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IMPROVED LONG TIME ACCURACY FOR PROJECTION
METHODS FOR NAVIER-STOKES EQUATIONS USING EMAC
FORMULATION

SEAN INGIMARSON, MONIKA NEDA, LEO G. REBHOLZ, JORGE REYES, AND AN VU

Abstract. We consider a pressure correction temporal discretization for the incompressible
Navier-Stokes equations in EMAC form. We prove stability and error estimates for the case
of mixed finite element spatial discretization, and in particular that the Gronwall constant’s
exponential dependence on the Reynolds number is removed (for sufficiently smooth true solutions)
or at least significantly reduced compared to the commonly used skew-symmetric formulation. We
also show the method preserves momentum and angular momentum, and while it does not preserve
energy it does admit an energy inequality. Several numerical tests show the advantages EMAC
can have over other commonly used formulations of the nonlinearity. Additionally, we discuss
extensions of the results to the usual Crank-Nicolson temporal discretization.
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1. Introduction

It is widely accepted that the Navier-Stokes equations (NSE) determine the
evolution of incompressible, viscous, Newtonian fluid flow. These equations are
given by

(1) u+u-Vu+ Vp—vAu = f,
(2) V-u=0,

where u and p represent velocity and pressure respectively, f is an external force,
and v represents kinematic viscosity, which is inversely proportional to the Reynolds
number Re. Appropriate boundary and initial conditions are needed to close the
system.

While the NSE are built from conservation of linear momentum and mass conser-
vation, they are also well-known to conserve energy, angular momentum, enstrophy
in 2D, helicity in 3D, among other important physical quantities [10]. By ‘con-
serve’ we refer to the case of no viscous or external forces, but if these forces are
present than an exact balance can be derived where the nonlinearity plays no role.
In addition to being conserved, these quantities are believed to play a critical role
in flow structure development, the energy cascade and energy dissipation, and the
microscale [8, 10, 27]. However, in most NSE simulations, very few or none of these
quantities are exactly conserved [3, 4]. Often, energy is at least bounded, as this
is required for numerical stability. However, in most finite element computations
mass is only weakly conserved [16], and this in turn breaks the conservation of
momentum, angular momentum and other important physical quantities [3]. One
solution to this problem is to use strongly divergence-free discretizations, such as
Scott-Vogelius finite elements, however these elements can require mesh restrictions
and higher degree polynomials, especially in the case of quadrilateral elements.
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Another approach is to change the form of the nonlinearity to the EMAC (Ener-
gy, Momentum, and Angular momentum Conserving) form proposed in [3], where
the identity

u-Vu+ Vp=2Dwu+ (V- -u)u+ VP,

was derived, with P = p — Z|u[?. There it was shown that the NSE with this
nonlinear formulation used in (1)-(2) and discretized with standard elements such
as Taylor-Hood or the mini element, conserves energy, momentum and angular
momentum, as well as particular definitions of 2D enstrophy and 3D helicity. This is
in contrast to the more commonly used rotational, skew-symmetric, convective and
conservative forms, none of which conserve all of energy, momentum and angular
momentum [3].

Since the original EMAC paper [3] in 2017, EMAC has garnered a considerable
amount of attention in the CFD community. It has been used in problems involving
vortex-induced vibration [24], turbulent flow simulation [18], noise radiated by an
open cavity [21], high Reynolds number vortex dynamics [30], and more [7, 6, 23,
19, 2]. These numerical results have all been quite favorable, but there is still
much to be done for its analytical study. What is proven so far is results for
conservation properties [4], stability and convergence [4], efficient algorithms and
linearization development [4], and a longer time accuracy result that shows the
Gronwall exponent from EMAC is independent of the viscosity [22].

The purpose of this paper is to extend the study of EMAC to the case of
a projection method temporal discretizations together with finite element spatial
discretization. Projection methods were originally developed by Temam [32] and
Chorin [5], and work using a Hodge type decomposition idea to split the NSE
into two steps: the first solves the momentum equation without a divergence-free
constraint, and the second projects the step 1 solution into the divergence free space.
There have been many improvements made to projection methods over the years?!,
but they all are still based on the fundamental decomposition / splitting from the
original development. Analysis of projection methods is rather different and more
complex than for standard coupled schemes, see e.g. [11, 25, 31], and herein we will
extend the study of EMAC discretizations using to projection methods.

This paper is organized as follows. In section 2, we provide mathematical no-
tation and preliminary information for the analysis. In section 3 we introduce the
projection method algorithm and show the conservation properties of it. Stability
and error analysis are presented in section 4. Section 5 further extends out work
to coupled schemes for both EMAC and SKEW. Numerical tests can be found in
section 6 followed by concluding remarks in the last section 7.

2. Notation and Preliminaries

We present in this section the necessary notation and mathematical prelimi-
naries for a smooth analysis to follow. We assume a convex polygonal (or smooth
boundary) domain 2 C R? where d = 2,3. The L?(f2) inner product is denoted
as (+,+) and the L?(Q) norm with ||-||. Other norms will be clearly labeled with
subscripts.

IThe folklore, as told to author LR by a former Chorin student, is that for many years no
Chorin student was allowed to graduate without improving on projection methods.
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The natural velocity and pressure spaces for NSE are respectively denoted
X ={ve H(Q), v[opn =0}, Q= {qe L3 (), / qu_o}.
Q

The dual of X norm is defined as

- fro
X'=H'Q), |Ifllx = sup (f,0)
vex |[vllx

The divergence-free subspace of X will be denoted by
V={veX, (V-v,q) =0, Vg€ Q}.
For projection methods, the space
Y ={veL*Q), V-ve L*Q), v ilsgg =0},
is also utilized.

We use the following notation for nonlinear terms. Let ¢: X x X x X — R be
defined by
c(u,v,w) = (2D (uw)v,w) + (V- w)v, w).
This formulation corresponds to the EMAC nonlinearity. For skew-symmetric
(SKEW), we define b* : X x X x X — R by

b* (u,v,w) := (u- Vo, w) + %((V “u)v,w).

For ¢ and b* we have the bound from Holder that

c(u, v,w) <2/ D()l[|v]|zsl[wllzs + [[Vullv] s llwllzs,
1
b*(u, v, w) < [lull s [Vollwll s + S Vullllollzollwlze,

and thus with standard Sobolev inequalities we obtain the same bound for both ¢
and b* formulations,

b (v, w) < C|[Vul[|[Vol|w] /2] V|2, and
(3) c(u,v,w) < CHVUH||V11||||w‘|1/2va”1/2.

