T r. To achieve
a gauge-invariant result, we make the assumption that the
(observable) radial libration frequency is held fixed in going
from the background geodesic to the first-order perturbed
orbit. The result is that all of the necessary gauge-invariant
information is contained within the first-order correction to
T r alone [12,13,29]. Thus, we can express hutiτ as

hutiτ ¼
Tr

T r þΔT r
¼ Tr

T r
−ΔT r

Tr

T 2
r
¼ huti0τ þ huti1τ : ð5:1Þ

The first term, Tr=T r is the geodesic value of the redshift
invariant, which can be trivially calculated using the Darwin
parametrization of the background orbit. The second term is
the conservative self-force correction, scaling as μ=M and
requiring the calculation of the first-order piece of the proper
time radial periodΔT r. This correctionwas found [12,13] to
be given by a projection of the regular part of the metric
perturbation

ΔT r ¼ −T r

	
1

2
pR
μνuμuν



τ

¼ −T r

	
1

2
pμνuμuν −HS



τ

:

ð5:2Þ

Here the average is taken over a τ period and in the second
equality the projection is made on the retard-time metric
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perturbation. The term HS is the projection of the singular
metric thatmust be subtracted off. To obtain finite results, this
subtraction is done in an l-mode by l-mode fashion using the
leading-order regularization parameter [12,29,65]

HS ¼
X
l

H½0� ¼
X
l

2μ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2

p K
�

L2

L2 þ r2

�
; ð5:3Þ

whereK is the complete elliptic integral of the first kind. Like
the rest of our quantities,H½0� can bePNexpanded in1=p and
expanded in e. The series expansion of H½0� is trivial to
calculate, with the leading few terms being

H½0� ¼
�
μ

M

��
1

p
ð1þ e cos χÞ − 1

4p2
ð1þ e cos χÞ3

þ 1

64p3
ðð1þ e cos χÞ3ð9ð1þ e cos χÞ2

− 16ð3þ e2ÞÞÞ þ � � �
�
:

The regularized redshift invariant is constructed from the
individual l-dependent differences

	
1

2
pl
μνuμuν



τ

− hH½0�iτ; ð5:4Þ

which are then summed from l ¼ 0 to l ¼ ∞. The l-modes
of the retarded time metric perturbation, pl

μν, are calculated
in three different blocks. The modes l ¼ 0 and l ¼ 1 are
expanded using the nonradiative solutions in Sec. IVA,
while the modes from l ¼ 2 to the integer part of the PN
order minus 1 (which in this paper for 10PN means l ¼ 9)
are expanded using specific-l MST solutions, and lastly
the remaining modes from the desired PN order to infinity
are expanded using the general-l ansatz from Sec. III.
Once ð1=2Þpl

μνuμuν is assembled (and regularized) for both
specific and general l, the summation over l is computa-
tionally efficient.

This procedure was first implemented in [35], where the
redshift invariant was expanded to 6.5PN and e2 in
eccentricity and to 4PN and e4. Shortly thereafter, the
expansion was taken [29] to 4PN through e10. Those efforts
were followed by [36], who extended the result to 4PN and
e20, as well as 9.5PN through e4. More recently, these latter
authors improved the eccentric knowledge to 9.5PN and e8

[34], as that level was needed to complete a novel tran-
scription of the redshift invariant to the scattering angle for
hyperbolic orbits, which can be used to compute the full
post-Minkowskian dynamics to high order.
This paper extends the PN and eccentricity expansion

further by taking the redshift invariant to 10PN and e20.
More importantly, we have further analyzed each eccen-
tricity function (in keeping with work in [3–5,44]) to find
those that can be manipulated either into closed-form
expressions or into known infinite series. By known we
mean cases where an infinite series is derived from sums
over Fourier spectra of low-order multipole moments, as
we showed occurs in the dissipative sector for gravitational
wave fluxes radiated to infinity. Other sums over Fourier
spectra of low-order multipoles were shown [4,5] to yield
sequences of closed-form expressions in the PN expansion
of the fluxes to infinity. Surprisingly, a number of these
special functions, both closed form and infinite series,
reappear in parts of the PN expansion of the (conservative)
redshift invariant. In the case of nonclosed-form functions,
we present resummations that rely on factoring out powers
of 1 − e2 (often referred to as eccentricity singular factors)
that improve the convergence of the remaining series as
e → 1 [4,29,44]. In what follows, we present the redshift
invariant in two different PN series, using first the compact-
ness parameter 1=p and then the parameter y ¼ ðMΩφÞ2=3.

