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ABSTRACT

We present numerical experiments that test the predictions of a conjecture of Gaiotto–Moore–Neitzke
and Gaiotto concerning the monodromy map for opers, the non-Abelian Hodge correspondence, and the

restriction of the hyperkähler L2 metric to the Hitchin section. These experiments are conducted in the
setting of polynomial holomorphic differentials on the complex plane, where the predictions take the formof
conjectural formulas for the Stokes data and themetric tensor. Overall, the results of our experiments support
the conjecture.
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1. Introduction

In this article, we present and discuss numerical experiments that compute two maps that arise naturally in Teichmüller theory: The
non-Abelian Hodge correspondence (NAHC) for the Hitchin section, and the monodromymap for opers (which is a particular case
of the Riemann–Hilbert correspondence). Both of these maps associate monodromy data to a tuple of holomorphic differentials on
a Riemann surface. Furthermore, these maps are expected to be asymptotic in a certain sense (e.g., the conjecture of [37] and results
of [1, 15, 38, 46, 51]).

The motivation for our experiments is a statement we dub the twistor Riemann-Hilbert conjecture, which asserts that these
monodromy maps can also be computed by solving a system of coupled integral equations. Particularly, in the case of the NAHC,
such a description would be remarkable in that the integral equations involve only contour integrals of holomorphic functions, and
do not involve the solution of any partial differential equation. Moreover, the conjectural integral equation suggests a rather simple
iterative strategy for computing the map which in the cases, we study converges very rapidly and is computationally inexpensive.

The twistor Riemann–Hilbert conjecture, in the form that we investigate it here, is formulated in the works [25, 26, 28, 29],
originally motivated by considerations of supersymmetric quantum field theory. Many special cases of the conjecture had been
discovered earlier; in particular, for the monodromy of SL2C-opers with potential of the form zn + c, the conjecture appeared in
the context of the ODE/IM correspondence pioneered in [11] (see, e.g., [10, 14] for reviews of the ODE/IM correspondence). More
recently, statements related to the twistor Riemann–Hilbert conjecture for the NAHC have been studied in the form of the massive
ODE/IM correspondence, beginning with [39]. The twistor Riemann–Hilbert conjecture is also closely related to the exact WKB
method (and its extension to higher rank); this is an extensive literature which we cannot review here, but see, e.g., Hollands and
Neitzke [35] for a description close to our point of view in this article, and references therein. Numerical investigations of special
cases of the twistor Riemann-Hilbert conjecture (or closely related statements) for SL2C-opers have been described in for example,
[9, 10, 25, 30, 36], and in [13] for SL3C-opers. In particular, Ito et al. [36] gave results of a numerical test of a version of the conjecture
for SL2C-opers in the same examples we consider below, involving slightly different quantities than we compute in this paper. We
are not aware of any numerical investigations of the twistor Riemann–Hilbert conjecture for the NAHC.

To test the twistor Riemann–Hilbert conjecture, we developed so�ware to compute the monodromy maps directly, and using the
conjecturally equivalent integral equations, and here we compare the results. We only consider the case of polynomial Higgs bundles
and opers on the complex plane. This case is more amenable to computation than the case of a compact surface, though since the
plane is simply connected, there is no monodromy in the classical sense. Instead, the monodromy-type invariants relevant to the
correspondences are the Stokes data of the connections, as discussed in [3]. The bulk of this article is thus devoted to discussing
two methods for computing Stokes data (one of them conjectural) and comparing the results of numerical experiments with these
methods.

In addition to allowing us to study the monodromy maps themselves, our implementation of the direct and integral equation
approaches easily extends to compute the hyperkähler metric on the moduli space of Higgs bundles, restricted to a Kähler metric on
the Hitchin section. While the integral equation side of this picture again gives a formula that is only conjectural, it is particularly
appealing because it implies specific asymptotics of themetricwhich are not evident from its original definition. Indeed, the numerical
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evidence supporting the conjectural formula for the hyperkähler metric reported in this paper was part of the original inspiration
for the authors’ work in [16], where an asymptotic formula with exponentially decaying error term was established for the Hitchin
section of a compact surface in rank 2. (This exponential decay improved on the earlier asymptotic results of Mazzeo, Swoboda,
Weiss, and Witt [41] in rank 2, which had a polynomially decaying error term; exponential decay was later established in all ranks
by Fredrickson [23].)