2.1. Discretization Preliminaries. We assume a regular conforming triangula-
tion 7, of 2, where h is the global mesh size. We further consider X;, C X and
Q1 C Q as finite element velocity and pressure spaces. We further assume that
X, = X N Py(rm,) and Qp = QN Py_1(7,) N C°(Q). On these spaces, the following
condition holds [12]: there exists 8 > 0 independent of h such that

(4) BIVel < sup YLV

) vq S Qh'
ozvex, vl

Note that (4) is a stronger assumption than the usual inf-sup condition, in fact it
implies it [12]. Besides Taylor-Hood we note that there are other element choices
such as the mini element which would also satisfy (4).

We also define the discretely divergence-free subspace of X}, as
Vi = {vn € X, (V-vn,qn) =0, Van € Qn},

and the space Y, =Y N Py(7). Note that X} C Yj, and thus (4) holds with X,
replaced by Y.
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For functions v(z,t) and 1 < p < oo, we use the notation

M
lolloe e = jax [[o"l; . olll, . = <Atz ||v"|li> :
n=0

1
M P
ol = ( 32 o] o)
n=0

Denote It as the discrete Stokes projection operator [29], which is defined by:
Given ¢ € HY(Q2), find I} (¢) € V), satisfying

(5) (VIJH(¢),Voy) = (Ve,Vvg), Yo, € V.

For ¢ € V N H*+1(Q), this operator is known to have the following optimal approx-
imation properties:

o =I5 (@)|] < ORI 4
V(6= I;" (8))|] < CP* |8[41 -
Our analysis will also utilize the following bound proven in [9]:

(7) I|IVIZH9)],. < ClIVY|

(6)

Ly T E[2,00]

3. Projection Methods using EMAC

We now study projection methods for NSE with the EMAC nonlinearity. For
simplicity, we consider the backward Euler finite element scheme, but we note
that the ideas can also be applied to higher order time discretization of projection
methods [11, 26].

Algorithm 3.1 (EMAC Projection Method: EMAC-BE-PROJ).

Let f € L>(0,T; H-(Q)), solenoidal initial condition u® € L?*() satisfying no-
slip boundary conditions, u$) = u) defined to be the L? projection of u° into Vy,
end time T, and number of time steps M be given. Set At = T/M, and for
n=0,1,2,.. M —1,

Step 1 EMAC: Find u ~"+1 € Xy, satisfying, for all xp € X,
1

(8) (@ —ufhoxa) + ey @ ) + v(Vag T xa) = (), xa).
Step 2: Find (uy, n+tl P"H) € (Yn, Qn) satisfying, for all (wn,qn) € (Yn,Qn),
1 ~n
(9a) Kt(uﬁ*ﬂ%) — (PP V- wp) = E(uh+17wh)ﬂ
(9b) (V-up™t qn) =0

Remark 3.1. For the more commonly used skew-symmetric form projection method
(SKEW-BE-PROJ), Step 1 EMAC would be replaced by Step 1 SKEW: Find u N”H
Xy satisfying, for all xp, € Xy,

1
(10) At(UZ+1 —ujy,xw) + 0 (@ A xa) + v (VA V) = (FE), xa)-
Although step 2 of SKEW-BE-PROJ is the same as for EMAC-BE-PROJ, the

interpretation of the pressure term is different. In SKEW-BE-PROJ, it represents
usual pressure, while for EMAC-BE-PRQOJ, it represents p — %|u|2
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One could also linearize via b* (uﬁ,ﬁﬁ“,xh) or b*(ﬂﬁ,ﬂﬁ“,xh) for efficiency,
although this could create additional error sources including an additional first order
consistency term and can nonphysically alter conservation of linear and angular
momentum conservation in certain settings. The extent to which these errors are
significant is problem dependent.

A fully explicit treatment of the nonlinear term would have a much more signif-
icant effect on the analysis, as it would create additional consistency error terms, a
violation of energy and angular momentum conservation, and a time step restric-
tion for stability and accuracy. However, an interesting open question is how an
explicit treatment using Scalar Auzilliary Variable technique (see e.g. [20]) might
be analyzed with respect to EMAC and conservation properties.

3.1. Conservation properties of EMAC-BE-PROJ. It is well known that
smooth solutions to the NSE conserve important quantities such as energy, mo-
mentum, and angular momentum, which are defined as

1
Kinetic energy FE := 3 lu|? d;
Q

Linear momentum M := | wdx;
Q

Angular momentum My := / u X zdr.
Q

We now consider these conservation laws for EMAC-BE-PROJ, and for com-
parison also SKEW-BE-PROJ.

3.1.1. Energy inequality. While neither SKEW-BE-PROJ nor EMAC-BE-PROJ
conserve energy, they both admit an energy inequality. This can be seen by choos-
ing xp = QZH in (10) for SKEW-BE-PROJ and (8) for EMAC-BE-PROJ, which
both yield
]' ~MN n ~MN n ~MN n ~MN
oz NP = e P + 1™ = wi?) + Va2 = (Fem ), @),
thanks to the polarization identity and b* (™, aptt, aptt) = c(aptt, aptt aptt) =
0. Step 2 is an L? projection from X} C Y}, into the discretely divergence free sub-
space of Y3, and thus |[u}|| < ||@}||. Using this bound along with a standard
treatment of the right hand side term, we obtain
1 ~n ~ ~n ~n —
oz (P = apl® + oy = wp?) + I vag 2 < v e,
and after summing over time steps,

M M
lan |1 + v (At > ||V71}f|2> + (Z lay, — u7§1|2>
n=1 n=1

M
(1) <l + v (Atz IIf(t"“)I?«) .

n=1
Hence we find for both SKEW-BE-PROJ and EMAC-BE-PROJ an energy inequal-
ity instead of an equality. This is due to dissipation from backward Euler time
stepping and in the projection step, since backward Euler produces the third left
hand side term in (11), while the projection step yielded the important bound
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lup|l < ||ap]l. However, that inequality was possible due to the nonlinear terms in
both SKEW-BE-PROJ and EMAC-BE-PROJ preserving energy.

3.1.2. Momentum conservation. To study momentum conservation properties,
we consider a simplified setting where the data and solution vanishes in a strip along
the boundary. For example, one can consider the situation of an isolated spinning
vortex, with the boundary sufficiently far away. Of course, boundaries play an
important role in balances of these quantities, however considering this simplified
setting will reveal how a scheme behaves away from the boundaries and in particular
whether the nonlinear term preserves momentum or nonphysically contributes to
it. Hence, for a given mesh 75, of Q = Q @& ), where Q, is the part of the domain
overlapping with the strip of elements along the boundary. Define ;; € X} to be
the standard " basis vector in all of the domain except in the final strip of the
mesh along the boundary, where it decays to 0.