B. Redshift invariant as an expansion in 1=p

In terms of the compactness parameter 1=p, circular-
orbit studies [11] lead us to expect the following form of the
PN expansion of the redshift invariant:

huti1τ ¼
�
μ

M

�
1

p

�
U0 þ

U1

p
þ U2

p2
þ U3

p3
þ ðU4 þ U4L logpÞ

1

p4
þ ðU5 þ U5L logpÞ

1

p5
þ U11=2

p11=2

þ ðU6 þ U6L logpÞ
1

p6
þ U13=2

p13=2 þ ðU7 þ U7L logpþ U7L2log2pÞ
1

p7
þ U15=2

p15=2

þ ðU8 þ U8L logpþ U8L2log2pÞ
1

p8
þ ðU17=2 þ U17=2L logpÞ

1

p17=2 þ ðU9 þ U9L logpþ U9L2log2pÞ
1

p9

þ ðU19=2 þ U19=2L logpÞ
1

p19=2 þ ðU10 þ U10L logpþ U10L2log2pþ U10L3log3pÞ
1

p10
þ � � �

�
; ð5:5Þ

where each one of the Uk is a function of eccentricity e (which if appropriately scaled is sometimes called an
enhancement function). Our perturbation results when sorted on p dependence allow the UkðeÞ functions to be read off.
Due to the increasing complexity of the expansion with PN order, we limit our presentation in this paper to 8.5PN
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order. The full results to 10PN will be available on the Black Hole Perturbation Toolkit [42] website and our group
repository [43].
We find that the first few leading terms (0PN, 1PN, 2PN, and 3PN) all have simple closed-form expressions

U0 ¼ −ð1 − e2Þ;
U1 ¼ −2ð1 − e2Þ2;
U2 ¼ ð1 − e2Þ2ð9 − 5e2Þ þ ð1 − e2Þ3=2ð−14þ 9e2Þ;

U3 ¼ ð1 − e2Þ2ð28 − 8e2 − 4e4Þ þ ð1 − e2Þ3=2
�
−
205

3
þ 41π2

32
þ e2

�
−
241

6
þ 41π2

64

�
þ 27e4

2

�
: ð5:6Þ

All four of these functionswere previously derived from the full
PN theory in [13]. The first two, U0ðeÞ and U1ðeÞ, were later
confirmed in closed form through expansion of the RWZ
formalismby the authors of [29]. This latter effort alsoproduced
U2ðeÞ and U3ðeÞ as power series in eccentricity through e10.
Our calculation has now extracted and verified the exact
eccentricity functions found in [13] directly through BHPT.
At 4PN order, a logðpÞ term makes its first appearance.

The 4PN nonlog function contains combinations of tran-
scendentals similar to the 3PN flux at infinity. Intriguingly,
the 4PN log term, U4LðeÞ, is exactly proportional to the
Peters-Mathews quadrupole flux term, L0ðeÞ [69]

U4L ¼ 64

5
ð1 − e2Þ3=2

�
1þ 73e2

24
þ 37e4

96

�

¼ 64

5
ð1 − e2Þ5L0ðeÞ: ð5:7Þ

As we recall, the Peters-Mathews flux is found to be a sum
over the Fourier power spectrum gðn; eÞ of the Newtonian
mass quadrupole [69,70] (see also [4]),

L0ðeÞ ¼
X∞
n¼1

gðn; eÞ ¼ 1

ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
:

ð5:8Þ

The similarities with the 3PN flux (and the fact that
the 3PN log flux term shows up in the 3PN nonlog flux)
led us to seek a compact expression for the 4PN nonlog
term, U4ðeÞ, resembling that of L3ðeÞ. The procedure is
described in Sec. IV of [4]. We found the following
segregation of terms:

U4 ¼ ð1 − e2Þ3=2
�
−
1963

45
−
21182e2

45
þ 1469e4

9
−
129e6

16
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
−
1508

45
þ 5281e2

90
−
159e4

2
þ 5e6

��

− 2

�
γE þ log

�
8ð1 − e2Þ3=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

U4LðeÞ þ ð1 − e2Þ3=2
�
677π2

512
þ 17879π2

1536
e2 þ 29665π2

12288
e4
�
−
128

5
ð1 − e2Þ5Λ0ðeÞ:

ð5:9Þ

As is evident, the 4PNnonlog redshift invariant separates into
a set of closed terms, including one with U4LðeÞ, along with
an added term containing a function denoted by Λ0ðeÞ. The
Λ0ðeÞ function turns out to be an infinite series. It is, in fact,
the first in a sequence of functions that we previously
identified [4]. In that paper, we showed that the functions
Λ1ðeÞ, Λ2ðeÞ, etc. appeared in the leading-logarithm se-
quence in the energy flux at infinity. The first such term that
showed up in the flux wasΛ1ðeÞ, also known as χðeÞ [14,71]
which appears in the 3PN energy flux. The sequence of
functions ΛkðeÞ that we defined contained a first element,
Λ0ðeÞ, which is given by

Λ0ðeÞ ¼
X∞
n¼1

log

�
n
2

�
gðn; eÞ: ð5:10Þ

Even though this particular function made no appearance in
the energy flux, it does interestingly now appear in the
redshift at 4PN order.
At 5PN order there are log and nonlog terms. The 5PN

log term in the redshift is found to be another closed-form
function

U5L ¼ ð1 − e2Þ3=2
�
−
956

105
−
2026e2

21
−
211e4

10
þ 2393e6

420

�
:

ð5:11Þ

Just as with the 4PN case, the 5PN log term is coupled into
the 5PN nonlog term. Following the procedure used above,
we can seek a compact expression for the 5PN nonlog
redshift. The result is similar to
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U5 ¼ ð1 − e2Þ3=2
��

