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We calculate the eccentricity dependence of the high-order post-Newtonian (PN) series for the
generalized redshift invariant (u'), for eccentric-orbit extreme-mass-ratio inspirals on a Schwarzschild
background. These results are calculated within first-order black hole perturbation theory using Regge-
Wheeler-Zerilli (RWZ) gauge. Our Mathematica code is based on a familiar procedure, using PN
expansion of the Mano-Suzuki-Takasugi analytic function formalism for / modes up to a certain maximum
and then using a direct general-/ PN expansion of the RWZ equation for arbitrarily high /. We calculate dual

expansions in PN order and in powers of eccentricity, reaching 10PN relative order and ¢%. Detailed
knowledge of the eccentricity expansion at each PN order allows us to find within the eccentricity
dependence numerous closed-form expressions and multiple infinite series with known coefficients. We
find leading logarithm sequences in the PN expansion of the redshift invariant that reflect a similar behavior
in the PN expansion of the energy flux to infinity. A set of flux terms and special functions that appear in the
energy flux, like the Peters-Mathews flux itself, are shown to reappear in the redshift PN expansion.
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I. INTRODUCTION

Using a recently developed method and Mathematica
code [1,2], we calculated previously high-order post-
Newtonian (PN) expansions of the energy and angular
momentum radiated to infinity by nonspinning eccentric-
orbit extreme-mass-ratio inspirals (EMRISs) in first-order
black hole perturbation theory (BHPT) (see also [3]).
The resulting expansions, in both PN order and eccen-
tricity e, were taken to high PN order (19PN) and e'”
and to somewhat lower PN order (10PN) and higher
order (e?°) in eccentricity. The detailed behavior in
eccentricity allowed us to find numerous closed-form
expressions and infinite series in e with identifiable
coefficient sequences. In the process we found a set of
leading-logarithm connections between low-order multi-
pole moments of the orbital motion and arbitrarily high
PN order sequences in the fluxes [2,4,5]. Since then,
fluxes at the horizon have also been found, to 18PN
(relative to the leading horizon flux) and e!° as well as
to 10PN and ¢% [2,6]. Taken together these expansions
are useful since fluxes are the most significant contrib-
utors to EMRI orbital phase evolution [7]. High-order
PN expansions of the fluxes and ultimately waveform
amplitudes associated with Kerr EMRIs could make
important early-phase baseline contributions to more
comprehensive efforts to develop “fast” waveform mod-
els for the LISA mission [8].
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These deep PN expansions in first-order BHPT in the
dissipative sector can also be extended to perturbations of
the metric and of local, conservative, gauge-invariant
quantities. The first such local quantity to be examined
for its connections between BHPT and PN theory was
Detweiler’s redshift invariant [9] for circular orbits, u/,
which was initially calculated through 3PN order [10].
Ultimately, Kavanagh, Ottewill, and Wardell [11] used
analytic expansion methods to compute this term to 21.5PN
for circular orbits. The redshift invariant was generalized to
eccentric orbits by Barack and Sago [12], who defined it in
that case as the average of u’ taken in proper time over one
radial libration, (u’),. Its behavior was calculated to 3PN
order in [13] using results from the full PN theory (see [14]
for review of status of PN theory). The redshift is one of
multiple gauge invariants that can be calculated in both
BHPT and PN theory and compared. Others that have been
identified, either for circular or eccentric orbits, include the
first order in the mass-ratio effects on apsidal advance of
eccentric orbits [12], location of the innermost stable
circular orbit [15], spin-precession invariant y (correction
to geodetic precession) [11,16—19], tidal invariants [11,20],
and octupole invariants [21]. Conservative-sector invariants
calculated in BHPT may supply calibration of effective-
one-body (EOB) potentials (see, e.g., [22-34]), which is
important since EOB allows rapid evaluation of the
dynamics of merging binaries and covers broad regions
of parameter space. Recent work has also shown that the

© 2022 American Physical Society


https://orcid.org/0000-0002-1682-4114
https://orcid.org/0000-0001-5578-1033
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.044004&domain=pdf&date_stamp=2022-08-02
https://doi.org/10.1103/PhysRevD.106.044004
https://doi.org/10.1103/PhysRevD.106.044004
https://doi.org/10.1103/PhysRevD.106.044004
https://doi.org/10.1103/PhysRevD.106.044004

CHRISTOPHER MUNNA and CHARLES R. EVANS

PHYS. REV. D 106, 044004 (2022)

redshift invariant, in particular, can be directly translated to
the local sector of post-Minkowskian (PM) dynamics,
allowing derivation of higher-order PM scattering mechan-
ics [32-34]. This paper turns the use of our recently
developed code to the task of uncovering the higher-order
(10PN and ¢?°) behavior of the redshift invariant and in the
process we show intriguing physical connections between
the conservative and dissipative sectors.

The present method derives from work of [29,35,36].
Mode functions for /> 2 are computed in the Regge-
Wheeler-Zerilli (RWZ) gauge [37,38]. For / modes up to a
certain order, PN expansions of the mode functions are
found using the Mano-Suzuki-Takasugi (MST) formalism
[39], as shown in previous applications [11,17,25,29,40,41].
Modes of the metric perturbation are derived from the mode
functions, and the modes of the redshift invariant (u')! are
found through projection of the metric perturbation on the
four velocity. Finite local value of the redshift invariant is
then obtained by directly applying mode-sum regularization
to the scalar quantity. Mode-sum regularization requires
knowledge of all / modes. Beyond the range in / covered by
the MST expansion, we use a direct PN expansion ansatz for
general-/ solutions of the Regge-Wheeler (RW) equation
[40]. The modes of (') derived at low / by MST and general
[ by the ansatz are augmented by direct solution of the / = 0,
1 modes to complete the regularization.

The structure of this paper is as follows. In Sec. II we
briefly outline the problem setup and the MST formalism,
with a focus on how the mode functions in the RWZ gauge
can be PN expanded. That section includes discussion of the
metric perturbations and how they are likewise PN expanded.
The metric perturbations evaluated at the location of the small
body are needed to find the regularized (conservative sector)
self-force. As mentioned, for conservative sector quantities
the /[-mode expansion of the metric must be made for all /.
The MST formalism is used to find /-modes up to a modest /
related to the sought-after PN order. Section III details the
separate procedure used to obtain general, higher /-modes. In
Sec. IV we briefly recall the final two, nonradiative modes
that are not covered by the RWZ formalism and discuss the
mode-sum regularization procedure, which is specialized
here for extracting the redshift invariant. Section V is then the
heart of the paper, outlining the expected form of the
eccentric-orbit PN expansion of the redshift and displaying
our results for the numerous nonlog and log parts of the
eccentricity dependence up to 10PN order. (We show results
in this paper up to 8.5PN with the remainder being posted
at [42,43].) The redshift invariant is expressed using two
different compactness parameters, 1/ p involving the dimen-
sionless semilatus rectum p and y = (MQ,,)?/3 involving the
mean azimuthal frequency €2,,. This section then summarizes
the results, including a discussion of the uncovered con-
nection between the redshift PN expansion and the PN
expansion of the energy flux to infinity. We also compare our
PN expansion numerically to self-force results published

previously for compact orbits. Section VI concludes with a
summary and outlook.

Throughout this paper we primarily choose units
such that ¢ = G =1, though in making PN expansions
we reintroduce 7 = 1/¢ as a PN (slow motion) parameter for
bookkeeping purposes. Our metric signature is (— + ++).
Our notation for the RWZ formalism follows that found in
[3,44], which in part derives from notational changes for
tensor spherical harmonics and perturbation amplitudes
introduced by Martel and Poisson [45]. For the MST
formalism, we largely make use of the discussion and
notation found in the review by Sasaki and Tagoshi [46].

II. BRIEF REVIEW OF RWZ AND MST
FORMALISMS

We briefly outline the setup of the problem of calculating
conservative sector perturbations for bound EMRI motion
on a Schwarzschild background. We further summarize the
MST analytic function expansions, the use of which are
required for modes with small / in the PN expansion. This
process is more extensively detailed in [1] and is based on
earlier work in [11,29,35,40,41].

A. Bound orbits on a Schwarzschild background

The secondary is treated as a point mass g in bound
geodesic orbit about a Schwarzschild black hole of mass M
with ¢ = y/M < 1. The line element in Schwarzschild
coordinates x* = {t,r,0,p} is

ds> = —fdt* + f~'dr* + r*(d6” + sin® 0dg?), (2.1)

with f = 1-2M/r. For motion x* = x% () confined to the

equatorial plane, the four-velocity is

dx%(z) E L
= L =\|\7u 705_2 5
dr fo ry

where £ and L are the conserved specific energy and
angular momentum, respectively. The radial proper
velocity u” is then found from the normalization of u”.
Orbital motion is conveniently described by an alternative
(Darwin) parameter set {y, p, e} [47-49] with

(p—2)*—4¢?
p(p-3-¢€?)’

u(7)

(2.2)

2 p2M2
p—3—e*

__pM
~l4ecosy’
(2.3)

&= rp()()

One radial libration occurs with each 2z advance in y.
The dimensionless quantity 1/p can thus immediately
serve as a PN compactness parameter. Integrals can be
written down from separate ordinary differential equations
(ODEs) for the evolution of ¢, ¢, and 7 in terms of y [44,50].
Each integrand can be expanded as a PN series (e.g., in
1/p) and the integrals can be solved order by order in
powers of 1/p. Definite integrals yield the fundamental
frequencies Q, and . The radial period is given by
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2 (p—2)% —4é?