From Step 2 of SKEW-BE-PROJ and EMAC-BE-PROJ, since 9;;, € X}, C Yy,
choosing wy, = 1;;, yields

( n+1a’l/}2h) ( Z+la % wzh) = (a2+1,wih)a
and since V - ¢; = 0,
At(py ™V i) = APV - dig)a, =0,
with the last quantity vanishing since we assume the solution vanishes in 5. Hence

(12) (up ™ in) = (a7 i)

Consider now choosing xp, = %;;, in Step 1 of EMAC-BE-PROJ. Using (12), we
obtain

(13)
S ) e T ) + (VT V) = (P, ).

Using that the solution and data vanish in Qg, we can write

(14 G = ) e ) = (), ),

noting the viscous term drops since V; vanishes. The nonlinear term is also zero,
as shown in [3], but which we show now for completeness. Expanding ¢, we get

et a5 ) = AP ) + (7 ) )
= (VA ) + (W V) (7 a i )
= (V) - (V) )

1(( LAY + (- B EE, ),

with the last step thanks to integrating by parts. Notice the 2nd and 4th terms
sum to zero, and the first and third are both 0 since v; is constant and therefore
its derivatives are zero. Thus c¢(a Z'H, N"H, ;) = 0. This leaves

M — M = At
where M := (@}, ;). From (12), we also have that
MET M = AL
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where M := (u},%;). This establishes that for EMAC-BE-PROJ, the momentum
balance is analogous to that of the continuous NSE and in particular that the
nonlinear term does not contribute to the balance.

For SKEW-BE-PROJ, we are not able to obtain such a balance. All terms
except the nonlinear term are handled the same as for EMAC-BE-PROJ, and thus
we consider

br(ap T aptt wy,) = bt (A aptt )
~7 ~n 1 ~n n
= (’u’hJrl ’ Vuhﬂa%) + 5(( uh+1) h+17¢i)
1
= (V) -
1 ~n ~T
= —5((V : uh+1)uh+1,¢i),

(V-apthyaptt ¢)

with the last steps thanks to integrating by parts and using that v; is divergence-

free. Since V - uﬁ“ = 0, this term is not expected to vanish. Thus the momentum

balance for SKEW-BE-PROJ is
- - At
M= M= M= M= AL (V- apta v,

Despite the analysis above, which would apply to a general setting although with
additional terms, in the case of homogeneous boundary conditions we can show that
both EMAC-BE-PROJ and SKEW-BE-PROJ conserve momentum since for any n
and ¢, € Qn,

0= (V ) uzv Qh) = 7(“27 th)a
from the conservation of mass constraint. Now for ¢, = z; — fQ x; we obtain
0 = (u}},e;). Thus M™ = 0 for all n, which implies momentum conservation with
M and using (12) produces momentum conservation with M.

3.1.3. Angular momentum conservation. To determine the angular momen-
tum balances, we proceed similar to the case above for momentum and make the
same assumptions about the solution vanishing on a strip along the boundary. De-
fine ¢; = = x 1;, and note that A¢; = 0 and V - ¢; = 0. Here we use the test
function xpn, = ¢i,, € Xp where ¢;;, = ¢; except it is 0 in the final strip of the mesh
along the boundary.

Similar arguments as in the case of momentum imply that from Step 2 with
wp, = ¢ip, we get

(15) (up ™, i) = (@, diy,)-

Consider now choosing xp = ¢;;, in Step 1 of EMAC-BE-PROJ. Using (15), we
obtain
(16)

1 n n n ~Nn n n

At( hH — U, Gip) + (uhH Haﬁbzh) + Z/(Vu,ﬁ Vip) = (f(t +1)7¢ih)'
Since the solution and data vanish in 4 and V - ¢;, we can write

1 n ~ n n n n

a7 ;@ g, o) + claptt aptt o) + v(Vaptt V) = (FE"), ¢i).-

The viscous term can be seen to vanish from a calculation, e.g. for i = 2,
(VQZ+1,V¢2) = ( ( Z+1)1 —8 ( ;LhLl) 71) =0,
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and similar calculations can be made for ¢ = 1, 3.

For the nonlinear term of EMAC-BE-PROJ, expanding c just as in the momen-
tum conservation section above and using that V - ¢; = 0, we get

c(ay ™ ay "t ¢) = 2Dy a6 + (V- @ gt 6)
— ( n+1 vaerl’ ¢z) (¢l vunJrl ~n+1) + ((V . ﬁzﬂ)aZJrl’ ¢z)
_ ( n+1 v¢“ ~n+1) ((V ~n+1) n+17¢z>

SV Gm ) 4 (V- i, o)
= ("+1 Vi iy ).

For each of ¢ = 1,2, 3, this last term can be seen to vanish by a calculation. For
example taking ¢ = 1,

0 0 1

(@t Ve, apt) = (apttaptt, | 0 000

-1 0 0

= [@ @ @ (s de
o,
and the cases of i = 2,3 follow similarly.
Hence for EMAC-BE-PROJ, we obtain the momentum balance
(Mx )it = (Mx)} = (Mx)7™ = (Mx)} = At(f(t" ), 6),

where (Mx)? := (@}, ¢;) and (Mx)? := (u}l,¢;), which is the backward Euler
analogue of the continuous NSE momentum balance.

For the angular momentum balance in SKEW-BE-PROJ, the same procedure
as for the EMAC case can be done except for the nonlinear term, for which we have
that

b o) = b At o)

—_

= (apt - vartt ¢) + S (V- aprthaptt, ¢)

DO |

~n 1 ~n ~n
= ( pH V¢Z7 +1) o 5((V ' uh+1)“h+1’¢i)

1
= (a6,
where we use the same calculation as in the EMAC case to get (@), ™' -V, 4t =
0. Again we observe the problem that —1 ((V-a;th)ay ™, ¢;) # () since (V-aj ) #
0, and so the angular momentum balance has a contribution from the nonlinear term
for SKEW-BE-PROJ:
(Mx){+ = (Mx)} =

?

At

(Mx )7 = (Mx)? = AL+ (V- a ™ ap™ 6).

