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We calculate the eccentricity dependence of the high-order post-Newtonian (PN) expansion of the spin-
precession invariant ψ for eccentric-orbit extreme-mass-ratio inspirals with a Schwarzschild primary. The
series is calculated in first-order black hole perturbation theory through direct analytic expansion of
solutions in the Regge-Wheeler-Zerilli formalism, using a code written inMathematica. Modes with small
values of l are found via the Mano-Suzuki-Takasugi analytic function expansion formalism for solutions to
the Regge-Wheeler equation. Large-l solutions are found by applying a PN expansion ansatz to the Regge-
Wheeler equation. Previous work has given ψ to 9.5PN order and to order e2 (i.e., the near circular orbit
limit). We calculate the expansion to 9PN but to e16 in eccentricity. It proves possible to find a few terms
that have closed-form expressions, all of which are associated with logarithmic terms in the PN expansion.
We also compare the numerical evaluation of our PN expansion to prior numerical calculations of ψ in close
orbits to assess its radius of convergence. We find that the series is not as rapidly convergent as the one for
the redshift invariant at r ≃ 10M but still yielding ∼1% accuracy for eccentricities e≲ 0.25.
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I. INTRODUCTION

In a set of recent papers, we have presented high post-
Newtonian (PN) order analytic expansions of black hole
perturbation theory (BHPT) and gravitational self-force
quantities at first order in the mass ratio ε ≪ 1 for extreme-
mass-ratio inspiral (EMRI) binaries in bound eccentric
motion about a Schwarzschild black hole. In each case,
these results are double expansions in PN order and in
powers of the eccentricity e. This work included study in
the dissipative sector of gravitational wave energy and
angular momentum fluxes radiated to infinity [1–4] and
fluxes radiated into the horizon [5] and study in the
conservative sector of the redshift invariant [6]. The method
involves using the Regge-Wheeler-Zerilli (RWZ) formal-
ism [7,8] and making analytic function expansions using
the Mano-Suzuki-Takasugi (MST) formalism [9] and a
general-l ansatz to find expansions of the mode functions.
The metric perturbations and self-force are derived in the
Regge-Wheeler (RW) gauge and mode-sum regularization
is used. A sampling of other applications that have used this
procedure include [10–16].
This paper applies those techniques to another gauge-

invariant quantity, the spin-precession invariant. This
invariant, ψ , quantifies the geodetic precession of a weakly
spinning (test) gyroscope attached to the smaller mass as it
is parallel transported during its orbital motion. The test-
body limit of the geodetic precession is well known. We are

concerned with the first order in ε correction to ψ , Δψ ,
induced by the small but finite mass of the secondary. For
an eccentric orbit, ψ is defined as the fractional preces-
sional angular advance Ψ, per azimuthal angular advance
Φ, accumulated over one radial libration. The calculation of
Δψ bears some similarities to that of the redshift invariant,
as they both depend on the metric perturbation at the point
mass location. As discussed in [6,16], the PN order of
individual modes of the local metric perturbation does not
increase with l, which means that the mode functions and
metric perturbation must be calculated for arbitrarily high l.
This general-l complication is handled by utilizing a PN-
expansion ansatz solution to the RWequation valid for all l
above the target PN order [6,10–12,14,16].
CalculatingΔψ presents new challenges. One is the need

to calculate the (conservative) self-force itself. (In contrast,
the redshift invariant only required the metric perturbation.)
Calculation of all of the metric perturbation components
and the components of the self-force is roughly an order of
magnitude more computationally costly than the effort
involved in finding the redshift invariant. Furthermore, the
self-force is gauge dependent. Fortunately, the regulariza-
tion is performed on the l modes of the spin-precession
invariant itself, extracting the gauge-invariant result
directly. However, the mode-sum regularization procedure
in this case requires two regularization parameters in order
for the mode-sum to converge.
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The spin-precession invariant was originally calculated
for circular orbits in [17], both numerically and as a full
arbitrary-mass-ratio PN expansion to 3PN absolute order.
[Note that in contrast to previous papers on fluxes, where
we referred to relative PN orders, here we connote PN order
with the power of the PN compactness parameter (y or 1=p)
appearing in the expansion of Δψ , as is conventional in
papers on the spin invariant.] The spin-precession invariant
was previously found [14] to 21.5PN in the circular-orbit
limit using BHPT analytic expansions. In the eccentric-
orbit case, results were found both numerically and as a
3PN expansion in [18]. Note, that the circular-orbit quantity
Δψ circ is not the same as its eccentric-orbit counterpart
Δψ ecc when the latter is taken in the limit e → 0. The
eccentric-orbit definition relies on angular changes accu-
mulated over one radial libration. In the limit as e → 0,
apsidal advance becomes indistinguishable from azimuthal
advance but the difference in these definitions involves the
order ε correction to the apsidal advance. The calculation
of the eccentric-orbit version was separately found [18] to
9.5PN. The Oðe2Þ correction was then computed to 3PN
in [18], to 6PN in [19], to 9PN in [20], and then to 9.5PN
in [21]. The present work finds Δψ to 9PN but takes the
eccentricity expansion to e16, breaking away from the
nearly circular orbit limit.
Conservative quantities like the spin-precession invariant

supply crucial terms in effective-one-body (EOB) poten-
tials [13,16,19,20,22–27]) and also contribute directly to
the EMRI cumulative phase at post-1 adiabatic order [28].
A procedure is described by [19] for translating the
expansion ofΔψ to the EOB gyrogravitomagnetic potential
gS�ð1=r; pr; pφÞ, thus informing the spin-orbit sector of
EOB dynamics. The spin-precession invariant expansion
in this paper can be transcribed to EOB form to enhance
further the knowledge of the spin-orbit part.
The structure of this paper is as follows: In Sec. II we

briefly outline (i) the setup of the orbital motion problem,
(ii) the MST formalism for computing solutions and PN
expansions of specific l modes, (iii) the procedure for
finding general-l parts of the expansion, and (iv) the
calculation of the (local) metric perturbation. Section III
(i) defines the spin-precession invariant, (ii) describes the
background tetrad and how to calculate the precession,
(iii) summarizes how the first-order correction to the spin
precession is computed with a definition that is gauge
invariant, and (iv) how mode-sum regularization is applied
to the spin invariant. Then, the results of our calculations
are presented in Sec. IV, first as a PN expansion in the
compactness parameter 1=p and second as an expansion
in the PN parameter y. Our expansions are also evaluated
numerically at a pair of close orbital separations and
compared to prior numerical calculations. Section V con-
cludes with summary and outlook.
Throughout this paper we choose units such that

c ¼ G ¼ 1, though η ¼ 1=c is briefly reintroduced for

PN-expansion bookkeeping purposes. We use metric
signature ð−þþþÞ. Our notation for the RWZ formalism
follows that found in [3,15], which in part derives from
notational changes for tensor spherical harmonics and
perturbation amplitudes made by Martel and Poisson
[29]. For the MST formalism, we largely make use of
the discussion and notation found in the review by Sasaki
and Tagoshi [30].

II. FORMALISM FOR BLACK HOLE
PERTURBATIONS AND POST-NEWTONIAN

EXPANSIONS

A pair of recent papers [1,6] outlined our approach to
calculating the first-order metric perturbation for eccentric-
orbit nonspinning EMRIs and PN expanding regularized
quantities. The more recent paper used the technique
to derive the high-order PN expansion of the redshift
invariant. For our present purpose, in calculating the
spin-precession invariant, and to set the notation, we briefly
recite in this section the calculational approach. See [1,6]
for further details.

A. Bound orbits and PN compactness parameters

The secondary is treated as a point mass μ in bound
geodesic orbit about a Schwarzschild black hole of massM,
with ε ¼ μ=M ≪ 1. We use Schwarzschild coordinates
xμ ¼ ðt; r; θ;φÞ that produce the line element

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð2:1Þ

with f ¼ 1–2M=r. Restricting the motion to the equatorial
plane, the four-velocity is

uαðτÞ ¼ dxαpðτÞ
dτ

¼
�
E
fp

; ur; 0;
L
r2p

�
; ð2:2Þ

where E and L, the specific energy and angular momentum,
are constants of the motion and the subscript p indicates
evaluation along the worldline of the particle. The orbital
motion is reparametrized using Darwin’s parameters
ðχ; p; eÞ [31–33], connected by

E2 ¼ ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ ; L2 ¼ p2M2

p − 3 − e2
;

rpðχÞ ¼
pM

1þ e cos χ
: ð2:3Þ

Here p is the semilatus rectum and its reciprocal 1=p serves
as one choice for a PN compactness parameter. In the
Darwin parametrization, one radial libration corresponds to
2π advance in χ. Motion in the other three coordinates,
along with proper time τ, are found by integrating ordinary
differential equations (ODEs) in χ [32,34]. Most of these
equations of motion can be initially PN expanded and then
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integrated analytically order by order. For example, the
radial period is found from the following integral:

Tr ¼
Z

2π

0

rpðχÞ2
Mðp − 2 − 2e cos χÞ

� ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

�
1=2

dχ;

and it is immediately clear how the integrand may be
expanded in powers of 1=p, resulting in a series of
elementary trigonometric integrals. From that expansion
then follows an expansion for the radial frequency,
Ωr ¼ 2π=Tr. In the case of azimuthal motion, the solution
for φpðχÞ can be obtained analytically in terms of the
incomplete elliptic integral FðxjmÞ of the first kind [34,35],
prior to making a PN expansion. The mean azimuthal
frequency Ωφ is then given by φpð2πÞ=Tr, which yields

Ωφ ¼ 4

Tr

�
p

p − 6 − 2e

�
1=2

K

�
−

4e
p − 6 − 2e

�
; ð2:4Þ

where KðmÞ is the complete elliptic integral of the first
kind [35]. At this point, the solution can be readily PN
expanded in 1=p. Once the mean azimuthal angular rateΩφ

is known, the alternative (and more standard) PN compact-
ness parameter y ¼ ðMΩφÞ2=3 can be obtained in terms of
1=p, and then inverted for pðyÞ. For eccentric motion, each
PN order will be additionally expanded in powers of
eccentricity e.