/
T, = ,
" p—6—2€COS)(:| x

0

rp()? {

M(p—2—2ecosy)
with Q, = 27/T,. The azimuthal frequency is given by

4
T,

p 172 4e
— K|——FF), 2.4
(p—6—2e> < p—6-2e¢ 24)

where K (m) is the complete elliptic integral of the first kind
[51]. Each frequency is PN expanded. Once the azimuthal
frequency is known, the usual PN compactness parameter
y= (MQq,)z/ 3 can obtained as a power series in 1/p, or
vice versa. Eccentric motion also leads to expansions in
powers of Darwin eccentricity e.

(P:

B. The RWZ master equation

Bound motion acts as a periodic source for the first-order
gravitational perturbations. On a Schwarzschild back-
ground these can encoded by a pair (even and odd parity)
of RWZ-gauge master functions [37,38,45]. The master
equations in the frequency domain (FD) take the form

2

{% +w’ - Vz(r)] Xin(r) = Ziyn (). (2.5)

(1

l’Zl/+1

Xt =

Imn
j=

xU(j+v+1—ie2j+2v+2,

") R

Here r, = r +2MIn|r/2M — 1| is the tortoise coordinate,
the frequency spectrum is discrete w = w,,, = mQ,, + n€2,,
and the source functions are given by

Zinn () = - [ (G0 = 1y 1)
+ Fp ()8 [r = 1, (1)])e™"dk.

The functions G,,,(t) and F,,,(¢) [52] follow from the
point-particle stress-energy tensor. Both the source term
and the potential V,(r) are (I + m) parity dependent.

The homogeneous form of this equation yields two
independent solutions: Xi" = X; . with causal (down-
going wave) behavior at the horizon, and X’ =X
with causal (outgoing wave) behavior at infinity. The odd-
parity homogeneous solutions can be determined directly
using the MST formalism [39], which we outline below.
The corresponding even-parity solutions are derived from
the odd-parity solutions using one form of the Detweiler-
Chandrasekhar transformation [44,53-56].

(2.6)

C. The MST homogeneous solutions
and the source integration

The MST solution for X,

mn €an be expressed [11] as

IF'j+v+1—ie)l(j+v—1-—ie)
CG+v+3+ie)(j+v+1+ie)

—2iz), (2.7)

where U is the irregular confluent hypergeometric function, € = 2Man?, z = ron, and n = 1/c (which serves as a 0.5PN
expansion parameter). In this equation, v is the renormalized angular momentum, which is an eigenvalue chosen to make the
series coefficients a; converge in both limits as j — 4-co. Both v and a; are determined through a continued fraction method

[39,46], which leads to series in € for both (which are then
Similarly, the solution for X;  is given by

Imn
[z —ie /¢ ie+1
X,,=e " (--1 -
€ <

(o]

Z"f

j=o

X, Fi(j+v—-1—-ie,—j—v—-2-—

which is expressed in terms of the ordinary (Gauss) hyper-
geometric function. The v and a; appearing here are the same
as those found in solving for the up (4) solution (2.7).
The process of expanding these homogeneous solutions
by collecting on powers of 7 is fully described in [1], based
on the methods initially presented in [40,11]. The homo-
geneous solutions are normalized initially by making the
choice ag =1 in solving the recurrence relation for a;.

J
|

B di

_WM;TA <dx>[/‘ Gim ()X

+
Imn

PN series).

T(j+v—1—iel(—j—v—2—
(1 = 2ie)

i€)

ie; 1 = 2ie; 1 —z/e), (2.8)

However, it proves useful to remove z-independent factors
from these solutions to reduce their size and complexity, as
described in [1,11]. This step temporarily rescales the
solutions, which are then used to form a Green’s function
to find the inner and outer solutions that reflect the behavior
of the source. Integration with the Green’s function yields
normalization coefficients on both sides of the source
region

(G

1 dX;

2M mn i
f2 Xl:'t:nn f dll" )Flm ()():| t()(
Tp 14
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where a subscript p denotes functions that are evaluated
along the worldline of the particle and W,,, is the
Wronskian. In the dissipative sector, it is necessary to
rescale these coefficients in order that their complex square
yields the fluxes [1]. To find local conservative quantities,
the time domain (TD) extended solutions, ‘le, are con-
structed from the combinations C;, X, —and C; X;
[1,52], which automatically produce the proper normali-
zation. In the present application, these time domain
functions are then PN expanded.

D. The metric perturbations

The first-order generalized redshift invariant is a quantity
that depends upon the metric perturbation and its regular-
ized behavior evaluated along the particle worldline. The
general metric perturbation expressions all involve prod-
ucts of the normalization coefficients C;, with some linear
functional of the homogeneous solutions X3, , prior to

summing to transfer from the FD to TD [29,52]. As
discussed in [29], singular and discontinuous parts of the
FD metric perturbations cancel on the particle’s worldline
in summing over m, leaving the [-dependent functions
being C°. The even-parity TD amplitudes are

Klm'i(t, r) _ fa lPe,i ( )\I;;»mi—’
AA+1
nE () = o P g +]—Car1<”"i,
RE(t, 1) = 10,0,95F + rB(r)0, 95,
hf:ﬂi( 1, ) fzhlmi (2.10)

where W{, is the solution to the TD Zerilli-Moncrief equation
[52]. The + and — superscripts correspond to whether the
solution is constructed from C; X, —or C; X; . (see
below). The expressions above use the following definitions:

1 M
A==(l+2)(l-1), A=1+—,
2 r
1 3M 2M 1 3IM 3M?
A(r)=— |24+ 1) +—(1+— ], B(r)=—— A1 —-——) ——|. 2.11
e e R UG s B
The [-mode decomposition of the full even-parity metric perturbation p,, can then be written as
!
Plotor.0.0) = Y (W (6.r)@lr = 1, (1)] + ™ (8.7)@r (1) = 11]Y 1 (6. ),
m=-1
[ ! !
pirt.r0.0) = > (b (1.1)8r = 1y (1)] + hi" ™ (1.1)8[ry (1) = r]]Y 1 (0. ).
m=-1
pgt(h r, 9’ (p) = fzpﬁ’r’
!
Phg(t.r.0.0) = Y PQuuK"™ " (1.1)8[r = 1, ()] + K"~ (£, r)@lr, (1) = r]]Y 1, (0. ). (2.12)

m=—I

Here, Q,p is the unit-radius metric on the two-sphere (i.e., gy = 1, Q,

=sin? 6, Qg, = Q9 = 0), as utilized in [45].

Likewise we can express the odd-parity TD amplitudes as follows:

W= = Lo, G 0.9) = L oW 2.13)
2 " 2f "
with the [-mode decomposition of the full odd-parity metric perturbation given by
!
Pup(t.7.0.9) Z (A" (1, 1)@Lr = 1y (1)] + Ry~ (1, 1)@, (1) = rIXE (0. ),
l !
Pi(t.r.0.0) = Y (A" (6, r)@[r = r, (1)] + 1" (£.1)®]r, (1) = r]]X5" (0. ). (2.14)

m=—I

where X%(0, @) is the odd-parity vector spherical harmonic defined in [45].

044004-4



HIGH-ORDER POST-NEWTONIAN EXPANSION OF THE ...

PHYS. REV. D 106, 044004 (2022)

These reconstructions of the metric are valid for all # and
for r>2M. The redshift invariant, however, merely
requires the behavior along the trajectory r = r,(t) itself.
To parametrize the background motion, and therefore the
self-force, it is computationally convenient to use y instead

|

+ (rA(y) = A) <dX?fnn()()> L4

dy dy

ptr

Pir()()

mn

= f2pi.

A dy
o) = PO o200 () ]

mn

and of the odd-parity metric perturbation

Pis(x) = ()ZX (z/2.0)C

Pplr) = <é) ngn (m/2,0)C5, e~ (—iw) X

mn

Since the [-modes are C° at r =r,(y), the same result
emerges in using either the 4+ or — side mode functions.

ITII. GENERAL-I EXPANSIONS

The MST formalism, as briefly summarized in Sec. II,
provides mode functions for specific /. We used that pro-
cedure in several previous papers [1,3-6,44] that dealt with
gravitational wave fluxes, taking advantage of the fact that the
PN expansions of higher [ fluxes begin at successively higher
PN order. To determine the redshift invariant or other
conservative quantities, / modes of the local behavior of
the metric perturbation are needed. This introduces a diffi-
culty not encountered with the fluxes—the PN expansions of
higher [ contributions, pl,, (x), do not begin with successively
higher PN order. Thus, to obtain correct PN coefficients in the
expansion of the metric p’, (), a sumover all | must be made.
This necessitates finding analytic expansions for arbitrary /.