711289
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5861983e4

4200
þ 4691137e6
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−
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�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
61433
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þ 366389e2

6300
þ 1825589e4
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−
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4
þ 26e8

��
− 2

�
γE þ log

�
8ð1 − e2Þ3=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

U5L þ Uχ
5

þ π2ð1 − e2Þ3=2
�
−
64771
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−
122659e2
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þ 106757e4
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þ 9679e6
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þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
369

64
−
369e2

128
−
369e4

128

��
; ð5:12Þ

with a set of newclosed form terms andwith a single remaining infinite series, denoted byUχ
5, that soaks up the appearance of log

(2), log(3), etc. transcendentals. This χ-like function has not (yet) been determined in terms of multipoles within the multipolar
post-Minkowskian (MPM) PN formalism [14] and thus it is only known in our present calculation as an expansion to e20:

Uχ
5 ¼ ð1 − e2Þ3=2

��
248 logð2Þ

7
−
243 logð3Þ

7

�
þ
�
−
39380 logð2Þ

21
þ 80919 logð3Þ

70
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e2

þ
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1159803 logð2Þ

35
−
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−
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442368
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4725
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−
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322609178993859793 logð7Þ
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�
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�
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5186372399556326 logð2Þ
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þ 1135462692217658751 logð3Þ
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þ 1026818179405390625 logð5Þ
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þ
�
748264799632979347 logð2Þ

333396000
−
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þ 13203573865427998046875 logð5Þ

89495307288576

−
14949272565618057218377 logð7Þ

32614907904000
−
81402749386839761113321 logð11Þ
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−
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�
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�
: ð5:13Þ

The first half-integer PN term arises at 5.5PN order
[72]. For circular orbits, this term is known to be
associated with the effect of the 1.5PN energy flux tail
showing up in the redshift factor [73]. In our calculations

for eccentric orbits this function emerged as being
exactly proportional to the eccentricity dependence
of the 1.5PN energy flux enhancement function φðeÞ
[4,14,44,70,71]
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U11=2 ¼ −
13696

525
πð1 − e2Þ13=2φðeÞ; ð5:14Þ

a result that appears in [33] in slightly different notation. It
is well known that the tail enhancement function is found
[70] as an infinite series over the Newtonian quadrupole
moment power spectrum

φðeÞ ¼
X∞
n¼1

n
2
gðn; eÞ; ð5:15Þ

and is therefore easily calculable to arbitrary order in e2. In
[4] we found this function to be the first element, Θ0ðeÞ,
in an infinite sequence of functions, ΘkðeÞ, that appear in
the subleading-log (or 3PN-log) terms in the energy flux.
Furthermore, as shown in [44], it is the combination
ð1 − e2Þ5φðeÞ that is an infinite series in e2 with diminishing
coefficients and which limits on a finite number as e → 1.
At 6PN order, the logðpÞ term is found to also be a

closed-form function in e2, but with the wrinkle that a
lower-order log term, U4L, reappears

U6L ¼ ð1 − e2Þ3=2
�
−
419576

2835
−
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2835
−
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945
−
59098e6
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−
12889e8

5040

�
þ 9

2
ð1 − e2Þ3=2U4L: ð5:16Þ

As with 5PN, we can make some headway in analyzing the structure of the 6PN nonlog term. We find, for example, that the
6PN log term couples into the 6PN nonlog. We also find several closed-form functions multiplying the appearance of the π2

and π4 transcendental combinations. Beyond that there is an infinite series with rational coefficients and another series, Uχ
6,

that contains log(2), log(3), etc. transcendentals. At this point, we have not been able to manipulate the rational-number
series into a closed-form expression, which was possible in the case of U4 and U5. Instead, both of these series are given as
expansions to e20

U6 ¼ ð1 − e2Þ3=2
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Uχ
6 ¼ ð1 − e2Þ3=2
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83389586865982335 logð3Þ
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−
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−
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−
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þ 2732223161911355671416537362081 logð7Þ

57063042868838400000
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39145247408023142400000

þ 63598994107503492021893060068543 logð13Þ
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At6.5PN the redshift function is found to be another (presumably) infinite rational-number series,whichwecalculated to e20

U13=2 ¼ πð1 − e2Þ3=2
�
81077

3675
þ 7082924e2

11025
þ 19545681e4

15680
þ 171593203e6

705600
−
24169567e8

4644864

−
5517037829e10

10160640000
þ 1289360091619e12

7803371520000
−
1698130226071e14

229419122688000
−

377560795098119e16
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14158437285888000
þ 8520571675445796049e20

76115758848933888000000
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�
: ð5:19Þ

As a term that is 1PN relative to the 5.5PN redshift
function, it is possible that the 6.5PN redshift may represent
some combination of the 1.5PN and 2.5PN energy flux tail
functions (or more properly, of the 0PN and 1PN source
motion multipole moments). We will leave the search for
that connection to a future paper.
The 7PN terms represent an added level of complexity,

with a first appearance of a log2ðpÞ term. The log2ðpÞ term is
of closed form and is directly proportional to the 3PN log
energy flux function, FðeÞ [14,71]. The log term reveals a

structure similar to that of the 4PN nonlog function, featuring
a return appearance ofU7L2 and containing another one of the
3PN energy flux functions, in this case χðeÞ ¼ Λ1ðeÞ
[4,14,71] itself. Our expansion of the rational-number series
part, however, stops short of providingenough information to
allow it to bemanipulated into a closed form.Finally, the7PN
nonlog part is an infinite series with numerous transcenden-
tals and powers of transcendental numbers as coefficients.
Wepresent only a few coefficients here, saving the rest for the
online repositories [42,43]. These three functions are