1.1. Concrete predictions

Because a full description of the families of connections, monodromy maps, and integral equations is somewhat lengthy, we defer
that to the subsequent sections. But to give an indication of what the conjectural picture looks like, here is a concrete geometric
consequence of it that is supported by our numerical experiments.

Predictions for harmonic maps. For any polynomial P(z) with complex coefficients there exists a harmonic map h : C → H
2,

unique up to isometry, with Hopf differential −4P(z)dz2 and such that the Riemannian metric |∂h|2|dz|2 on C is complete [48].
Furthermore, the image of this map is the interior of an ideal polygon with d+2 vertices, where d = deg(P) [32]. Exactly which ideal
polygon appears depends on the coefficients of P; for example, P(z) = zd gives the regular (d + 2)-gon. Except for a few symmetric
examples like this one, no explicit formula is known which describes the polygon in terms of the polynomial P.

To consider a specific example, we might ask which isometry class of ideal pentagons inH
2 corresponds to the cubic polynomial

P(z) = z3 − 1. (1.1)

An ideal pentagon is determined up to isometry by two real-valued invariants, which can be taken to be cross ratios of any two
4-tuples of the vertices (considered as elements of RP1). In the case of the pentagon associated to z3 − 1, one can use the fact that
the polynomial has real coefficients to show that the corresponding pentagon has a reflection symmetry about a geodesic passing
through one of the ideal vertices. This reduces the problem of characterizing the shape of the pentagon to determining a single real

number; for our purposes it will be convenient to take this parameter as X := 1 + χ(v1, v2, v3, v4), where χ(a, b, c, d) = (a−b)(c−d)
(a−d)(c−b)

is the cross ratio and v1, . . . , v5 are the ideal vertices, with v1 fixed by the reflection symmetry.
Assuming the twistor Riemann–Hilbert conjecture, this invariant X can be computed by solving the following integral equation.

First, define two exponentially decaying kernel functions K± by

K±(t) = A± · cosh(t)

2 cosh(2t) ± 1
(1.2)

where the real constants A± are chosen so that
∫ ∞
−∞ K±(t) dt = 1. Also define the constant

M =
√
3π

Ŵ(4/3)

Ŵ(11/6)
(1.3)

and let x0 denote the function on R,

x0(t) = −2M cosh(t). (1.4)

Conjecturally, there is a unique smooth function x : R → R that grows as O(x0) and which satisfies the integral equation

x = x0 −
(

K+ ∗ log(1 + exp(x))
)

(1.5)

where f ∗ g denotes the convolution of f and g on R. In terms of this solution, the prediction for the cross ratio invariant is that

X = exp(y(0)) where y =
√
3

2
x0 −

(

K− ∗ log(1 + exp(x))
)

. (1.6)

In our experiments, computing a numerical solution of (1.5) leads to a predicted value X ≈ 0.006415703, while computing a
numerical approximation of the harmonic map itself gives X ≈ 0.006415699 with an estimated error of 1.8 × 10−8. The method
for solving the integral equation is based on writing (1.5) as a fixed point equation, x = F(x), and then locating a fixed point by
taking a limit of iterates Fn(x0). This scheme converges very rapidly because x is ultimately a very small correction to x0, with
‖x − x0‖∞ < 0.001 while inf |x0| = 2M ≈ 5.83. In comparison, our implementation of the direct approach to computing the
harmonicmap is rather expensive in computation time andmemory, e.g., requiringminutes to hours of computation time depending
on the desired accuracy.

