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We calculate the eccentricity dependence of the high-order post-Newtonian (PN) expansion of the spin-
precession invariant y for eccentric-orbit extreme-mass-ratio inspirals with a Schwarzschild primary. The
series is calculated in first-order black hole perturbation theory through direct analytic expansion of
solutions in the Regge-Wheeler-Zerilli formalism, using a code written in Mathematica. Modes with small
values of [ are found via the Mano-Suzuki-Takasugi analytic function expansion formalism for solutions to
the Regge-Wheeler equation. Large-/ solutions are found by applying a PN expansion ansatz to the Regge-
Wheeler equation. Previous work has given y to 9.5PN order and to order e (i.e., the near circular orbit

limit). We calculate the expansion to 9PN but to ¢!® in eccentricity. It proves possible to find a few terms
that have closed-form expressions, all of which are associated with logarithmic terms in the PN expansion.
We also compare the numerical evaluation of our PN expansion to prior numerical calculations of y in close
orbits to assess its radius of convergence. We find that the series is not as rapidly convergent as the one for
the redshift invariant at r ~ 10M but still yielding ~1% accuracy for eccentricities e < 0.25.
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I. INTRODUCTION

In a set of recent papers, we have presented high post-
Newtonian (PN) order analytic expansions of black hole
perturbation theory (BHPT) and gravitational self-force
quantities at first order in the mass ratio € < 1 for extreme-
mass-ratio inspiral (EMRI) binaries in bound eccentric
motion about a Schwarzschild black hole. In each case,
these results are double expansions in PN order and in
powers of the eccentricity e. This work included study in
the dissipative sector of gravitational wave energy and
angular momentum fluxes radiated to infinity [1-4] and
fluxes radiated into the horizon [5] and study in the
conservative sector of the redshift invariant [6]. The method
involves using the Regge-Wheeler-Zerilli (RWZ) formal-
ism [7,8] and making analytic function expansions using
the Mano-Suzuki-Takasugi (MST) formalism [9] and a
general-/ ansatz to find expansions of the mode functions.
The metric perturbations and self-force are derived in the
Regge-Wheeler (RW) gauge and mode-sum regularization
is used. A sampling of other applications that have used this
procedure include [10-16].

This paper applies those techniques to another gauge-
invariant quantity, the spin-precession invariant. This
invariant, y, quantifies the geodetic precession of a weakly
spinning (test) gyroscope attached to the smaller mass as it
is parallel transported during its orbital motion. The test-
body limit of the geodetic precession is well known. We are
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concerned with the first order in € correction to y, Ay,
induced by the small but finite mass of the secondary. For
an eccentric orbit, y is defined as the fractional preces-
sional angular advance W, per azimuthal angular advance
®, accumulated over one radial libration. The calculation of
Ay bears some similarities to that of the redshift invariant,
as they both depend on the metric perturbation at the point
mass location. As discussed in [6,16], the PN order of
individual modes of the local metric perturbation does not
increase with [, which means that the mode functions and
metric perturbation must be calculated for arbitrarily high /.
This general-/ complication is handled by utilizing a PN-
expansion ansatz solution to the RW equation valid for all /
above the target PN order [6,10-12,14,16].

Calculating Ay presents new challenges. One is the need
to calculate the (conservative) self-force itself. (In contrast,
the redshift invariant only required the metric perturbation.)
Calculation of all of the metric perturbation components
and the components of the self-force is roughly an order of
magnitude more computationally costly than the effort
involved in finding the redshift invariant. Furthermore, the
self-force is gauge dependent. Fortunately, the regulariza-
tion is performed on the / modes of the spin-precession
invariant itself, extracting the gauge-invariant result
directly. However, the mode-sum regularization procedure
in this case requires two regularization parameters in order
for the mode-sum to converge.

© 2022 American Physical Society
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The spin-precession invariant was originally calculated
for circular orbits in [17], both numerically and as a full
arbitrary-mass-ratio PN expansion to 3PN absolute order.
[Note that in contrast to previous papers on fluxes, where
we referred to relative PN orders, here we connote PN order
with the power of the PN compactness parameter (y or 1/ p)
appearing in the expansion of Ay, as is conventional in
papers on the spin invariant.] The spin-precession invariant
was previously found [14] to 21.5PN in the circular-orbit
limit using BHPT analytic expansions. In the eccentric-
orbit case, results were found both numerically and as a
3PN expansion in [18]. Note, that the circular-orbit quantity
Ay is not the same as its eccentric-orbit counterpart
Aw®* when the latter is taken in the limit e — 0. The
eccentric-orbit definition relies on angular changes accu-
mulated over one radial libration. In the limit as e — 0,
apsidal advance becomes indistinguishable from azimuthal
advance but the difference in these definitions involves the
order ¢ correction to the apsidal advance. The calculation
of the eccentric-orbit version was separately found [18] to
9.5PN. The O(e?) correction was then computed to 3PN
in [18], to 6PN in [19], to 9PN in [20], and then to 9.5PN
in [21]. The present work finds Ay to 9PN but takes the
eccentricity expansion to e'®, breaking away from the
nearly circular orbit limit.

Conservative quantities like the spin-precession invariant
supply crucial terms in effective-one-body (EOB) poten-
tials [13,16,19,20,22-27]) and also contribute directly to
the EMRI cumulative phase at post-1 adiabatic order [28].
A procedure is described by [19] for translating the
expansion of Ay to the EOB gyrogravitomagnetic potential
gs«(1/r.p,.p,), thus informing the spin-orbit sector of
EOB dynamics. The spin-precession invariant expansion
in this paper can be transcribed to EOB form to enhance
further the knowledge of the spin-orbit part.

The structure of this paper is as follows: In Sec. II we
briefly outline (i) the setup of the orbital motion problem,
(ii) the MST formalism for computing solutions and PN
expansions of specific / modes, (iii) the procedure for
finding general-/ parts of the expansion, and (iv) the
calculation of the (local) metric perturbation. Section III
(i) defines the spin-precession invariant, (ii) describes the
background tetrad and how to calculate the precession,
(iii) summarizes how the first-order correction to the spin
precession is computed with a definition that is gauge
invariant, and (iv) how mode-sum regularization is applied
to the spin invariant. Then, the results of our calculations
are presented in Sec. IV, first as a PN expansion in the
compactness parameter 1/p and second as an expansion
in the PN parameter y. Our expansions are also evaluated
numerically at a pair of close orbital separations and
compared to prior numerical calculations. Section V con-
cludes with summary and outlook.

Throughout this paper we choose units such that
¢ =G =1, though n=1/c is briefly reintroduced for

PN-expansion bookkeeping purposes. We use metric
signature (— + ++). Our notation for the RWZ formalism
follows that found in [3,15], which in part derives from
notational changes for tensor spherical harmonics and
perturbation amplitudes made by Martel and Poisson
[29]. For the MST formalism, we largely make use of
the discussion and notation found in the review by Sasaki
and Tagoshi [30].

II. FORMALISM FOR BLACK HOLE
PERTURBATIONS AND POST-NEWTONIAN
EXPANSIONS

A pair of recent papers [1,6] outlined our approach to
calculating the first-order metric perturbation for eccentric-
orbit nonspinning EMRIs and PN expanding regularized
quantities. The more recent paper used the technique
to derive the high-order PN expansion of the redshift
invariant. For our present purpose, in calculating the
spin-precession invariant, and to set the notation, we briefly
recite in this section the calculational approach. See [1,6]
for further details.

A. Bound orbits and PN compactness parameters

The secondary is treated as a point mass u in bound
geodesic orbit about a Schwarzschild black hole of mass M,
with &€ = u/M < 1. We use Schwarzschild coordinates
x* = (t,r,0, ) that produce the line element

ds* = —fdt* + f~'dr* + r*(d0* + sin*> 0d¢?), (2.1)
with f = 1-2M/r. Restricting the motion to the equatorial
plane, the four-velocity is

o dx3(m) € L
w0 =550 = (70 z)

(2.2)

where £ and L, the specific energy and angular momentum,
are constants of the motion and the subscript p indicates
evaluation along the worldline of the particle. The orbital
motion is reparametrized using Darwin’s parameters
(¢, p,e) [31-33], connected by

52:(1’_2)2_462 £2: pZMZ
p(p=3-¢)’ p=3-¢e’
pM
=—. 2.3
o) 1+ecosy (23)

Here p is the semilatus rectum and its reciprocal 1/ p serves
as one choice for a PN compactness parameter. In the
Darwin parametrization, one radial libration corresponds to
27 advance in y. Motion in the other three coordinates,
along with proper time 7z, are found by integrating ordinary
differential equations (ODEs) in y [32,34]. Most of these
equations of motion can be initially PN expanded and then
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integrated analytically order by order. For example, the
radial period is found from the following integral:

QU

T =
" Jo M(p—-2-2ecosy)|p—6—2ecosy

and it is immediately clear how the integrand may be
expanded in powers of 1/p, resulting in a series of
elementary trigonometric integrals. From that expansion
then follows an expansion for the radial frequency,
Q, = 2x/T,. In the case of azimuthal motion, the solution
for ¢,(y) can be obtained analytically in terms of the
incomplete elliptic integral F(x|m) of the first kind [34,35],
prior to making a PN expansion. The mean azimuthal
frequency Q,, is then given by ¢,(27)/T,, which yields

4 p 1/2 4e
Q=—(——-—) Kl-———). (24
’ Tr<p—6—2e> (p—6—2€) @4)

where K(m) is the complete elliptic integral of the first
kind [35]. At this point, the solution can be readily PN
expanded in 1/p. Once the mean azimuthal angular rate Q,,
is known, the alternative (and more standard) PN compact-
ness parameter y = (M€,,)*3 can be obtained in terms of
1/ p, and then inverted for p(y). For eccentric motion, each
PN order will be additionally expanded in powers of
eccentricity e.