4. Improved convergence estimate for EMAC-BE-PROJ

We now show that EMAC-BE-PROJ gives longer time accuracy than for SKEW-
BE-PROJ. In particular, we will show that EMAC-BE-PROJ gives an improved
constant in the Gronwall exponent in that it has a reduced dependence on the
viscosity. There are many different projection methods one can study such as
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pressure correction, velocity correction and others [11], and also in multiple steps
for various norms as in [31], or comparing a fully discrete method to a semi-discrete
method as in [1]. For simplicity, we choose to study the most basic method (defined
in section 3) and compare it to a smooth true solution. This proof shows O(At'/?)
temporal error in the L°°(0,7T; L?)NL?(0,T; H') norms, with the key distinction of
the proof being the difference in the Gronwall constant for EMAC having no explicit
dependence on the viscosity, while for SKEW it depends on v~ ! explicitly. While
other techniques could improve the asymptotic temporal error in other norms, these
other variations of convergence proofs all use the Gronwall inequality and thus the
same result will be found: with EMAC the Gronwall exponent will be significantly
reduced compared to SKEW, which suggests longer time accuracy for EMAC vs.
SKEW.

Before considering an error analysis, we first discuss its well-posedness.

Lemma 4.1. The EMAC-BE-PROJ method is unconditionally stable: for any
At > 0, solutions satisfy

(18)
M-1 M-1 M-1

a2+ D llap™ —uplP+vAe Y ([Vapt? < fluolP+v= At Y |IFE )% -
n=0 n=0 n=0

Moreover, for any At > 0 solutions exist, and provided At < O(h®) solutions are
guaranteed to be unique.

Remark 4.1. The same lemma holds for SKEW-BE-PROJ with an almost iden-
tical proof.

Proof. The stability bound follows immediately from the energy conservation anal-
ysis in the previous section. With this unconditional stability, Leray-Schauder can
be used to infer solutions to EMAC Step 1 at any time step, in an analogous way
to what is done in [17] for steady NSE. For uniqueness of EMAC Step 1 solutions,
suppose there are 2 solutions at time step n, @, and wy. Plugging them into EMAC
Step 1, setting e = u, — wy, and subtracting their equations gives

1
Kt(e’vh) +v(Ve, Vo) = —c(tp, e, v) — c(e, Wp,vp),

for any vy, € X},. Taking v, = e produces
1 . -
EH@H2 +v||Ve|* = —c(in, e, e) — c(e, i, €)
< M|V + [Van ) Vel*?]e)
< CALV2| Vel e,

thanks to (3), the bound on solutions (18), with C being independent of h and At.
Now using the inverse inequality and reducing gives

At lel|* < Ch2 el

which implies that At < O(h3) will yield e = 0 and thus uniqueness of solutions
for step 1. Step 2 is the L? projection of Step 1 solutions into the divergence free
subspace, and so preserves existence and uniqueness of solutions. W

Next we prove an error estimate for EMAC-BE-PROJ. We use the notation
lellp.r == llellLoo,7;m7)-
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Theorem 4.1. Let (up,pp) be the solution of Algorithm 3.1 (EMAC-BE-PROJ),
and (u,p) be a NSE solution that satisfies u € L°°(0,T; H*T' NV with k > 2,
ug € L*(0,T; H*Y), uy € L2(0,T; H**Y) and p € L?(0,T; HF). Also, let ent! =
ut —uft and EntY = wtt — @t Then, for sufficiently small At we have

“TllullZe 541

e 11300 + vIIIVE 5 < CK( “IR(n?
2 — 2
FT [l k1 + 1Pl k) + v AT sl 0 + A15|||p|2,1>7

where K = exp (At 251:0 (1717’2%0 and v, = C||Vu"|| .

Remark 4.2. The key improvement from EMAC is evident in the Gronwall con-
stant K from the theorem. In particular we note there is no explicit dependence on
the viscosity. For SKEW-BE-PROJ, a nearly identical estimate would be obtained
(see (32) below) under the same smoothness assumptions on the true solution, but
the Gronwall constant would have v, = C(||Vu™||2 < + v |u"||% ). This suggests
EMAC-BE-PROJ has better longer time accuracy than SKEW-BE-PROJ.

Remark 4.3. Following [31], one can obtain an identical error bound but with left
hand side in terms of e™ instead of €™.

Proof. We split the error in the usual way as e"*! = p"*1 — ¢! and entl =
0t — @t where = u — I(u), ¢p = I(u) — @y, € Xp, and ¢, = I(u) —up, €Y,
with I(u) being a pointwise div-free interpolant of u in Xj. Subtract (8) (Step 1
EMAC) from the NSE at time #"*! and tested with x; € X}, to obtain

1

Kt(énﬂ — e xn) + et X)) = elaptt aptt xa) + v(VErtt, Vi)
1

—(" VX)) = <At(u”“ —u") — n+17Xh> Vxn € Xp.

Splitting the error, letting xp, = <;~SZ+1, we obtain

1 in n n in
sg (1B = R + 165+ = 6R112) + vV |2
At(nﬂ+1 nn n+l)+y(v n+1 v¢n+1)

n 1 n ny in n in
- =), G - (L G
(19) +c(u”+1,un+1,q~52+1)76(ﬁ2+1 ~n+1 ¢n+1)

We now bound the above right hand side terms. Other than the nonlinear term,
these bounds are fairly standard for NSE finite element error analysis, see e.g. [17],

M gt < o5

l/ Tn
C5z I 12 ‘ ¢h+1H

<Cu_1/ 1/tnﬂl | dt 2dQ+C ‘
= G\ At S ™ 12

1 tn+1

(20) CE/ dl? dt + 02

E(n

n+1H

n+1

)
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V ~
(21) v(Vi" Vet < IIVORTHI + Cvl[ vy 2,

1 n+1l _ n+1
Al WOk 53
with t" < t* < t"T1. The pressure term takes a few additional steps, and we
denote by I} the nodal interpolant of p in @5, and use Cauchy-Schwarz and Young’s

inequalities along with an interpolation bound to get

(22)  (u™ - AV + O AL fuen (8] 2,

BV G = [ = D), Y G + ("), V- )|
< ‘(pn+1 LY, V- (%LLH)’ 4 ‘(Ih(pn+1)’v . (Q;ZH _ ¢Z+1))‘
< CHpn+1 _ Ih(an)H HV(ZBZHH n ‘(Ih(pn—kl)’v, (Gr+! — Zﬂ))‘

4 n+1 2 —1 n+1 n+1 2
SEHWS |+ vttt = )|
+m

’v¢n+1H L Oy ip2k HanHi{k

2
n+1 _ ZHH +CAt||Vp”+1|’2

<35
12

(23) T

o | = e[+ cad v

For the nonlinear terms, we first decompose following [22] to obtain
c(u"*l,u"H,QZ)Z*l)—c( ntl gntl ZH) (2D ) + Vot ¢Z+1)
+ (2D (u™h)) + V- I (™) ™+, i)
(DU () + 5V I8 ()3 G,
Next we estimate the terms on the right-hand side of the above equations.