U7 ¼ ð1 − e2Þ3=2
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U7L ¼ ð1 − e2Þ3=2
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U7L2 ¼ ð1 − e2Þ3=2
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FðeÞ: ð5:22Þ

As might be expected, the 7.5PN term, as the third half-integer term and 2PN correction to the 5.5PN redshift, is an
infinite series with rational coefficients

U15=2 ¼ πð1 − e2Þ3=2
�
82561159

467775
þ 73692788269e2

26195400
þ 336208042337e4

69854400
þ 51301033584109e6

22632825600

þ 117144137627477e8

241416806400
−
5009246358913537e10

57940033536000
−
4421924451335987e12

166867296583680

−
6030593084685188237e14

454249862922240000
−
639047634512255985157e16

74756548869488640000

−
213545959135760979200821e18

37677300630222274560000
−
90046530071830147716010793e20

22606380378133364736000000
þ � � �

�
: ð5:23Þ

The 8PN redshift contributions are similar in structure
to features seen at 5PN, 6PN, and 7PN. Like 7PN, there
is an 8PN log2ðpÞ term that is closed in form. The 8PN
log term contains a return appearance of U8L2 and it
further separates, like the 5PN and 6PN nonlog terms,
into a χ-like series containing log transcendental number

coefficients and a remaining rational-number series. In
this case, like 7PN log, the rational-number series in the
8PN log term is only known to e20. The 8PN nonlog
term is a complex series, with only a few coefficients
shown here, leaving the rest to the online repositories
[42,43]. We find
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U8L ¼ ð1 − e2Þ3=2
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�
2479395019071424128029 logð2Þ
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�
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�
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U8L2 ¼ð1 − e2Þ3=2
�
−
27016
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−
9052252e2

3675
−
1761878e4

147
−
20257439e6

2205
−
698783e8

784
þ 491013e10

39200

�
: ð5:27Þ

Finally, we provide in this paper one further term in the
redshift invariant (8.5PN) and save the remaining results to
10PN and e20 for release at the Black Hole Perturbation
Toolkit [42] and our group repository [43]. The 8.5PN
redshift has both a logðpÞ and nonlog term, each of which
demonstrates additional connections to the energy flux at
infinity. The 8.5PN log term turns out to be proportional
to a function, Θ1ðeÞ, that we identified previously [4] as
contributing to the 4.5PN energy flux. This function is

given by the following sum over the Newtonian mass
quadrupole spectrum

Θ1ðeÞ ¼
X∞
n¼1

�
n
2

�
3

gðn; eÞ; ð5:28Þ

and can be evaluated exactly to any desired order in e2. Thus,
the 8.5PN log redshift is part of a leading-log sequence in the
redshift that is analogous to the leading-log series in the
energy and angular momentum fluxes. We find explicitly

U17=2L ¼ −π
�
11723776

55125

�
ð1 − e2Þ19=2Θ1ðeÞ

¼ πð1 − e2Þ3=2
�
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11723776
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þ � � �

�
: ð5:29Þ

The 8.5PN nonlog term can then be separated in an orderly fashion. It features an appearance of U17=2L itself and there is
also a term with a second previously identified function, Ξ1ðeÞ [4],

Ξ1ðeÞ ¼
X∞
n¼1

�
n
2

�
3

log

�
n
2

�
gðn; eÞ; ð5:30Þ
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which is another analog of the function χðeÞ and also depends exclusively upon the Newtonian mass quadrupole. This
second term soaks up all the remaining appearances of transcendental numbers and leaves a final series with rational
number coefficients. The result is

U17=2 ¼ πð1 − e2Þ3=2
�
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2207224641326123
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1 − e2

p
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−
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35
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�
π2
�
U17=2L

þ π

�
23447552

55125

�
ð1 − e2Þ19=2Ξ1ðeÞ: ð5:31Þ

C. Redshift invariant as an expansion in y

We can now use the easily derived PN expansion of 1=p in terms of the compactness parameter y to give an alternative
expansion of the redshift invariant. The general form of that expansion is

huti1τ ¼
�
μ

M

�
y½V0 þ V1yþ V2y2 þ V3y3 þ ðV4 þ V4L log yÞy4 þ ðV5 þ V5L log yÞy5 þ V11=2y11=2

þ ðV6 þ V6L log yÞy6 þ V13=2y13=2 þ ðV7 þ V7L log yþ V7L2log2yÞy7 þ V15=2y15=2

þ ðV8 þ V8L logpþ V8L2log2yÞy8 þ ðV17=2 þ V17=2L log yÞy17=2 þ ðV9 þ V9L logpþ V9L2log2yÞy9
þ ðV19=2 þ V19=2L log yÞy19=2 þ ðV10 þ V10L logpþ V10L2log2yþ V10L3log3yÞy10 þ � � ��: ð5:32Þ