B. Gravitational perturbations and analytic
expansion of /-mode solutions

On a Schwarzschild background, we can obtain metric
perturbations either via the Regge-Wheeler-Zerilli [7,8]
formalism (see recent uses [6,16,36]) or by use of the
Bardeen-Press-Teukolsky equation and radiation gauge
[19]. In this paper, we adhere to our previous RWZ
approach, in which the RWZ master equations have the
following form in the frequency domain (FD)

=Zun(r). (2.5)

s =) X

Here r, = r +2M In|r/2M — 1] is the tortoise coordinate,
O = ®,, = mL, + nL, are discrete frequencies from the
multiperiodic background geodesic motion, and the FD
source term is

(2.6)

The source terms and potentials V,(r) are parity dependent
(specifically, the parity of the scalar, vector, and tensor
spherical harmonics used in the angular decomposition
[7,8,29]). For even parity we solve the Zerilli-Moncrief

master equation and for odd parity the Cunningham-Price-
Moncrief master equation (see [7,8,29,36] for more
details). Restricting the motion to the equatorial plane
leads to some /, m-dependent source terms vanishing due to
reflection symmetry. Which master equation is solved (i.e.,
even or odd parity) can be conflated with whether [ + m is
an even or odd integer [36].

The homogeneous version of the master equation (even
or odd parity) yields two independent (causal) solutions.
One, Xt =X, . is a downgoing wave at the future
horizon, while the other, X;> = X}, . is an outgoing wave
at future null infinity. The odd-parity homogeneous
(Regge-Wheeler) equation is more readily solved. For
the even-parity case (even integer cases of [+ m), we
need solutions to the homogeneous Zerilli equation. To
obtain these, we can apply the trick (see e.g., [1,15])
of solving the Regge-Wheeler equation for the “wrong
parity” and then using those solutions to derive their
even-parity counterparts via the Detweiler-Chandrasekhar
transformation [37-40].

Once the homogeneous solutions are calculated (dis-
cussed below), the inhomogeneous solutions to (2.5)
are found, which starts by computing the normalization
coefficients

1 dt
Ctf =—— G
Imn W[mnTr A < > |: » Im (/’t’) Imn

2M 1 dX;
+ Xil;m lmn) i i| twt()(
( rnfy ! fp dr ¥

(2.7)

where W, is the Wronskian. The full time-domain
solutions follow from applying the method of extended
homogeneous solutions [41], using the combinations
C) X; and C;, X;, . (see also [1,36]).

As discussed in [1,6], solutions for the modes of the
master function (at least for small values of [) are
determined using the MST formalism [9], with an expan-
sion in analytic functions. The odd-parity MST solution for

X} (up to arbitrary normalization) is

—ie X
X+ _ lz v+1 1— E
Imn — < z

Jj=—
FG+v+1-ie)l(j+v—1—ie)
F(j+v+3+ie)[(j+v+1+ie)

xU(j+v+1—ie2j+2v+2,-2iz).

a;(=2iz)/

(2.8)

Here, v is the renormalized angular momentum, defined to
make the double-sided summation converge, and U is the
irregular confluent hypergeometric function. Other quan-
tities are € = 2Mwn?, 7z = ron, with 7= 1/c being a
reintroduced PN parameter. To obtain a solution, v and
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aj

are ascertained through a continued fraction calculation [9,30], which in our application also then leads to a series in € for

both. PN expansions of the other terms in (2.8) then follow, with the result expressible in series in both z and e.
The downgoing (or in) solutions X;, = have similar function expansion

(S

[z —ie (¢ ie+1
= e lZ(;-l) <E> Z aj
’ J—

X, Fi(j+v—1—ie,—j—v—-2-

with v and a; here being identical to those in (2.8) (up to
overall normalization of the latter). The process of expand-
ing these homogeneous solutions by collecting on powers
of 5 is fully described in [1], based on the methods
presented in [14]. As described in [6,14], z-independent
factors are removed from these solutions to reduce their
complexity, since such factors eventually cancel through
appearance in the Wronskian.

As discussed in [1,6,10,14], in conservative sector
calculations mode-sum regularization requires summing
perturbations over all /. This necessitates an alternative
approach of directly PN-expanding the homogeneous
version of the master equation (2.5) for general [. As
shown in [10,14], the PN-expansion ansatz for solving the
RW equation is

=(2) (1 + A + A + -+ Ay + O(*1)),

€ —1
len <Z) (1+B2l’]2+B4;14+...+3217]21+0(’721+1))’

(2.10)

where the A; and B; are functions of z, ¢, [. The ansatz
breaks down at PN orders at and above O(5?!). If a target
PN order P is set, the ansatz will be useless for [ < P.
For those finite number of modes, the MST formalism is
used instead. Once v is found by PN-expanding the
|

o d)( Ylm (7[/2’ 0) zm —iwt dr
plrr(){) - (E) ;n: f Clmn ¢ { [(@)
axE )\ | d
ot =0 (B g
pir(){ Zylm 71'/2 0 lmn ln1$_iwt<_iw> r<%>

p%t()() =

pAB()() =r QABZYlm 71-/2 ()) € eime—iot

mn

p r’r s

()

dy\ (dXi,,
() (55

T(j+v—1—ie)l(—j—v—2-
(1 — 2ie)

i€)

ie; 1 = 2ie; 1 —z/e), (2.9)

continued fraction calculation,
equation becomes

the homogeneous RW

(-95((-9)5)
+<1—§)<l(%1) 25);7])(?;"”:0. (2.11)

The ODE is then solved order by order. Even-parity
homogeneous solutions are again found using the
Detweiler-Chandrasekhar transformation.

As previously noted [6], the expansion of the even-parity
normalization integral is the bottleneck in the calculation,
requiring for example ~7 days and 20 GB of memory on
the UNC supercomputing cluster Longleaf to reach 10PN
and 2 relative order. Furthermore, two relative PN orders
and three orders in e are lost in constructing and regular-
izing the spin-precession invariant. Thus, our expansion is
restricted to 9PN (8PN relative order) and e'®.

C. Metric perturbation / modes and nonradiative modes

Since we use RWZ gauge, calculation of the / modes of
the metric perturbation (locally) follows the procedure
discussed in Sec. II of [6] (see also earlier work
[16,36]). Briefly, the metric components as functions of

x are
(@) 0+ (557 x

)

+
Imn

A(A+1)
fr

)

(B 1 e, )]
O, + AGE) X |
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f m img—iw d)( d
pisr) = <§ > X (x/2.0)CF,  emoier P E(rxﬁm)’

mn

r i i .
piB (X) B <ﬁ> ngn (”/2’ O) C;;’lne”n(ﬂ_l“)t(_lw)xinﬂ ’

mn

with
1 3M
A=l 42)(1=1), A=i+>2,
2 r
1 3M 2M
Alr)=— A4+ 1) +— 14+ —
0= [0+ 0+ 2 (1420)]

B(r) :rfLA {1(1 —3TM) _3,»—1\52} (2.13)

The up (4) or in (—) mode functions are used depending
upon which side in r of the point mass the evaluation is
taken. The perturbation / modes (once sums over m are
made) are continuous, but CO, at the particle location. Sums
over m involve application of the addition theorem for
spherical harmonics. In [6] we discuss the most efficient way
of calculating PN expansions of the resulting sums over m
(see Sec. I D of that paper). The spin-precession invariant is
calculated from the local self-force, which involves the
metric perturbation and its derivatives. Expressions for the
derivatives can be easily derived from (2.12). The / modes of
the metric perturbation derivatives are discontinuous across
the particle location, a fact that is important in the regulari-
zation of the spin-precession invariant.

Another aspect of computing the self-force is that, in
applying a derivative with respect to r, an expansion in
powers of eccentricity will lose an order in e. Moreover, the
eccentricity expansions lose three orders in e in moving
from the self-force to the spin invariant (see Sec. III D). The
computation of high-order terms in the e expansion is the
most consuming part of the construction of the metric
perturbation, and one would expect this to be particularly
true in the case of general /. However, added investigation
showed that this difficulty can be avoided in the latter case
by observing that the general-/ metric perturbation yields
finite polynomials in e on an individual PN-order basis.
These polynomials increase in degree linearly with PN
order. Once this pattern was recognized, PN terms in the
general-/ expansion could be determined in closed form
with only a low-order (imbedded) polynomial in eccen-
tricity. The computational bottleneck was then transferred
to the specific-/ part of the calculation, which does not
simplify in the same fashion. The resulting change in the
technique allowed the spin-precession invariant to be
computed to much higher order in eccentricity at lower
PN orders. For example, it allowed us to determine the 4PN
function Ay, to €.

(2.12)

Finally, to complete the metric perturbation and self-
force calculation, the radiative modes must be augmented
to include the nonradiative / = 0 and / = 1 modes, origi-
nally found by Zerilli [8] but gauge transformed [42] to
maintain asymptotic flatness. We listed those modes in
our previous paper [6], and they are described more fully
in [16] and in earlier papers cited therein.

III. PROCEDURE FOR CALCULATING THE
SPIN-PRECESSION INVARIANT

A. Overview

The smaller body is assumed to be endowed with a test
spin s,, which undergoes precession during the orbital
motion about the heavier mass without affecting the metric
perturbation. The spin is parallel transported Ds,/dr = 0
along the geodesic with its tangent vector u®, and the
spin maintains its orthogonality s,u* =0 and the con-
stancy of its norm s,s* This spin-orbit, or geodetic,
precession has a nonzero rate of advance in the test-body
limit (u = 0) and a self-force correction at first order in the
mass ratio € and beyond. We seek to calculate the first-
order correction to the precession in bound eccentric orbits
about a nonspinning (Schwarzschild) primary (thus elimi-
nating consideration of Lense-Thirring precession). Our
presentation follows that of [17—19], which we summarize
in this section.

The spin-precession invariant for eccentric orbits is a
generalization given by [18] of the definition used for
circular orbits [17]. An invariant y is defined via a ratio
that involves the accumulated azimuthal phase @ and the
accumulated precession of the spin vector ¥ over one radial
libration period T',. Explicitly, the quantity is given by

b g

yw=1-—.