B. Gravitational perturbations and analytic
expansion of l-mode solutions

On a Schwarzschild background, we can obtain metric
perturbations either via the Regge-Wheeler-Zerilli [7,8]
formalism (see recent uses [6,16,36]) or by use of the
Bardeen-Press-Teukolsky equation and radiation gauge
[19]. In this paper, we adhere to our previous RWZ
approach, in which the RWZ master equations have the
following form in the frequency domain (FD)

�
d2

dr2�
þ ω2 − VlðrÞ

�
XlmnðrÞ ¼ ZlmnðrÞ: ð2:5Þ

Here r� ¼ rþ 2M ln jr=2M − 1j is the tortoise coordinate,
ω≡ ωmn ¼ mΩφ þ nΩr are discrete frequencies from the
multiperiodic background geodesic motion, and the FD
source term is

Zlmn ¼
1

Tr

Z
2π

0

ðGlmðtÞδ½r − rpðtÞ�

þ FlmðtÞδ0½r − rpðtÞ�Þeiωtdt: ð2:6Þ

The source terms and potentials VlðrÞ are parity dependent
(specifically, the parity of the scalar, vector, and tensor
spherical harmonics used in the angular decomposition
[7,8,29]). For even parity we solve the Zerilli-Moncrief

master equation and for odd parity the Cunningham-Price-
Moncrief master equation (see [7,8,29,36] for more
details). Restricting the motion to the equatorial plane
leads to some l,m-dependent source terms vanishing due to
reflection symmetry. Which master equation is solved (i.e.,
even or odd parity) can be conflated with whether lþm is
an even or odd integer [36].
The homogeneous version of the master equation (even

or odd parity) yields two independent (causal) solutions.
One, Xin

lmn ¼ X−
lmn, is a downgoing wave at the future

horizon, while the other, Xup
lmn ¼ Xþ

lmn, is an outgoing wave
at future null infinity. The odd-parity homogeneous
(Regge-Wheeler) equation is more readily solved. For
the even-parity case (even integer cases of lþm), we
need solutions to the homogeneous Zerilli equation. To
obtain these, we can apply the trick (see e.g., [1,15])
of solving the Regge-Wheeler equation for the “wrong
parity” and then using those solutions to derive their
even-parity counterparts via the Detweiler-Chandrasekhar
transformation [37–40].
Once the homogeneous solutions are calculated (dis-

cussed below), the inhomogeneous solutions to (2.5)
are found, which starts by computing the normalization
coefficients

C�
lmn ¼

1

WlmnTr

Z
2π

0

�
dt
dχ

��
1

fp
GlmðχÞX∓

lmn

þ
�

2M
r2pf2p

X∓
lmn −

1

fp

dX∓
lmn

dr

�
FlmðχÞ

�
eiωtðχÞdχ;

ð2:7Þ

where Wlmn is the Wronskian. The full time-domain
solutions follow from applying the method of extended
homogeneous solutions [41], using the combinations
Cþ
lmnX

þ
lmn and C−

lmnX
−
lmn (see also [1,36]).

As discussed in [1,6], solutions for the modes of the
master function (at least for small values of l) are
determined using the MST formalism [9], with an expan-
sion in analytic functions. The odd-parity MST solution for
Xþ
lmn (up to arbitrary normalization) is

Xþ
lmn ¼ eizzνþ1

�
1 −

ϵ

z

�
−iϵ X∞

j¼−∞
ajð−2izÞj

×
Γðjþ νþ 1 − iϵÞΓðjþ ν − 1 − iϵÞ
Γðjþ νþ 3þ iϵÞΓðjþ νþ 1þ iϵÞ

×Uðjþ νþ 1 − iϵ; 2jþ 2νþ 2;−2izÞ: ð2:8Þ

Here, ν is the renormalized angular momentum, defined to
make the double-sided summation converge, and U is the
irregular confluent hypergeometric function. Other quan-
tities are ϵ ¼ 2Mωη3, z ¼ rωη, with η ¼ 1=c being a
reintroduced PN parameter. To obtain a solution, ν and
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aj are ascertained through a continued fraction calculation [9,30], which in our application also then leads to a series in ϵ for
both. PN expansions of the other terms in (2.8) then follow, with the result expressible in series in both z and ϵ.
The downgoing (or in) solutions X−

lmn have similar function expansion

X−
lmn ¼ e−iz

�
z
ϵ
− 1

�
−iϵ

�
ϵ

z

�
iϵþ1 X∞

j¼−∞
aj

Γðjþ ν − 1 − iϵÞΓð−j − ν − 2 − iϵÞ
Γð1 − 2iϵÞ

× 2F1ðjþ ν − 1 − iϵ;−j − ν − 2 − iϵ; 1 − 2iϵ; 1 − z=ϵÞ; ð2:9Þ

with ν and aj here being identical to those in (2.8) (up to
overall normalization of the latter). The process of expand-
ing these homogeneous solutions by collecting on powers
of η is fully described in [1], based on the methods
presented in [14]. As described in [6,14], z-independent
factors are removed from these solutions to reduce their
complexity, since such factors eventually cancel through
appearance in the Wronskian.
As discussed in [1,6,10,14], in conservative sector

calculations mode-sum regularization requires summing
perturbations over all l. This necessitates an alternative
approach of directly PN-expanding the homogeneous
version of the master equation (2.5) for general l. As
shown in [10,14], the PN-expansion ansatz for solving the
RW equation is

Xþ
lmn¼ðzÞ−νð1þA2η

2þA4η
4þ���þA2lη

2lþOðη2lþ1ÞÞ;

X−
lmn¼

�
ϵ

z

�
−ν−1

ð1þB2η
2þB4η

4þ���þB2lη
2lþOðη2lþ1ÞÞ;

ð2:10Þ

where the Ai and Bi are functions of z, ϵ, l. The ansatz
breaks down at PN orders at and above Oðη2lÞ. If a target
PN order P is set, the ansatz will be useless for l ≤ P.
For those finite number of modes, the MST formalism is
used instead. Once ν is found by PN-expanding the

continued fraction calculation, the homogeneous RW
equation becomes

��
1 −

ϵ

z

�
∂

∂z

��
1 −

ϵ

z

�
∂

∂z

�
þ η2

þ
�
1 −

ϵ

z

��
lðlþ 1Þ

z2
−
3ϵ

z3

�
η2
�
X�
lmn ¼ 0: ð2:11Þ

The ODE is then solved order by order. Even-parity
homogeneous solutions are again found using the
Detweiler-Chandrasekhar transformation.
As previously noted [6], the expansion of the even-parity

normalization integral is the bottleneck in the calculation,
requiring for example ∼7 days and 20 GB of memory on
the UNC supercomputing cluster Longleaf to reach 10PN
and e20 relative order. Furthermore, two relative PN orders
and three orders in e are lost in constructing and regular-
izing the spin-precession invariant. Thus, our expansion is
restricted to 9PN (8PN relative order) and e16.

C.Metric perturbation lmodes and nonradiative modes

Since we use RWZ gauge, calculation of the l modes of
the metric perturbation (locally) follows the procedure
discussed in Sec. II of [6] (see also earlier work
[16,36]). Briefly, the metric components as functions of
χ are

pl
rrðχÞ ¼

�
dχ
dr

�X
mn

Ylmðπ=2; 0Þ
f

C�
lmne

imφ−iωt
���

dr
dχ

�
Λðλþ 1Þ

fr
−
�
dr
dχ

�
Λ
f
AðχÞ þ r

�
dAðχÞ
dχ

��
X�
lmnðχÞ

þ ðrAðχÞ − ΛÞ
�
dX�

lmnðχÞ
dχ

�
þ r

d
dχ

�
f

�
dχ
dr

��
dX�

lmnðχÞ
dχ

���
;

pl
trðχÞ ¼

X
mn

Ylmðπ=2; 0ÞC�
lmne

imφ−iωtð−iωÞ
�
r

�
dχ
dr

��
dX�

lmnðχÞ
dχ

�
þ rBðχÞX�

lmnðχÞ
�
;

pl
ttðχÞ ¼ f2pl;�

rr ;

pl
ABðχÞ ¼ r2ΩAB

X
mn

Ylmðπ=2; 0ÞC�
lmne

imφ−iωt
�
f

�
dχ
dr

�
∂χX�

lmn þ AðχÞX�
lmn

�
;
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pl
tBðχÞ ¼

�
f
2

�X
mn

Xlm
B ðπ=2; 0ÞC�

lmne
imφ−iωt

�
dχ
dr

�
d
dχ

ðrX�
lmnÞ;

pl
rBðχÞ ¼

�
r
2f

�X
mn

Xlm
B ðπ=2; 0ÞC�

lmne
imφ−iωtð−iωÞX�

lmn; ð2:12Þ

with

λ ¼ 1

2
ðlþ 2Þðl − 1Þ; Λ ¼ λþ 3M

r
;

AðrÞ ¼ 1

rΛ

�
λðλþ 1Þ þ 3M

r

�
λþ 2M

r

��
;

BðrÞ ¼ 1

rfΛ

�
λ

�
1 −

3M
r

�
−
3M2

r2

�
: ð2:13Þ

The up (þ) or in (−) mode functions are used depending
upon which side in r of the point mass the evaluation is
taken. The perturbation l modes (once sums over m are
made) are continuous, but C0, at the particle location. Sums
over m involve application of the addition theorem for
spherical harmonics. In [6] we discuss the most efficient way
of calculating PN expansions of the resulting sums over m
(see Sec. II D of that paper). The spin-precession invariant is
calculated from the local self-force, which involves the
metric perturbation and its derivatives. Expressions for the
derivatives can be easily derived from (2.12). The lmodes of
the metric perturbation derivatives are discontinuous across
the particle location, a fact that is important in the regulari-
zation of the spin-precession invariant.
Another aspect of computing the self-force is that, in

applying a derivative with respect to r, an expansion in
powers of eccentricity will lose an order in e. Moreover, the
eccentricity expansions lose three orders in e in moving
from the self-force to the spin invariant (see Sec. III D). The
computation of high-order terms in the e expansion is the
most consuming part of the construction of the metric
perturbation, and one would expect this to be particularly
true in the case of general l. However, added investigation
showed that this difficulty can be avoided in the latter case
by observing that the general-l metric perturbation yields
finite polynomials in e on an individual PN-order basis.
These polynomials increase in degree linearly with PN
order. Once this pattern was recognized, PN terms in the
general-l expansion could be determined in closed form
with only a low-order (imbedded) polynomial in eccen-
tricity. The computational bottleneck was then transferred
to the specific-l part of the calculation, which does not
simplify in the same fashion. The resulting change in the
technique allowed the spin-precession invariant to be
computed to much higher order in eccentricity at lower
PN orders. For example, it allowed us to determine the 4PN
function Δψ4 to e30.

Finally, to complete the metric perturbation and self-
force calculation, the radiative modes must be augmented
to include the nonradiative l ¼ 0 and l ¼ 1 modes, origi-
nally found by Zerilli [8] but gauge transformed [42] to
maintain asymptotic flatness. We listed those modes in
our previous paper [6], and they are described more fully
in [16] and in earlier papers cited therein.