The VkðeÞ functions in the y expansion exhibit most of the same structure as the UkðeÞ in the 1=p expansion, so as we list
our findings we will primarily refer back to the previous section for comments found there. As with the 1=p results, the first
few terms in the y series all yield closed forms, with the first two having been found previously [29]

V0 ¼ −1; ð5:33Þ

V1 ¼ −
2 − 4e2

1 − e2
; ð5:34Þ

V2 ¼
1

ð1 − e2Þ2
�
14 −
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2
− 6e4 þ
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; ð5:35Þ

V3 ¼
1

ð1 − e2Þ3
�
58 − 132e2 þ 76e4 −

8e6

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
−
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3
þ 41π2

32
þ e2
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6
þ 41π2

64

�
−
171e4

2

��
: ð5:36Þ

The 4PN terms share properties with U4 and U4L as discussed near (5.9) and (5.7) [with the added change of a sign flip
between logðpÞ and logðyÞ terms]

V4 ¼
1

ð1 − e2Þ4
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−
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p
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−
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5
Λ0ðeÞ; ð5:37Þ
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V4L ¼ −
64

5

1

ð1 − e2Þ7=2
�
1þ 73e2

24
þ 37e4

96

�
¼ −ð1 − e2Þ−5U4L ¼ −

64

5
L0ðeÞ: ð5:38Þ

The remaining higher-order terms are similar to their counterparts in the 1=p expansion. In what follows, we give the
closed-form parts and many of the infinite series in e2 out to order e20 (with a few exceptions). For brevity we have omitted
listing the χ-like portions of the y-expansion terms (e.g., Vχ

5, V
χ
6, etc.), relegating those along with the more complicated

series expansions to the posting at [42,43]. The 5PN terms have a structure that mirrors that discussed near (5.11) and (5.12)

V5 ¼
1

ð1 − e2Þ5
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V5L ¼ 1

ð1 − e2Þ9=2
�
956
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þ 4714e2

21
þ 12313e4

30
þ 6109e6

140

�
: ð5:40Þ

As the first appearance of a term of its type, the 5.5PN redshift V11=2ðeÞ is identical to U11=2ðeÞ (5.14) up to a power of
1 − e2 and is likewise proportional to the 1.5PN energy flux tail

V11=2 ¼ −
13696

525
πφðeÞ ¼ ð1 − e2Þ−13=2U11=2: ð5:41Þ

An understanding of the structure of the 6PN terms follows from the discussion surrounding (5.18) and (5.16)
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The 6.5PN term is proportional to an infinite series with rational number coefficients, similar to the U13=2 term (5.19)

V13=2 ¼
π

ð1 − e2Þ6
�
81077

3675
þ 10821932e2

11025
þ 518653529e4

141120
þ 465892081e6
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The redshift invariant at 7PN features the first appearance of a log2ðyÞ term, which is closed in form. As the discussion
surrounding the corresponding terms, (5.20), (5.21), and (5.22), in the 1=p expansion showed, the 7PN y-expansion terms
separate similarly
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V7L ¼ 1
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The 7.5PN term is proportional to another infinite series in e2 with rational coefficients

V15=2 ¼
π

ð1 − e2Þ7
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As the discussion near (5.24), (5.25), and (5.27) would suggest, the 8PN term is quite complex but does allow a
separation into closed-form and infinite series parts of different type. We find
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The 8.5PN redshift term in the y expansion is similar to (5.31) and (5.29), and separates into distinct infinite series with
the appearance of the special functions Θ1ðeÞ and Ξ1ðeÞ
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76204800000
−
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130636800000
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477956505600000
−
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3277416038400000

þ 10585818010370879e18

59465436600729600000
þ 6093295182537785141e20

17839630980218880000000
þ � � �

�
: ð5:52Þ

D. Discussion

A primary focus of this paper is on taking the high-order
analytic PN series of the redshift invariant to a deeper
expansion in eccentricity, with the goal of finding as many
closed-form terms or fully determinable infinite series
expansions in e as possible. By pushing our analytic self-
force calculation to e20, we found a surprising amount of this
fully explicable structure in the eccentricity dependence,
including a series of connections between the (conservative-
sector) redshift invariant and the (dissipative-sector) energy
flux to infinity. We summarize the findings here.
The 0PN and 1PN redshift functions, V0ðeÞ and V1ðeÞ,

were found previously through self-force calculations and
known to have closed form [29]. [This effectively is also true
of U0ðeÞ and U1ðeÞ, and everything we say in this section
about the analytic determinability of UkðeÞ functions in the
1=p expansion pertains equally well to VkðeÞ functions in
the y expansion. In taking the self-force calculations further,
we are able to show that the 2PN and 3PN redshift terms can
be condensed into closed expressions of a particular form,
with a dominant-subdominant eccentricity singular factor