While we have described this example in terms of harmonic maps, it has an equivalent formulation in terms of Higgs bundles in
theHitchin section. In that interpretation, which is the one used in the body of the article, the isometry type of the ideal polygon inH2

corresponds to the Stokes data of the flat connection corresponding to a rank-2 bundle with Higgs field of the form
(

0 P(z)
1 0

)

dz. This
construction is detailed in This construction is detailedrefsec:families, and the specific families considered in our experiments are
introduced in This construction is detailedrefsec:experiments. In the terminology of the latter section, the harmonic maps problem
phrased above corresponds to the (A1,A2) family with parameters c = 1, � = 0, ϑ = 0, and R = 1. The values of X given above



EXPERIMENTAL MATHEMATICS 3

appear in Figure 12 over R = 1, with markers + and × for the direct harmonic map computation and integral equation prediction,
respectively. (The close agreement between the two methods creates the appearance of a single marker ×+.)

In addition to these rank-2 Higgs bundles, our experiments also consider their natural generalization to rank 3 and polynomial
cubic differentials; here a geometric interpretation can be given in terms of affine spheres, and in this interpretation our experiments
involve computing the map α that is the main object of study in [19].

Predictions for opers. A minor variation on the rank-2 example described above illustrates the experimental study of opers in
Section 4.2: Rather than considering the Hopf differential of a harmonic map, we consider the holomorphic immersion f : C →
CP

1 with Schwarzian derivative 2P(z) dz2, which is unique up to composition with a linear fractional map. Such a map (with P(z)
polynomial of degree d) distinguishes a cyclically ordered configuration of d+ 2 points onCP

1 which are its asymptotic values. The
conjecture of [25] then expresses cross ratios of 4-tuples of these points in terms of the solution of an integral equation that is a minor
modification of (1.5). (This particular example of the twistor Riemann-Hilbert conjecture was first discovered as part of the ODE/IM
correspondence [11].) Again, our discussion of this example in the body of the paper uses a bundle description, where the map f is
replaced with the equivalent data of a SL2C-oper over C. This is a certain type of flat holomorphic connection, whose connection
1-form can be taken to have the form

(

0 P(z)
1 0

)

dz, and computing the Stokes data of this connection is equivalent to computing the
asymptotic values of f . In this case, we compare the integral equation predictions to themore direct approach of computing the Stokes
data from the parallel transport operator of the flat connection (which is obtained by solving an ordinary differential equation). Here
again, we study the natural generalization of this picture to rank 3.

1.2. Summary and interpretation of results

The main experiments we report in this article involve computing and comparing Stokes data for 13 one-parameter families of
connections. The results are summarized in Figures 5–11 for opers, and Figures 12–17 for the Hitchin section. For one of these
families we also compute the restriction of the hyperkähler metric to the Hitchin section, for which the results are summarized in
Figure 18. In general we believe that the results support the twistor Riemann–Hilbert conjecture. Of course, this does not mean
that we find exact agreement between the direct method and the integral equation method; rather, it means that we believe that the
difference we do find can be accounted for by numerical error.

Each one-parameter family of connections which we study involves a positive real-valued parameter (|h̄|−1 for opers, R for the
Hitchin section) with the property that the expected numerical error in the direct method grows rapidly with R or |h̄|−1. It must
therefore be expected that the difference between the results from the two methods may exhibit the same type of growth, even if the
twistor Riemann–Hilbert conjecture holds, and this is indeed what we find: in general the difference is small for small values of the
parameter, and grows as the parameter is increased.

Though we do not conduct a complete numerical analysis of both methods, we do analyze certain sources of numerical
error, and ultimately conclude that our experiments do not provide any strong candidates for counterexamples to the conjecture.
Correspondingly, the breadth and variety of examples we have studied without finding an apparent counterexample may be seen as
evidence toward the conjecture.

1.3. Code and data

All of our experiments were performed using implementations of the direct and integral equation methods we developed in Python.
The datasets resulting from our experiments, which were used to generate the plots and figures in this article, are available at [17].
The source code for our program, with installation instructions and some documentation of the interfaces, is available at [18]. The
code includes scripts to reproduce our experiments from scratch (taking ∼ 130 CPU-days on a fast machine in mid-2020) or to
regenerate the tables and plots using the prepared dataset (which is of course much faster).

1.4. Outline

Section 2 introduces the Hitchin section and the family of opers (in the meromorphic case we consider), their associated Stokes
data, and the hyperkähler metric.