- (3.1)

This scalar is a function of the mass ratio ¢ (i.e., subject to
self-force correction Ay) and orbital parameters. The latter
are best chosen as the observable frequencies Q, and Q,,
lending the definition of yw a gauge invariant character.
(Though, technically the quantity is not invariant under
arbitrary gauge transformations, but rather under the
restricted set of transformations that respect the “average”
helical symmetry of the eccentric orbit. Nevertheless,
it is conventional to refer to y as gauge invariant.) This
procedure is directly analogous to that in constructing the
redshift invariant [6], where the frequencies were held fixed
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through first order in the mass ratio. Since ® = Q,T, will
itself be fixed, only the self-force correction AW need be
computed.

The invariant w encodes a portion of the first-
order conservative dynamics, giving it relevance to the
creation of waveform templates for LISA. How y can be
transcribed to the EOB gyrogravitomagnetic ratio quantity
gs«(1/r, p,.p,), which partially characterizes the spin-
orbit sector of the EOB Hamiltonian, was mapped out in
[19]. The expansion of y helps describe the case where the
smaller body is (weakly) spinning.

B. Spin precession and background reference frame

The behavior of ¥ is found by computing the parallel
transport of s, along a geodesic of the perturbed (regular-
ized) metric. To facilitate the calculation, a reference frame
tetrad €% is introduced (here « is the spacetime index and a
indicates the frame element). Then, the spin components in
the frame precess [18] according to

ds
i W XS,
(S)i = ezasaﬂ
1
(w); _Eei/kw ,
&
Wij = —Jap j‘d—rj. (3.2)

The precessional angular velocity components use the base
symbol w instead of @ to avoid confusion with the discrete
frequency spectrum w,,,, of the gravitational perturbations.
The angular velocity is subject to the choice made for the
reference frame.

A suitable frame in the background (¢ — 0 limit) was
given by Marck [43] (see also [18,19], as well as [44] for a
different application), aligned with one leg perpendicular to
the orbital (equatorial) plane and another directed along the
line with the primary

E L
u = <?,u ’O’ﬁ>’

1
W(u ,fg, 0, 0),

¢y =1(0,0,1/r,0),

1 2
R S (g,ﬁu’,o, i +f—2> (33)

AN

This polar alignment can be maintained when p # 0.
The frame is noninertial and a gyroscope will appear to
precess with frequency ¥ = w;. (The precession can also
be found by making a U(1) transformation [44] in the

"
€o

e

—_=

equatorial plane to an inertial frame.) At lowest order the
(background) geodetic angular rate is

o &L

W13 = m (34)

C. Spin precession and self-force in the perturbed frame

The accumulated phase of the spin precession is then

p— j[ Wi (2)de = Wy + AW, (3.5)

with the integral taken over one period of radial motion.
The last part of the expression splits ¥ into zeroth and
first order components, with AWY being the first-order
(conservative) correction we seek. Here, AW refers to
the perturbation measured when the orbital frequencies
have been held constant.

The procedure to compute AW is established in [18-20].
Assuming that 6% is a correction calculated without
holding the orbital frequencies fixed, AY is recovered
by subtracting off perturbations in the frequencies

A‘Pz&‘l‘—a—%éﬂ,—a—%

0Q, 20, ¢

) (3.6)

An alternative calculation uses first-order changes in 7,
and @ [18]

o ov
05T, — —2 50,
oT, oD

AY = oY —

(3.7)

which we found more computationally convenient. Note

that henceforth, except for our use of ¥, and w(103), lowest-
order quantities will simply be denoted by their plain base
symbol, while most first-order corrections will explicitly
carry a o (perturbed frequencies) or A (fixed frequencies)
prefix. The exception is the metric perturbation p,,, where
the notation already indicates a first-order quantity.

At first order, the integral for ¥ experiences a change due
to corrections in both w3 and 7. The result is [18,45]

2z (& ou” d
5111_/ owiy 0wy Aty
0 W13 u’ dy
The correction to w3 can be found [18,19] via expansion of
its definition

(3.8)

1
owyz = §W13Puuege(y) + 63150 + (corel + Co3el§)eu[3vﬂe'{]-

(3.9)

In deriving the expression above, a total derivative (d/dr)
term has been neglected. The first term is proportional to
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the pg tetrad projection of the metric perturbation (not p,,)
and the second term is the tetrad projection of the correction
to the affine connection

6F[3l]0 = (5F”y/; pﬂ/lru/}) B3 e ]Mﬁ (310)
The third term involves coefficients c¢y; and c(; that come
from the variation of the tetrad

1

col = ——— (Ebulys — u'Ex5), 3.11

01 f 1 T ,CZ/I”Z( BS BS) ( )
OL s (3.12)

Cpy = ————.
0 r/1+L2/r

Within these latter coefficients are terms, 6€gg and 6L g,
that are y-dependent conservative corrections to the (spe-
cific) energy and angular momentum defined by Barack
and Sago [45]

dr
Eust) = 08s0) = [P Sy (13

d
SLps(x) = 6L55(0) + / Feons 5 gy (3.14)

d /

The first term (integration constant) in each of these
equations is the shift that occurs at periastron. These are
explicitly shown [45] to be

1 -2-2 1—¢)? 242 dr d
5835( ) ( +€) (p > 6) |: ( e) (p + e) consid +/ F?OHSTd)(:|, (315)
de(p—3—e7) Mp32\/(p —2)* — 4¢> dy
Mp3/? -2)2 -4 1—e)? 242 dr d
5L55(0) = P V(P )2 ¢ [( €)(p=2+2¢) Ry +/ F‘;"“STd;(} (3.16)
de(p—3—e°) Mp3/2\/ (p- 2 —4¢? dy

Lastly, dupg is the first-order correction to the radial
velocity. It can be derived from the normalization of the
four-velocity condition (in the background spacetime [45]),
which leads to E8Epg — uSulys — r2fLLps =0 and
from there to

f

&
dups = E&E‘BS - rTur&SEBS' (3.17)

As usual, the conservative part of the self-force, F;™, is
given [45] by the symmetric combination

cons
Fm™ =

(F,(r) + €"F,(=x)), (3.18)

N =

where ¢ = (=1,1,1,—1). Using the retarded self-force in
the expression above yields a singular result at the particle
location. Instead, the regularized self-force can be found
using the regular metric perturbation p®, in

Fy == (9w = 2¢%u’ — uu’u®)w'V;spf . (3.19)

1
2
However, since we are concerned with computing a
single scalar invariant, it is simpler to work instead with
the full, unregularized self-force, decomposed into / modes.
This leads to an /-mode decomposition of the (unregular-
ized) spin-invariant correction, with modes Ay!. We then

apply mode-sum regularization directly to the spin-
precession invariant.

Hence, with the / modes of the retarded metric pertur-
bation and self-force available, it is straightforward to
evaluate & BS EBS, and F[ 31)0° The rest of the calculation

for 8%/ is then condensed [20] to the following integral:
2z (r* + L*)(3M — r)[, E
Y = / {(ﬂ}l]o + < Y > | 6EL
0 r(u")

£ EL2(BM 1) ar |
51
*(rz EIPae )‘} o

(3.20)

Then, AY! can be determined from s%' by removal of
the frequency corrections, which involves use of the
following formulas [18,20]:

2 (§EL S(uh)'\ £ dr
7L — BS _ BS car 21
oT! A (—g Retps) ) S Gan
2 (SLe S(ul) L de
50! = —=Bs _ZBS ) 22 gy 3.22
A < L u” >r2 dy X ( )

D. PN and eccentricity expansion issues

Even though we have not belabored the process, each
step in this procedure involves calculating an analytic
PN expansion using Mathematica. (Illustrative short
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expansions of various intermediate quantities in the pro-
cedure can be found in Sec. III of [19].) Given eccentric
orbital motion, the PN expansion necessarily involves an
expansion in powers of eccentricity e as well. We have
sought to go as deeply as possible in PN order and
(especially) eccentricity order. High-order expansion
in eccentricity opens up the possibility of finding
eccentricity-dependent terms that have closed-form expres-
sions or infinite series with analytically known coefficient
sequences [2,4,6].

We restate for emphasis one issue with calculating the
PN and eccentricity expansions of the spin-precession
invariant. As we have discussed, the procedure begins
with calculating the mode functions X3, and their nor-
malizations C7, . Assume that C;, ., for example, has been
calculated in the general-/ case to a relative PN order of P
and to order ¢*V in eccentricity. We find that once
derivatives have been taken, to calculate the metric per-
turbation and the self-force, and the various projections
have been made, the expansion of the spin-precession
invariant has lost two relative orders in P and three orders
in e (effectively equivalent to two orders in A'). The PN
orders appear to be lost through cancellation of the leading
behavior in two separate steps of the procedure, one in the
expansion of d,p,, in the computation of F', and the other
in the construction of the integral (3.20). The eccentricity
orders also appear to drop through lead order cancellation,
one power of e in the periastron shift constants 5€55(0) and
6Lp5(0) and the other two corresponding to the factors of
1/(u")? in (3.20). Thus, if C;; = were known in the general-/
case to 8PN (relative) and e?°, the computation of the
general-/ contribution to the spin invariant is limited to 6PN
relative order (7PN absolute order, as it is conventionally
defined) and ¢1%. One caveat, however, is that the general-/
expansion does not contribute to the spin precession at half-
integer orders. Thus, as long as the specific-/ contributions
are appropriately extended, the final result in this
example would be an expansion for y that reaches
7.5PN (absolute) and e'°.

E. Regularization

The final step in the procedure is regularization. As
mentioned in Sec. III C, instead of regularizing the self-
field itself and its derivatives, we calculate / modes of the
spin-precession invariant using / modes of the unregular-
ized retarded metric perturbation and its derivatives. Then,
we make a mode-sum regularization of the spin invariant
directly, in a procedure that is similar to but slightly more
involved than the way in which we previously regularized
the redshift invariant [6].