structure, though these two terms were previously found
[13], in slightly different form, using a full PN theory
calculation [see their Eq. (4.51)]. The 2PN term, which
contains only rational number coefficients, is reminiscent of
the 2PN energy flux, L2ðeÞ [71]. The 3PN redshift term
contains both rational numbers and appearances of coeffi-
cients with π2, which is unlike any PN term in the flux
expansion prior to the advent of tail-squared terms. The
appearance of π2 in this early term in the redshift is traceable
to the sum over infinite l that occurs in conservative sector
self-force calculations. [Recall that the sum of inverse square
integers is ζð2Þ and totals to π2=6.]
It is at 4PN and beyond in the redshift expansion that our

calculation reveals new results. Indeed, at 4PN order itself
there emerges a more profound connection between the
redshift expansion and the energy flux at infinity. We found
the U4LðeÞ term in the redshift invariant to be exactly
proportional to the Peters-Mathews energy fluxL0ðeÞ [69].
(This result was implicitly present in the 4PN log term, V4L,
found in [29] but its closed form and connection to
the energy flux was missed by resumming on a different
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eccentricity singular factor.) Then, within the 4PN nonlog
term, U4ðeÞ, we found the Peters-Mathews flux function
reappearing, as well as a second function, Λ0ðeÞ, that also
depends exclusively on a sum over the Fourier power
spectrum gðn; eÞ [4] of the Newtonian mass quadrupole
moment. The function Λ0ðeÞ is an infinite series in e2 but
its coefficients are fully determinable at all orders. Other
than Λ0ðeÞ, the rest of the U4ðeÞ term has a closed form.
The structure of U4ðeÞ is similar to the 3PN nonlog
energy flux [71], except that where the two Newtonian-
quadrupole-derived functions, FðeÞ and χðeÞ ¼ Λ1ðeÞ,
appear in L3ðeÞ, it is L0ðeÞ and Λ0ðeÞ that appear in U4ðeÞ.
Following the discussion in [4], we can recognize the

connection between U4LðeÞ and U4ðeÞ is similar to that
occurring between leading and subleading logarithmic
terms in the PN expansion of the flux at infinity. As a
reminder, we showed previously [4] that a pair of infinite
sequences of leading logarithms exists in the energy flux
PN expansion, at integer orders p−3k logkðpÞ and at half-
integer orders p−ð3kþ3=2Þ logkðpÞ (for k ≥ 0). The terms in
these sequences are completely determined by sets of
special functions, TkðeÞ and ΘkðeÞ, that are defined by
infinite sums over n of even and odd integer powers of n=2
multiplying the Newtonian mass quadrupole spectrum
gðn; eÞ. A new term in each sequence arises every 3PN
orders as a new power of logðpÞ appears. Every integer-
order leading log [proportional to TkðeÞ] can be shown to
have a closed-form expression. Every half-integer-order
leading log [proportional to ΘkðeÞ] remains an infinite
series, but with exactly known rational number coefficients.
The subleading-log terms formed a second pair of infinite

sequences in the energy flux at integer ordersp−3k logk−1ðpÞ
and at half-integer orders p−ð3kþ3=2Þ logk−1ðpÞ. At the same
PN order as a leading-log term, these are terms with one
lower power of logðpÞ. In another context [5], these terms
were referred to as 3PN-corrected leading logs (or 3PN-log
terms). At integer PN order these subleading-log terms were
shown to feature a return appearance of the functions TkðeÞ
and another set of special functions, ΛkðeÞ, with the
remaining analytic dependence requiring self-force calcu-
lation for its determination. At half-integer PN order these
subleading-log terms were shown to feature a return appear-
ance of the functions ΘkðeÞ and yet another set of special
functions, ΞkðeÞ. The positions of these leading and sub-
leading-log terms in the energy flux PN expansion are
graphically depicted in Fig. 1 in [5] by the four red and
green sequences.
If we now carry these ideas over to the PN expansion of

the redshift invariant, we can take the 4PN log term,
U4LðeÞ, as the start of the integer-order redshift leading-
log sequence. The next terms in that sequence would be
U7L2ðeÞ, U10L3ðeÞ, etc. If the observed pattern holds to
higher order, each term in the sequence will be fully
determined by the Newtonian quadrupole and proportional
to the closed-form functions TkðeÞ, starting with k ¼ 0.

Since the leading logs in the energy flux actually begin with
the nonlog L0ðeÞ Peters-Mathews term, in principle it is an
open question whether we should consider the nonlog term
U1ðeÞ as the start of the redshift leading logs. The
conjectures regarding the primacy of the TkðeÞ functions
and U1ðeÞ will ultimately be settled by a formal PN theory
calculation.
The first half-integer-order term in the redshift is