A. The homogeneous solutions
and normalization constants

To generate expansions for general [, we might try
directly expanding the odd-parity MST solutions (2.7)

AGA+1)

@)

) d
ZYlm 7[/2 0 lmn lm(p_lmt(_iw) |: (d)() (
r

Lixi;ncy)

of t. Accordingly, we modify the notation so that quantities
are thought to be functions of y [e.g., r =r,(x).f = f,(x).
t=1,(x), etc.]. Expressing everything, including deriva-
tives, in terms of y, we find the following local behavior for
the /-modes of the even-parity metric perturbation:

() oo (4

“=)])

)+ 7B 0)|

dy

(2.15)

- (dy\ d
lm(/)—l(uf Xj:
lmn <di”> d){ (I" lmn)’

(2.16)

Imn-*

|

and (2.8) while leaving [ arbitrary. However, the I’
functions in the summations make such an approach
apparently intractable. An alternative method utilizes an
ansatz [11,40] for the homogeneous solutions of the RW
equation

€ —v—1
Ximn = <2> (1+ A + A+ + AP + O (1)),

Xipn = (2) (1B +Byrg* -+ By + O (1)),

(3.1)

as a general-/ PN expansion with undetermined coeffi-
cients. Here A; and B; are functions of z, €, /. The original
ansatz [40] employed different prefactors, namely /! and
r~!. This was modified [11] to use v in the exponents,
which removes logarithmic terms from the A; and B;
coefficients. The PN expansion of v itself is found using
the continued fraction method (but for general /) and then
the expansions are plugged into the homogeneous RW
equation
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(22w ()5S

The ODE is then solved order-by-order. For even parity, Zerilli equation solutions are derived from the RW solutions via the
Detweiler-Chandrasekhar transformation [1]. The ansatz (3.1) does not fully incorporate the boundary conditions, which
makes it break down at PN orders at and above O(17*'). If a target PN order P is set, the ansatz will be useless for / < P and

(3.2)

portions of the solution for those values of / must be determined separately with the MST formalism.
Proceeding in this way, we obtain a general-/ PN expansion for v, the first few terms of which are

24 + 131+ 2812 + 308 + 151
61+ 1012 = 2017 — 40/* — 161°

UV =

€% + (51840 + 1028161 — 8506081> — 18553261 — 6756251* + 7332731°

+ 121738016 + 139751217 + 135551815 + 1520455[° + 1678310110 + 10968307!! — 8295/'2 — 60564013
— 4561201'% — 1478401'5 — 184801'6)e* /[8(1 — 1) (1 + 1)3(2 + 1) (21 = 3)(21 = 1)3(1 + 20)3(3 + 21)3(5 + 21)]

+O(e%),

(3.3)

and we obtain the general-/ expansions for the mode functions, which are again truncated after the first few terms

(2)x},

Imn

=Xf$:1+[

e(=3+20+12) N Z }72
(1+02z)  —2+4
(12 =291 + 4P + 11P +21*)  e(4—1+ 8P+ P)z (1+10)z* 4 p
[ 4G +20)(=1+ [ +20)2 4=+ 1+2) ' 8(=3+20)(=1 +1+212)]'7 +00r),
(3.4)
€\ ! € 4 72
<E) X =X = 1= {2? (‘7”) +6+41]’72
N [62(—3 +D(2+DA+DR+1D)  e(=12+ (=T+DI2+1)z z W 00,
I(—1 4 21)47* (1+D(3+20)4 (154 161 + 41%)8
(3.5)

Here we defined X**" as the normalized PN series that begin
at O(1). It is useful to factor out leading terms (z~!) and
(e/2)7"=! at each step of the calculation so that PN orders
do not depend on /. Eventually, all /-dependent powers of 7
will cancel in the metric perturbation due to their corre-
sponding presence in the Wronskian.

The next few steps in the general-/ procedure are
identical to the specific-/ case [1,29]. The Wronskian
and source terms are expanded and then the C;;, normali-
zation coefficients are computed using (2.9). The general-/
expansions are significantly lengthier than their specific-/
counterparts, making this step a bottleneck in the calcu-
lation. Of course, in applications to the orbital phase
evolution in EMRI waveforms, the accuracy requirements
on the conservative part of the self-force are relaxed relative
to those on dissipative terms by a factor of the mass
ratio [7].

B. Sums of spherical harmonics over m

The construction of the full metric perturbation invol-
ves summation over all three mode indices [, m, n.

|

The summation over n is straightforward, as only finite
n are needed to reach any particular order in the expansion
over eccentricity e. The summation over / will range from
[ = 0to [ = oo, but the form of the summands will involve
products and quotients of polynomials in /. Infinite sums
over these expressions are still trivial to execute in
Mathematica. This leaves the more difficult task of sum-
ming m modes from —/ to [ for general /. In the process of
constructing the /-modes of the metric perturbation (2.15),
we find the following two classes of sums:

!

ZmN|Y,m(ﬂ/2,0)\2 (even parity), (3.6)
m=-1

i

> mV[0yY 4, (7/2.0)2  (oddparity).  (3.7)

m=-—1

where N is any positive integer. Sums of these types occur
because one spherical harmonic factor explicitly appears in
(2.15) while a second spherical harmonic implicitly resides
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!

in the calculation of C7, . Powers of m come from powers Z ™Y, (0,0))2 = (21 + ) P,(cos20 + sin?0 cos ).

of ¢ and PN expansion of the Fourier kernel. Closed-form m—l 4r

expressions must be derived for both of these sums. (3.8)
The evaluation of the first (even-parity) summation starts

by using the spherical harmonic addition theorem, reduced = Then, the even-parity sum can be derived by differentiating

to the following form for this case: multiple times

I N 1 , (214 1Y Y
2 e/ 2.0 = 50 | 3 (e (o/2.0) - () ey peos ol (39)
When N is odd, the LHS is real while the RHS is imaginary. Thus, sums for odd N must vanish. Equivalently, we can set
z = i@ and make the Taylor expansion of P;(cos(—iz)) in z. Except for the added factor of (2] + 1)/4x, the coefficient of
the zV/(N!) term in the expansion will correspond to the desired sum over m".

The odd-parity summation requires more effort but it can be derived by taking a pair of @ derivatives of the even-parity

addition formula

02 / 1 1
(2 @0 ) =23 o @.0F +2 Y @001, 00, (10

m=— m=-—1 m=-—1

Rearranging and fixing the polar angle, we find

2 / l
Z €"2|0pY j, (/2. 0)[2 ;:92 [Z e"?|Y 1, (6.0)| } = > " (0¥ 1y (7/2.0)]Y 1,y (2/2,0).  (3.11)
O=rx/2

m=-—1 m=—I

The first portion can be easily written in terms of P; and the second term can be reduced using the spherical harmonic
differential equation itself. We then find

1 2
B 20+ 1Y 9 ,
,,;:_ €"|0pY j,n(7/2,0) > = (V) P (Py(cos®6 + sin*0 cos(—iz))) p—r 2

2141 2041

+1(1+1) <?> P;(cos(—iz)) — (?> 02 P,(cos(—iz)), (3.12)

with the Nth term in the Taylor series in z giving the desired odd-parity summation over m".

An alternative means of evaluating the two classes of summations involves expressing them in terms of the Gauss ,F';
hypergeometric functions. Indeed, it can be shown [57] that

l
20+ 1
> e Y, (x/2.0)* = ( 4“; >e112F1(1/2,—l, 1,1 —e %), (3.13)

m=-1

which is readily Taylor expanded in z with the Nth power term directly providing the even-parity result. The approach based
around expanding Legendre functions in (3.9) for calculating the even-parity sums is slightly faster than this second,
alternative route with hypergeometric functions, so we retain use of the former in our Mathematica code.

The same paper gives the following odd-parity summation (except for an errant factor of 1/4)

I
Z €"|0gY 1 (7/2,0)> = (21; ]) (1=1)z (3/2)”([; 1/2) SF1(3/2, =1+ 1,-1+1/2,e7%). (3.14)

This expression is not immediately easily expanded in z. Instead, we can apply the hypergeometric identity
I'c—a-b)I'(c)
I'c—a)l'(c-D)
I(a+b-c)(c)
[(a)l'(p)

m=—I

,Fi(a,b,c,z) = SFi(a,bja+b+1-c;1-72)

(1-2)* " F(c—a,c—b;c+1—a—b;1-7), (3.15)
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to make headway. When substituted in (3.14), the second term on the right-hand side in the identity vanishes for all [ of
interest here since there is a Gamma function in the denominator I'(b) = I'(—/ + 1) with negative argument. Hence, the

hypergeometric function itself in (3.14) can be replaced with the following:

r(-2)(1/2 - 1)
I(—1/2)0(=1—1)

where we have canceled the formally diverging terms using

r-2) (1
r(-1-1) ( H

k=—I1-1

Including the rest of the factors from (3.14) and noting

D(=1+1/2)0( +1/2) = wsecln = z(-1)',

we arrive at

!

m=—I

Taylor expanding the right-hand side this expression in z
and plucking off the m" term provides the desired odd-
parity sums and turns out to be much faster to execute in
Mathematica than its Legendre function alternative.

With a means of handling the sums over m, the general-/
PN expansions for the mode functions can be inserted in
(2.9) to obtain the PN expansion of C; = and in (2.15) to
obtain the /-modes of the metric perturbation. The calcu-
lation proceeds much the same way as in the specific-/ case,
though the general-/ expansions are found to be orders of
magnitude larger and more cumbersome to manipulate.

IV. ADDITIONAL CONSIDERATIONS
IN THE CONSERVATIVE SECTOR

Our previous papers [1,3,5] utilizing this code have focu-
sed on the dissipative sector. In the present effort, leading to a
PN expansion of the redshift invariant, there are additional
considerations that arise exclusively in the conservative
sector. The first of these is the computation of the low-order
modes (I = 0, 1) and the second is mode-sum regularization.