Mode-sum regularization requires subtracting off terms
that come from an /-mode expansion of the singular field
[46,47]. Because the spin-precession invariant involves
derivatives of the metric perturbation, the /-mode

contributions to its singular behavior grow like /. In
Lorenz gauge, for example, the regularization procedure
would be

[Se]

Ay = (Apre F As(21+1) - By),
=0

(3.23)

where A and By are the first two regularization parameters
(independent of /) in an expansion of the singular part of
Ay. Only the first two parameters are required for the sum
to converge. The parameters are independent of / when
each component of the metric perturbation and its deriv-
atives are individually expanded in scalar spherical har-
monics. Since the / modes in the decomposition of pﬁl, and
its derivatives are known, Ay and Bg could be found
analytically in Lorenz gauge. Working in Lorenz gauge,
Akcay et al. [18] instead regularized the self-force, the
frame components of the metric perturbation, and its
connection, and used those elements to assemble the
regularized [ modes of Ay, thus bypassing the calculation
of Ay and Bg. Finally, we note that the calculation on the
right-hand side in (3.23) is direction dependent, based on
whether the particle location is approached from outside or
inside of r,, but that the same value emerges.

Our calculation differs in two regards: our [ refers to
tensor, not scalar, spherical harmonic index and our
calculations are done in Regge-Wheeler gauge instead of
Lorenz gauge. The former difference calls into question the
independence of Ag and Bg with respect to /. In fact, even
confined to Lorenz gauge, it has been shown [48] that in
terms of tensor spherical harmonic /, Ag is constant for
[ > 2 but takes different values for the nonradiative [ = 0
and [ = 1 modes (By is still independent of /). In the case of
the latter difference, we are faced with having no a priori
knowledge of the equivalent of Ag and Bg in Regge-
Wheeler gauge.

The workaround for finding Ag and Bg in our gauge
involves using the general-/ expansion. This procedure is
an offshoot of a method described in [19], who did their
calculations in radiation gauge. Because we expect that Ag
and By must match (at least asymptotically) the corre-
sponding parts in the large-/ behavior of Ay, we expand
our general-/ result for Ayl about [ = co to find two
coefficients, which we label A, and B,. We then con-
jecture, as Kavanagh et al. [19] did in their radiation gauge
calculations, that B, = By (for all /) and that A, = A (for
[ > 2) and we use these A, and B, coefficients (derived in
Regge-Wheeler gauge) to perform regularization of Awy.

In principle, one would want to calculate Ay and By in
Lorenz gauge and effect a gauge transformation from
Lorenz to Regge-Wheeler gauge to see how the regulari-
zation procedure transforms. Early on, Barack and Ori [49]
considered the effects of gauge on the gravitational
self-force. They found that in most cases the self-force
transformation from Lorenz to either Regge-Wheeler or
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radiation gauge is irregular. These issues have been more
fully discussed in a series of papers [50-53] since then. An
important distinction is that we are not calculating the
regularization of the self-force, but instead the scalar
invariant Ay. Ideally, a proof might be made by carrying
the transformation through from Lorenz gauge to this
particular quantity calculated in Regge-Wheeler gauge.
While we have not done that calculation, we have several
reasons to believe that the conjectured equalities B, = By
and A, = Ag (I > 2) do in fact hold.

The first of these is that the correction to the spin
precession, Ay, is a scalar that can be expected to be
invariant at least across a wide range of gauges that respect
the eccentric-orbit-generalized version of the helical sym-
metry condition (i.e., when averaged over radial libration).
Detweiler noted in the derivation of the redshift invariant
that gauge-invariant quantities should have invariant regu-
larization schemes [47]. Additionally, our expansions
for A, and B, (obtained from a Regge-Wheeler gauge
calculation) exactly reproduce Eqgs. (3.31) and (3.32) of
[19], which emerged from their radiation gauge calculation.
The authors of [19] also indicate that their series expansions
for A, and B, matched an independent calculation of Ag
and By. In addition, our PN expansion of the regularized
Ay, while extending to higher order, agrees completely
with prior independent work in the region of overlap. With
these checks in hand, we have proceeded under the
assumption that B, = Bg and A, = Ag (for [ > 2); i.e,
that these provide the regularization parameters.

The remaining problem is how to avoid any changes in
the behavior of Ag when [/ =0, 1, which may still be
expected since we decompose on tensor spherical harmon-
ics. The solution is to recognize that A flips sign across the
|

_ Ay 5
P P

Ay /2

Ayl A
Al// l//2 4

+

1
+ (Ayty 5 + Ay, log p) St (Apg + Ayg, log p + Ay, log? p)

Because this is a first-order self-force result, the entire
right-hand side should be viewed as multiplied by a factor
of u/M. For eccentric orbits, each of the quantities Ay?,
for different &, is no longer just a number but rather a
function of the eccentricity e. The purpose of this section is
to show the form of these functions.

In discussing energy and angular momentum fluxes (see
e.g., [3]) it is conventional to factor out the circular-orbit
limit with p~> and refer to terms in the expansion by their
relative PN order. Thus, the Peters-Mathews flux is OPN
relative. In the spin-precession invariant expansion, the

1 1
+—5+ p33 + (Ayf + Ay, log p) r (Ayf + Ayt log p) STt (Ayg + Ay log p) —

1
PRE (Ayy + Ay, log p + Ay, log? p) PR (Aw§ + Ayg; log p + Ay, log? p)

location of the point mass [19,48] [see (2.12)], allowing
(3.23) to be replaced by [19,20]

o0 1 ~
Ay =3 <§ (Al + Ay = Boo>. (3.24)
=0

However, since we conjecture that Ag = A, for [ > 2, there
is no reason to use (3.24) for every I. We can instead use
(3.23) for all [ > 2 and reserve use of (3.24) for only the
[ = 0and [/ = 1 modes. We have shown that the results are
identical, so that the right-left averaging is only necessary
for handling the / = 0, 1 modes. By using A, we reduce
the calculation by roughly 50%.

IV. PN EXPANSIONS OF THE SPIN-PRECESSION
INVARIANT

The procedure in the previous two sections was utilized
to compute the spin-precession invariant expansion to 9PN
order and to e'® in eccentricity. We present the expansions
in this section using both 1/p and y as compactness
parameters. The expansions are given in this paper to
8PN order, with the full series being available in electronic
form at the Black Hole Perturbation Toolkit [54] web site
and at our research group web site [55].

A. Spin-precession invariant as an expansion in 1/p

Previous work in the circular-orbit limit has revealed
[18] the general PN structure of Ay to 9.5PN order.
Expressed in terms of the compactness parameter 1/p,
the form of the expansion is

A‘//fuz 1
P
AW[;S/Z b
o8
1
» + (4.1)

[
leading-order term is p~' and we will refer to this as the
1PN (absolute) term. In our nomenclature, a kPN term is
one that is proportional to p~.

The first three functions were all found previously [18]
and shown to have closed forms:

1

Ayl = -1, (4.2)
» 9+4e?
Ay, = (4.3)

044058-9



CHRISTOPHER MUNNA and CHARLES R. EVANS

PHYS. REV. D 106, 044058 (2022)

et

ok

Ay

(4.4)

739 12372 , (341 12377
_<16_ 64 )+e (16_ 256>

Beyond 3PN order, only the circular-orbit behavior [18]
and first term, e, in eccentricity were known previously.
The e? terms through 6PN had been calculated by [19,20]
had found the e* behavior through 9PN. Our present work
extends every term through 9PN order to ' in eccentricity,
allowing key parts of the functions Ay? (e) to be isolated in
many cases and allowing us to find in a few cases complete,
closed-form expressions.

The 4PN term is a case in which having enough terms in

the eccentricity expansion allows us to identify elemental
|

parts of the eccentricity functions. The behavior of the 4PN
spin-precession invariant is reminiscent of the 3PN energy
flux. We find first that the 4PN log term has a closed-form
expression. Then, that same function reappears in the 4PN
nonlog term. It is then possible to see a grouping, as a
series, that contains all of the log-transcendental numbers
(which we denote by Ay} in analogy to similar functions
in the energy flux, angular momentum flux, and redshift-
invariant expansions). We display Ay%” in this paper to
e'®. The remaining part of the 4PN nonlog term is a
polynomial on the appearance of z° and a remaining
rational-number series. That latter rational-number series
is also displayed here to e'6. The breakdown of the 4PN
term is as follows:

Ay _ (58783137961 28129¢* 19015¢ _138247¢% 12431 327985¢'2 _ 56393¢'*
Y47\ 72880 T 160 480 1152 15360 2048 73728 16384
725137¢' L (31697 23729¢> 237616t 8(1 — ¢2)3/2
_ . - - -2 log| ———=— | Ay%, + AyL¥, (4.5
262144 ) (6144 4096 16384) [yE+°g<1+,/—1_ez>} Vit Ayt (43)

Ayl* =

(_ 22161og(2)

15 5 15

+729log(3)> . (55384 log(2) 1020610g(3)>e2 . (_ 205917 log(2)

5 5

n 3620943 1og(3) n 1953125 log(S)) . <11518508 log(2) n 3995649 1og(3) 68359375 10g(5)> o

320 192 45 320 576
. (_ 1597223897 log(2) 199689627159 log(3) | 274244140625 log(5) | 678223072849 log(7)> .
1350 409600 442368 3686400
(27567693977 log(2) | 1474172887599 log(3) 71310546875 log(5) 678223072849 log(7)> 10
4500 512000 36364 307200
. (_ 39584616236117log(2)  2523359744732097log(3) | 1806540009765625 log(5)
1134000 458752000 445906944

6370099200

47628000

3211264000

7764365560282636910g(7)) 2 (779690481902037710g(2) 96876093468033783 log(3)
e -

173056322265625 log(5) 1313351173426101691log(7)> 14+< 1349495913968063023 log(2)
—_— —_— e —_—

3121348608

31850496000

2286144000

4453768818400690223110og(3) 13169562410995117187510g(5)

164416716800 1826434842624
9397785802951526436547 log(7)  81402749386839761113321 log(11) 16 (4.6)
97844723712000 4794391461888000 ¢ ’ '
628 268¢> 37¢*
Ayl = (22 ). 4.