U11=2ðeÞ at 5.5PN order. This first appearance of a half-
integer order term was found in high precision numerical
work [72] and its connection to the tail field was discussed
in [73]. In our self-force calculations this term emerged as
exactly proportional to the 1.5PN energy flux tail enhance-
ment function φðeÞ (see also [33]), which is the first
function Θ0ðeÞ in the ΘkðeÞ function sequence [4]. It is
reasonable to regard U11=2ðeÞ as the first element in the
redshift half-integer leading-log sequence, which is lagged
by four PN orders relative to the corresponding sequence in
the energy flux. The next elements in this sequence would
be U17=2LðeÞ, U23=2L2ðeÞ, etc. As we showed in the previous
subsections, U17=2LðeÞ is directly proportional to Θ1ðeÞ,
which supports a conjecture that the entire run of half-
integer-order leading logs will be determined by the ΘkðeÞ
functions. The next element in that sequence, U23=2LðeÞ, is
beyond where we have taken our present calculations.
If the redshift leading logs begin with U4LðeÞ, then

the redshift integer-order subleading logs start with U4ðeÞ.
This sequence continues with U7LðeÞ, U10L2ðeÞ, etc. Our
present calculations reveal the first three elements in this
sequence. Like in the corresponding sequence in the energy
flux, we find that the redshift subleading logs feature a
return appearance of the closed-form leading-log function
[proportional to the relevant TkðeÞ] and functions from the
ΛkðeÞ (χ-like [71]) sequence, starting with k ¼ 0).
The half-integer-order subleading logs in the redshift

would begin with U17=2ðeÞ and continue with terms with
k ≥ 1 that have PN dependence p−3k−17=2 logk−1ðpÞ. Our
present calculations only overlap the first term in this sequence,
but we do see the expected behavior that U17=2ðeÞ depends in
part on U17=2LðeÞ [∝ Θ1ðeÞ] and on Ξ1ðeÞ.
It seems reasonable to conjecture that, like in the energy

flux [5], there will be 1PN-log sequences in the redshift.
At integer PN orders, this sequence would be U5LðeÞ,
U8L2ðeÞ, U11L3ðeÞ, etc. Our results reveal the first two
terms in this sequence and find that they are both closed-
form expressions. Following the logic, the half-integer-
order 1PN-logs would be the sequence that starts with
U13=2ðeÞ, U19=2LðeÞ, U25=2L2ðeÞ, etc. The first two functions
follow the expectation of being rational-number coefficient
infinite series (times an overall factor of π). Like with the
1PN-logs in the energy flux expansion, these terms may
derive from what we called earlier [5] the 1PN (source)
multipole moments—the Newtonian current quadrupole,
the Newtonian mass octupole, and the 1PN correction to
the mass quadrupole. This idea deserves further study.
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Finally, the analogs in the redshift of the 4PN-logs in the
energy flux [5] would be the integer-order sequence U5ðeÞ,
U8LðeÞ, U11L2ðeÞ, etc. and the half-integer-order sequence
U19=2ðeÞ, U25=2LðeÞ, etc. If the analysis of the correspond-
ing terms in the energy flux is a guide, these too might be
partly determined through application of known levels of
PN theory. Note that once a derivation of Uχ

5 is found, all
PN terms through 5.5PN (at first order in the mass ratio) in
the redshift invariant will be completely known functions of
eccentricity.

E. Comparison to numerical data

We can assess the validity of these expansions by
comparing them to the numerical redshift data given in
Table II of [13]. Results from larger orbits in that dataset are
well fit by our PN expansions, which leads us to single out
smaller orbits (p ¼ 10 and p ¼ 20) for comparison, where
convergence is expected to be slower. We compare the
numerical self-force results to both the y and 1=p versions
of our PN expansions, and we try a few added resummation
methods to check for improved convergence. Two such

methods are logarithmic resummation (in which the log of
the series is taken, the new series is evaluated numerically,
and then the result is exponentiated) and reciprocal resum-
mation [74,75].

Results from making the comparisons at two orbital sizes
(p ¼ 10 and p ¼ 20) are shown in Figs. 1 and 2. Figure 1
considers four distinct orbits (with the two separations and
with two eccentricities, e ¼ 0.1 and e ¼ 0.4). The wider
orbit (p ¼ 20) with low (e ¼ 0.1) eccentricity converges
rapidly and uniformly with increasing PN terms. At the
other extreme, the orbit with p ¼ 10 and e ¼ 0.4 is
decidedly slower to converge but still reaches a relative
error of order 10−4 when using the y expansion and its
resummations. The energy flux required an expansion to
19PN to attain an error of 10−5 for the p ¼ 10, e ¼ 0.5
orbit [1], which suggests that the redshift invariant has
better convergence properties. Furthermore, it is worth
remembering that in EMRI calculations the contributions to
the orbital phase evolution from conservative terms in the
dynamics are suppressed by the mass ratio relative to the
(secular) flux contributions [7]. This suggests that even a

FIG. 1. Accuracy of the redshift invariant PN expansion and its resummations for several individual orbits. The numerical values of
our redshift expansion are plotted against data from [13] for the orbits ðp ¼ 10; e ¼ 1=10Þ, ðp ¼ 10; e ¼ 2=5Þ, ðp ¼ 20; e ¼ 1=10Þ,
ðp ¼ 20; e ¼ 2=5Þ. Within each plot comparisons are made for both the 1=p and y expansions, both with and without the use of
logarithmic and reciprocal summations. Note the changes in vertical scaling in the bottom two plots. Lines in the bottom two plots
vanish where the expansions reproduce all numerical digits given in [13] (note that the numeric result for the right plot contained one less
significant digit than that for the left).
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slow-to-converge PN expansion of the conservative part of
the self-force may be useful in close orbits.
While the rate of convergence varies with orbital