A. Nonradiative modes

The / =0 and [ =1 modes are not addressed by the
RWZ master equation and the metric perturbations for these
modes must be found directly [38,58-61]. We follow the
presentation found in [29]. The / = m = 0 monopole mode
is even parity and was found by Zerilli to be

5 L
ol (e )

14
2uE
Py = ﬁé[r —ry(1)].

(4.1)

Fi(3/2.1=1;3;1 —e™2) = (=1)

20+ 1
D e (0pY,, (n/2.0)] = (—8: >e<1—1>Z1(1 +1),F(3/2, -1+ 1;3;1 — e7%).

fri\;_rz)m/z —,F (/21— 131 —e %), (3.16)
k> :%(—1)l+lr(1+2). (3.17)
(3.18)

(3.19)

I

However, in this particular gauge the metric perturbation is
not asymptotically flat, which can be seen by inspecting the
p. component. Recovering asymptotic flatness is effected
by introducing a gauge transformation [29,61] involving
just the £ component of the gauge generator. This affects
only p,, (for the / = 0 mode) and leaves

& 2 L£?
Pi = 2u=0[r —r,(1)] + 5;”; {252 —J» <1 +r—z>}
P p P

x Olr,(t) —rl. (4.2)

For [ =1, both even-parity (m = 1) and odd-parity
(m = 0) contributions are present. Gauge freedom allows
the odd-parity mode to appear in a single metric component,

1 2
pth] = —2uL sin’ 9(;@[1’ —r,(1)] + :—3®[rp(t) — r])
P

(4.3)

which is in a form suitable for our first-order perturbation
calculations [29]. The even-parity / = m = 1 dipole mode is
more complicated and expressions can be found in
[29,38,58]. However, this multipole part of the metric
perturbation is understood to be a pure-gauge mode and
its contribution to the redshift invariant (and presumably all
other gauge-invariant quantities) vanishes locally [29].

B. Mode-sum regularization

The last major hurdle in the computation of local
conservative quantities is that of regularization. The
retarded-time metric perturbation emerges from (2.15)
after summing over [/, which diverges on the worldline
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of the particle. A local gauge-invariant quantity (like the
redshift invariant) computed from the retarded field would
itself diverge. What is needed instead is to extract the
effective (regular) metric perturbation experienced by the
particle, which is found through regularization.

Regularization can be approached by using the splitting
prescription of Detweiler and Whiting [62], which decom-
poses the retarded metric perturbation into regular and
singular fields

p;w(x) = pﬁv<x) + pﬁv(x)‘ (44)
As its name implies, the singular field is divergent at the
location of the particle, sharing this aspect with the retarded
field. The singular and retarded fields satisfy the same
inhomogeneous field equation but with different boundary
conditions. A consequence is that the regular field p,’fy isa
solution to the homogeneous field equation. Because of
symmetry, the singular field makes no contribution to the
self-force, leaving those effects to the regular part. In this
way, the regular metric perturbation added to the back-
ground Schwarzschild metric can be thought of as a smooth
effective metric in which the point particle executes
(perturbed) geodesic motion.

The regular-singular decomposition can be incorporated
as part of mode-sum regularization [63,64]. This approach
takes advantage of the fact that while the retarded and
singular fields are divergent on the worldline, their indi-
vidual [-modes are finite. Thus, if the [-modes of the
singular field can be determined, they can be subtracted
from the /-modes of the retarded field, allowing a con-
vergent sum to be formed for the regular metric perturba-
tion. Like the retarded metric, the singular metric is gauge
dependent. The singular metric, or alternatively the self-
force itself, has / dependence that can be represented as an
expansion in which each term has dependence that is
polynomial in [/ or reciprocal of a product of polynomials
in [. Most work has focused on expanding the singular field
in Lorenz gauge and there the /-independent coefficients
(i.e., regularization parameters) of these terms have been
calculated for multiple orders [65]. Only the first regulari-
zation parameter is needed in the case of the metric itself to
achieve a convergent result, while the first two parameters
are needed to regularize the self-force. Because our
approach is analytic, only the regularization parameters
that are essential for convergence are needed.

However, because our focus in this paper is on a gauge-
invariant scalar quantity (i.e., the redshift invariant), we can
instead directly regularize the redshift invariant, avoiding
the complications of components and gauge. As noted by
Detweiler [10], the regularization scheme becomes gauge
invariant when working with gauge-invariant quantities.
Furthermore, we avoid the whole usual issue of whether
to regularize the metric components in a tensor spherical
harmonic basis or by treating each component in an

expansion over scalar harmonics [66]. We are thus able
to extract the finite result using a single regularization
parameter found by using Lorenz gauge.

V. THE GENERALIZED REDSHIFT INVARIANT

A. Background and implementation

For an eccentric orbit, the redshift invariant is the average
of u' = dt/dr integrated over proper time 7 for one radial
libration period [12,13,29]. This quantity is equivalent to
the coordinate-time period, 7',, divided by the proper-time
period, 7,, and generalizes Detweiler’s original redshift
invariant, which was defined as the instantaneous value of
u' for circular orbits [10,67]. All of the necessary tools to
calculate the redshift invariant have been summarized in the
previous sections.

As mentioned before, this particular gauge-invariant
quantity encodes important details of the conservative
motion of the system. The first-order conservative dynam-
ics contribute at O(&°) in the cumulative EMRI phase (i.e.,
post-1 adiabatic order), a level needed for the generation of
accurate waveform templates in the LISA mission, making
the redshift invariant especially valuable. In addition, there
is an exact correspondence between the PN expansion of
(u"), and the expansion of the Q(1/r, p,;v) EOB potential,
which governs the deviation from geodesic behavior in the
EOB Hamiltonian [27-29,35,36,68]. The transformation
between these quantities is outlined in [27].

Given our first-order self-force calculation, we seek
the first-order correction to the ratio 7,/7,. To achieve
a gauge-invariant result, we make the assumption that the
(observable) radial libration frequency is held fixed in going
from the background geodesic to the first-order perturbed
orbit. The result is that all of the necessary gauge-invariant
information is contained within the first-order correction to
7, alone [12,13,29]. Thus, we can express (u'), as

T, T,

T
[ANg— — _ ro__ t\0 1\ 1
<M >T_T,+AT, Tr AT <u>’[+<u> .

The first term, T',./7 , is the geodesic value of the redshift
invariant, which can be trivially calculated using the Darwin
parametrization of the background orbit. The second term is
the conservative self-force correction, scaling as u/M and
requiring the calculation of the first-order piece of the proper
time radial period A7 ,.. This correction was found [12,13] to
be given by a projection of the regular part of the metric
perturbation

1 1
AT, = —’T,<§pﬁyu"u”> = —Tr<§pwu”u” - HS> .

T

(5.2)

Here the average is taken over a 7 period and in the second
equality the projection is made on the retard-time metric
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perturbation. The term H® is the projection of the singular
metric that must be subtracted off. To obtain finite results, this
subtraction is done in an /-mode by /-mode fashion using the
leading-order regularization parameter [12,29,65]

2u £2>
HS = Hyy = /C( , (53
-3 2w (E) 6

where /C is the complete elliptic integral of the first kind. Like
the rest of our quantities, H o) can be PN expandedin 1/ p and
expanded in e. The series expansion of Hjy is trivial to
calculate, with the leading few terms being

u\ |1 1
Hyp = (M) {;(1 +ecosy) _W(l + ecosy)?

+

1
6ar (1 4+ ecosy)*(9(1 + e cos y)?

~16(3 +¢) +}

The regularized redshift invariant is constructed from the
individual /-dependent differences

1
<§wau"u”> — (Hf)),»

which are then summed from / = 0 to [ = co. The /-modes
of the retarded time metric perturbation, pfw, are calculated
in three different blocks. The modes / =0 and [ = 1 are
expanded using the nonradiative solutions in Sec. IV A,
while the modes from / = 2 to the integer part of the PN
order minus 1 (which in this paper for I0PN means [ = 9)
are expanded using specific-I MST solutions, and lastly
the remaining modes from the desired PN order to infinity
are expanded using the general-/ ansatz from Sec. III.
Once (1/2)pl, utu” is assembled (and regularized) for both
specific and general /, the summation over [/ is computa-
tionally efficient.

(5.4)

1 u, U, U 1
(u); = (”) [uo+'+§+§+(u4+u4Llogp)4
p p p- P p

Uiz

1 1
+ (Us +Ugy log p) 0 + W + Uz + Uy log p + Uz log? p) o + 5
1 1
+ (Us + Ug log p +u8L210g2p)ﬁ + (Uyz2 + U721 log P)W + Uy + Uy log p + Ugyrlog? p) —5

1 1
+ (Uygy2 +Ug/2 log p) P + (Uyo +Uior log p + U gralog? p + Ujgr3log’ p) 10 +-

1
+ (Us +Usg log p) — +
P35 T pnn

This procedure was first implemented in [35], where the
redshift invariant was expanded to 6.5PN and e’ in
eccentricity and to 4PN and e*. Shortly thereafter, the
expansion was taken [29] to 4PN through e'°. Those efforts
were followed by [36], who extended the result to 4PN and
e?%, as well as 9.5PN through e*. More recently, these latter
authors improved the eccentric knowledge to 9.5PN and ¢®
[34], as that level was needed to complete a novel tran-
scription of the redshift invariant to the scattering angle for
hyperbolic orbits, which can be used to compute the full
post-Minkowskian dynamics to high order.