III. PROCEDURE FOR CALCULATING THE
SPIN-PRECESSION INVARIANT

A. Overview

The smaller body is assumed to be endowed with a test
spin sα, which undergoes precession during the orbital
motion about the heavier mass without affecting the metric
perturbation. The spin is parallel transported Dsα=dτ ¼ 0
along the geodesic with its tangent vector uα, and the
spin maintains its orthogonality sαuα ¼ 0 and the con-
stancy of its norm sαsα. This spin-orbit, or geodetic,
precession has a nonzero rate of advance in the test-body
limit (μ ¼ 0) and a self-force correction at first order in the
mass ratio ε and beyond. We seek to calculate the first-
order correction to the precession in bound eccentric orbits
about a nonspinning (Schwarzschild) primary (thus elimi-
nating consideration of Lense-Thirring precession). Our
presentation follows that of [17–19], which we summarize
in this section.
The spin-precession invariant for eccentric orbits is a

generalization given by [18] of the definition used for
circular orbits [17]. An invariant ψ is defined via a ratio
that involves the accumulated azimuthal phase Φ and the
accumulated precession of the spin vector Ψ over one radial
libration period Tr. Explicitly, the quantity is given by

ψ ¼ 1 −
Ψ
Φ
: ð3:1Þ

This scalar is a function of the mass ratio ε (i.e., subject to
self-force correction Δψ) and orbital parameters. The latter
are best chosen as the observable frequencies Ωr and Ωφ,
lending the definition of ψ a gauge invariant character.
(Though, technically the quantity is not invariant under
arbitrary gauge transformations, but rather under the
restricted set of transformations that respect the “average”
helical symmetry of the eccentric orbit. Nevertheless,
it is conventional to refer to ψ as gauge invariant.) This
procedure is directly analogous to that in constructing the
redshift invariant [6], where the frequencies were held fixed
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through first order in the mass ratio. Since Φ ¼ ΩφTr will
itself be fixed, only the self-force correction ΔΨ need be
computed.
The invariant ψ encodes a portion of the first-

order conservative dynamics, giving it relevance to the
creation of waveform templates for LISA. How ψ can be
transcribed to the EOB gyrogravitomagnetic ratio quantity
gS�ð1=r; pr; pφÞ, which partially characterizes the spin-
orbit sector of the EOB Hamiltonian, was mapped out in
[19]. The expansion of ψ helps describe the case where the
smaller body is (weakly) spinning.

B. Spin precession and background reference frame

The behavior of Ψ is found by computing the parallel
transport of sα along a geodesic of the perturbed (regular-
ized) metric. To facilitate the calculation, a reference frame
tetrad eαa is introduced (here α is the spacetime index and a
indicates the frame element). Then, the spin components in
the frame precess [18] according to

ds
dτ

¼ w × s;

ðsÞi ¼ eαi sα;

ðwÞi ¼ −
1

2
ϵijkwjk;

wij ¼ −gαβeαi
Deβj
dτ

: ð3:2Þ

The precessional angular velocity components use the base
symbol w instead of ω to avoid confusion with the discrete
frequency spectrum ωmn of the gravitational perturbations.
The angular velocity is subject to the choice made for the
reference frame.
A suitable frame in the background (μ → 0 limit) was

given by Marck [43] (see also [18,19], as well as [44] for a
different application), aligned with one leg perpendicular to
the orbital (equatorial) plane and another directed along the
line with the primary

eμ0 ¼ uμ ¼
�
E
f
; ur; 0;

L
r2

�
;

eμ1 ¼
1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2=r2

p ður; fE; 0; 0Þ;

eμ2 ¼ ð0; 0; 1=r; 0Þ;

eμ3 ¼
1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2=r2

p
�
EL
f

;Lur; 0; 1þ L2

r2

�
: ð3:3Þ

This polar alignment can be maintained when μ ≠ 0.
The frame is noninertial and a gyroscope will appear to
precess with frequency _Ψ ¼ w13. (The precession can also
be found by making a Uð1Þ transformation [44] in the

equatorial plane to an inertial frame.) At lowest order the
(background) geodetic angular rate is

wð0Þ
13 ¼ EL

r2 þ L2
: ð3:4Þ

C. Spin precession and self-force in the perturbed frame

The accumulated phase of the spin precession is then

Ψ ¼
I

w13ðτÞdτ ¼ Ψ0 þ ΔΨ; ð3:5Þ

with the integral taken over one period of radial motion.
The last part of the expression splits Ψ into zeroth and
first order components, with ΔΨ being the first-order
(conservative) correction we seek. Here, ΔΨ refers to
the perturbation measured when the orbital frequencies
have been held constant.
The procedure to compute ΔΨ is established in [18–20].

Assuming that δΨ is a correction calculated without
holding the orbital frequencies fixed, ΔΨ is recovered
by subtracting off perturbations in the frequencies

ΔΨ ¼ δΨ −
∂Ψ0

∂Ωr
δΩr −

∂Ψ0

∂Ωφ
δΩφ: ð3:6Þ

An alternative calculation uses first-order changes in Tr
and Φ [18]

ΔΨ ¼ δΨ −
∂Ψ0

∂Tr
δTr −

∂Ψ0

∂Φ
δΦ; ð3:7Þ

which we found more computationally convenient. Note

that henceforth, except for our use of Ψ0 and wð0Þ
13 , lowest-

order quantities will simply be denoted by their plain base
symbol, while most first-order corrections will explicitly
carry a δ (perturbed frequencies) or Δ (fixed frequencies)
prefix. The exception is the metric perturbation pμν, where
the notation already indicates a first-order quantity.
At first order, the integral forΨ experiences a change due

to corrections in both w13 and τ. The result is [18,45]

δΨ ¼
Z

2π

0

�
δw13

w13

−
δur

ur

�
w13

dτ
dχ

dχ: ð3:8Þ

The correction to w13 can be found [18,19] via expansion of
its definition

δw13 ¼
1

2
w13pμνe

μ
0e

ν
0 þ δΓ½31�0 þ ðc01eμ1 þ c03e

μ
3Þeν½3∇μeν1�:

ð3:9Þ

In deriving the expression above, a total derivative (d=dτ)
term has been neglected. The first term is proportional to
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the p00 tetrad projection of the metric perturbation (not ptt)
and the second term is the tetrad projection of the correction
to the affine connection

δΓ½31�0 ¼ ðδΓμνβ − pμλΓλ
νβÞeμ½3eν1�uβ: ð3:10Þ

The third term involves coefficients c01 and c03 that come
from the variation of the tetrad

c01 ¼
1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2=r2

p ðEδurBS − urδEBSÞ; ð3:11Þ

c03 ¼
δLBS

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2=r2

p : ð3:12Þ

Within these latter coefficients are terms, δEBS and δLBS,
that are χ-dependent conservative corrections to the (spe-
cific) energy and angular momentum defined by Barack
and Sago [45]

δEBSðχÞ ¼ δEBSð0Þ −
Z

χ

0

Fcons
t

dτ
dχ0

dχ0; ð3:13Þ

δLBSðχÞ ¼ δLBSð0Þ þ
Z

χ

0

Fcons
φ

dτ
dχ0

dχ0: ð3:14Þ

The first term (integration constant) in each of these
equations is the shift that occurs at periastron. These are
explicitly shown [45] to be

δEBSð0Þ ¼
ð1þ eÞ2ðp − 2 − 2eÞ

4eðp − 3 − e2Þ
� ð1 − eÞ2ðp − 2þ 2eÞ
Mp3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2

p
Z

π

0

Fcons
φ

dτ
dχ

dχ þ
Z

π

0

Fcons
t

dτ
dχ

dχ

�
; ð3:15Þ

δLBSð0Þ ¼
Mp3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2

p
4eðp − 3 − e2Þ

� ð1 − eÞ2ðp − 2þ 2eÞ
Mp3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2

p
Z

π

0

Fcons
φ

dτ
dχ

dχ þ
Z

π

0

Fcons
t

dτ
dχ

dχ

�
: ð3:16Þ

Lastly, δurBS is the first-order correction to the radial
velocity. It can be derived from the normalization of the
four-velocity condition (in the background spacetime [45]),
which leads to EδEBS − urδurBS − r−2fLδLBS ¼ 0 and
from there to

δurBS ¼
E
ur

δEBS −
f

r2ur
LδLBS: ð3:17Þ

As usual, the conservative part of the self-force, Fcons
μ , is

given [45] by the symmetric combination

Fcons
μ ¼ 1

2
ðFμðχÞ þ ϵðμÞFμð−χÞÞ; ð3:18Þ

where ϵðμÞ ¼ ð−1; 1; 1;−1Þ. Using the retarded self-force in
the expression above yields a singular result at the particle
location. Instead, the regularized self-force can be found
using the regular metric perturbation pR

μν in

Fα
R ¼ 1

2
ðgαδuβ − 2gαβuδ − uαuβuδÞuγ∇δpR

βγ: ð3:19Þ

However, since we are concerned with computing a
single scalar invariant, it is simpler to work instead with
the full, unregularized self-force, decomposed into lmodes.
This leads to an l-mode decomposition of the (unregular-
ized) spin-invariant correction, with modes Δψ l. We then

apply mode-sum regularization directly to the spin-
precession invariant.
Hence, with the l modes of the retarded metric pertur-

bation and self-force available, it is straightforward to
evaluate El

BS, L
l
BS, and Γl

½31�0. The rest of the calculation

for δΨl is then condensed [20] to the following integral:

δΨl ¼
Z

2π

0

�
δΓl

½31�0 þ
�ðr2 þ L2Þð3M − rÞL

r5ðurÞ2 −
L
r2

�
δEl

BS

þ
�
E
r2

−
EL2ð3M − rÞ

r5ðurÞ2
�
δLl

BS

�
dτ
dχ

dχ: ð3:20Þ

Then, ΔΨl can be determined from δΨl by removal of
the frequency corrections, which involves use of the
following formulas [18,20]:

δTl
r ¼

Z
2π

0

�
δEl

BS

E
−
δðurBSÞl

ur

�
E
f
dτ
dχ

dχ; ð3:21Þ

δΦl ¼
Z

2π

0

�
δLl

BS

L
−
δðurBSÞl

ur

�
L
r2

dτ
dχ

dχ: ð3:22Þ

D. PN and eccentricity expansion issues

Even though we have not belabored the process, each
step in this procedure involves calculating an analytic
PN expansion using Mathematica. (Illustrative short
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expansions of various intermediate quantities in the pro-
cedure can be found in Sec. III of [19].) Given eccentric
orbital motion, the PN expansion necessarily involves an
expansion in powers of eccentricity e as well. We have
sought to go as deeply as possible in PN order and
(especially) eccentricity order. High-order expansion
in eccentricity opens up the possibility of finding
eccentricity-dependent terms that have closed-form expres-
sions or infinite series with analytically known coefficient
sequences [2,4,6].
We restate for emphasis one issue with calculating the