Our result for the 4PN term is exceptional in one regard.
As mentioned in Sec. I C, we are able to exploit a feature
in the eccentricity expansion of the general-/ part of the
metric perturbation. At any given PN order, the eccen-
tricity expansion of the general-/ modes truncates at some
power, which depends upon metric component and PN

order but not /. The only contributions to higher powers
of e beyond this truncation point come from the (MST-
derived) specific-/ calculation. We used this feature to
calculate the 4PN term to much higher order in eccen-
tricity (e3°). The resulting eccentricity series gave us
another opportunity to look for additional closed-form
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expressions and infinite series with analytically recogniz-  expansion to see that the SPN log term is a polynomial. The
able coefficient sequences. While no additional such 5PN log term reappears in the SPN nonlog term. There is
functions were identified, we are providing the full  then a y-like grouping of terms that can be isolated in the
4PN term to ¢ in the online repositories [54,55]. 5PN nonlog function. There is a closed-form expression

The breakdown of the SPN term is similar. Once again,  identifiable that multiplies #°> and the remainder is a

we have enough information in the lengthy eccentricity  rational-number series,
|

19200 403200 * 134400 + 19200 * 161280 + 716800

2519343e12+482228861e14+25511929e16 5 2483157+21274445e2
40960 10321920 688128 8192 49152

A <48221551 048244847¢2  213024509¢*  6416801¢®  21598637¢%  61987887¢10
Vs = —

1392915¢*  322801¢° 123 8(1 — 2)*/?
- - ——(1-€*)?) =2 log| ————= | | Ay%, + Ayt +
65536 65536 2560 ) > [VE’* Og<1_+1/fff;7>] ws tApst. (48)

155894 1og(2) 31347log(3 45187061og(2) 44301331og(3) 9765625log(5
g = (158541og2) 31347003 (_ 08(2) , 08(3) , ot

105 28 105 320 1344
N (10376029310g(2)__316276651og(3)__385070312510g(5)>e4_+ (__7257966409log(2)
180 1792 16128 1512
__412866263889log(3)%_18575148437510g(5)+_9688901040710g(7)>e6<+ (136304974778310g(2)
286720 73728 221184 37800
1933163072532811og(3)  179678368984375log(5)  45846043635473910g(7)\ 4
11468800 - 12386304 a 44236800 )
12831673840577log(2)  722412475144074910g(3) ~ 8043417607578125 log(5)
* (_ 45360 B 91750400 148635648
355523097835854137log(7)\ ,, . (183330830280580517log(2) 805502573948046501 log(3)
3538944000 )e +’< 95256000 - 12845056000
__4229741298322656251og(5)__144244001651638647011og(7)>e12
4161798144 25480396800
45067595449194221111og(2)  4528120073662511265537 log(3)
(_ 444528000 1438646272000
__12939671783145268046875log(S)4717394718021348645585769log(7)
22373826822144 8153726976000
814027493868397611133211og(11)>el4_+ <817547426514490287533910g(2)
559345670553600 192036096000
__4877533447077960275860531og(3)4_82712912056911289660156251og(5)
23018340352000 1073943687462912
6796075855660208932297721 log(7)  1236467363350808533619347277 log(11)\
- 1174136684544000 - 402728882798592000 >e L (49)
11153 11341¢%  46467¢*  1119¢°
Ay = ( 35 715 T T80 560 > (4.10)

Like the redshift invariant, the first half-integer function appears at 5.5PN order. We find it to be a rational-number
infinite series, multiplied by an overall factor of #
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Aw? 49969 n 319609¢2 " 21280909¢* N 2619467¢°  5582939¢8 n 19566341¢'°
=T —
Vi 315 630 100800 362880 580608000 = 5806080000
1283076269¢'2  3498178499¢'4 4868320009201 ' )

- - . 4.11
2601123840000 _ 21849440256000  251705551749120000 (4.11)

At 6PN order we found a structure similar to 4PN and  log-transcendental number terms into a y-like series again.
5PN, but with some added complexity. Once again, we  Then, an added wrinkle is the appearance of a z* term
were able to find a closed-form expression for the (6PN)  (which is a polynomial in ¢) as well as a more complicated
log term, though it is not simply a polynomial. The 6PN log  closed-form expression multiplying z2. The remainder is,
term reappears in the 6PN nonlog function. We group the  again, a rational-number series. This breakdown is given by

A — <__1900873914203__465224579689e2__2021344615177e4__481812394033e6+908657975293e8
6 101606400 5080320 33868800 203212800 1625702400

115787009753¢10  63855468847¢'2  663864852377¢'4 2374455453716

164486400 | 371589120 | 5202247680 | 2378170368 "')
4(__7335303__146026515e2__17998485e4+679545e6>

131072 1048576 524288 ' 16777216
2{7254777827_F32034966215e2%_77315025809e4%_5875228633e6__326041715e8
2359296 2359296 9437184 12582912 33554432

21405 26549¢2 8(1 —e?)3/?

Ayl — K_ 56376491og(2) n 234009 1og(3) n 9765625 log(S)) <278347639log(2) 159335343 log(3)

630 70 9072 945 8960
__1719335937510g(5)> , <__6729813796910g(2)__616067621110g(3)%_207321118437510g(5)
145152 15120 4480 870912
96889010407log(7)>e4 (4534964054452910g(2) 31165257813381log(3)
248832 816480 1146880
182206079940625 log(5)  38708176568492910g(7)\ 558659555193209 log(2)
B 7962624 B 23887872 >e * <_ 816480
53870960843541log(3) ~ 61171359261321875log(5) = 2941586967973549491og(7)\ 4
B 262144 445906944 * 1194393600 )
84739776406073184110g(2) = 32809717319486013 log(3)  2422221742760078125 log(5)
( 122472000 1835008000 - 5350883328
2408276754022760847373 log(7)\ 16872974428064804681 log(2)
B 1146617856000 )e +'(_ 321489000
70254835449714281229310g(3)  10596237215626599434375 log(5)
51380224000 - 5393690394624
16313635952096120303239 log(7) ~ 81402749386839761113321log(11)\ ,,
1375941427200 134842259865600 >
44527790291197983392407 log(2)  796933093810646955107709 log(3)
* ( 144027072000 B 5754585088000
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110679665407920978635528125 log(5)

42403949775722831599753919 log(7)

2416373296791552 880602513408000
__1517633867070266584818991131og(11)>e14+ (__1066795518870736337912533log(2)
862990463 1398400 691329945600
561883567881441059477453079 log(3)  68528286383578337812136246875 log(5)
736586891264000 B 173978877368991744
18715907817618872220720781253 log(7)  624926196399309721148911875383 log(11)
126806761930752000 2718419958890496000
91733330193268616658399616009log(13)>6164_ .} “13)
8698943868449587200 ’ '
454397 2384929¢% 45143023¢* 50374815 238768 (146 37¢2
VoL = 3750 1890 30240 20160 960 <7§_+”_§_>(1"e%5p‘ (4.14)

The 6.5PN term is similar in form to the 5.5PN term, a

rational-number infinite series with an overall factor of =«

A = (_ 2620819 15866166312 3 5337465431¢* 3 273779628487¢5  23921441479¢8 3 2200323829¢'°
13/2 2100 235200 940800 406425600 5419008000 19267584000
6113757813097¢'2  200661326003101¢'* 3 13890607636693243¢!° . > (4.15)
655483207680000 = 48942746173440000  7047755448975360000 ' '

At 7PN order, there are additional complexities. Here, a
log? p term makes its first appearance and we find the
closed-form expression for that term. The 7PN log term
then inherits the general structure of the 4PN nonlog term.
It features a reappearance of the 7PN log? p term, a y-like
series grouping, and a remaining rational-number series.

p_ (_ 1282190594044678657

1316474014843y, 339660877

The 7PN nonlog term is the first appearance of a much
more complicated expansion, which features numerous
transcendental number terms. While we have calculated
it to e'®, it is sufficiently complicated that we only present
the first few coefficients here. The entire term is available
online [54,55]. The breakdown of the 7PN terms is

2565756150574972

Ay 7041323520000

341587582057x* 2783260080883 1og(2)

43659000

-~

1575 2477260800
51496967, log(2) 931328 log?(2)

1006632960 43659000
282123979047 log(3) 936036

vel

2888955324477314921

1575 1575

936036 46801810g2(3)  63488L(3)
175 log(2)log(3) - 175 T s

1075057978433y, 721950472

8624000 175
)<(

361328125 log(5)
4650828671778717% 3141655014117

2347107840000

4851000 525
23879821407291og(2) 79652512

24192
6606028800 335544320

log(2
8731800 35 reloe@)
15912612

80263696 log? (2) 29978248666047310og(3) 15912612
- - YE

175 275968000

log(3
175 02(3) + 72

log(2) log(3)
678223072849 log(7)  134944¢(3)

| 7956306 log(3) | 2411543359375 log(5)

113070994466917771

1472132397523y 162768472

&2
6082560 5
1927756649323 72

175 2838528
i

58677696000 4656960

105 18350080
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2301095517917 | 4388818385774297 log(2) | 1697626904 o2 3404199436 10g?(2)
263435456 349272000 55 reloe@)+ 525
2
157855§;i;§;§§710g(3)__262233089yE10g(3)__26233308910g(2)10g(3>__262324gizlog (3)
79056142845231251og(5) 1044921875y log(5) 1044921875 log(2) log(5)
a 1072963584 a 1008 B 1008
104492187510g2(5)  1107664826873969 log(7)
B 2016 B 109486080

+—30424C(3))e4-+--~, (4.16)

Ayl — (__1316474014843__1048904096833e2__6494255602463e4__2123271392639e6
v 87318000 9702000 46569600 55883520
1333068673¢%  148643207731¢'0  5888596871¢'2  204908923¢'*  63078518299¢!6
© 352800 88704000 5376000 258048 103219200 "')

4[ +log<8(1 - e2)3/2>]A P At (4.17)
—a|Y s Y Yar s .
e\ =) |y A

Aww:(_m%mmgm+%mmmg$>+Cﬁmu%mga_mﬁmm%60ﬁ
L 225 175 1575 175
N (__86509029210g(2)%26232408910g(3) 10449218751og(5)>e4+ <756162002210g(2)
525 800 2016 525
+_41817408310g(3)__1149414062510g(5)>66_+ <__2711211249304910g(2)
200 1512 283500

33913440542331910g(3) 23820561523437510g(5)+50798908156390110g(7) 8
7168000 4644864 27648000

(24384411885021og(2) 2457755729168913 log(3) 328215185546875log(5)