This paper extends the PN and eccentricity expansion
further by taking the redshift invariant to 10PN and e*.
More importantly, we have further analyzed each eccen-
tricity function (in keeping with work in [3-5,44]) to find
those that can be manipulated either into closed-form
expressions or into known infinite series. By known we
mean cases where an infinite series is derived from sums
over Fourier spectra of low-order multipole moments, as
we showed occurs in the dissipative sector for gravitational
wave fluxes radiated to infinity. Other sums over Fourier
spectra of low-order multipoles were shown [4,5] to yield
sequences of closed-form expressions in the PN expansion
of the fluxes to infinity. Surprisingly, a number of these
special functions, both closed form and infinite series,
reappear in parts of the PN expansion of the (conservative)
redshift invariant. In the case of nonclosed-form functions,
we present resummations that rely on factoring out powers
of 1 — e? (often referred to as eccentricity singular factors)
that improve the convergence of the remaining series as
e — 1 [4,29,44]. In what follows, we present the redshift
invariant in two different PN series, using first the compact-
ness parameter 1/p and then the parameter y = (MQ,,)*/°.

B. Redshift invariant as an expansion in 1/p

In terms of the compactness parameter 1/p, circular-
orbit studies [11] lead us to expect the following form of the
PN expansion of the redshift invariant:

Ui

1
p
(5.5)

where each one of the U/, is a function of eccentricity e (which if appropriately scaled is sometimes called an
enhancement function). Our perturbation results when sorted on p dependence allow the U/, (e) functions to be read off.
Due to the increasing complexity of the expansion with PN order, we limit our presentation in this paper to 8.5PN
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order. The full results to 10PN will be available on the Black Hole Perturbation Toolkit [42] website and our group

repository [43].

We find that the first few leading terms (OPN, 1PN, 2PN, and 3PN) all have simple closed-form expressions

Uy =—(1-¢),
Z/ll = —2(1 - €2>2,

Uy = (1 —€e*)%(9 = 5¢%) + (1 —e?)32 (=14 + 9¢?),

Us = (1 —¢2)?(28 — 8e? —de*) + (1 — €2)3/? | -

All four of these functions were previously derived from the full
PN theory in [13]. The first two, U (e) and U, (e), were later
confirmed in closed form through expansion of the RWZ
formalism by the authors of [29]. This latter effort also produced
U, (e) and Us(e) as power series in eccentricity through e'°.
Our calculation has now extracted and verified the exact
eccentricity functions found in [13] directly through BHPT.
At 4PN order, a log(p) term makes its first appearance.
The 4PN nonlog function contains combinations of tran-
scendentals similar to the 3PN flux at infinity. Intriguingly,
the 4PN log term, U, (e), is exactly proportional to the
Peters-Mathews quadrupole flux term, Ly(e) [69]

73¢> n 37¢*
24 96

4
U4L :%(1 —62)3/2<1 +

=B eyge).

. (5.7)

U, = (1 62)3/2{ 1963 21182¢> 1469¢*  129¢°
4 =U0—-e)7 = - -

45 45 + 9 16

Asisevident, the 4PN nonlog redshift invariant separates into
a set of closed terms, including one with Uy, (e), along with
an added term containing a function denoted by Ag(e). The
Ag(e) function turns out to be an infinite series. It is, in fact,
the first in a sequence of functions that we previously
identified [4]. In that paper, we showed that the functions
Ai(e), Ay(e), etc. appeared in the leading-logarithm se-
quence in the energy flux at infinity. The first such term that
showed up in the flux was A (e), also known as y(e) [14,71]
which appears in the 3PN energy flux. The sequence of
functions Ay (e) that we defined contained a first element,
Ag(e), which is given by

Aole) = i log (g) g(n.e).

(5.10)

1 281¢2  159¢*
+m<_ 508+58€_ 59¢

205 4122 [ 241 4lz\  27¢*

3 32

[

As we recall, the Peters-Mathews flux is found to be a sum
over the Fourier power spectrum g(n, ¢) of the Newtonian
mass quadrupole [69,70] (see also [4]),

> 1 73 37
[,0(6) = Zg(n,e) :m <1 +ﬁ62 +%€4>.

(5.8)

The similarities with the 3PN flux (and the fact that
the 3PN log flux term shows up in the 3PN nonlog flux)
led us to seek a compact expression for the 4PN nonlog
term, Uy (e), resembling that of £;(e). The procedure is
described in Sec. IV of [4]. We found the following
segregation of terms:

)

5 90 2
6772 178792 , 296652 |\ 128

~ 28 (1= e2Ag(e).
512 1536 12288 e) 5 (1= € Aole)

(5.9)

[
Even though this particular function made no appearance in
the energy flux, it does interestingly now appear in the
redshift at 4PN order.

At 5PN order there are log and nonlog terms. The 5PN
log term in the redshift is found to be another closed-form
function

956 2026¢> 211e* 23936
— (122222 _
Usp = (1-¢) (105 21 T 420>
(5.11)

Just as with the 4PN case, the 5PN log term is coupled into
the SPN nonlog term. Following the procedure used above,
we can seek a compact expression for the SPN nonlog
redshift. The result is similar to
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711289  166903¢> 5861983¢*  4691137¢5 562568 61433
— (1 — 232 _ _ _ V1Ze?
Us = (1-¢7 K 1575 252 200 T 700 64 )+ ¢ <1050
366389¢2  1825589¢% 89766 8(1 — e2)*2
- 2668 )| -2 Jog ("¢ ) A
6300 | 3150 g e ﬂ [yE+ 0g<1+\/1—e2)]u“+u5
64771 122659¢% 106757¢*  9679¢° 369 369¢2 3694
201 — 2)3/2| = _ V-t =T , 5.12
(- 768 768 2048 3072 “\6s4 128 " 128 (5-12)

with a set of new closed form terms and with a single remaining infinite series, denoted by %, that soaks up the appearance of log
(2), log(3), etc. transcendentals. This y-like function has not (yet) been determined in terms of multipoles within the multipolar
post-Minkowskian (MPM) PN formalism [14] and thus it is only known in our present calculation as an expansion to e*°:

W= (1 { <248 1;)g(2) 243 1;)g(3)> . <_ 3938(; 10g(2) . 809197 (1)og(3)> 2

. (1 159803 log(2) _ 3082941log(3) 9765625 log(5)> i (_ 61146223910g(2) 4054941 log(3)

35 320 1344 1890 896

3299921875 10g(5) 5 | (32367232l0g(2) , 73001048877 log(3) 3402892421875 log(s)
24192 ¢ 15 114688 3096576

96889010407 log(7) o5 63126936562 1og(2) 343564893343531og(3) _32100152734375 log(5)
442368 4725 5734400 6193152

2841955232664110g(7)> 0, (5276536312963 log(2) 103644027885283111og(3)
- e

7372800 60750 458752000

_ 7174481733359375 log(5) _322609178993859793 log(7)\ ,, (- 518637239955632610g(2)
445906944 10616832000 ¢ 10418625

1135462692217658751log(3)  10268181794053906251og(5)  914910020395585795710g(7)\ ,,
44957696000 43698880512 63700992000 ¢

748264799632979347 log(2) ~ 609082161701573645199 log(3)  13203573865427998046875 log(5)
333396000 822083584000 89495307288576

14949272565618057218377 log(7)  81402749386839761113321 log(1 1)) 16
- - e

32614907904000 2237382682214400
883299584070658267147log(2) 48265448696337440140569 log(3)

* <_ 108020304000 11509170176000
76674177419660725285156251og(5) = 222715444298861595602129 log(7)

B 4832746593583104 211344603217920
236352943152570442830239113 log(1 1)) o184 <290351 111127874858038001 log(2)

362455994518732800 10802030400000

974062330634519749930801293 log(3) = 423462131605851394906953125 log(5)

73658689126400000 51549296998219776
38438735913255492718654167971og(7) 1568842386573481329215281289749log(11)

2113446032179200000
_ 91733330193268616658399616009 10g(13)) 220

289964795614986240000

The first half-integer PN term arises at 5.5PN order
[72]. For circular orbits, this term is known to be
associated with the effect of the 1.5PN energy flux tail
showing up in the redshift factor [73]. In our calculations

289964795614986240000

+ ] (5.13)

[

for eccentric orbits this function emerged as being
exactly proportional to the eccentricity dependence
of the 1.5PN energy flux enhancement function ¢(e)
[4,14,44,70,71]
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13696

Tﬂ(l - 62)13/2(.0(6)’

Uip=-— (5.14)

aresult that appears in [33] in slightly different notation. It
is well known that the tail enhancement function is found
[70] as an infinite series over the Newtonian quadrupole
moment power spectrum

p(e) = igg(n, e). (5.15)

419576 31873122 3 831494¢* 3 59098¢° 3

and is therefore easily calculable to arbitrary order in €. In
[4] we found this function to be the first element, ©y(e),
in an infinite sequence of functions, ©(e), that appear in
the subleading-log (or 3PN-log) terms in the energy flux.
Furthermore, as shown in [44], it is the combination
(1 — e?)>¢p(e) thatis an infinite series in e with diminishing
coefficients and which limits on a finite number as e — 1.