Section 3 describes the conjectural integral equations for the Stokes data.
Section 4 lists the specific connection families that we study, and reports the results of our experiments with Stokes data.
Section 5 reports the results of our experiments with the hyperkähler L2 metric.
Section 6 is a small gallery of images related to the experiments of the previous sections.
Section 7 gives a more detailed description of the computational methods used to produce the results reported in Sections 4–5,

including, for example, the specific parameter values (grid sizes, tolerances, etc.) used in the calculations.
Section 8 shows an example calculation using our code.
Section 9 discusses the results of our experiments and the outlook for extensions of this work in the future.
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2. Families of connections andmonodromy data

2.1. Hitchin base

Unless otherwise indicated, all of the bundles we consider are vector bundles equipped with a holomorphic structure. We will study
certain families of connections on bundles over C, and denote the rank of the bundle by N. Later we focus on the cases N = 2, 3,
though for the moment our discussion is general.

The connections we consider are associated with tuples of holomorphic differentials onC. We denote the canonical line bundle of
C by K, and let Qk ⊂ H0(C,Kk) denote the space of holomorphic k-differentials on C of the form φ = P(z) dzk for P a polynomial;

equivalently Qk is the space of sections of Kk which extend meromorphically to Ĉ. Define

B =
N

⊕

k=2

Qk. (2.1)

We write a typical point w ∈ B as w = (φ2, . . . ,φN) and always denote by Pk the polynomial such that φk = Pk(z) dzk.
While B is infinite-dimensional, the following finite-dimensional affine subspaces will be our main focus. Let Bd denote the set

of w ∈ B such that

deg(PN) = d and deg(Pk) �
k

N
d for all k. (2.2)

We call Bd the universal Hitchin base of C of degree d (and rank N). The terminology is meant to indicate that this “universal”
space is not the base space of a Lagrangian fibration of a hyperkähler manifold (which would generalize the character variety of a
compact surface group) but is foliated by subspaces with that property.

A further subset of Bd contains all of the examples we study numerically: Let B′
d denote the subset where deg(Pk) < k

N for all
k �= N, i.e. where the inequality of (2.2) is strict whenever possible. Some of the constructions we make below are simpler to state
for B′

d.

2.2. Higgs fields from the Hitchin base

Let E = ON denote the trivial bundle over C of rank N. A holomorphic section of 
1(C, End(E)) is a Higgs field on E.
A key construction we use is a map that associates to w ∈ B a Higgs field ϕw on E. While ϕw can be defined for anyN, we give the

explicit formulas only for N = 2, 3. For N = 2 and w = (P2 dz2) define

ϕw =
(

0 −P2
1 0

)

dz. (2.3)

For N = 3 and w = (P2 dz2,P3 dz3) define

ϕw =





0 − 1
2P2 −P3

1 0 − 1
2P2

0 1 0



 dz. (2.4)

2.3. Polynomial opers

In general, SLNC opers are certain holomorphic connections on filtered vector bundles over Riemann surfaces. When the base
Riemann surface is C, the bundle and filtration can be holomorphically trivialized, allowing some simplification of the definition in
this case. Since this is the only case we will use, we present only the simplified definition. Discussion of the general case can be found
in e.g. [20, 49].

Let d denote the trivial connection on E. For w ∈ B define

∇op
w = d + ϕw (2.5)

where ϕw is as defined above. This is a flat holomorphic connection on E. The family of connections {∇op
w | w ∈ Bd} is the set of

polynomial SLNC opers on C of degree d.
It will be convenient to extend (2.5) to a 1-parameter family, parameterized by h̄ ∈ C

×:

∇op
w (h̄) = d + h̄−1ϕw. (2.6)

Passing from (2.5) to (2.6) does not bring in any essentially new connections: indeed ∇op
w (h̄) is equivalent to ∇op

h̄−1w
, where we define

tw ∈ Bd by

tw = (t2P2dz
2, t3P3dz

3). (2.7)

Nevertheless the main results below are naturally phrased in the language of the families (2.6).
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2.4. Polynomial Hitchin sections

Over a compact Riemann surface, the SLNC Hitchin section is a collection of Higgs bundles where the vector bundle is a certain
direct sum of powers of the canonical bundle, and where the Higgs field has the form of ϕw relative to that splitting. We refer to the
original papers [33, 34] or the recent survey [22] for further discussion of this theory. We will consider the natural analogue of this
family for the base Riemann surface C, with a polynomial growth condition at infinity, and will take advantage of the holomorphic
triviality of the canonical bundle of C to simplify our presentation.