3375 N 7168000 1548288
__5079890815639011og(7)>e]0_+ <__27531157668664681log(Z)__6481474893571248729log(3)
1843200 4961250 8028160000
2822922907568359375log(5) ~ 923894982312713665731og(7)\ 5
4682022912 47775744000 >e
. (2093698965989936002110g(2)__17195625732384725084110g(3)__51078671817382812510g(5)
625117500 28098560000 16387080192
__1009210224594126146977log(7))Eﬂ4% <__4619194353324708185237log(2)
119439360000 30005640000
082128291923792960826417 log(3)  2383328610155127138671875 log(5)
14386462720000 - 134242960932864
18946304992805061334986887 log(7) 1053921396311414387134166987log(11)>616%_'“
733835427840000 251705551749120000 ’

(4.18)

849152 1804876¢* 406921e*  543667¢5 105938
1575 525 105 630 560

Ayl = — (4.19)

The 7.5PN term is a rational-number infinite series (multiplied by an overall factor of x), like the two half-integer
contributions before it
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Ay 2782895449 N 2404331748779¢> N 76598649855971¢* N 8047650291899¢°
Y1512 = "\ 72910600 279417600 6035420160 5267275776

5292862534207931¢®  279109475326162289¢!0  4713058120092455293¢!2
10534551552000 27811216097280000 2336142152171520000
959696950970026746929¢'*  25409776245923969873¢'6 >

523295842086420480000 37378274434744320000

(4.20)

The description of the breakdown in the 8PN eccentricity functions is essentially the same as what we said about the 7PN
terms just prior to (4.16). We still find a polynomial for the 8PN log? p term, albeit one order in e? longer. Because of the
complexity of the 8PN nonlog term, we give it only though e* and leave the full expansion though e'® to the online
repositories [54,55]. The 8PN spin-precession-invariant correction splits into

AP — (78550205239878250993769_ 1888832198890393y; 17730620872  56946027923173172
8 28193459374080000 15891876000 11025 123312537600
6238480838423337%  41942063811247log(2) 2720192y log(2) 520925728 log?(2)
T 21474836480 1059458400 11025 B 11025
_ 868469344973829l0g(3) | 59742279 log(3) | 59742279 log(2) log(3) N 5974227910g2(3)
3139136000 1225 1225 2450
8570767578125 log(5) 678223072849 log(7) 8616964’(3)) . (12590844685671737819611
96864768 92664000 35 939781979136000
3978068608616891y;  371280152y%  333102598649644637> 311180856138980537*
T 2648646000 2205 443925135360 257698037760
_ 88630614687481099 log(2) | 38342498672y log(2) | 7893208952 log?(2) | 812331139710343959 log(3)
7945938000 11025 1225 100452352000
621149553 621149553 62114955310g2(3)  196313675703125 log(5
~agg relos(3) — g log(2)log(3) - 1568 2 21697708032 =
3173828125y, log(5) 3173828125l0g(2) log(5) 317382812510g2(5) 55100101995388051 log(7)
h 7056 B 7056 B 14112 B 23721984000
_5551264§(3)> 2 <3657307066227250447201 _ 159538901113146521y; 39783765373
21 293681868480000 42378336000 1225
3840673640868521897%  4915898447923097x*  82885306824453137 log(2)
T 2059500002400 85899345920 54486432000
246163497086y log(2) 482425731551 10g2(2)  1633836448648669833910g(3) 15151367601y log(3)
a 4725 B 4725 - 200904704000 + 78400
_ 456484805199 log(2) log(3) , 15151367601 log?(3)  12490894332540370625 log(5)
78400 156800 130186248192
2022790234375y log(5)  20227902343751og(2) log(5) 2022790234375 log?(5)
84672 84672 169344
16777483050927098843 log(7) 17811754C(3)) . @21)
142331904000 35 ’ '
AP — (1884153630595993+386600151107449lez+ 140691202491074201e4+8446543158422249e6
8L 31783752000 5297292000 84756672000 9246182400
2393628746500801¢8 N 8815849170404069¢1° N 37201967185037¢!2 N 5703127370959¢ 14
16951334400 226017792000 1549836288 338688000
16 _ 2\3/2
SO Y e (B s vk o
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2205 2450 1575 1568 + 14112
883055473063 log(2) 151513676011og(3) 2022790234375log(5)\ ,
33075 156800 169344

| 97353356061141og(2) 2983923884637 log(3) | 2682838643359375log(5)
33075 28672 16257024

8816899947037 10g(7) 6 233101922681240591og(2) = 302771958934455009 log(3)
331776 ¢ 7938000 200704000

156689829056640625log(5) 299112464634116791 log(7)> 5y
- - e

Al = <70650464 log(2) 59742279 log(3)> (_ 2208349688 10g(2) n 62114955310og(3) 3173828125 log(5)> 5

130056192 331776000

44326552 n 92820038¢? n 397837653¢* n 155002853¢° n 3326845878 3 100899¢1°
11025 2205 4900 4410 141120 6272

AW§L2 =

B. Spin-precession invariant as an expansion in y
The compactness parameter 1/p is easily related to e and the alternative compactness parameter y, written as a PN
expansion. That relationship allows (4.1) to be recast as an expansion in y

y

Ay = Ayy + Aysy® + Ay’ + (Ayy + Ay, log y)y* + (Ays + Ays; log y)y® + Ay, oy /2
+ (A + Ay, 1og y)y® + Ay 0y + (Ays + Ay, logy + Ay, log? y)yT + Ay py'2
+ (A + Ay, logy + Ayrg;, 1027 y)y* + (Ayry; , + Ayry; , log y)y' 772
+ (A + Ay, logy + Ay, log? y)y? +---. (4.25)
Again, the entire right-hand side should be viewed as multiplied by a factor of 1/ M. Because of the reparametrization, many

of the functions Ay (e) differ from their analogs Ay? (e) in the prior subsection.
The first three terms differ from (4.2)—(4.4) but still have simple closed forms

Ay} =, (4.26)
(9
Ay) — 0 32 4.27
vi-fmar (173 2
AY? 1 819 123ﬂ2+ , (173 1237%\ 15¢* 5 (4.28)
= — _— e - - - . *
BT a-ep\16 T 64 16~ 256 2 ) (-

Note the appearance of eccentricity singular factors of increasing power.
The rest of the terms closely mirror their counterparts in the 1/ p expansion. We will refer the reader back to the previous
subsection for discussion. The 4PN terms are similar in form to those in (4.5), (4.6), and (4.7)

Ay’ — 1 587831 827812 99259¢4 + 15821 100147¢8  10451¢!0
Ya = =\ 2880 160 480 1152 15360 2048
3 291445¢12 B 51573 B 6749170 n 2 31697 n 23503¢2 n 23471e*
73728 16384 262144 (1 — e2)4 6144 4096 16384
8(1 — e !
+2{”“"g<1+(¢7$ﬂ%“‘”’ (4.29)
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T {(729 log(3) 221610g(2)> <55384 log(2) 10206 10g(3)) 5 <3620943 log(3)
Ve = 2\4 - + - e+ \—=0
(1—e?) 5 15 15 5 320
_205917log(2) | 1953125 10g(5)> b (1 1518508 log(2) | 3995649 log(3) _ 68359375 10g(5)> e
5 192 45 320 576
274244140625 log(5) 1597223897 log(2) 199689627159 log(3) 678223072849 10g(7)\ 4
( 442368 B 1350 B 409600 3636400 >
27567693977 log(2) = 147417288759910g(3) 71310546875 log(5) 678223072849 log(7)
( 4500 512000 - 36364 B 307200 )
o0 s <_ 3958461623617 log(2) _ 2523359744732097 log(3) | 1806540009765625 log(5)
1134000 458752000 445906944
7764365560282636910g(7)\ |, = (7796904819020377log(2) 96876093468033783 log(3)
6370099200 )e i ( 47628000 B 3211264000
_ 173056322265625 log(5) _ 1313351173426101691 10g(7)> b (_ 1349495913968063023 log(2)
3121348608 31850496000 2286144000
44537688184006902231l0g(3)  131695624109951171875 log(5)
164416716800 B 1826434842624
9397785802951526436547 log(7) | 81402749386839761113321 log(1 1)> 6 ] (430)
97844723712000 4794391461888000 ’ '
Ay =¥(@+26862+ie4> (4.31)
(=) 15 5 10 ) '

The polynomial part of the 4PN log term is identical to that in (4.7), reflecting its nature as a leading-logarithm term. Like

the 4PN term in the 1/p expansion, we also calculated this term in the y expansion to ¢°, and that entire dependence is
reproduced in the online repositories [54,55].
The 5PN terms mirror those in (4.8), (4.9), and (4.10),

1 48221551 218002469¢2  554849699¢*  15403763¢°  45454391¢8
1 — )3 (_ 19200 134400 134400 9600 | 215040
175906613¢'0  9382421¢'?  147111571e'*  736852183¢!°

1075200 | 81920 | 1720320 ' 11010048 >

Al//’g:(

7 [2719317  6391663¢2  1142291¢* 2236976 2y (7503 8612
-y { 3102 T 16384 65536 65536 ) (ﬁJFW)}
2
+2 {yE +log (11(1\/7%” Ayl + Ayl?, (4.32)
vy 1 [ <155894log(2) 3134710g(3)> ( 2929741o0g(2)  811377log(3)
Ay* = 3 - + | - +
(1-¢?) 105 28 7 64
9765625 log(5)>ez N <98443429 log(2) _11825109log(3) 3850703125 log(5)> .
1344 180 8960 16128
179751484375 log(5) 33799060013 log(2) 438821183313 log(3) 96889010407 log(7)\
< 73728 B 7560 B 286720 221184 )
(1285645374023 log(2) | 192170674772001 log(3) _ 167918368984375 log(5)
37800 11468800 12386304
_ 458460436354739 log(7)> . (_ 62011700285317 log(2)  6866280939571821 log(3)
44236800 226800 91750400
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7306249357578125log(5)  350314344636373817 10g(7)> o104 (17866240671 1739429 1og(2)