At 6PN order, the log(p) term is found to also be a
closed-form function in e, but with the wrinkle that a
lower-order log term, U/, reappears

12889¢8

Ue, = (1= ‘32)3/2 (‘

2835 2835

945

) +§(1 — 23Uy (5.16)

315 5040

As with 5PN, we can make some headway in analyzing the structure of the 6PN nonlog term. We find, for example, that the
6PN log term couples into the 6PN nonlog. We also find several closed-form functions multiplying the appearance of the z°
and z* transcendental combinations. Beyond that there is an infinite series with rational coefficients and another series, L{’é,
that contains log(2), log(3), etc. transcendentals. At this point, we have not been able to manipulate the rational-number
series into a closed-form expression, which was possible in the case of U/, and U5. Instead, both of these series are given as

expansions to e’

Us = (1 — 22 17083661  2700577231¢>  161896927¢*  30273005737¢°  58376487559¢*
= — e —_
o 4050 132300 8400 9525600 152409600
5527943783¢'%  36259997113¢'2  67759073909¢'*  12979122851¢'
14515200 174182400 487710720 123863040
37020766301e'® 433129626457 8(1 —e?)¥?
- - ) =2|rp +log| ——F—= | |UeL
445906944 6370099200 1+VI-e2
. 213 (2800873 27872821 41197641e*  135909¢°
+ 74 (1 = &) + -
262144 ' 524288 2097152 4194304
PETAET 1231647119 4365848063¢>  8200800977¢*  68605901e®  38113839¢°
2(1 = e2)32| - _ _ _ _
1769472 884736 2359296 262144 8388608

8339 72005¢>
—e2)3/2( —
+{1-e) ( 1024 T 1024

12151og(3)

8192

191331¢*
+ ‘ >] U,

(5.17)

= 1 (25180

65233610g(2)> (30101992log(2)__8577910g(3)__976562510g(5)>
4536

2835 2835 40
v+ (- 177664066 log(2) 23175639 log(3) 33535156251og(5) 1 5725580404 1og(2)
945 2240 36288 2835

15974601543 1og(3) 3033371509375 log(5) 96889010407log(7)) 6+< 887519089375 log(2)
— —_— e —_—

17920 2612736 373248 40824
6552704842893 log(3) | 693828478128125log(5) | 87590207685169 log(7 )es
573440 83607552 11943936
239223857712274910g(2)  3631791410461107log(3)  162963875003125 log(5)
( 10206000 57344000 N 3981312
__10199425471987069431og(7)>elo_+ (__10574516988120078110g(2) 3877667156883681 log(3)
11943936000 52488000 65536000
62356409327340625 log(5)

573308928

102210299549702981063 log(7)Y ,, , (3133171953524932019 log(2)
171992678400 ¢

240045120
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833895868659823351og(3)  11457047215621220496875log(5) 65228446677815631855191og(7)

22478848 18877916381184 2293235712000
__814027493868397611133211og(11)>el4+ (__4813254866666992632161log(2)
471947909529600 72013536000
177380873493979007695959 log(3)  25670728576758333505178125 log(5)
5754585088000 - 2416373296791552
8810523169175992438990487 log(7) 2542912952598726354888501591og(11))e16
880602513408000 60409332419788800
N <9192410559014602065623101log(2)__53375870964426295835250711log(3)
31109847552000 368293445632000
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531598234297333443052911578125log(5) ~ 2732223161911355671416537362081 log(7)
B 1391831018951933952 57063042868838400000
12865262475131526047951261471976161 log(11)
39145247408023142400000
6359899410750349202189306006854310g(13))6204_ '}. (5.18)
1118435640229232640000

At6.5PN the redshift function is found to be another (presumably) infinite rational-number series, which we calculated to e*°

81077 = 7082924¢?

19545681¢*

171593203¢%  24169567¢%

— (] — &2)3/2
Uryp = (1 =€) <3675 11025
5517037829

15680
1289360091619 2

705600
1698130226071

4644864
377560795098119¢1°

10160640000 7803371520000
6704699069179 '3

©229419122688000  587312954081280000
8520571675445796049¢%°

14158437285888000 + 76115758848933888000000

As a term that is 1PN relative to the 5.5PN redshift
function, it is possible that the 6.5PN redshift may represent
some combination of the 1.5PN and 2.5PN energy flux tail
functions (or more properly, of the OPN and 1PN source
motion multipole moments). We will leave the search for
that connection to a future paper.

The 7PN terms represent an added level of complexity,
with a first appearance of alog?(p) term. The log?(p) term is
of closed form and is directly proportional to the 3PN log
energy flux function, F(e) [14,71]. The log term reveals a
|

+ ~->. (5.19)

structure similar to that of the 4PN nonlog function, featuring
areturn appearance of U/, , and containing another one of the
3PN energy flux functions, in this case y(e) = A;(e)
[4,14,71] itself. Our expansion of the rational-number series
part, however, stops short of providing enough information to
allow it to be manipulated into a closed form. Finally, the 7PN
nonlog part is an infinite series with numerous transcenden-
tals and powers of transcendental numbers as coefficients.
We present only a few coefficients here, saving the rest for the
online repositories [42,43]. These three functions are

Z47:(1__62)3/2[12624956532163__10327445038yE 109568y 9041721471697x> 238510257
382016250 5457375 525 2477260800 16777216
16983588526 log(2) 438272 438272l0g2(2) 2873961 log(3) 195312510g(5)

T 5457375 535 7Els) et 0 19008

2048¢(3) n <40501543520891 37267116191yg n 931328y2  37593336465137x>

5 125023500

1091475

315 990904320
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| 12464105531x* 196923520603 log(2) | 17530887 log(2) 6683648102 (2)
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As might be expected, the 7.5PN term, as the third half-integer term and 2PN correction to the 5.5PN redshift, is an

infinite series with rational coefficients

82561159 736927882692

336208042337¢*  51301033584109¢°

— (] — e2)32
Ussjp = 7(1 =) ( 467775

26195400

69854400 22632825600

117144137627477e8__5009246358913537e10__4421924451335987e12

241416806400 57940033536000 166867296583680
_60305930846851 88237¢! _6390476345122559851 57e'6
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2135459591 35760979200821¢!8

_90046530071830147716010793 e

37677300630222274560000

The 8PN redshift contributions are similar in structure
to features seen at SPN, 6PN, and 7PN. Like 7PN, there
is an 8PN log?(p) term that is closed in form. The 8PN
log term contains a return appearance of Ug;, and it
further separates, like the SPN and 6PN nonlog terms,
into a y-like series containing log transcendental number
J

Us = (1— )| -

22606380378133364736000000

+ --). (5.23)

coefficients and a remaining rational-number series. In
this case, like 7PN log, the rational-number series in the
8PN log term is only known to ¢?°. The 8PN nonlog
term is a complex series, with only a few coefficients
shown here, leaving the rest to the online repositories
[42,43]. We find

7516581717416867 1526970297506y 108064y% 3 2468471557565297°

34763478750

496621125

2205 18496880640
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yelog(3) +
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Finally, we provide in this paper one further term in the
redshift invariant (8.5PN) and save the remaining results to
10PN and e?° for release at the Black Hole Perturbation
Toolkit [42] and our group repository [43]. The 8.5PN
redshift has both a log(p) and nonlog term, each of which
demonstrates additional connections to the energy flux at
infinity. The 8.5PN log term turns out to be proportional
to a function, ®(e), that we identified previously [4] as
contributing to the 4.5PN energy flux. This function is
|

11723776

U701 = ﬁf(w) (1—e?)120,(e)

given by the following sum over the Newtonian mass
quadrupole spectrum

[Se]

o)=Y (3) stne)

n=1

(5.28)

and can be evaluated exactly to any desired order in e?. Thus,
the 8.5PN log redshift is part of a leading-log sequence in the
redshift that is analogous to the leading-log series in the
energy and angular momentum fluxes. We find explicitly

11723776 179108156€>  3476454503¢*  30371758363¢®  29489429729¢8

=n(l - 62)3/2 <_

55125 33075 165375 1587600 7620480
6377226117523e'®  51655953119¢'2  56934823428673¢'*  61709721913247¢'°
76204800000 130636800000  477956505600000 ' 3277416038400000
3 10585818010370879¢!8 3 6093295182537785141¢% . ) (5.29)
59465436600729600000 17839630980218880000000 ’ '

The 8.5PN nonlog term can then be separated in an orderly fashion. It features an appearance of U7/, itself and there is
also a term with a second previously identified function, E,(e) [4],

g,(e) = i (g

(5.30)
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which is another analog of the function y(e) and also depends exclusively upon the Newtonian mass quadrupole. This
second term soaks up all the remaining appearances of transcendental numbers and leaves a final series with rational
number coefficients. The result is

Uiy = n(1 = )2 | 2207224641326123  71647706604932467¢>  810445553448114013¢*
72 = L€ 1048863816000 1048863816000 2581818624000
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©7982005911291533721600000  1508599117234099873382400000
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144825515254473587844710400000 14+vV1—e? 107

23447552
= (1= eH)P2E (e). 31
n< 28 )( )18, (e) (5.31)

C. Redshift invariant as an expansion in y

We can now use the easily derived PN expansion of 1/p in terms of the compactness parameter y to give an alternative
expansion of the redshift invariant. The general form of that expansion is