In this section, we only consider N = 2, 3. For w ∈ B, the pair (E,ϕw) is a Higgs bundle with wild ramification at ∞ in the sense
of [2]. For such a bundle, we consider a hermitian metric h that with respect to the splitting E = ON has the matrix form

(

e−u 0
0 eu

)

if N = 2,





e−u 0 0
0 1 0
0 0 eu



 if N = 3, (2.8)

for a scalar function u on C. Fix a degree d and restrict attention to w ∈ Bd for the moment. Also assume that φk = 0 for k �= N
(as this holds in all examples of the Hitchin section that we investigate numerically). We say that h is a harmonic metric if it satisfies
both the self-duality equation

�u = 4
(

eku − e−2u|PN |2
)

, k = 2

N − 1
(2.9)

and the compatibility condition

u ∼ N−1
N log |PN | as |z| → ∞. (2.10)

Inmore invariant terms, the self-duality equation (2.9) is equivalent to requiring FDh+[ϕ,ϕ†h ] = 0whereDh is the Chern connection
of h and FDh is its curvature, and the compatibility condition says that the metric is compatible with a certain filtration at ∞ (see
[24]). It is known in this case [2, 42, 43] that there exists a unique harmonic metric on (E,ϕw) for w ∈ Bd, which we denote by hw.
We call the collection {(E,ϕw, hw) | w ∈ Bd} of Higgs bundles with harmonic metrics the polynomial Hitchin section of degree d.

Associated to (E,ϕw, hw) there is the flat (non-holomorphic) connection

∇H
w = Dhw + ϕw + ϕ

†hw
w . (2.11)

As we did in Section 2.3, we will find it convenient to extend (2.11) to a family of flat connections. In this case we introduce two
parameters: R ∈ R+ and ζ ∈ C

×. Then we define

∇H
w (R, ζ ) = DhRw + ζ−1ϕRw + ζϕ

†hRw
Rw . (2.12)

One sees immediately from (2.12) that the parameter R can be absorbed in a rescaling of w. The same is true of the phase of ζ : in

particular, if |ζ | = 1, then we have ζ−1ϕRw = ϕζ−1Rw, hRw = hζ−1Rw, and ζϕ
†hRw
Rw = ϕ

†h
ζ−1Rw

ζ−1Rw
, giving altogether ∇H

w (R, ζ ) = ∇H
ζ−1Rw

.

In contrast, when |ζ | �= 1 it cannot be absorbed in a rescaling of w; the connections ∇H
w (R, ζ ) for |ζ | �= 1 are genuinely different

from those for |ζ | = 1.

2.5. Stokes data

In the sequel, we consider monodromy-like invariants of the flat connections ∇op
w (h̄) and ∇H

w (R, ζ ). Since the base is the simply
connected space C, these connections have no monodromy in the traditional sense. Instead, their generalized monodromy is
defined using Stokes data—concretely, growth rates of sections as z → ∞. Stokes data for irregular connections are in many
important respects parallel to monodromy data for regular connections; in particular, the corresponding moduli spaces have natural
holomorphic-symplectic and even hyperkähler structures, as shown in [2–4].

Suppose w ∈ B′
d, and let A be the leading coefficient of h̄−NPN or ζ−NPN . Then the Stokes sectors of ∇op

w (h̄) or ∇H
w (R, ζ ) are the

sets

arg(z) ∈
[

π(2j − 1 − arg(A))

d + N
,
π(2j + 1 − arg(A))

d + N

]

, |z| > r (2.13)

for 1 � j � d + N and r > 0; these give a collection of evenly spaced sectors about ∞. In each such sector, there is a horizontal
section of ∇op

w (h̄) or ∇H
w (R, ζ ) that decays exponentially as z → ∞ within the sector, and this section is unique up to multiplication

by a complex scalar. This is a subdominant section for that sector, and the line containing all subdominant sections for a sector is the
subdominant line.