PN and eccentricity expansions of the spin-precession
invariant. As we have discussed, the procedure begins
with calculating the mode functions X�

lmn and their nor-
malizations C�

lmn. Assume that Cþ
lmn, for example, has been

calculated in the general-l case to a relative PN order of P
and to order e2N in eccentricity. We find that once
derivatives have been taken, to calculate the metric per-
turbation and the self-force, and the various projections
have been made, the expansion of the spin-precession
invariant has lost two relative orders in P and three orders
in e (effectively equivalent to two orders in N ). The PN
orders appear to be lost through cancellation of the leading
behavior in two separate steps of the procedure, one in the
expansion of ∂φptt in the computation of Fφ and the other
in the construction of the integral (3.20). The eccentricity
orders also appear to drop through lead order cancellation,
one power of e in the periastron shift constants δEBSð0Þ and
δLBSð0Þ and the other two corresponding to the factors of
1=ðurÞ2 in (3.20). Thus, if Cþ

lmn were known in the general-l
case to 8PN (relative) and e20, the computation of the
general-l contribution to the spin invariant is limited to 6PN
relative order (7PN absolute order, as it is conventionally
defined) and e16. One caveat, however, is that the general-l
expansion does not contribute to the spin precession at half-
integer orders. Thus, as long as the specific-l contributions
are appropriately extended, the final result in this
example would be an expansion for ψ that reaches
7.5PN (absolute) and e16.

E. Regularization

The final step in the procedure is regularization. As
mentioned in Sec. III C, instead of regularizing the self-
field itself and its derivatives, we calculate l modes of the
spin-precession invariant using l modes of the unregular-
ized retarded metric perturbation and its derivatives. Then,
we make a mode-sum regularization of the spin invariant
directly, in a procedure that is similar to but slightly more
involved than the way in which we previously regularized
the redshift invariant [6].
Mode-sum regularization requires subtracting off terms

that come from an l-mode expansion of the singular field
[46,47]. Because the spin-precession invariant involves
derivatives of the metric perturbation, the l-mode

contributions to its singular behavior grow like l. In
Lorenz gauge, for example, the regularization procedure
would be

Δψ ¼
X∞
l¼0

ðΔψ l;�
ret ∓ ASð2lþ 1Þ − BSÞ; ð3:23Þ

where AS and BS are the first two regularization parameters
(independent of l) in an expansion of the singular part of
Δψ . Only the first two parameters are required for the sum
to converge. The parameters are independent of l when
each component of the metric perturbation and its deriv-
atives are individually expanded in scalar spherical har-
monics. Since the l modes in the decomposition of pS

μν and
its derivatives are known, AS and BS could be found
analytically in Lorenz gauge. Working in Lorenz gauge,
Akcay et al. [18] instead regularized the self-force, the
frame components of the metric perturbation, and its
connection, and used those elements to assemble the
regularized l modes of Δψ , thus bypassing the calculation
of AS and BS. Finally, we note that the calculation on the
right-hand side in (3.23) is direction dependent, based on
whether the particle location is approached from outside or
inside of rp, but that the same value emerges.
Our calculation differs in two regards: our l refers to

tensor, not scalar, spherical harmonic index and our
calculations are done in Regge-Wheeler gauge instead of
Lorenz gauge. The former difference calls into question the
independence of AS and BS with respect to l. In fact, even
confined to Lorenz gauge, it has been shown [48] that in
terms of tensor spherical harmonic l, AS is constant for
l ≥ 2 but takes different values for the nonradiative l ¼ 0
and l ¼ 1modes (BS is still independent of l). In the case of
the latter difference, we are faced with having no a priori
knowledge of the equivalent of AS and BS in Regge-
Wheeler gauge.
The workaround for finding AS and BS in our gauge

involves using the general-l expansion. This procedure is
an offshoot of a method described in [19], who did their
calculations in radiation gauge. Because we expect that AS
and BS must match (at least asymptotically) the corre-
sponding parts in the large-l behavior of Δψ l

ret, we expand
our general-l result for Δψ l

ret about l ¼ ∞ to find two
coefficients, which we label A∞ and B∞. We then con-
jecture, as Kavanagh et al. [19] did in their radiation gauge
calculations, that B∞ ¼ BS (for all l) and that A∞ ¼ AS (for
l ≥ 2) and we use these A∞ and B∞ coefficients (derived in
Regge-Wheeler gauge) to perform regularization of Δψ .
In principle, one would want to calculate AS and BS in

Lorenz gauge and effect a gauge transformation from
Lorenz to Regge-Wheeler gauge to see how the regulari-
zation procedure transforms. Early on, Barack and Ori [49]
considered the effects of gauge on the gravitational
self-force. They found that in most cases the self-force
transformation from Lorenz to either Regge-Wheeler or
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radiation gauge is irregular. These issues have been more
fully discussed in a series of papers [50–53] since then. An
important distinction is that we are not calculating the
regularization of the self-force, but instead the scalar
invariant Δψ . Ideally, a proof might be made by carrying
the transformation through from Lorenz gauge to this
particular quantity calculated in Regge-Wheeler gauge.
While we have not done that calculation, we have several
reasons to believe that the conjectured equalities B∞ ¼ BS
and A∞ ¼ AS (l ≥ 2) do in fact hold.

The first of these is that the correction to the spin
precession, Δψ , is a scalar that can be expected to be
invariant at least across a wide range of gauges that respect
the eccentric-orbit-generalized version of the helical sym-
metry condition (i.e., when averaged over radial libration).
Detweiler noted in the derivation of the redshift invariant
that gauge-invariant quantities should have invariant regu-
larization schemes [47]. Additionally, our expansions
for A∞ and B∞ (obtained from a Regge-Wheeler gauge
calculation) exactly reproduce Eqs. (3.31) and (3.32) of
[19], which emerged from their radiation gauge calculation.
The authors of [19] also indicate that their series expansions
for A∞ and B∞ matched an independent calculation of AS
and BS. In addition, our PN expansion of the regularized
Δψ , while extending to higher order, agrees completely
with prior independent work in the region of overlap. With
these checks in hand, we have proceeded under the
assumption that B∞ ¼ BS and A∞ ¼ AS (for l ≥ 2); i.e.,
that these provide the regularization parameters.
The remaining problem is how to avoid any changes in

the behavior of AS when l ¼ 0, 1, which may still be
expected since we decompose on tensor spherical harmon-
ics. The solution is to recognize that AS flips sign across the

location of the point mass [19,48] [see (2.12)], allowing
(3.23) to be replaced by [19,20]

Δψ ¼
X∞
l¼0

�
1

2
ðΔψ l;þ

ret þ Δψ l;−
ret Þ − B∞

�
: ð3:24Þ

However, since we conjecture that AS ¼ A∞ for l ≥ 2, there
is no reason to use (3.24) for every l. We can instead use
(3.23) for all l ≥ 2 and reserve use of (3.24) for only the
l ¼ 0 and l ¼ 1 modes. We have shown that the results are
identical, so that the right-left averaging is only necessary
for handling the l ¼ 0, 1 modes. By using A∞, we reduce
the calculation by roughly 50%.

IV. PN EXPANSIONS OF THE SPIN-PRECESSION
INVARIANT

The procedure in the previous two sections was utilized
to compute the spin-precession invariant expansion to 9PN
order and to e16 in eccentricity. We present the expansions
in this section using both 1=p and y as compactness
parameters. The expansions are given in this paper to
8PN order, with the full series being available in electronic
form at the Black Hole Perturbation Toolkit [54] web site
and at our research group web site [55].

A. Spin-precession invariant as an expansion in 1=p

Previous work in the circular-orbit limit has revealed
[18] the general PN structure of Δψ to 9.5PN order.
Expressed in terms of the compactness parameter 1=p,
the form of the expansion is

Δψ ¼ Δψp
1

p
þ Δψp

2

p2
þ Δψp

3

p3
þ ðΔψp

4 þ Δψp
4L logpÞ

1

p4
þ ðΔψp

5 þ Δψp
5L logpÞ

1

p5
þ Δψp

11=2

p11=2 þ ðΔψp
6 þ Δψp

6L logpÞ
1

p6

þ Δψp
13=2

p13=2 þ ðΔψp
7 þ Δψp

7L logpþ Δψp
7L2 log

2 pÞ 1

p7
þ Δψp

15=2

p15=2 þ ðΔψp
8 þ Δψp

8L logpþ Δψp
8L2 log

2 pÞ 1

p8

þ ðΔψp
17=2 þ Δψp

17=2L logpÞ
1

p17=2 þ ðΔψp
9 þ Δψp

9L logpþ Δψp
9L2 log

2 pÞ 1

p9
þ � � � : ð4:1Þ

Because this is a first-order self-force result, the entire
right-hand side should be viewed as multiplied by a factor
of μ=M. For eccentric orbits, each of the quantities Δψp

k ,
for different k, is no longer just a number but rather a
function of the eccentricity e. The purpose of this section is
to show the form of these functions.
In discussing energy and angular momentum fluxes (see

e.g., [3]) it is conventional to factor out the circular-orbit
limit with p−5 and refer to terms in the expansion by their
relative PN order. Thus, the Peters-Mathews flux is 0PN
relative. In the spin-precession invariant expansion, the

leading-order term is p−1 and we will refer to this as the
1PN (absolute) term. In our nomenclature, a kPN term is
one that is proportional to p−k.
The first three functions were all found previously [18]

and shown to have closed forms:

Δψp
1 ¼ −1; ð4:2Þ

Δψp
2 ¼ 9þ 4e2

4
; ð4:3Þ
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Δψp
3 ¼

�
739

16
−
123π2

64

�
þ e2

�
341

16
−
123π2

256

�
−
e4

2
: ð4:4Þ

Beyond 3PN order, only the circular-orbit behavior [18]
and first term, e2, in eccentricity were known previously.
The e2 terms through 6PN had been calculated by [19,20]
had found the e2 behavior through 9PN. Our present work
extends every term through 9PN order to e16 in eccentricity,
allowing key parts of the functionsΔψp

k ðeÞ to be isolated in
many cases and allowing us to find in a few cases complete,
closed-form expressions.
The 4PN term is a case in which having enough terms in

the eccentricity expansion allows us to identify elemental

parts of the eccentricity functions. The behavior of the 4PN
spin-precession invariant is reminiscent of the 3PN energy
flux. We find first that the 4PN log term has a closed-form
expression. Then, that same function reappears in the 4PN
nonlog term. It is then possible to see a grouping, as a
series, that contains all of the log-transcendental numbers
(which we denote by Δψp;χ