148635648 3538944000 95256000
1101374969180716197 log(3) ~ 358568725832265625log(5)  13974363888728765053 log(7)\ |,
B 12845056000 B 4161798144 B 25480396800 )e
N (__4382622188402959199log(2)%_459142612293835011507310g(3)
444528000 1438646272000
4554943798461756015625 log(5) ~ 16599646987975703567209 log(7)
- 7457942274048 8153726976000
81402749386839761113321 log(11)\ ,, ~ (7923977303302581594827 log(2)
559345670553600 )e *’( 192036096000
482198082003965098333701 log(3) . 8271767545294840966015625 log(5)
- 23018340352000 - 1073943687462912
__640875283440277043040152910g(7)__1236467363350808533619347277log(ll))€ﬂ6%...] (433)
1174136684544000 402728882798592000 ’ '
4 6
A@L:—UJ8P<%§3+MBML+M§36+J?£e> (4.34)

The polynomial part of the SPN log term differs from that in (4.10), as expected since it is a 1PN-log (i.e., a 1PN correction
to a leading log) [4].
The 5.5PN (first half-integer PN) term is similar to its 1/p expansion (4.11)

Ay P 49969_%3196O9e2+_21280909e4%_2619467e6 5582939e8+19566341e10
Yur = —2nn\ 315 630 100800 362880 580608000 5806080000

1283076269¢'> 34981784994 4868320009201¢'6 )

2601123840000 2184940256000 ' 251705551749120000 (4.35)

The 6PN term splits into parts that mimic (4.12), (4.13), and (4.14) in the 1/p expansion of the 6PN term, with the
exception of the appearance of eccentricity singular factors

1 1900873914203  327006360319¢  1043250935257¢*  5158311322393¢6
1-e2yi<" 101606400 5080320 33868800 203212800
14506405082507¢8  869231282527¢'0  86093410741¢'2  4056226220383¢'*  1350712174045¢'6
© 1625702400 464486400 74317824 5202247680 2378170368 )
* 7335303 146026515¢>  17998485¢*  679545¢5 P 215485
(1-e2yi<_'131072 1048576 524288 +16777216>+(1--e2)6K 6144
1156631e2+_280939e4>(1__ezp/z%_7147373027_F24774167687e2+_38112094481e4
8192 8192 2359296 2359296 9437184

7266864217¢° | 445428621¢F) O f L B(1=eh) N
12582912 ' 33554432 TET OB\ TS ) | e T AV

Awé=(

+

A — 1 {(__563764910g(2)%_234009log(3)+_97656251og(5)> +}<3823825310g(2)
6 (1=e?)° 630 70 9072 135
__180755551og(3)__171933593751og(5)>62_+ (__1244564364510g(2)__653301150310g(3)
1792 145152 3024 4480
2009929934375 log(5) 96889010407log(7)> iy <831621416158110g(2) 30954590856837 log(3)
870912 248832 163296 1146880
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__11559702595843751og(5)__3870817656849291og(7)>e6+ (__52594133409392910g(2)
55738368 23887872 816480
17516225701126711og(3) ~ 51404505486321875log(5)  288926690235376949 log(7)\
N 9175040 445906944 1194393600 )
808070130394854601 log(2)  254004783448418307 log(3)  1753181559747578125 log(5)
( 122472000 N 1835008000 N 5350883328
__22945067170295073696131og(7)>elo_+ <__16027246190731123427log(2)
1146617856000 321489000
738364400868241156581log(3)  13119943727175549434375 log(5)
51380224000 N 5393690394624
1501527984963182690607110g(7)4_8140274938683976111332110g(11)>e]2
1375941427200 134842259865600
41914674050681714318023 log(2)  791847483991723599711741 log(3)
* ( 144027072000 N 5754585088000
112698947723278715435528125 log(5)  37760848394198321304112319 log(7)
2416373296791552 - 880602513408000
__151763386707026658481899113log(11)>éﬂ4<+ <__500233684185564866082487710g(2)

8629904631398400 3456649728000

539059140139095745481254167 log(3) _ 67491579530903875816811246875 log(5)
736586891264000 173978877368991744
162030693043652518421290220211og(7) =~ 620970022779109308758804474783 log(11)

126806761930752000 + 2718419958890496000
91733330193268616658399616009 10g(13)> 16, ]
e DT s

8698943868449587200

(4.36)

Ay, =
Yo =1 3780 | 1890 | 30240 | 20160 ' 6720
1 12998  5251¢*  333¢*

2)9/2 :

(1—e 5 5 s

1 (_3619517 2086379¢%2  236556689¢*  67767047¢° 77753368>
1 —e?)°

+

(4.37)

The 6.5PN term is a rational-number infinite series similar to that in the 5.5PN term and the 1/p expansion 6.5PN term
(4.15), except for a higher power eccentricity singular factor

Ay P 2620819 5991086053¢> 31762727813¢*  243526100891¢®  1219109013163¢*
Visp = (1 = 2yBr 2100 705600 2822400 81285120 16257024000

4383296599¢'0  18184820155799¢'2 +93245463971129el4 1478510613681403¢!6 n
520224768000  655483207680000 ~ 9788549234688000 7047755448975360000

(4.38)

The 7PN term reflects the split seen in (4.16), (4.17), (4.18), and with a new 7PN log? y term like (4.19)

Apy — L [1282190504044678657 1316474014843y, 33966087} | 25657561505749x°
1= 1= ey 7041323520000 43659000 1575 2477260800

341587582057x" | 2783260080883 10g(2) 51496967 log(2) _931328l0g*(2)  63488C(3)
1006632960 43659000 1575 1575 15
282123979047 log(3) 936036 936036 468018log?(3)
_ log(3) — log(2) log(3) — 220221087 10)
8624000 175 re1og(3) = =7 log(2) log(3) 175
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361328125 log(5) <_ 2138140154533483481 1128946342193y, 721950412

24192 2347107840000 | 4851000 525
1634723525682712%  5395060095712* 3277934193257 log(2) 79652512
6606028800 | 335544320 8731800 ~ 35 relel?)
2
~ 8026361976510g (2) 30618522;)55922;353 log(3) , 15911725612 v log(3) + 15911725612 log(2) log(3)
7956306l0g%(3) 1017804296875 log(5) = 678223072849 log(7)  134944((3)
A T 1216512 6082560 5 )e
188303307112006921 8205409254671y, 16276843 284988930507 17>
(_ 234710784000 | 23284800 105 55050240
2184839022897*  3490527652132457 log(2) 1697626904 3404199436l0g?(2)
268435456 349272000 525 reloe@)+ 525
2
1579272;31961 55557 log(3) 2623(2)3089 o log(3) - 262333089 log(2) log(3) — 262324(8)§glog (3)
661438203452312510g(5) 1044921875y log(5) 1044921875 log(2) log(5)
B 1072963584 B 1008 B 1008
1044921875log2(5)  1107664826873969 log(7
- oo e _ 9286080 el )+3O424C(3)>e4+~-~], (4.39)

Ayl — 1 1316474014843 n 1113254013233¢2 + 7684310037263¢* n 1050560559599¢° 217198050838
VL= =27\ 87318000 9702000 46569600 55883520 1411200
52587594569¢'0 18154760712 n 501487361 " 37402636549¢'6
88704000 5376000 1290240 103219200
8(1-¢%) .

ApE — 1 602624 log(2) 468018 log(3) L (_15581425610¢(2) 7956306 log(3)\ ,
T (1=e?) 225 175 1575 175

. (86509029210g(2) 262324089 log(3) 104492187510g(5)> 4+< 7561620022 log(2)
— — e —

525 800 2016 525
418174083 log(3) 11494140625 log(S)) . <27112112493o49 log(2)
— e

200 1512 283500

3391344054233191og(3) 2382056152343751log(5) 507989081563901log(7)\
7168000 4644864 27648000

| (_243844118850210g(2)  2457755729168913log(3) | 328215185546875 log(5)
3375 7168000 1548288

507989081563901 log(7)> 0, <27531157668664681 log(2) 648147489357124872910g(3)
e

1843200 4961250 8028160000
_2822922907568359375 log(5) _92389498231271366573 log(7)) o2
4682022912 47775744000
n <_ 20936989659899360021 log(2) n 171956257323847250841 log(3)
625117500 28098560000
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5107867181738281251log(5)  1009210224594126146977 10g(7)> Q14

16387080192 119439360000
4619194353324708185237log(2)  982128291923792960826417 log(3)
30005640000 14386462720000
2383328610155127138671875log(5)  18946304992805061334986887 log(7)
134242960932864 733835427840000
1053921396311414387134166987 log(11
_ 105392139 987 1og(11)Y 16 ... (4.41)
251705551749120000
Ayt -] 849152 1804876¢> 406921e* 543667¢°  10593¢® (4.42)
Vi =y 1575 525 105 630 560

Since the 7PN log? y term is the next appearance of a leading log, its polynomial part is the same as that in (4.19).
Like (4.20), the 7.5PN term is a rational-number infinite series (times a factor of x), but carries an eccentricity singular
factor in its y expansion

Ayl — 7 2782895449 n 5474927197931 N 2889497460734527¢* n 14129642056150403¢°
Visp = (1 —¢2)15/2\ " 2910600 279417600 30177100800 131681894400

264436406564274949¢8  4865872318328300473¢'"  31810210018353273131¢!2

10534551552000 + 3973030871040000 + 93445686086860800
19417529285629606991939¢!*  30282407545500635935687 ¢! )

104659168417284096000 + 261647921043210240000 (4.43)

The breakdown of the 8PN term is discussed prior to the presentation of (4.21), (4.22), (4.23), and (4.24). As mentioned
there, the 8PN nonlog term is too complex to recite in its entirety here, and its complete form is relegated to the online
repositories [54,55]. We find

Aw’ 1 78550205239878250993769  1888832198890393y 1773062087%
U 2\8 -
(1-¢%)

28193459374080000 15891876000 11025
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520925728log?(2)  86846934497382910g(3) 59742279y log(3)  5974227910g(2)log(3)
a 11025 h 3139136000 1225 1225
5974227910g>(3)  8570767578125log(5)  67822307284910g(7) 861696 (3)
2450 96864768 92664000 Y )
237475489990768636607921  14786129411817037y;  2189268344y2  270260435561795257 x>
( 14096729687040000 7945938000 11025 739875225600
__10607716992396567ﬂ4__9330704410744922310g(2)%_7769433776y510g(2)*_71130150712knf(2)
85899345920 7945938000 2205 11025
152737472062641771log(3) 14061034377y log(3) 14061034377 log(2)log(3) 14061034377log?(3)
20090470400 a 19600 B 19600 h 39200
12962514164062510g(5) 3173828125y, log(5) 3173828125log(2)log(5) 3173828125log?(5)
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-