We repeat the estimates similar to above and use the H!'-stability of the Stokes
interpolant to get

(2D ) + Vo T gt
(2D (u"H)) + V- I () gt
< CvTH [V Pl e
(24) +CV TV [V 2 IIV¢"+1||2,

and
n 1 n n n
(DU (u ) + 59 I3 (= ))gp 65|
3 n in
<SIDE @™ ) e lldn el e
(25) <C||Vu" | L[| I,
thanks to the stability of the Stokes projection in (7) with r = oo.

By adding and subtracting our interpolant I(u) into Step 2 we obtain

1
AT = O w) = —(PRTLV cwn), Yy € Vi
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Let wy, = ZH and using that ¢Z+1 is weakly divergence free we have
1 -
+1 +1 +1y +1 +1y
and thus
1 1 Tn+1 1 Tntl
7 (6512 = G312 + g = a7 = o.

The above implies
12112 = [J6p 2 + flon+t — Gt 2,

which will be used in (19) to obtain a telescoping sum. Also, substituting the
obtained bounds (20)-(25) into (19), multiplying by 2At and summing up from
n =0 to M — 1 (with the assumption that ||¢?|| = 0) gives us the following bound

M-1

M
7 L~ n 7 n
G412 + X (GI00% = 61+ 110h ! = G112 ) + vt 3 IV
n=0 n=1

T M M
< cfl/ Inell? dt + Cvar 31V + a3 [[vpr|
0

n=1 n=1

_ 2 — 2
+CV T APT gt || e 0 112 + Cv W2 D2 0 7105

M M
(26)  +CvALY VU PV P+ CALY Va7 172

n=1 n=1

thanks also to the Poincare inequality and reducing to get the second to last term.
We reduce the right hand side further, utilizing interpolation estimates and true
solution regularity, and dropping positive left hand side terms to find that

M

1617+ vAt > [V
n=1
—172k (72 2 2 2 4 2
< Cvh*(h ||Ut||2,k+1 tv T|||U|||oo,k+1 + T|||U|||oo,k+1 + |Hp|||2k)
M
(27) +CV T APT ug||Z 0 + CALp|I5, + CALY [V || < |95 ]|
n=1

Now by the Gronwall inequality with At sufficiently small, i.e.

YAt := C||Vu"||p At < 1,

we obtain
IR |1P +vAt > ||V t|?
n=0
l Y
n —1;2k 2 2 2
< Cexp (Atz (1_&%)> (V R (T a5 gy 1 + V7 Tllulll S i
n=0
4 2 _ 2 2
(28) AT [ullsg pis + Pl ) + v~ AT [[Jugell 2 0 + A15|||P|||2,1>~

From here, the triangle inequality finishes the proof. B
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A similar proof for SKEW-BE-PROJ would follow the same way, except for the
nonlinear terms. In this case, we would expand the difference to get
b*(un-i-l?un—i-l,é;i#»l) _ b*( n+1 ﬁZJrlv Z+1)
_ b*( n+1 ~n+1 ¢n+1) +b>n<(~n+1 n+1’q~51}:+1)
(29) _ b*( n—&-l7 ,qn—i-l’ ¢Z+1) + b*(én+1’un+1’ ~Z+1)'

For the first term, Holder, Sobolev inequalities and Young’s inequality produce

(30) (@™t ™, gpt) < [V 4 Cv |V

- 12
and for the second term
(31) b*(én+1,un+1,éz+l) _ b*('f]nJrl, n+1,¢n+1) + b*(¢n+1 n+1, ~Z+1).

The first term on the right hand side of (31) is handled as in (30), and for the
second we employ Holder, Sobolev and Young inequalities to find

BB G = (G G 4 (7 B g
< C|Vu o[l gp P + CIWéZ“IIHU”“IILw [
v ~
(32) < C(IVu |z + w7 " E)NR T I + IV
The above equation requires the use of the Gronwall inequality with At suf-

ficiently small, i.e. v,At := C(||Vu"||r= + v~ |[u"]|3)At < 1, which gives a
dependence on v~ ! as stated in Remark 4.2.

5. Extension to coupled schemes

While the analysis above was to compare EMAC and SKEW for projection
methods, the key difference was in the treatment of the nonlinear terms. Hence,
these longer time accuracy results for EMAC can be transferred to standard cou-
pled schemes using mixed finite elements. In this section, we consider convergence
analysis of the Crank-Nicolson FEM, using both the EMAC and SKEW forms of
the nonlinearity.

The Crank-Nicolson FEM scheme for EMAC is as follows: Find (u} ™, ppt!) €
(Xn, @n) x (0,77 satistying for all (vy,qn) € (Xn, Qn),

it ntd ot ntd
A7 +c(uy, 2,uy, ,h)+V(VUh 7Vvh)

(33) - (pT%vV : Uh) = (f (tmé) wh) ,

(34) (V un+2,qh> =0.

For SKEW, the scheme is the same but replace b* with ¢ in the nonlinear term.
We now state a convergence theorem for the CN-FEMs for EMAC and SKEW.

Theorem 5.1. (i) [SKEW CN-FEM convergence] Let (uf™!, pitt) solve (33)-(34)
with SKEW nonlinearity, and (u™t',p"*t!) be a NSE solution with u?™ € X,
u"t e H3(Q), and p"t' € H?(Q), for 0 < n < M. Denote e" = u"™ — u,
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Nt =ut — I (u), and ¢ =I5 (u™) —ult. Then for all0 <n < M, the following
holds:

M-1
HeMH2 + vAt Z HV@"‘”‘% ’
n=0

M-1

<exp (CAt Z (HVu"JFé

un-i—%

+V_1‘

2 3
ot 2)) F(At,h)

n=0 b=
+ OB T+ Ol 1
where
F(at,h) =Co~ B4 (lull] ey + 11 [90] 140
R (e (AR I 4%)
G + (80l

+ CRF52 g3 gy + CALR T2 e[ 72 0 g
2 — 2 2 2
+ (AL (lueeelllz o + v Mpeellz.o + W Feellz o + vl Vuee 3o
— 4 _ 4 _ 4
+ v IVuulllyg + v IV ullye + v [ Vu el o)

p1
21l2,s+1

(ii) [EMAC CN-FEM convergence] Let (u ™', pit1) solve (33)-(34) with the EMAC
nonlinearity, and under the same assumptions as part (i). Then for all0 <n < M,
the following holds:

M—-1

<o (0ar S ([[r
0

n=

M—1
HeMH2 + VAt Z HVB"JF%
n=0

Lw)) G(At, h; P)

+ oA IVl o + CoR™ l[ull s
where
G(At i P) = Ch* (JJull3 o + Il )

2 4
+ O (| 90ll3 o + el i)