4 in analogy to similar functions
in the energy flux, angular momentum flux, and redshift-
invariant expansions). We display Δψp;χ

4 in this paper to
e16. The remaining part of the 4PN nonlog term is a
polynomial on the appearance of π2 and a remaining
rational-number series. That latter rational-number series
is also displayed here to e16. The breakdown of the 4PN
term is as follows:

Δψp
4 ¼

�
−
587831

2880
−
37961e2

160
−
28129e4

480
−
19015e6

1152
−
138247e8

15360
−
12431e10

2048
−
327985e12

73728
−
56393e14

16384

−
725137e16

262144
þ � � �

�
þ π2

�
31697

6144
−
23729e2

4096
−
23761e4

16384

�
− 2

�
γE þ log

�
8ð1 − e2Þ3=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψp
4L þ Δψp;χ

4 ; ð4:5Þ

Δψp;χ
4 ¼

�
−
2216 logð2Þ

15
þ 729 logð3Þ

5

�
þ
�
55384 logð2Þ

15
−
10206 logð3Þ

5

�
e2 þ

�
−
205917 logð2Þ

5

þ 3620943 logð3Þ
320

þ 1953125 logð5Þ
192

�
e4 þ

�
11518508 logð2Þ

45
þ 3995649 logð3Þ

320
−
68359375 logð5Þ

576

�
e6

þ
�
−
1597223897 logð2Þ

1350
−
199689627159 logð3Þ

409600
þ 274244140625 logð5Þ

442368
þ 678223072849 logð7Þ

3686400

�
e8

þ
�
27567693977 logð2Þ

4500
þ 1474172887599 logð3Þ

512000
−
71310546875 logð5Þ

36864
−
678223072849 logð7Þ

307200

�
e10

þ
�
−
39584616236117 logð2Þ

1134000
−
2523359744732097 logð3Þ

458752000
þ 1806540009765625 logð5Þ

445906944

þ 77643655602826369 logð7Þ
6370099200

�
e12 þ

�
7796904819020377 logð2Þ

47628000
−
96876093468033783 logð3Þ

3211264000

−
173056322265625 logð5Þ

3121348608
−
1313351173426101691 logð7Þ

31850496000

�
e14 þ

�
−
1349495913968063023 logð2Þ

2286144000

þ 44537688184006902231 logð3Þ
164416716800

−
131695624109951171875 logð5Þ

1826434842624

þ 9397785802951526436547 logð7Þ
97844723712000

þ 81402749386839761113321 logð11Þ
4794391461888000

�
e16 þ � � � ; ð4:6Þ

Δψp
4L ¼ −

�
628

15
þ 268e2

5
þ 37e4

10

�
: ð4:7Þ

Our result for the 4PN term is exceptional in one regard.
As mentioned in Sec. II C, we are able to exploit a feature
in the eccentricity expansion of the general-l part of the
metric perturbation. At any given PN order, the eccen-
tricity expansion of the general-l modes truncates at some
power, which depends upon metric component and PN

order but not l. The only contributions to higher powers
of e beyond this truncation point come from the (MST-
derived) specific-l calculation. We used this feature to
calculate the 4PN term to much higher order in eccen-
tricity (e30). The resulting eccentricity series gave us
another opportunity to look for additional closed-form
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expressions and infinite series with analytically recogniz-
able coefficient sequences. While no additional such
functions were identified, we are providing the full
4PN term to e30 in the online repositories [54,55].
The breakdown of the 5PN term is similar. Once again,

we have enough information in the lengthy eccentricity

expansion to see that the 5PN log term is a polynomial. The
5PN log term reappears in the 5PN nonlog term. There is
then a χ-like grouping of terms that can be isolated in the
5PN nonlog function. There is a closed-form expression
identifiable that multiplies π2 and the remainder is a
rational-number series,

Δψp
5 ¼

�
−
48221551

19200
−
948244847e2

403200
þ 213024509e4

134400
þ 6416801e6

19200
þ 21598637e8

161280
þ 61987887e10

716800

þ 2519343e12

40960
þ 482228861e14

10321920
þ 25511929e16

688128
þ � � �

�
þ π2

�
2483157

8192
þ 21274445e2

49152

−
1392915e4

65536
−
322801e6

65536
−
123

256
ð1 − e2Þ5=2

�
− 2

�
γE þ log

�
8ð1 − e2Þ3=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψp
5L þ Δψp;χ

5 ; ð4:8Þ

Δψp;χ
5 ¼

�
155894 logð2Þ

105
−
31347 logð3Þ

28

�
þ
�
−
4518706 logð2Þ

105
þ 4430133 logð3Þ

320
þ 9765625 logð5Þ

1344

�
e2

þ
�
103760293 logð2Þ

180
−
31627665 logð3Þ

1792
−
3850703125 logð5Þ

16128

�
e4 þ

�
−
7257966409 logð2Þ

1512

−
412866263889 logð3Þ

286720
þ 185751484375 logð5Þ

73728
þ 96889010407 logð7Þ

221184

�
e6 þ

�
1363049747783 logð2Þ

37800

þ 193316307253281 logð3Þ
11468800

−
179678368984375 logð5Þ

12386304
−
458460436354739 logð7Þ

44236800

�
e8

þ
�
−
12831673840577 logð2Þ

45360
−
7224124751440749 logð3Þ

91750400
þ 8043417607578125 logð5Þ

148635648

þ 355523097835854137 logð7Þ
3538944000

�
e10 þ

�
183330830280580517 logð2Þ

95256000
−
805502573948046501 logð3Þ

12845056000

−
422974129832265625 logð5Þ

4161798144
−
14424400165163864701 logð7Þ

25480396800

�
e12

þ
�
−
4506759544919422111 logð2Þ

444528000
þ 4528120073662511265537 logð3Þ

1438646272000

−
12939671783145268046875 logð5Þ

22373826822144
þ 17394718021348645585769 logð7Þ

8153726976000

þ 81402749386839761113321 logð11Þ
559345670553600

�
e14 þ

�
8175474265144902875339 logð2Þ

192036096000

−
487753344707796027586053 logð3Þ

23018340352000
þ 8271291205691128966015625 logð5Þ

1073943687462912

−
6796075855660208932297721 logð7Þ

1174136684544000
−
1236467363350808533619347277 logð11Þ

402728882798592000

�
e16 þ � � � ; ð4:9Þ

Δψp
5L ¼

�
11153

35
þ 11341e2

15
þ 46467e4

280
−
1119e6

560

�
: ð4:10Þ

Like the redshift invariant, the first half-integer function appears at 5.5PN order. We find it to be a rational-number
infinite series, multiplied by an overall factor of π
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Δψp
11=2 ¼ π

�
49969

315
þ 319609e2

630
þ 21280909e4

100800
þ 2619467e6

362880
−
5582939e8

580608000
þ 19566341e10

5806080000

−
1283076269e12

2601123840000
−

3498178499e14

21849440256000
þ 4868320009201e16

251705551749120000
þ � � �

�
: ð4:11Þ

At 6PN order we found a structure similar to 4PN and
5PN, but with some added complexity. Once again, we
were able to find a closed-form expression for the (6PN)
log term, though it is not simply a polynomial. The 6PN log
term reappears in the 6PN nonlog function. We group the

log-transcendental number terms into a χ-like series again.
Then, an added wrinkle is the appearance of a π4 term
(which is a polynomial in e) as well as a more complicated
closed-form expression multiplying π2. The remainder is,
again, a rational-number series. This breakdown is given by

Δψp
6 ¼

�
−
1900873914203

101606400
−
465224579689e2

5080320
−
2021344615177e4

33868800
−
481812394033e6

203212800
þ 908657975293e8

1625702400

þ 115787009753e10

464486400
þ 63855468847e12

371589120
þ 663864852377e14

5202247680
þ 237445545371e16

2378170368
þ � � �

�

þ π4
�
−
7335303

131072
−
146026515e2

1048576
−
17998485e4

524288
þ 679545e6

16777216

�

þ π2
�
7254777827

2359296
þ 32034966215e2

2359296
þ 77315025809e4

9437184
þ 5875228633e6

12582912
−
326041715e8

33554432

þ
�
−
21405

2048
−
26549e2

8192

�
ð1 − e2Þ5=2

�
− 2

�
γE þ log

�
8ð1 − e2Þ3=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψp
6L þ Δψp;χ

6 ; ð4:12Þ

Δψp;χ
6 ¼

��
−
5637649 logð2Þ

630
þ 234009 logð3Þ

70
þ 9765625 logð5Þ

9072

�
þ
�
278347639 logð2Þ

945
−
159335343 logð3Þ

8960

−
17193359375 logð5Þ

145152

�
e2 þ

�
−
67298137969 logð2Þ

15120
−
6160676211 logð3Þ

4480
þ 2073211184375 logð5Þ

870912

þ 96889010407 logð7Þ
248832

�
e4 þ

�
45349640544529 logð2Þ

816480
þ 31165257813381 logð3Þ

1146880

−
182206079940625 logð5Þ

7962624
−
387081765684929 logð7Þ

23887872

�
e6 þ

�
−
558659555193209 logð2Þ

816480

−
53870960843541 logð3Þ

262144
þ 61171359261321875 logð5Þ

445906944
þ 294158696797354949 logð7Þ

1194393600

�
e8

þ
�
847397764060731841 logð2Þ

122472000
þ 32809717319486013 logð3Þ

1835008000
−
2422221742760078125 logð5Þ

5350883328

−
2408276754022760847373 logð7Þ

1146617856000

�
e10 þ

�
−
16872974428064804681 logð2Þ

321489000

þ 702548354497142812293 logð3Þ
51380224000

−
10596237215626599434375 logð5Þ

5393690394624

þ 16313635952096120303239 logð7Þ
1375941427200

þ 81402749386839761113321 logð11Þ
134842259865600

�
e12

þ
�
44527790291197983392407 logð2Þ

144027072000
−
796933093810646955107709 logð3Þ

5754585088000
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þ 110679665407920978635528125 logð5Þ
2416373296791552

−
42403949775722831599753919 logð7Þ

880602513408000

−
151763386707026658481899113 logð11Þ

8629904631398400

�
e14 þ

�
−
1066795518870736337912533 logð2Þ

691329945600

þ 561883567881441059477453079 logð3Þ
736586891264000

−
68528286383578337812136246875 logð5Þ

173978877368991744

þ 18715907817618872220720781253 logð7Þ
126806761930752000

þ 624926196399309721148911875383 logð11Þ
2718419958890496000

þ 91733330193268616658399616009 logð13Þ
8698943868449587200

�
e16 þ � � �

�
; ð4:13Þ

Δψp
6L ¼ 454397

3780
þ 2384929e2

1890
þ 45143023e4

30240
þ 5037481e6

20160
−
2387e8

960
−
�
146

5
þ 37e2

5

�
ð1 − e2Þ5=2: ð4:14Þ

The 6.5PN term is similar in form to the 5.5PN term, a rational-number infinite series with an overall factor of π

Δψp
13=2 ¼ π

�
−
2620819

2100
−
1586616631e2

235200
−
5337465431e4

940800
−
273779628487e6

406425600
þ 23921441479e8

5419008000
−
2200323829e10

19267584000

þ 6113757813097e12

655483207680000
þ 200661326003101e14

48942746173440000
−
13890607636693243e16

7047755448975360000
þ � � �

�
: ð4:15Þ

At 7PN order, there are additional complexities. Here, a
log2 p term makes its first appearance and we find the
closed-form expression for that term. The 7PN log term
then inherits the general structure of the 4PN nonlog term.
It features a reappearance of the 7PN log2 p term, a χ-like
series grouping, and a remaining rational-number series.