parameters, we do observe at least continued monotonic
approach to the numerical self-force results as we add PN
terms. Despite the fact that the PN expansion is expected to
be an asymptotic expansion, there is still no evidence even
at 10PN order in the redshift at p ¼ 10 of added terms
becoming detrimental to accuracy of the approximation.
Interestingly, the y expansion appears consistently better
than the 1=p expansion in the orbits we have considered.
Finally, it is notable that for the p ¼ 20, e ¼ 0.1 and
e ¼ 0.4 orbits we reproduce the numerical self-force data
with our expansions taken to 9PN order or less. Hence, the
accuracy of the full 10PN order expansion with that orbit
remains unknown.
Figure 2 shows how our expansion offers generally

consistently useful accuracy with increasing eccentricity e.
At higher PN order (6–10PN) the eccentricity dependence
is not known exactly but instead contains infinite series in
e2 that are truncated at e20 in the present work. Factoring
out the right eccentricity singular factor at each PN order
helps, but the truncated series lead to variations in accuracy
with e. These effects can be seen in the rise and fall, and
local minimum in the 6PN, 8PN, and 10PN comparisons in
the p ¼ 10 orbit in Fig. 2. Nevertheless, we expect that the
residuals would generally continue to fall if the PN series
were extended marginally further. In the p ¼ 20 orbit in
Fig. 2, the curves of residuals are incomplete or missing
at 6–10PN orders because of limits on the accuracy of the
numerical self-force results to which we are making
comparison.

VI. CONCLUSIONS

We have presented the PN and eccentricity expansion
of the gravitational redshift invariant, for a point mass in
eccentric bound motion about a Schwarzschild black hole,

to a higher order than has been achieved previously. We
determine the redshift analytically to 10PN order and,
importantly, to e20 in eccentricity. We present results in this
paper to 8.5PN, while relegating 9PN to 10PN terms to
a posting at the Black Hole Perturbation Toolkit [42]
website and on our group repository [43]. The depth of
the eccentricity expansion allows us to resum on expected
singular factors and simplify the remaining eccentricity
dependence at each PN order. In many cases we find
closed-form expressions for the eccentricity dependence.
Some of these closed-form functions are identifiable as
terms that appear in the PN expansion of the energy flux at
infinity, associated with leading-logarithm and subleading-
logarithm sequences in the energy flux. The leading-logarithm
terms in the energy flux all depend solely upon the
Newtonian quadrupole moment power spectrum gðn; eÞ
(over eccentric motion harmonics n). Once the presence
of these terms from the dissipative sector was identified as
showing up in the (conservative) redshift invariant, it was
possible to find known infinite series terms and, using
techniques developed in [4,3], to uncover added terms in
the redshift whose eccentricity dependence follows merely
from gðn; eÞ. A full summary of these findings and their
significance is found in Sec. V D.
We also compared the high-order expansions to pub-

lished close-orbit numerical results to examine the accuracy
of the PN expansion. We found the PN expansion to still
be converging at 10PN for orbits with semi-latus p ¼ 10.
It is conceivable that the series might be extended further
and still improve accuracy. The bottleneck step of the
present calculation taken to 10PN and e20, expansion of the
integral for the general-l form of Cþ

lmn, required about
7 days on a single core of the UNC Longleaf cluster. The
rest of the process (including expansion of the homo-
geneous solutions, metric perturbations, and redshift itself
across specific-l and general-l sectors) required thousands
of CPU hours, but highly parallelized over 10–100 s

FIG. 2. Accuracy of the redshift PN expansion with increasing e. The (simple) y expansion is compared to numerical data for the e
values 0.05 to 0.40 at 0.05 intervals (plots are made continuous for clarity) for both p ¼ 10 and p ¼ 20. Decreasing residuals are
observed with increasing PN order, though with some unexpected variations at high order. Lines in the right plot vanish where the
expansions reproduce all numerical digits given in [13], including the entire 10PN comparison.
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of cores so that individual tasks finished more quickly
(ranging from minutes to a few days).
All of the machinery presented here is readily extendible

to calculating the spin-precession invariant ψ and other
higher-order invariants. We will present results on ψ in a
subsequent paper. Additionally, now that we are calcula-
ting PN expansions in the conservative sector, we may be
able to make connection with the EOB formalism. The
redshift invariant can be transcribed to yield portions of
the EOB Qð1=r; pr; νÞ potential by extending a proce-
dure described in [27]. However, the process is difficult,
with each new order in e2 requiring the derivation of an
additional transformation. It is not presently possible to
transform closed-form eccentricity functions in hutiτ to find
closed functions in Qð1=r; pr; νÞ. A similar fact is true of
the spin-precession invariant, whose (complicated) trans-
formation to the EOB gyromagnetic ratio gS�ð1=r;pr;pφÞ

is mapped out in [30]. The derivation of a procedure to
transform all powers of e would be highly beneficial in the
context of this work on closed forms. Otherwise, it may be
possible to perform the two transformations to high finite
order in e2 and then use factorizations and resummations to
extract closed forms. These possibilities will be explored in
future work.
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