Lot <h23+2mp5 + (At)4|||Ptt|”§,0)

+ CR 23 g + CAR 2 [l 0 0o

2 - 2 2 >
n C(At)4(|||uttt|||2,0 +v 1|||Ptt|||2,0 + H|ftt|||2,o + V|Hvutt|H2,0
4 - 4 - :
Lo+ v IVelldo + v [V salll )

2
‘2,3—&-1

+ v Vg

Proof. The result for SKEW is known [15, 17] while the result for EMAC follows
in the same manner as for SKEW in these references but with the nonlinearity
treatment from the previous section, particularly, the proof for Theorem 4.1. We
apply the same decomposition, which follows [22], and then the same bounds (24)-
(25). The rest of the proof follows identically to the proof for SKEW. B
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Remark 5.1. Just as in the projection method case, the asymptotic error is the
same but the key difference between EMAC and SKEW accuracy for the Crank-
Nicolson FEM is the reduced Gronwall constant of EMAC - which here does not
explicitly depend on the inverse of the viscosity.

6. Numerical tests

In this section, we provide numerical results that reinforce the strengths of
EMAC over SKEW, in particular the longer time accuracy of EMAC suggested by
the better Gronwall constant in its convergence analysis. We test both coupled
schemes for SKEW and EMAC, as well as projection methods. We use Freefem++
[13] to perform these simulation. Newton iterations are used to resolve the nonlin-
earities. While our analysis considered first order projection methods for the sake
of simplicity, for our numerical tests we will additionally test with the second order
‘rotational’ projection method defined as follows:

Step 1 RotProjB-EMAC: Find u"Jr1 € Xy, satisfying, for all x;, € Xy,
(35)
~; (a) ntl _ ul, xn) + (g mEL Ll @t xn) + ¥ (V(QZ“ +u"), V)
= (ks V- xn) = (f"“,x;L),
fLZH =0 on 99.

Step 1 RotProjB-SKEW is the same as Step 1 RotProjB-EMAC expect the non-
linear term.

Step 2: Solve for ¢™*1!

-V 71;: + n+1
"+ -n =0 on 39.
From here, we first recover ph'H from ¢"+1 (pZ'H pp+vV- u"“) and then
recover uh+ from @y t! and p)*! using the prOJecmon [11]. This formulation is a

second order method from (3.6)-(3.8) in [11], equipped with the EMAC nonlinearity
formulation.

6.1. Planar Lattice Flow. We first consider an investigation of the evolution
of an initial velocity and flow of four vortices which are rotating opposite to one
another. This particular phenomenon, named ”planar lattice flow”, is a solution to
the stationary incompressible Euler equation and has been studied in detail in [30,
29, 28]. Let z € Q = (0,1)? and define the initial velocity and true velocity /pressure
pair (u,p) as

o () = sin(27xy ) sin(27as)
O™ N cos(2may ) cos(2may) |

u(t,x) = ug (x)e_8”2”t,

1 2
p(t,x) = 1 [cos(4mxy) — cos(4mas)] e 107 VL,

Periodic boundary conditions are imposed on 92 and we enforce the integral
zero-mean condition on the pressure. We do not impose an external force, so
f =0, and we set v = 4 x 1076, Crank-Nicolson time stepping was used for the
coupled schemes (not including SKEW-BE-PROJ and EMAC-BE-PROJ, which use
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FiGURE 1. Shown above is the initial velocity ug for planar lattice flow.
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FIGURE 2. Plots of the solution of each formulation at time ¢t =5

Backward Euler), and we set At = .001 with the end time 7' = 5 for all methods.
A uniform mesh with (P, P;) Taylor hood elements was used with a mesh width
of h = %. Figure 1 depicts the initial velocity of the problem.

The true solution of this problem is for it to decay exponentially with time, but
to remain stationary in space. As time goes on, the term e85Vt will uniformly
decay the initial condition. Plots of computed solutions at t=5 are shown in figure
2. For each formulation using the SKEW nonlinear term, we observe oscillations to
the point where do not see anything that resembles the correct solution. However,
the EMAC formulations strongly resemble Figure 1, although some error is clearly
present.

Figure 3 shows a semilog plot of L? error at every timestep for each of the six
methods, and as expected we see much better performance from the EMAC methods
over the SKEW methods. Specifically, we notice nearly identical error for EMAC
and RotProjB-EMAC, where EMAC-BE-PROJ performs slightly worse. This is
expected because it is a first order method, so it naturally will not outperform
EMAC and RotProjB-EMAC. There does not seem to be a huge difference in L?
error otherwise. The SKEW methods do not perform well at all over time, and we
observe a very large L? error which level off at O(10) only due to the stability of
the method.
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L2 error of Planar Lattice flow problem

Skew
— — -EMAC

RotProjB-Skew
RotProjB8-EMAC

SKEW-BE-PROJ
— — "EMAC-BE-PROJ

105
0

05 1 15 2 25 3 35 4 45 5

FIGURE 3. Shown above L? error for each formulation vs. time
for the planar lattice vortex problem.

6.2. Gresho problem. We next test the methods on the Gresho standing vortex
problems. Computations involving coupled schemes using SKEW and EMAC are
well documented [3, 22], but we include them here with projection method results
for the sake of comparison. The initial velocity is a solution to the steady Fuler
equations, so it is stationary in time, which makes it easy to measure the effec-
tiveness of a formulation. It will also help measure how effective a method is in
conservation properties, since we assume f =0 and v = 0.

We begin by defining r = /22 +y2 on Q = (—0.5,0.5)2. The velocity and
pressure are defined as

5
Y for r < 2,
5T
oy s
u= 2T+y for 2 <r < .4,
= — 5w
0
] for r > .4,
0
12.572 + C; for r < .2,
p =4 12.57% — 20r + 4log(r) + Cy for .2 <r < 4,
0 for r > .4,

where

Oy = —12.5(.4)? +20(.4)? — 41og(.4),
Cl = 02 — 20(2) + 410g(2)

We again use Crank-Nicolson time stepping for the coupled schemes and Back-
ward Euler for SKEW-BE-PROJ and EMAC-BE-PROJ. We solve using At = .01
and set T' = 4. Taylor-Hood (P, P1) elements were used with a mesh size of h = 4—18.
Similar to the planar lattice flow problem in the previous section, we have an initial
velocity (shown in figure 4) that we compare to the computed solutions at later
times. The difference is that the vortex should maintain its shape because it is a
solution to a steady-state problem. However, numerical errors are inevitable, and
accumulate after many iterations. Previous work in [3, 14] shows that EMAC tends
to outperform most conventional formulations over time, and we will again observe

this phenomena for this test problem.
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05
05 04 03 02 01 0 01 02 03 04 05

FI1GURE 4. Initial velocity for the Gresho problem.