The 7PN nonlog term is the first appearance of a much
more complicated expansion, which features numerous
transcendental number terms. While we have calculated
it to e16, it is sufficiently complicated that we only present
the first few coefficients here. The entire term is available
online [54,55]. The breakdown of the 7PN terms is

Δψp
7 ¼

�
−
1282190594044678657

7041323520000
þ 1316474014843γE

43659000
−
3396608γ2E

1575
þ 25657561505749π2

2477260800

þ 341587582057π4

1006632960
þ 2783260080883 logð2Þ

43659000
−
5149696γE logð2Þ

1575
−
931328 log2ð2Þ

1575

þ 282123979047 logð3Þ
8624000

−
936036

175
γE logð3Þ −

936036

175
logð2Þ logð3Þ − 468018 log2ð3Þ

175
þ 63488ζð3Þ

15

−
361328125 logð5Þ

24192

�
þ
�
−
2888955324477314921

2347107840000
þ 1075057978433γE

4851000
−
7219504γ2E

525

þ 465082867177871π2

6606028800
þ 314165501411π4

335544320
þ 2387982140729 logð2Þ

8731800
−
79652512

315
γE logð2Þ

−
80263696 log2ð2Þ

175
−
299782486660473 logð3Þ

275968000
þ 15912612

175
γE logð3Þ þ

15912612

175
logð2Þ logð3Þ

þ 7956306 log2ð3Þ
175

þ 2411543359375 logð5Þ
2838528

þ 678223072849 logð7Þ
6082560

þ 134944ζð3Þ
5

�
e2

þ
�
−
113070994466917771

58677696000
þ 1472132397523γE

4656960
−
1627684γ2E

105
þ 1927756649323π2

18350080
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−
230109551791π4

268435456
þ 4388818385774297 logð2Þ

349272000
þ 1697626904

525
γE logð2Þ þ

3404199436 log2ð2Þ
525

þ 157855832267967 logð3Þ
7168000

−
262324089

400
γE logð3Þ −

262324089

400
logð2Þ logð3Þ − 262324089 log2ð3Þ

800

−
7905614284523125 logð5Þ

1072963584
−
1044921875γE logð5Þ

1008
−
1044921875 logð2Þ logð5Þ

1008

−
1044921875 log2ð5Þ

2016
−
1107664826873969 logð7Þ

109486080
þ 30424ζð3Þ

�
e4 þ � � � ; ð4:16Þ

Δψp
7L ¼

�
−
1316474014843

87318000
−
1048904096833e2

9702000
−
6494255602463e4

46569600
−
2123271392639e6

55883520

−
1333068673e8

352800
−
148643207731e10

88704000
−
5888596871e12

5376000
−
204908923e14

258048
−
63078518299e16

103219200
þ � � �

�

− 4

�
γE þ log

�
8ð1 − e2Þ3=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψp
7L2 þ Δψp;χ

7L ; ð4:17Þ

Δψp;χ
7L ¼

�
−
602624 logð2Þ

225
þ 468018 logð3Þ

175

�
þ
�
155814256 logð2Þ

1575
−
7956306 logð3Þ

175

�
e2

þ
�
−
865090292 logð2Þ

525
þ 262324089 logð3Þ

800
þ 1044921875 logð5Þ

2016

�
e4 þ

�
7561620022 logð2Þ

525

þ 418174083 logð3Þ
200

−
11494140625 logð5Þ

1512

�
e6 þ

�
−
27112112493049 logð2Þ

283500

−
339134405423319 logð3Þ

7168000
þ 238205615234375 logð5Þ

4644864
þ 507989081563901 logð7Þ

27648000

�
e8

þ
�
2438441188502 logð2Þ

3375
þ 2457755729168913 logð3Þ

7168000
−
328215185546875 logð5Þ

1548288

−
507989081563901 logð7Þ

1843200

�
e10 þ

�
−
27531157668664681 logð2Þ

4961250
−
6481474893571248729 logð3Þ

8028160000

þ 2822922907568359375 logð5Þ
4682022912

þ 92389498231271366573 logð7Þ
47775744000

�
e12

þ
�
20936989659899360021 logð2Þ

625117500
−
171956257323847250841 logð3Þ

28098560000
−
510786718173828125 logð5Þ

16387080192

−
1009210224594126146977 logð7Þ

119439360000

�
e14 þ

�
−
4619194353324708185237 logð2Þ

30005640000

þ 982128291923792960826417 logð3Þ
14386462720000

−
2383328610155127138671875 logð5Þ

134242960932864

þ 18946304992805061334986887 logð7Þ
733835427840000

þ 1053921396311414387134166987 logð11Þ
251705551749120000

�
e16 þ � � � ; ð4:18Þ

Δψp
7L2 ¼ −

849152

1575
−
1804876e2

525
−
406921e4

105
−
543667e6

630
−
10593e8

560
: ð4:19Þ

The 7.5PN term is a rational-number infinite series (multiplied by an overall factor of π), like the two half-integer
contributions before it
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Δψp
15=2 ¼ π

�
2782895449

2910600
þ 2404331748779e2

279417600
þ 76598649855971e4

6035420160
þ 8047650291899e6

5267275776

−
5292862534207931e8

10534551552000
−
279109475326162289e10

27811216097280000
−
4713058120092455293e12

2336142152171520000

−
959696950970026746929e14

523295842086420480000
−
25409776245923969873e16

37378274434744320000
þ � � �

�
: ð4:20Þ

The description of the breakdown in the 8PN eccentricity functions is essentially the same as what we said about the 7PN
terms just prior to (4.16). We still find a polynomial for the 8PN log2 p term, albeit one order in e2 longer. Because of the
complexity of the 8PN nonlog term, we give it only though e4 and leave the full expansion though e16 to the online
repositories [54,55]. The 8PN spin-precession-invariant correction splits into

Δψp
8 ¼

�
78550205239878250993769

28193459374080000
−
1888832198890393γE

15891876000
þ 177306208γ2E

11025
þ 569460279231731π2

123312537600

−
623848083842333π4

21474836480
−
41942063811247 logð2Þ

1059458400
þ 2720192γE logð2Þ

11025
−
520925728 log2ð2Þ

11025

−
868469344973829 logð3Þ

3139136000
þ 59742279γE logð3Þ

1225
þ 59742279 logð2Þ logð3Þ

1225
þ 59742279 log2ð3Þ

2450

þ 8570767578125 logð5Þ
96864768

þ 678223072849 logð7Þ
92664000

−
861696ζð3Þ

35

�
þ
�
12590844685671737819611

939781979136000

−
3978068608616891γE

2648646000
þ 371280152γ2E

2205
−
33310259864964463π2

443925135360
−
31118085613898053π4

257698037760

−
88630614687481099 logð2Þ

7945938000
þ 38342498672γE logð2Þ

11025
þ 7893208952 log2ð2Þ

1225
þ 812331139710343959 logð3Þ

100452352000

−
621149553

784
γE logð3Þ −

621149553

784
logð2Þ logð3Þ − 621149553 log2ð3Þ

1568
−
196313675703125 logð5Þ

21697708032

−
3173828125γE logð5Þ

7056
−
3173828125 logð2Þ logð5Þ

7056
−
3173828125 log2ð5Þ

14112
−
55100101995388051 logð7Þ

23721984000

−
5551264ζð3Þ

21

�
e2 þ

�
3657307066227250447201

293681868480000
−
159538901113146521γE

42378336000
þ 397837653γ2E

1225

−
384067364086852189π2

2959500902400
−
4915898447923097π4

85899345920
þ 82885306824453137 logð2Þ

54486432000

−
246163497086γE logð2Þ

4725
−
482425731551 log2ð2Þ

4725
−
16338364486486698339 logð3Þ

200904704000
þ 15151367601γE logð3Þ

78400

−
456484805199 logð2Þ logð3Þ

78400
þ 15151367601 log2ð3Þ

156800
−
12490894332540370625 logð5Þ

130186248192

þ 2022790234375γE logð5Þ
84672

þ 2022790234375 logð2Þ logð5Þ
84672

þ 2022790234375 log2ð5Þ
169344

þ 16777483050927098843 logð7Þ
142331904000

−
17811754ζð3Þ

35

�
e4 þ � � � ; ð4:21Þ

Δψp
8L ¼

�
1884153630595993

31783752000
þ 3866001511074491e2

5297292000
þ 140691202491074201e4

84756672000
þ 8446543158422249e6

9246182400

þ 2393628746500801e8

16951334400
þ 8815849170404069e10

226017792000
þ 37201967185037e12

1549836288
þ 5703127370959e14

338688000

þ 6115396987321e16

481689600
þ � � �

�
− 4

�
γE þ log

�
8ð1 − e2Þ3=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψp
8L2 þ Δψp;χ

8L ; ð4:22Þ
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Δψp;χ
8L ¼

�
70650464 logð2Þ

2205
−
59742279 logð3Þ

2450

�
þ
�
−
2208349688 logð2Þ

1575
þ 621149553 logð3Þ

1568
þ 3173828125 logð5Þ

14112

�
e2

þ
�
883055473063 logð2Þ

33075
−
15151367601 logð3Þ

156800
−
2022790234375 logð5Þ

169344

�
e4

þ
�
−
9735335606114 logð2Þ

33075
−
2983923884637 logð3Þ

28672
þ 2682838643359375 logð5Þ

16257024

þ 8816899947037 logð7Þ
331776

�
e6 þ

�
23310192268124059 logð2Þ

7938000
þ 302771958934455009 logð3Þ

200704000

−
156689829056640625 logð5Þ

130056192
−
299112464634116791 logð7Þ

331776000

�
e8 þ � � � ; ð4:23Þ

Δψp
8L2 ¼

44326552

11025
þ 92820038e2

2205
þ 397837653e4

4900
þ 155002853e6

4410
þ 332684587e8

141120
−
100899e10

6272
: ð4:24Þ

B. Spin-precession invariant as an expansion in y

The compactness parameter 1=p is easily related to e and the alternative compactness parameter y, written as a PN
expansion. That relationship allows (4.1) to be recast as an expansion in y