68813273776486435836697

23721984000 35 2349454947840000
277281064009878713y;;  1901024351y%  37106879266888015017%  60402662165999617*
B 42378336000 3675 2959500902400 85899345920
38415494517661133log(2) 229436469566y, log(2)  45208605446310g2(2)
a 4953312000 h 4725 a 4725
13361781707223294483 log(3) 84652534863y log(3) 556288707663 log(2)log(3) 84652534863l0g?(3)
B 200904704000 Bl 78400 B 78400 a 156800
136144782434216206251og(5) 2022790234375y log(5) 2022790234375 log(2) log(5)
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2022790234375l0g>(5) 165552971722617664431og(7)__31036266g(3)>e4_+___] (4.44)
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C. Discussion

By extending the calculation of the spin-precession
invariant to a high order (e'®) in eccentricity, the expansions
presented in the previous two subsections, when viewed by
PN order, reveal eccentricity dependence that has parallels
with that seen in the energy and angular momentum fluxes
[2-4] and in the redshift invariant [6]. The first three PN
orders are closed in form and were found previously [18]. It
is at 4PN to 9PN that our work makes new contributions. At
4PN order the first appearance of a logarithmic term [18]
occurs. Not surprisingly given past experience and the fact
that the 4PN log term is a leading log [2], we find it also has
a closed-form expression.

14700

4410 141120 31360

)

(4.46)

The 4PN log function then reappears in the 4PN nonlog
part when we regroup, or resum, that term. This is not
merely a trivial exercise, since the occurrence of the 4PN
log term in the nonlog part gathers together all of the
dependence that is logarithmic in the eccentricity as well as
the appearance of the Euler-Mascheroni constant yg. This
regrouping is directly analogous to what proved possible
in the redshift invariant [6] and the fluxes [1,3]. Next, once
terms are grouped on 7%, we see another closed-form
function of e emerge.

The remaining transcendental numbers in Ay, which we
group into a term called Ay”, have a form that resembles the
3PN energy flux function y(e) [2,56]. The coefficients in
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x(e) can be calculated to arbitrary order [15]. We showed
previously [6] a special function [Ag(e)] that provides
complete knowledge of the analogous y-like function in
the 4PN redshift invariant. It is possible that PN theory
analysis might reveal a similar special function for Ay that
is based on the Newtonian quadrupole moment power
spectrum [2], but we have yet to find it. Note that in the
y-based PN expansion, an eccentricity series that appears to
converge as ¢ — 1 can be isolated from Ay?%, by pulling out
the function —3 log(1 — e?)Ay,; . Isolating this additional
logarithmically singular in the 1 — ¢ term (i.e., beyond the
usual algebraic eccentricity singular factors) was a procedure
first learned in working with the fluxes and redshift (see
[2,15] for more information). What remains in the 4PN
nonlog term is (apparently) an infinite series with rational
coefficients. It is surprising that this part could not (yet) be
manipulated into a closed form, as was possible in the fluxes
and redshift invariant.

At 5PN and 6PN we again found closed-form expres-
sions in the log parts. Once the log terms are known, they
assist in allowing the SPN and 6PN nonlog parts to be
segregated into important functional groupings like that
found at 4PN, though with increasing complexity.

100 T T T T
p=10, e=1/10

Series
1/p Orig

10k 1lp Log

— — 1/pRecip

0.100

Fractional error

0.010

0.001

0.100

0.010

0.001

Fractional error

1074

1075

10-© L

PN Order

FIG. 1.

7PN order marks the first appearance of a log> y, making
it the next term in the (integer-order) leading-log sequence.
This Ay4;, term is also found to be closed in form. The
connection between Aw,;, and Ay, then is seen to
closely mirror the connection between Ay, and Awyy.
This is exactly analogous to what occurs in the redshift
invariant at 7PN order (see [6] for the connection in the
redshift invariant and [2] for a detailed description of
leading-logarithmic terms in the fluxes).

Finally, we note that half-integer contributions begin at
5.5PN order, an infinite series with rational-number coef-
ficients. This contribution marks the first term in the half-
integer leading-log sequence. The next two half-integer PN
terms (6.5PN and 7.5PN) are likewise series with rational
coefficients. The next half-integer contribution after that, at
8.5PN order (found in the repositories [54,55]), contains a
log term, which is expected of the second element in the
half-integer leading-log sequence.

D. Comparison to numerical data on close orbits

The usefulness of these high-order PN expansions in
reaching into the high-speed, strong-field regime can be
assessed by comparing their numerical evaluation to the

100 T T T T
p=10, e=1/4

0.100

Fractional error

0.010

0.001

10

0.100

0.010

0.001

Fractional error

1074

1075

PN Order

Accuracy of the spin-precession invariant PN expansion and its resummations for several individual orbits. The numerical

values of our redshift expansion are plotted against data from [18] for the orbits (p = 10,e =1/10), (p =10,e = 1/4),
(p =20,e =1/10), and (p = 20,e = 1/4). Within each plot comparisons are made for both the 1/p and y expansions, both with
and without the use of logarithmic and reciprocal summations. Note the changes in vertical scaling in the bottom two plots.
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FIG. 2. Accuracy of the spin invariant PN expansion with increasing e. The (simple) 1/p expansion is compared to numerical data for
the e values 0.05 to 25 at 0.05 intervals (plots are made continuous for clarity) for both p = 10 and p = 20.

numerical spin-precession invariant data given in the
extensive table (Table II) of [18]. We compare both our
1/p and y PN expansions, along with a few additional basic
resummations applied to each. For example, see [1,57,58]
on creating one PN series from another, like reciprocal and
exponential resummation. Our results for a pair of orbital
sizes, p =10 and p = 20, and a pair of eccentricities,
e = 0.1 and e = 0.25, are provided in Fig. 1.

All of the series exhibit fairly strong convergence for the
case p = 20, reaching a fractional error better than 107> for
both e = 0.1 and e = 0.25 using 9PN terms. The dataset in
[18] is restricted to e < 0.25, limiting our ability to test the
expansions at higher eccentricities. The experience with
numerical comparisons of the redshift invariant [6] suggests
that our series will remain viable up to e ~ 0.5 at p = 20.
At the closer separation of p = 10 the convergence is
markedly slower, attaining relative errors near 1% at both
e = 0.1 and e = 0.25. This observation is consistent with
the analysis in [20], who showed that the series is expected
to diverge at a larger radius than the redshift invariant (i.e.,
at the separatrix, as opposed to the light ring). Moreover,
the basic resummation methods we have tried have not
substantially improved the convergence.

Figure 2 shows how the fractional errors behave versus
eccentricity e when using a set of series that have been
truncated at different PN orders. We see that knowledge
gained from our calculation of the spin-precession invari-
ant through e'® provides series that converge uniformly
over a range of eccentricity through e = 0.25. The curves
strongly suggest that our PN series will remain accurate
as e — 0.5 or more. The current version of our code could
reach higher PN order but at the expense of reducing the
order of the expansion in e, for example perhaps reaching
12PN and ¢'°. In any event, if we consider the task of
modeling EMRIs, conservative dynamical effects are
suppressed by a factor of the mass ratio relative to the
secular effect of the gravitational wave fluxes [28]. Thus,
our present depth of PN expansion of the spin-precession

invariant is likely adequate for giving its contribution to
EMRI dynamics.

V. CONCLUSIONS

We have presented the PN and eccentricity expansion of
the spin-precession invariant y at first order in the mass ratio
for a point mass in bound eccentric motion about a
Schwarzschild black hole. The RWZ formalism is used,
calculating the metric perturbation and self-force in Regge-
Wheeler gauge. The calculation is completely analytic, using
a Mathematica code and drawing upon the analytic PN
expansion of the MST formalism and the general-/ expan-
sion ansatz of [10,14]. The construction and regularization of
the spin-precession invariant follows methods used by [18—
20], as well as simplifications of the eccentricity dependence
developed in our previous work [1,6]. We have computed the
spin-precession invariant to 9PN (which has been done
before [20,21]) but have calculated the eccentricity expan-
sion to e!'® (with one exception, 4PN, which is calculated to
¢3%), far beyond the order ¢ results previously known.

The high-order eccentricity expansions led to the dis-
covery of five new closed-form expressions, for Ay,
Aysp, Ayer, Ayqr,, and Ayg;,. In addition, we were able
to use the methods developed in our past work on the
gravitational wave fluxes [2—4] and the redshift invariant
[6] to segregate the eccentricity dependence of many of the
other PN terms into significant functional parts and to
identify eccentricity singular factors that aid convergence in
the ¢ — 1 limit. The PN series results were compared to
prior numerical calculations, and shown to exhibit frac-
tional errors in convergence of around 107> for orbital
separation of p = 20 and of around 1072 for p = 10.

The expansions of Ay could be extended further. The
bottleneck step in the calculation is the expansion of the
general-/, even-parity normalization constant C}, , which
requires about 7 days on the UNC Longleaf cluster to reach
10PN (relative) order and ¢?°. Beyond simply committing
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more resources or finding a faster cluster, intermediate
expansions, which sacrifice PN order for higher order in
eccentricity or vice versa, can be obtained immediately and
may be useful. As we described, by focusing on one PN
order (4PN), we were able to push the eccentricity
expansion to e,

It will be useful now to translate these expansions to their
equivalent quantities within the EOB formalism. EOB
waveforms have been crucial to the success of LIGO data
analysis and will likely contribute to deciphering LISA
detections. The spin-precession invariant in first-order self-
force calculations can be transcribed to yield portions of
the EOB gyrogravitomagnetic ratio gs.(1/7;p,; p,). by
extending a procedure described in [19]. However, the

process is lengthy, with each new order in e’ requiring
cumbersome derivations, and we leave that process for
future work.
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