()t = (%)y[Vo +V1y + Voy? + V3y3 4+ (Vg + Var log y)y* + (Vs + Vs log y)y® + Vi py'!/?
+ (Vs + Ver log y)y® + 1713/2)’13/2 + (V7 + Vo logy + Vopologhy)y” + ]}15/2)’15/2
+ (Vs + Vg 1og p + Vyralog?y)y® + (Vigja + Vigjar log y)y' 72 4 (Vg + Vor log p + Voplog?y)y’
+ (Vigj2 + Vigjar 1og )y + (Vig + Vior log p 4 Vigr2log?y + Vigrslog?y)y'® + - - . (5.32)
The V,(e) functions in the y expansion exhibit most of the same structure as the U/, (e) in the 1/p expansion, so as we list

our findings we will primarily refer back to the previous section for comments found there. As with the 1/ p results, the first
few terms in the y series all yield closed forms, with the first two having been found previously [29]

Vo =—1, (5.33)
2 —4¢?
__ ’ 5.34
Vl 1—62 ( )
1 15¢2 4 Pa—— 2
Vz = m 14 —T— 66 + 1—e (—19 + 14e ) s (535)
1 8ef 295 412 713 4122 171e*
= (58— 132¢2 RS VTR (e il . .
V3 (1_62)3[58 32e¢” + 76¢ 3 + e< 3 + 0 +e<6 —+ 64) 5 )] (5.36)

The 4PN terms share properties with {4 and Uy, as discussed near (5.9) and (5.7) [with the added change of a sign flip
between log(p) and log(y) terms]

Va = 180 360 7 16
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64 1 73¢2  37¢*
Vi = — (

64
— (1 — 22)-5 - _
sa-e2\ T aa T 96) (=) == Lole) (538)

The remaining higher-order terms are similar to their counterparts in the 1/p expansion. In what follows, we give the
closed-form parts and many of the infinite series in e out to order ¢ (with a few exceptions). For brevity we have omitted
listing the y-like portions of the y-expansion terms (e.g., V%, V%, etc.), relegating those along with the more complicated
series expansions to the posting at [42,43]. The SPN terms have a structure that mirrors that discussed near (5.11) and (5.12)
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Vsi =
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(1= \105 " 21 30 140 ‘

As the first appearance of a term of its type, the 5.5PN redshift Vy; ,(e) is identical to U}, ,(e) (5.14) up to a power of
1 — ¢? and is likewise proportional to the 1.5PN energy flux tail

13696

Viip = —Wﬂfﬂ(e) =(1- 62)_13/23/{11/2- (5.41)

An understanding of the structure of the 6PN terms follows from the discussion surrounding (5.18) and (5.16)
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The 6.5PN term is proportional to an infinite series with rational number coefficients, similar to the U3/, term (5.19)
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B2 (1= e2)5 \ 3675 11025 141120 235200 116121600
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(5.44)

The redshift invariant at 7PN features the first appearance of a log?(y) term, which is closed in form. As the discussion
surrounding the corresponding terms, (5.20), (5.21), and (5.22), in the 1/ p expansion showed, the 7PN y-expansion terms
separate similarly
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The 7.5PN term is proportional to another infinite series in e? with rational coefficients
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As the discussion near (5.24), (5.25), and (5.27) would suggest, the 8PN term is quite complex but does allow a
separation into closed-form and infinite series parts of different type. We find
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The 8.5PN redshift term in the y expansion is similar to (5.31) and (5.29), and separates into distinct infinite series with

the appearance of the special functions ©;(e) and E, (e)
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D. Discussion

A primary focus of this paper is on taking the high-order
analytic PN series of the redshift invariant to a deeper
expansion in eccentricity, with the goal of finding as many
closed-form terms or fully determinable infinite series
expansions in e as possible. By pushing our analytic self-
force calculation to €%, we found a surprising amount of this
fully explicable structure in the eccentricity dependence,
including a series of connections between the (conservative-
sector) redshift invariant and the (dissipative-sector) energy
flux to infinity. We summarize the findings here.

The OPN and 1PN redshift functions, Vy(e) and V,(e),
were found previously through self-force calculations and
known to have closed form [29]. [This effectively is also true
of Uy(e) and U, (e), and everything we say in this section
about the analytic determinability of ¢/, (e) functions in the
1/ p expansion pertains equally well to V;(e) functions in
the y expansion. In taking the self-force calculations further,
we are able to show that the 2PN and 3PN redshift terms can
be condensed into closed expressions of a particular form,
with a dominant-subdominant eccentricity singular factor

4 ) (5.52)

17839630980218880000000

structure, though these two terms were previously found
[13], in slightly different form, using a full PN theory
calculation [see their Eq. (4.51)]. The 2PN term, which
contains only rational number coefficients, is reminiscent of
the 2PN energy flux, £,(e) [71]. The 3PN redshift term
contains both rational numbers and appearances of coeffi-
cients with 72, which is unlike any PN term in the flux
expansion prior to the advent of tail-squared terms. The
appearance of 7 in this early term in the redshift is traceable
to the sum over infinite / that occurs in conservative sector
self-force calculations. [Recall that the sum of inverse square
integers is {(2) and totals to 72/6.]

It is at 4PN and beyond in the redshift expansion that our
calculation reveals new results. Indeed, at 4PN order itself
there emerges a more profound connection between the
redshift expansion and the energy flux at infinity. We found
the Uy, (e) term in the redshift invariant to be exactly
proportional to the Peters-Mathews energy flux £y (e) [69].
(This result was implicitly present in the 4PN log term, Vy; ,
found in [29] but its closed form and connection to
the energy flux was missed by resumming on a different
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eccentricity singular factor.) Then, within the 4PN nonlog
term, Uy(e), we found the Peters-Mathews flux function
reappearing, as well as a second function, Ay(e), that also
depends exclusively on a sum over the Fourier power
spectrum g(n,e) [4] of the Newtonian mass quadrupole
moment. The function Ay (e) is an infinite series in e* but
its coefficients are fully determinable at all orders. Other
than Ag(e), the rest of the U, (e) term has a closed form.
The structure of U,(e) is similar to the 3PN nonlog
energy flux [71], except that where the two Newtonian-
quadrupole-derived functions, F(e) and y(e) = A(e),
appear in L;(e), itis Ly(e) and Ag(e) that appear in Uy(e).

Following the discussion in [4], we can recognize the
connection between Uy, (e) and Uy(e) is similar to that
occurring between leading and subleading logarithmic
terms in the PN expansion of the flux at infinity. As a
reminder, we showed previously [4] that a pair of infinite
sequences of leading logarithms exists in the energy flux
PN expansion, at integer orders p~—3*log(p) and at half-
integer orders p~(%+3/2) Jogk(p) (for k > 0). The terms in
these sequences are completely determined by sets of
special functions, Ty (e) and ©(e), that are defined by
infinite sums over n of even and odd integer powers of n/2
multiplying the Newtonian mass quadrupole spectrum
g(n,e). A new term in each sequence arises every 3PN
orders as a new power of log(p) appears. Every integer-
order leading log [proportional to T (e)] can be shown to
have a closed-form expression. Every half-integer-order
leading log [proportional to ©,(e)] remains an infinite
series, but with exactly known rational number coefficients.

The subleading-log terms formed a second pair of infinite
sequences in the energy flux at integer orders p~3f log*~!(p)
and at half-integer orders p~(¥+3/2) log"~!(p). At the same
PN order as a leading-log term, these are terms with one
lower power of log(p). In another context [5], these terms
were referred to as 3PN-corrected leading logs (or 3PN-log
terms). At integer PN order these subleading-log terms were
shown to feature a return appearance of the functions 7' (e)
and another set of special functions, A(e), with the
remaining analytic dependence requiring self-force calcu-
lation for its determination. At half-integer PN order these
subleading-log terms were shown to feature a return appear-
ance of the functions ©;(e) and yet another set of special
functions, E;(e). The positions of these leading and sub-
leading-log terms in the energy flux PN expansion are
graphically depicted in Fig. 1 in [5] by the four red and
green sequences.

If we now carry these ideas over to the PN expansion of
the redshift invariant, we can take the 4PN log term,
Uy (e), as the start of the integer-order redshift leading-
log sequence. The next terms in that sequence would be
Uqrs(e), Uyors(e), etc. If the observed pattern holds to
higher order, each term in the sequence will be fully
determined by the Newtonian quadrupole and proportional
to the closed-form functions T (e), starting with k = 0.

Since the leading logs in the energy flux actually begin with
the nonlog L, (e) Peters-Mathews term, in principle it is an
open question whether we should consider the nonlog term
U,(e) as the start of the redshift leading logs. The
conjectures regarding the primacy of the T (e) functions
and U (e) will ultimately be settled by a formal PN theory
calculation.

The first half-integer-order term in the redshift is
Uy12(e) at 5.5PN order. This first appearance of a half-
integer order term was found in high precision numerical
work [72] and its connection to the tail field was discussed
in [73]. In our self-force calculations this term emerged as
exactly proportional to the 1.5PN energy flux tail enhance-
ment function @(e) (see also [33]), which is the first
function @y(e) in the O;(e) function sequence [4]. It is
reasonable to regard U/} (e) as the first element in the
redshift half-integer leading-log sequence, which is lagged
by four PN orders relative to the corresponding sequence in
the energy flux. The next elements in this sequence would
be U17/21.(€),Unz 012 (e), etc. As we showed in the previous
subsections, U7/, (e) is directly proportional to ©(e),
which supports a conjecture that the entire run of half-
integer-order leading logs will be determined by the ©(e)
functions. The next element in that sequence, U531, (), is
beyond where we have taken our present calculations.