Δψ ¼ Δψy
1yþ Δψy

2y
2 þ Δψy

3y
3 þ ðΔψy

4 þ Δψy
4L log yÞy4 þ ðΔψy

5 þ Δψy
5L log yÞy5 þ Δψy

11=2y
11=2

þ ðΔψy
6 þ Δψy

6L log yÞy6 þ Δψy
13=2y

13=2 þ ðΔψy
7 þ Δψy

7L log yþ Δψy
7L2 log

2 yÞy7 þ Δψy
15=2y

15=2

þ ðΔψy
8 þ Δψy

8L log yþ Δψy
8L2 log

2 yÞy8 þ ðΔψy
17=2 þ Δψy

17=2 log yÞy17=2
þ ðΔψy

9 þ Δψy
9L log yþ Δψy

9L2 log
2 yÞy9 þ � � � : ð4:25Þ

Again, the entire right-hand side should be viewed as multiplied by a factor of μ=M. Because of the reparametrization, many
of the functions Δψy

kðeÞ differ from their analogs Δψp
k ðeÞ in the prior subsection.

The first three terms differ from (4.2)–(4.4) but still have simple closed forms

Δψy
1 ¼

−1
1 − e2

; ð4:26Þ

Δψy
2 ¼

1

ð1 − e2Þ2
�
9

4
þ 3e2

�
; ð4:27Þ

Δψy
3 ¼

1

ð1 − e2Þ3
�
819

16
−
123π2

64
þ e2

�
173

16
−
123π2

256

�
−
15e4

2

�
−

5

ð1 − e2Þ3=2 : ð4:28Þ

Note the appearance of eccentricity singular factors of increasing power.
The rest of the terms closely mirror their counterparts in the 1=p expansion. We will refer the reader back to the previous

subsection for discussion. The 4PN terms are similar in form to those in (4.5), (4.6), and (4.7)

Δψy
4 ¼

1

ð1 − e2Þ4
�
−
587831

2880
−
82781e2

160
−
99259e4

480
þ 15821e6

1152
−
100147e8

15360
−
10451e10

2048

−
291445e12

73728
−
51573e14

16384
−
674917e16

262144
þ � � �

�
þ π2

ð1 − e2Þ4
�
31697

6144
þ 23503e2

4096
þ 23471e4

16384

�

þ 2

�
γE þ log

�
8ð1 − e2Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψy
4L þ Δψy;χ

4 ; ð4:29Þ

CHRISTOPHER MUNNA and CHARLES R. EVANS PHYS. REV. D 106, 044058 (2022)

044058-16



Δψy;χ
4 ¼ 1

ð1 − e2Þ4
��

729 logð3Þ
5

−
2216 logð2Þ

15

�
þ
�
55384 logð2Þ

15
−
10206 logð3Þ

5

�
e2 þ

�
3620943 logð3Þ
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−
205917 logð2Þ

5
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�
e4 þ

�
11518508 logð2Þ

45
þ 3995649 logð3Þ
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−
68359375 logð5Þ

576

�
e6

þ
�
274244140625 logð5Þ

442368
−
1597223897 logð2Þ

1350
−
199689627159 logð3Þ

409600
þ 678223072849 logð7Þ
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�
e8

þ
�
27567693977 logð2Þ

4500
þ 1474172887599 logð3Þ

512000
−
71310546875 logð5Þ

36864
−
678223072849 logð7Þ

307200

�

× e10 þ
�
−
39584616236117 logð2Þ

1134000
−
2523359744732097 logð3Þ

458752000
þ 1806540009765625 logð5Þ

445906944

þ 77643655602826369 logð7Þ
6370099200

�
e12 þ

�
7796904819020377 logð2Þ
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−
96876093468033783 logð3Þ

3211264000

−
173056322265625 logð5Þ

3121348608
−
1313351173426101691 logð7Þ

31850496000

�
e14 þ

�
−
1349495913968063023 logð2Þ

2286144000

þ 44537688184006902231 logð3Þ
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−
131695624109951171875 logð5Þ
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97844723712000

þ 81402749386839761113321 logð11Þ
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�
e16 þ � � �

�
; ð4:30Þ

Δψy
4L ¼ 1

ð1 − e2Þ4
�
628

15
þ 268e2

5
þ 37e4

10

�
: ð4:31Þ

The polynomial part of the 4PN log term is identical to that in (4.7), reflecting its nature as a leading-logarithm term. Like
the 4PN term in the 1=p expansion, we also calculated this term in the y expansion to e30, and that entire dependence is
reproduced in the online repositories [54,55].
The 5PN terms mirror those in (4.8), (4.9), and (4.10),

Δψy
5 ¼

1

ð1 − e2Þ5
�
−
48221551

19200
−
218002469e2

134400
þ 554849699e4

134400
þ 15403763e6
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þ 45454391e8
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þ 9382421e12
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þ 147111571e14
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11010048
þ � � �

�

þ π2

ð1 − e2Þ5
�
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þ 6391663e2
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−
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−
223697e6
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− ð1 − e2Þ3=2

�
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��

þ 2

�
γE þ log

�
8ð1 − e2Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψy
5L þ Δψy;χ

5 ; ð4:32Þ

Δψy;χ
5 ¼ 1

ð1 − e2Þ5
��

155894 logð2Þ
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−
31347 logð3Þ
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�
þ
�
−
292974 logð2Þ

7
þ 811377 logð3Þ
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þ 9765625 logð5Þ
1344

�
e2 þ

�
98443429 logð2Þ
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−
11825109 logð3Þ
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−
3850703125 logð5Þ
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�
e4

þ
�
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−
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−
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þ 96889010407 logð7Þ
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�
e6

þ
�
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37800
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−
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−
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�
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�
−
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−
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þ 7306249357578125 logð5Þ
148635648

þ 350314344636373817 logð7Þ
3538944000

�
e10 þ

�
178662406711739429 logð2Þ

95256000

−
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−
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−
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�
e12

þ
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−
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�
e14 þ

�
7923977303302581594827 logð2Þ
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−
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�
e16 þ � � �

�
; ð4:33Þ

Δψy
5L ¼ −

1

ð1 − e2Þ5
�
11153
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þ 1091e2 þ 166531e4

280
þ 15457e6

560

�
: ð4:34Þ

The polynomial part of the 5PN log term differs from that in (4.10), as expected since it is a 1PN-log (i.e., a 1PN correction
to a leading log) [4].
The 5.5PN (first half-integer PN) term is similar to its 1=p expansion (4.11)

Δψy
11=2 ¼

π

ð1 − e2Þ11=2
�
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þ 2619467e6

362880
−
5582939e8

580608000
þ 19566341e10

5806080000

−
1283076269e12

2601123840000
−

3498178499e14

21849440256000
þ 4868320009201e16

251705551749120000
þ � � �

�
: ð4:35Þ

The 6PN term splits into parts that mimic (4.12), (4.13), and (4.14) in the 1=p expansion of the 6PN term, with the
exception of the appearance of eccentricity singular factors

Δψy
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1
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−
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−
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Δψy
6L þ Δψy;χ

6

Δψy;χ
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þ
�
38238253 logð2Þ

135

−
18075555 logð3Þ

1792
−
17193359375 logð5Þ

145152

�
e2 þ
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−
1155970259584375 logð5Þ

55738368
−
387081765684929 logð7Þ
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−
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8629904631398400
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þ 539059140139095745481254167 logð3Þ
736586891264000
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e16 þ � � �

�
; ð4:36Þ

Δψy
6L ¼ 1

ð1 − e2Þ6
�
−
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þ 2086379e2
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þ 236556689e4

30240
þ 67767047e6
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þ 777533e8
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�

þ 1

ð1 − e2Þ9=2
�
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5
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5

�
: ð4:37Þ

The 6.5PN term is a rational-number infinite series similar to that in the 5.5PN term and the 1=p expansion 6.5PN term
(4.15), except for a higher power eccentricity singular factor

Δψy
13=2 ¼

π

ð1 − e2Þ13=2
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−
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−
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−
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−
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9788549234688000
−

1478510613681403e16
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�
: ð4:38Þ

The 7PN term reflects the split seen in (4.16), (4.17), (4.18), and with a new 7PN log2 y term like (4.19)

Δψy
7 ¼

1

ð1 − e2Þ7
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þ 25657561505749π2

2477260800
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−
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logð2Þ logð3Þ − 468018log2ð3Þ
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−
361328125 logð5Þ
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e4 þ � � �

�
; ð4:39Þ

Δψy
7L ¼ 1

ð1 − e2Þ7
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Δψy;χ
7L ¼ 1

ð1 − e2Þ7
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þ
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þ 510786718173828125 logð5Þ
16387080192

þ 1009210224594126146977 logð7Þ
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e14

þ
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; ð4:41Þ

Δψy
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1

ð1 − e2Þ7
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−
1804876e2

525
−
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�
: ð4:42Þ

Since the 7PN log2 y term is the next appearance of a leading log, its polynomial part is the same as that in (4.19).
Like (4.20), the 7.5PN term is a rational-number infinite series (times a factor of π), but carries an eccentricity singular

factor in its y expansion

Δψy
15=2 ¼

π

ð1 − e2Þ15=2
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2910600
þ 5474927197931e2

279417600
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: ð4:43Þ

The breakdown of the 8PN term is discussed prior to the presentation of (4.21), (4.22), (4.23), and (4.24). As mentioned
there, the 8PN nonlog term is too complex to recite in its entirety here, and its complete form is relegated to the online
repositories [54,55]. We find