FIGURE 5. Numerical results of SKEW coupled, SKEW-BE-
PROJ, RotProjB-SKEW, EMAC coupled, EMAC-BE-PROJ,
RotProjB-EMAC (from left to right, respectively) at times t =
1,2,3,4 (top to bottom).

The initial velocity is shown in figure 4, and computed solutions at t = 1,2,3,4
are shown in figure 5. SKEW, SKEW-BE-PROJ, and RotProjB-SKEW produce
very poor solutions, as the velocity has dissipated very rapidly compared to the
EMAC solutions. Coupled EMAC, EMAC-BE-PROJ, and RotProjB-EMAC do a
better (although not great) job at maintaining the vortex for longer times, with the
coupled EMAC outperforming the other EMAC methods, especially at later times.

Additionally, we calculated L? error, energy, momentum, and angular momen-
tum for each method. Coupled EMAC is the only one to conserve energy, with cou-
pled SKEW producing slight dissipation (the severe oscillations in coupled SKEW
were enough to cause it to slightly dissipate energy after ¢ = 0.5). All projection
methods significantly dissipate energy, nonphysically reducing it by nearly 50%
by the end time. For momentum, the coupled schemes, SKEW-BE-PROJ, and
EMAC-BE-PROJ maintain a constant momentum while both projection method-
s had slight decreases. We expect this behavior for the four formulations that
conserved it, as that is what the theory suggests. The RotProjB methods both
do not have formal conservation analysis done, so we did not specifically expect
conservation.
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FIGURE 6. L? error, energy, momentum, and angular momen-
tum plots of SKEW, EMAC, SKEW-BE-PROJ, EMAC-BE-PROJ,
RotProjB-SKEW, and RotProjB-EMAC.

For angular momentum, we do not observe conservation for any of the SKEW
methods, which is unsurprising. However we do see (approximate) conservation
for the EMAC methods, which is expected from our analysis above. We note
that for larger times, exact angular momentum conservation is lost due to nonzero
velocity near the boundary due to numerical error creeping outward, see Figure 5;
at early times, velocity is zero in a strip along the boundary, and conservation of
angular momentum is exact. Lastly, the L? error plot shows the EMAC schemes
dramatically outperformed the SKEW schemes, with coupled EMAC beating out
RotProjB-EMAC and SKEW-BE-PROJ. Interestingly enough, the L? error for
EMAC-BE-PROJ starts worse off than RotProjB-EMAC, but at around ¢ = 2.5 it
is smaller.

6.3. Contaminant Flow Analysis. For our last test, we consider EMAC and
SKEW coupled schemes for prediction of river contamination. We chose the three
rivers in Pittsburgh PA (USA) where they meet; in Figure 7, observe the north-
eastern river (Allegheny River) and the southeastern river (Monongahela River)
meet to form the Ohio river. The contaminant is modeled with the fluid transport
equation

¢t +u-Ve—elAe=0,
where ¢ is the contaminant, u is the velocity, and ¢ is the diffusion coefficient.

A domain is created (shown in figure 7) by converting the image to grayscale
via the isoline package. The bridges were pre-edited out, and were replaced with
pylons represented by circles. The domain is such that there are two inlets and one
outlet, where the two inlets are the Allegheny and Monongahela Rivers and the
outlet is the Ohio River. The inlets are colored cyan on the right hand side and
the outlet is colored red.
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FIGURE 7. Satellite image of the rivers in Pittsburgh, PA.
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FIGURE 8. Reference velocity (left) and contaminant flow (right)
at time ¢t = 15.

We used the Stokes solution for the initial condition, BDF2 timestepping with
At = .01 together with Taylor-Hood (P, P;) elements , Re = v~! = 100, and an
end time of T" = 15. Additionally, we used grad-div stabilization with v = 1 and
Newton iterations to solve the nonlinear problem. For both EMAC and SKEW we
used a constant inflow of u = [720, O] " on the Monongahela and Allegheny inflows
as well as do-nothing outflow on the Ohio River.

For the contaminant flow, we used an initial condition of

1, if (z —567)% + (y — 371)? < 252,
c=11, if (x —567)% + (y — 131)? < 252,
0, otherwise.

This gives 2 circles at the same x coordinate on both the Monongahela and Alleghe-
ny rivers. We took e = .001, used P, elements, BDF2 timestepping and At = 0.01.
Lastly, we had do-nothing boundary conditions for each boundary except the in-
flows, which were set to zero.

We ran simulations with 112229 total degrees of freedom to compare SKEW and
EMAC, and also computed a reference solution using 249162 degrees of freedom
and the convective nonlinear term, up to time t = 15. The solution at ¢ = 15 is
shown in figure 8. EMAC and SKEW solutions are shown in plots at times ¢t = 1, 9,
and 15 in figure 9; we observe that the SKEW solution has significant oscillations
which destroy its solution, while the EMAC solution remains stable and exhibits
only minor oscillations. Similarly with the concentrations shown in figure 10, where
EMAC is stable and matches the resolved solution qualitatively well but SKEW’s
solution is killed by oscillations.
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FIGURE 9. Velocity at times ¢t = 3, 9, and 15 for EMAC (left)
versus SKEW (right).

F1cUrE 10. Contaminant flow at times ¢t = 3, 9, and 15 for EMAC
(left) versus SKEW (right).
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7. Conclusions

We have extended the longer time accuracy analysis of EMAC to both fully
discrete projection methods and coupled schemes. Analysis showed the method-
s provided better conservation properties than the more commonly used SKEW
methods, and that the Gronwall constant from the error bounds for EMAC is
significantly reduced compared SKEW in that for EMAC they are not explicitly
dependent on the inverse of the viscosity. Several numerical tests backed up the
analysis, and agreed with what is now found in many computational works since
EMAC first appeared in the literature in 2017: EMAC performs better than the
analogous (i.e. coupled, projection, etc.) method using SKEW, especially in longer
time simulations.

Acknowledgments

This research was supported by DMS 2011490.

References

[1] S. Badia and R. Codina. Convergence analysis of the FEM approximation of the first or-
der projection method for incompressible flows with and without the inf-sup condition. Nu-
merische Mathematik, 107:533-557, 2007.

Jeffrey Belding, Monika Neda, and Rihui Lan. An efficient discretization for a family of time
relaxation models. Computer Methods in Applied Mechanics and Engineering, 391:114510,
2022.

[3] S. Charnyi, T. Heister, M. Olshanskii, and L. Rebholz. On conservation laws of Navier-Stokes
Galerkin discretizations. Journal of Computational Physics, 337:289-308, 2017.