If the redshift leading logs begin with Uy, (e), then
the redshift integer-order subleading logs start with U4,(e).
This sequence continues with U7, (e), Ujor2(€), etc. Our
present calculations reveal the first three elements in this
sequence. Like in the corresponding sequence in the energy
flux, we find that the redshift subleading logs feature a
return appearance of the closed-form leading-log function
[proportional to the relevant 7 (e)] and functions from the
Ai(e) (y-like [71]) sequence, starting with k = 0).

The half-integer-order subleading logs in the redshift
would begin with U,7/,(e) and continue with terms with
k > 1 that have PN dependence p~3*~17/21og"~!(p). Our
present calculations only overlap the first term in this sequence,
but we do see the expected behavior that 147/, (e) depends in
part on U 7,5, (e) [x ©;(e)] and on E (e).

It seems reasonable to conjecture that, like in the energy
flux [5], there will be 1PN-log sequences in the redshift.
At integer PN orders, this sequence would be Us; (e),
Usgro(e), Ups(e), etc. Our results reveal the first two
terms in this sequence and find that they are both closed-
form expressions. Following the logic, the half-integer-
order 1PN-logs would be the sequence that starts with
Uyz(e), Uigjar(e), Usspra(e), etc. The first two functions
follow the expectation of being rational-number coefficient
infinite series (times an overall factor of ). Like with the
1PN-logs in the energy flux expansion, these terms may
derive from what we called earlier [5] the 1PN (source)
multipole moments—the Newtonian current quadrupole,
the Newtonian mass octupole, and the 1PN correction to
the mass quadrupole. This idea deserves further study.
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Accuracy of the redshift invariant PN expansion and its resummations for several individual orbits. The numerical values of

our redshift expansion are plotted against data from [13] for the orbits (p = 10,e = 1/10), (p = 10,e =2/5), (p = 20,e = 1/10),
(p =20, e =2/5). Within each plot comparisons are made for both the 1/p and y expansions, both with and without the use of
logarithmic and reciprocal summations. Note the changes in vertical scaling in the bottom two plots. Lines in the bottom two plots
vanish where the expansions reproduce all numerical digits given in [13] (note that the numeric result for the right plot contained one less

significant digit than that for the left).

Finally, the analogs in the redshift of the 4PN-logs in the
energy flux [5] would be the integer-order sequence Us(e),
U (e), Uy (e), ete. and the half-integer-order sequence
Uyoya(e), Unsap (e), ete. If the analysis of the correspond-
ing terms in the energy flux is a guide, these too might be
partly determined through application of known levels of
PN theory. Note that once a derivation of /% is found, all
PN terms through 5.5PN (at first order in the mass ratio) in
the redshift invariant will be completely known functions of
eccentricity.

E. Comparison to numerical data

We can assess the validity of these expansions by
comparing them to the numerical redshift data given in
Table I of [13]. Results from larger orbits in that dataset are
well fit by our PN expansions, which leads us to single out
smaller orbits (p = 10 and p = 20) for comparison, where
convergence is expected to be slower. We compare the
numerical self-force results to both the y and 1/p versions
of our PN expansions, and we try a few added resummation
methods to check for improved convergence. Two such

methods are logarithmic resummation (in which the log of
the series is taken, the new series is evaluated numerically,
and then the result is exponentiated) and reciprocal resum-
mation [74,75].

Results from making the comparisons at two orbital sizes
(p = 10 and p = 20) are shown in Figs. 1 and 2. Figure 1
considers four distinct orbits (with the two separations and
with two eccentricities, ¢ = 0.1 and ¢ = 0.4). The wider
orbit (p = 20) with low (e = 0.1) eccentricity converges
rapidly and uniformly with increasing PN terms. At the
other extreme, the orbit with p =10 and e =04 is
decidedly slower to converge but still reaches a relative
error of order 10~ when using the y expansion and its
resummations. The energy flux required an expansion to
19PN to attain an error of 107> for the p = 10, e = 0.5
orbit [1], which suggests that the redshift invariant has
better convergence properties. Furthermore, it is worth
remembering that in EMRI calculations the contributions to
the orbital phase evolution from conservative terms in the
dynamics are suppressed by the mass ratio relative to the
(secular) flux contributions [7]. This suggests that even a
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FIG. 2. Accuracy of the redshift PN expansion with increasing e. The (simple) y expansion is compared to numerical data for the e
values 0.05 to 0.40 at 0.05 intervals (plots are made continuous for clarity) for both p = 10 and p = 20. Decreasing residuals are
observed with increasing PN order, though with some unexpected variations at high order. Lines in the right plot vanish where the
expansions reproduce all numerical digits given in [13], including the entire 10PN comparison.

slow-to-converge PN expansion of the conservative part of
the self-force may be useful in close orbits.

While the rate of convergence varies with orbital
parameters, we do observe at least continued monotonic
approach to the numerical self-force results as we add PN
terms. Despite the fact that the PN expansion is expected to
be an asymptotic expansion, there is still no evidence even
at 10PN order in the redshift at p = 10 of added terms
becoming detrimental to accuracy of the approximation.
Interestingly, the y expansion appears consistently better
than the 1/p expansion in the orbits we have considered.
Finally, it is notable that for the p =20, ¢ = 0.1 and
e = 0.4 orbits we reproduce the numerical self-force data
with our expansions taken to 9PN order or less. Hence, the
accuracy of the full 10PN order expansion with that orbit
remains unknown.

Figure 2 shows how our expansion offers generally
consistently useful accuracy with increasing eccentricity e.
At higher PN order (6-10PN) the eccentricity dependence
is not known exactly but instead contains infinite series in
e” that are truncated at ¢?° in the present work. Factoring
out the right eccentricity singular factor at each PN order
helps, but the truncated series lead to variations in accuracy
with e. These effects can be seen in the rise and fall, and
local minimum in the 6PN, 8PN, and 10PN comparisons in
the p = 10 orbit in Fig. 2. Nevertheless, we expect that the
residuals would generally continue to fall if the PN series
were extended marginally further. In the p = 20 orbit in
Fig. 2, the curves of residuals are incomplete or missing
at 6-10PN orders because of limits on the accuracy of the
numerical self-force results to which we are making
comparison.

VI. CONCLUSIONS

We have presented the PN and eccentricity expansion
of the gravitational redshift invariant, for a point mass in
eccentric bound motion about a Schwarzschild black hole,

to a higher order than has been achieved previously. We
determine the redshift analytically to 10PN order and,
importantly, to e?° in eccentricity. We present results in this
paper to 8.5PN, while relegating 9PN to 10PN terms to
a posting at the Black Hole Perturbation Toolkit [42]
website and on our group repository [43]. The depth of
the eccentricity expansion allows us to resum on expected
singular factors and simplify the remaining eccentricity
dependence at each PN order. In many cases we find
closed-form expressions for the eccentricity dependence.
Some of these closed-form functions are identifiable as
terms that appear in the PN expansion of the energy flux at
infinity, associated with leading-logarithm and subleading-
logarithm sequences in the energy flux. The leading-logarithm
terms in the energy flux all depend solely upon the
Newtonian quadrupole moment power spectrum g¢(n, e)
(over eccentric motion harmonics n). Once the presence
of these terms from the dissipative sector was identified as
showing up in the (conservative) redshift invariant, it was
possible to find known infinite series terms and, using
techniques developed in [4,3], to uncover added terms in
the redshift whose eccentricity dependence follows merely
from g(n,e). A full summary of these findings and their
significance is found in Sec. V D.

We also compared the high-order expansions to pub-
lished close-orbit numerical results to examine the accuracy
of the PN expansion. We found the PN expansion to still
be converging at 10PN for orbits with semi-latus p = 10.
It is conceivable that the series might be extended further
and still improve accuracy. The bottleneck step of the
present calculation taken to 10PN and e?°, expansion of the
integral for the general-/ form of Cj, ., required about
7 days on a single core of the UNC Longleaf cluster. The
rest of the process (including expansion of the homo-
geneous solutions, metric perturbations, and redshift itself
across specific-/ and general-/ sectors) required thousands
of CPU hours, but highly parallelized over 10-100 s

044004-25



CHRISTOPHER MUNNA and CHARLES R. EVANS

PHYS. REV. D 106, 044004 (2022)

of cores so that individual tasks finished more quickly
(ranging from minutes to a few days).

All of the machinery presented here is readily extendible
to calculating the spin-precession invariant y and other
higher-order invariants. We will present results on y in a
subsequent paper. Additionally, now that we are calcula-
ting PN expansions in the conservative sector, we may be
able to make connection with the EOB formalism. The
redshift invariant can be transcribed to yield portions of
the EOB Q(1/r, p,;v) potential by extending a proce-
dure described in [27]. However, the process is difficult,
with each new order in e’ requiring the derivation of an
additional transformation. It is not presently possible to
transform closed-form eccentricity functions in (u'), to find
closed functions in Q(1/r, p,;v). A similar fact is true of
the spin-precession invariant, whose (complicated) trans-
formation to the EOB gyromagnetic ratio gs.(1/7; p,; p,)

is mapped out in [30]. The derivation of a procedure to
transform all powers of e would be highly beneficial in the
context of this work on closed forms. Otherwise, it may be
possible to perform the two transformations to high finite
order in e and then use factorizations and resummations to
extract closed forms. These possibilities will be explored in
future work.
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