Δψy
8 ¼
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−
55100101995388051 logð7Þ
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−
263990606631280313e4

84756672000

−
317009475999791347e6

101708006400
−
35185381628335093e8

50854003200
−
2054145845907949e10

226017792000
−
6410920059013081e12

193729536000

−
18165080552837e14

677376000
−
10104654253231e16

481689600
þ � � �

�
þ 4

�
γE þ log

�
8ð1 − e2Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

Δψy
8L2 þ Δψy;χ

8L

Δψy;χ
8L ¼ 1

ð1 − e2Þ8
��

−
70650464 logð2Þ

2205
þ 59742279 logð3Þ

2450

�
þ
�
2149292536 logð2Þ

1575
−
14061034377 logð3Þ

39200

−
3173828125 logð5Þ

14112

�
e2 þ

�
−
837246081799 logð2Þ

33075
−
84652534863 logð3Þ

156800
þ 2022790234375 logð5Þ

169344

�
e4

þ
�
1794465193714 logð2Þ

6615
þ 77888690488341 logð3Þ

716800
−
2564871143359375 logð5Þ

16257024

−
8816899947037 logð7Þ

331776

�
e6 þ

�
−
21709548541867099 logð2Þ

7938000
−
296896914153644769 logð3Þ

200704000

þ 142848309056640625 logð5Þ
130056192

þ 299112464634116791 logð7Þ
331776000

�
e8 þ � � �

�
; ð4:45Þ

Δψy
8L2 ¼

1

ð1 − e2Þ8
�
44326552

11025
þ 547317086e2

11025
þ 1901024351e4

14700
þ 394272401e6

4410
þ 2037624299e8

141120
þ 7800417e10

31360

�
:

ð4:46Þ

C. Discussion

By extending the calculation of the spin-precession
invariant to a high order (e16) in eccentricity, the expansions
presented in the previous two subsections, when viewed by
PN order, reveal eccentricity dependence that has parallels
with that seen in the energy and angular momentum fluxes
[2–4] and in the redshift invariant [6]. The first three PN
orders are closed in form and were found previously [18]. It
is at 4PN to 9PN that our work makes new contributions. At
4PN order the first appearance of a logarithmic term [18]
occurs. Not surprisingly given past experience and the fact
that the 4PN log term is a leading log [2], we find it also has
a closed-form expression.

The 4PN log function then reappears in the 4PN nonlog
part when we regroup, or resum, that term. This is not
merely a trivial exercise, since the occurrence of the 4PN
log term in the nonlog part gathers together all of the
dependence that is logarithmic in the eccentricity as well as
the appearance of the Euler-Mascheroni constant γE. This
regrouping is directly analogous to what proved possible
in the redshift invariant [6] and the fluxes [1,3]. Next, once
terms are grouped on π2, we see another closed-form
function of e emerge.
The remaining transcendental numbers in Δψ4, which we

group into a term called Δψχ
4, have a form that resembles the

3PN energy flux function χðeÞ [2,56]. The coefficients in
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χðeÞ can be calculated to arbitrary order [15]. We showed
previously [6] a special function [Λ0ðeÞ] that provides
complete knowledge of the analogous χ-like function in
the 4PN redshift invariant. It is possible that PN theory
analysis might reveal a similar special function for Δψχ

4 that
is based on the Newtonian quadrupole moment power
spectrum [2], but we have yet to find it. Note that in the
y-based PN expansion, an eccentricity series that appears to
converge as e → 1 can be isolated from Δψχ

4L by pulling out
the function −3 logð1 − e2ÞΔψ4L. Isolating this additional
logarithmically singular in the 1 − e2 term (i.e., beyond the
usual algebraic eccentricity singular factors) was a procedure
first learned in working with the fluxes and redshift (see
[2,15] for more information). What remains in the 4PN
nonlog term is (apparently) an infinite series with rational
coefficients. It is surprising that this part could not (yet) be
manipulated into a closed form, as was possible in the fluxes
and redshift invariant.
At 5PN and 6PN we again found closed-form expres-

sions in the log parts. Once the log terms are known, they
assist in allowing the 5PN and 6PN nonlog parts to be
segregated into important functional groupings like that
found at 4PN, though with increasing complexity.

7PN order marks the first appearance of a log2 y, making
it the next term in the (integer-order) leading-log sequence.
This Δψ7L2 term is also found to be closed in form. The
connection between Δψ7L2 and Δψ7L then is seen to
closely mirror the connection between Δψ4L and Δψ4.
This is exactly analogous to what occurs in the redshift
invariant at 7PN order (see [6] for the connection in the
redshift invariant and [2] for a detailed description of
leading-logarithmic terms in the fluxes).
Finally, we note that half-integer contributions begin at

5.5PN order, an infinite series with rational-number coef-
ficients. This contribution marks the first term in the half-
integer leading-log sequence. The next two half-integer PN
terms (6.5PN and 7.5PN) are likewise series with rational
coefficients. The next half-integer contribution after that, at
8.5PN order (found in the repositories [54,55]), contains a
log term, which is expected of the second element in the
half-integer leading-log sequence.

D. Comparison to numerical data on close orbits

The usefulness of these high-order PN expansions in
reaching into the high-speed, strong-field regime can be
assessed by comparing their numerical evaluation to the

FIG. 1. Accuracy of the spin-precession invariant PN expansion and its resummations for several individual orbits. The numerical
values of our redshift expansion are plotted against data from [18] for the orbits ðp ¼ 10; e ¼ 1=10Þ, ðp ¼ 10; e ¼ 1=4Þ,
ðp ¼ 20; e ¼ 1=10Þ, and ðp ¼ 20; e ¼ 1=4Þ. Within each plot comparisons are made for both the 1=p and y expansions, both with
and without the use of logarithmic and reciprocal summations. Note the changes in vertical scaling in the bottom two plots.
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numerical spin-precession invariant data given in the
extensive table (Table II) of [18]. We compare both our
1=p and y PN expansions, along with a few additional basic
resummations applied to each. For example, see [1,57,58]
on creating one PN series from another, like reciprocal and
exponential resummation. Our results for a pair of orbital
sizes, p ¼ 10 and p ¼ 20, and a pair of eccentricities,
e ¼ 0.1 and e ¼ 0.25, are provided in Fig. 1.

All of the series exhibit fairly strong convergence for the
case p ¼ 20, reaching a fractional error better than 10−5 for
both e ¼ 0.1 and e ¼ 0.25 using 9PN terms. The dataset in
[18] is restricted to e ≤ 0.25, limiting our ability to test the
expansions at higher eccentricities. The experience with
numerical comparisons of the redshift invariant [6] suggests
that our series will remain viable up to e ≃ 0.5 at p ¼ 20.
At the closer separation of p ¼ 10 the convergence is
markedly slower, attaining relative errors near 1% at both
e ¼ 0.1 and e ¼ 0.25. This observation is consistent with
the analysis in [20], who showed that the series is expected
to diverge at a larger radius than the redshift invariant (i.e.,
at the separatrix, as opposed to the light ring). Moreover,
the basic resummation methods we have tried have not
substantially improved the convergence.
Figure 2 shows how the fractional errors behave versus

eccentricity e when using a set of series that have been
truncated at different PN orders. We see that knowledge
gained from our calculation of the spin-precession invari-
ant through e16 provides series that converge uniformly
over a range of eccentricity through e ¼ 0.25. The curves
strongly suggest that our PN series will remain accurate
as e → 0.5 or more. The current version of our code could
reach higher PN order but at the expense of reducing the
order of the expansion in e, for example perhaps reaching
12PN and e10. In any event, if we consider the task of
modeling EMRIs, conservative dynamical effects are
suppressed by a factor of the mass ratio relative to the
secular effect of the gravitational wave fluxes [28]. Thus,
our present depth of PN expansion of the spin-precession

invariant is likely adequate for giving its contribution to
EMRI dynamics.

V. CONCLUSIONS

We have presented the PN and eccentricity expansion of
the spin-precession invariant ψ at first order in the mass ratio
for a point mass in bound eccentric motion about a
Schwarzschild black hole. The RWZ formalism is used,
calculating the metric perturbation and self-force in Regge-
Wheeler gauge. The calculation is completely analytic, using
a Mathematica code and drawing upon the analytic PN
expansion of the MST formalism and the general-l expan-
sion ansatz of [10,14]. The construction and regularization of
the spin-precession invariant follows methods used by [18–
20], as well as simplifications of the eccentricity dependence
developed in our previous work [1,6]. We have computed the
spin-precession invariant to 9PN (which has been done
before [20,21]) but have calculated the eccentricity expan-
sion to e16 (with one exception, 4PN, which is calculated to
e30), far beyond the order e2 results previously known.
The high-order eccentricity expansions led to the dis-

covery of five new closed-form expressions, for Δψ4L,
Δψ5L, Δψ6L, Δψ7L2, and Δψ8L2. In addition, we were able
to use the methods developed in our past work on the
gravitational wave fluxes [2–4] and the redshift invariant
[6] to segregate the eccentricity dependence of many of the
other PN terms into significant functional parts and to
identify eccentricity singular factors that aid convergence in
the e → 1 limit. The PN series results were compared to
prior numerical calculations, and shown to exhibit frac-
tional errors in convergence of around 10−5 for orbital
separation of p ¼ 20 and of around 10−2 for p ¼ 10.

The expansions of Δψ could be extended further. The
bottleneck step in the calculation is the expansion of the
general-l, even-parity normalization constant Cþ

lmn, which
requires about 7 days on the UNC Longleaf cluster to reach
10PN (relative) order and e20. Beyond simply committing

FIG. 2. Accuracy of the spin invariant PN expansion with increasing e. The (simple) 1=p expansion is compared to numerical data for
the e values 0.05 to 25 at 0.05 intervals (plots are made continuous for clarity) for both p ¼ 10 and p ¼ 20.
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more resources or finding a faster cluster, intermediate
expansions, which sacrifice PN order for higher order in
eccentricity or vice versa, can be obtained immediately and
may be useful. As we described, by focusing on one PN
order (4PN), we were able to push the eccentricity
expansion to e30.
It will be useful now to translate these expansions to their

equivalent quantities within the EOB formalism. EOB
waveforms have been crucial to the success of LIGO data
analysis and will likely contribute to deciphering LISA
detections. The spin-precession invariant in first-order self-
force calculations can be transcribed to yield portions of
the EOB gyrogravitomagnetic ratio gS�ð1=r;pr;pφÞ, by
extending a procedure described in [19]. However, the

process is lengthy, with each new order in e2 requiring
cumbersome derivations, and we leave that process for
future work.
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