[4] S. Charnyi, T. Heister, M. Olshanskii, and L. Rebholz. Efficient discretizations for the EMAC
formulation of the incompressible Navier-Stokes equations. Applied Numerical Mathematics,
141:220-233, 2019.

[5] A. J. Chorin. Numerical solution for the Navier-Stokes equations. Mathematics of Compu-
tation, 22:745-762, 1968.

[6] O.Lehmkuhl F. Sacco, B. Paun, T. Iles, P. Iaizzo, G. Houzeaux, M. Vzaquex, C. Butakoff, and
J. Aguado-Sierra. Evaluating the roles of detailed endocardial structures on right ventricular
haemodynamics by means of CFD simulations. International Journal for Numerical Methods
in Biomedical Engineering, 34:1-14, 2018.

[7] O.Lehmkuhl F. Sacco, B. Paun, T. Iles, P. Iaizzo, G. Houzeaux, M. Vzaquex, C. Butakoff, and
J. Aguado-Sierra. Left ventricular trabeculations decrease the wall shear stress and increase
the intra-ventricular pressure drop in CFD simulations. Frontiers in Physiology, 9:1-15, 2018.

[8] U. Frisch. Turbulence. Cambridge University Press, 1995.

[9] V. Girault, R. H. Nochetto, and L. R. Scott. Max-norm estimates for Stokes and Navier—
Stokes approximations in convex polyhedra. Numerische Mathematik, 131(4):771-822, 2015.

[10] P. Gresho and R. Sani. Incompressible Flow and the Finite Element Method, volume 2.
Wiley, 1998.

[11] J. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 195:6011-6045, 2006.

[12] J.-L. Guermond and J. Pasciak. Stability of discrete Stokes operators in fractional Sobolev
spaces. Journal of Mathematical Fluid Mechanics, 10:588—-610, 2008.

[13] F. Hecht. New development in freefem++. Journal of Numerical Mathematics , 20(3-4):251—
265, 2012.

[14] S. Ingimarson. An energy, momentum and angular momentum conserving scheme for a reg-
ularization model of incompressible flow. Journal of Numerical Mathematics, 2021.

[15] V. John. Finite Element Methods for Incompressible Flow Problems. Springer, New York,
2016.

[16] V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz. On the divergence constraint in
mixed finite element methods for incompressible flows. SIAM Review, 59(3):492-544, 2017.

[17] W. Layton. An Introduction to the Numerical Analysis of Viscous Incompressible Flows.
SIAM, Philadelphia, 2008.

S



198

(18]

(19]

[20]

(21]

22]

23]

24]

[25]
[26]
27)

(28]

29]

(30]

(31]

(32]

S. INGIMARSON, M. NEDA, L. REBHOLZ, J. REYES, AND A. VU

O. Lehmkuhl, G. Houzeaux, H. Owen, G. Chrysokentis, and I. Rodriguez. A low-dissipation
finite element scheme for scale resolving simulations of turbulent flows. Journal of Compu-
tational Physics, 390:51-65, 2019.

O. Lehmkuhl, U. Piomelli, and G. Houzeaux. On the extension of the integral length-scale
approximation model to complex geometries. International Journal of Heat and Fluid Flow,
78(108422):1-12, 2019.

X. Li and J. Shen. Error analysis of the SAV-MAC scheme for the Navier-Stokes equations.
SIAM Jounral on Numerical Analysis, 58(5):2465-2491, 2020.

R. Martin, M. Soria, O. Lehmkuhl, A. Gorobets, and A. Duben. Noise radiated by an open
cavity at low Mach number: Effect of the cavity oscillation mode. International Journal of
Aeroacoustics, 18(6-7):647-668, 2019.

M. Olshanskii and L. Rebholz. Longer time accuracy for incompressible Navier-Stokes sim-
ulations with the EMAC formulation. Computer Methods in Applied Mechanics and Engi-
neering, 372:113369, 2020.

H. Owen, G. Chrysokentis, M. Avila, D. Mira, G. Houzeaux, R. Borrell, J. C. Cajas, and
O. Lehmkuhl. Wall-modeled large-eddy simulation in a finite element framework. Interna-
tional Journal for Numerical Methods in Fluids, 92(1):20-37, 2020.

D. Pastrana, J.C. Cajas, O. Lehmkuhl, I. Rodrguez, and G. Houzeaux. Large-eddy simu-
lations of the vortex-induced vibration of a low mass ratio two-degree-of-freedom circular
cylinder at subcritical Reynolds numbers. Computers and Fluids, 173:118-132, 2018.

A. Prohl. Projection and quasi-compressibility methods for solving the incompressible Navier-
Stokes equations. Teubner-Verlag, Stuttgart, 1997.

A. Prohl. On pressure approximation via projection methods for nonstationary incompressible
Navier-Stokes equations. SIAM Journal on Numerical Analysis, 47(1):158-180, 2009.

L. Rebholz. An energy and helicity conserving finite element scheme for the Navier-Stokes
equations. STAM Journal on Numerical Analysis, 45(4):1622-1638, 2007.

P. Schroeder, C. Lehrenfeld, A. Linke, and G. Lube. Towards computable flows and robust
estimates for inf-sup stable FEM applied to the time dependent incompressible Navier-Stokes
equations. SeMA, 75:629-653, 2018.

P. Schroeder and G. Lube. Pressure-robust analysis of divergence-free and conforming FEM
for evolutionary incompressible Navier-Stokes flows. Journal of Numerical Mathematics,
25(4):249-276, 2017.

P. Schroeder and G. Lube. Divergence-free H (div)-FEM for time-dependent incompressible
flows with applications to high Reynolds number vortex dynamics. Journal of Scientific
Computing, 75(2):830-858, 2018.

J. Shen. On error estimates of projection methods for Navier—-Stokes equations: first-order
schemes. SIAM Journal on Numerical Analysis, 29(1):57-77, 1992.

R. Temam. Sur approximation de la solution des equations de Navier-Stokes par la methode
des pas fractionnaires (II). Archive for Rational Mechanics and Analysis, 33:377-385, 1969.

School of Mathematical Sciences and Statistics, Clemson University, Clemson, SC 29634, USA

E-mail: singima@clemson.edu

Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154,

USA

E-mail: monika.neda@unlv.edu

School of Mathematical Sciences and Statistics, Clemson University, Clemson, SC 29634, USA

E-mail: rebholz@clemson.edu

Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154,

USA

E-mail: Jorge.Reyes@unlv.edu

Department of Mathematics, University of Houston, Houston, TX 77004, USA

E-mail: atvulb5@uh.edu