All of the subdominant solutions associated to∇op
w (h̄) or∇H

w (R, ζ ) live in theN-dimensional space of horizontal sections overC.
The relative position of the subdominant lines give moduli for the connection, sometimes called Stokes data. While the traditional
approach to the Stokes phenomenon also includes a specific encoding of such data in so-called Stokes factors and Stokes matrices,
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these will not be directly used in what follows. Instead, we define certain determinantal invariants of the connection using the
subdominant sections directly.

First, fix subdominant sections sj for j = 1, . . . , d + N. Now let (i1, . . . , iN) be a tuple of distinct integers between 1 and d + N,
and define

p(i1, . . . , iN) = det
(

si1 , . . . , siN
)

. (2.14)

In the case N = 3 and for a sextuple (a, b, c, d, e, f ) of integers between 1 and d + N, we also define the “hexapod” determinant

q(a, b, c, d, e, f ) = det
(

sa × sb, sc × sd, se × sf
)

. (2.15)

Here, we use any identification of the space of flat sections with C
3 in order to compute the cross product.

The quantities p and q defined above are not invariants of the connection, since for example the replacements si �→ λisi scale these
determinants by some product of the factors λi. However, a ratio of products of such determinants is an invariant if each si appears
the same number of times in the numerator and denominator. For example, the quantity

p(a, b)p(c, d)

p(a, d)p(c, b)
(2.16)

is an invariant in the N = 2 case; it is the cross ratio of the lines spanned by sa, sb, sc, sd. Similar ratios of products of determinants
give invariants for N = 3, as does the ratio

q(a, b, c, d, e, f )

p(a, b, c)p(d, e, f )
. (2.17)

The invariants for the family of connections∇op
w (h̄) or∇H

w (R, ζ ) vary analytically with h̄ or ζ respectively.When |ζ | = 1,∇H
w (R, ζ )

admits a reduction to SLNR, which implies that the invariants are real on this locus; otherwise they are generally complex.

2.6. Direct numerical calculation of Stokes data

Given w ∈ B′
d, the determinantal invariants for the associated oper connection ∇op

w (h̄) are relatively easy to compute numerically.

Writing the horizontal section equation∇op
w (h̄)s = 0 as a systemof ordinary differential equations,we canuse a numericalODE solver

to compute the parallel transport operatorAθ (h̄) ∈ SLNC of∇op
w (h̄) from a fixed base point z0 ∈ C to z0+r exp(iθ). For large r and for

θ corresponding to an interior point of one of the Stokes sectors, the eigenvector ofAθ(h̄)with smallest eigenvalue is an approximation
of the subdominant section (considered as an element of the fiber of E over the basepoint z0). Solving d+N numerical ODE problems
thus gives a collection of subdominant solution vectors that can be directly substituted into the determinantal invariants.

Invariants of the connections ∇H
w (R, ζ ) for the Hitchin section can also be computed numerically by this approach, but an

important additional complication in this case is that the formula (2.12) for ∇H
w (R, ζ ) involves the undetermined function u. Thus

we first need to determine u, which we do by solving the PDE and conditions (2.9)-(2.10) numerically on a region in the plane. Once
this has been done, the numerical calculation of Stokes data proceeds as in the oper case, though of course we must choose the ODE
integration radius r small enough so that the rays lie in the region on which u has been computed.

In what follows we refer to this approach to computing Stokes data using numerical ODE/PDE solvers as the direct method or the
differential equationmethod (abbreviatedDE), especially when contrasting it with the conjectural integral equationmethod described
in Section 3. The preceding overview of the direct method omits many details involved in the actual numerical implementation used
in our experiments, which are discussed in Section 7.1 (opers) and Section 7.3 (Hitchin section).

2.7. The hyperkählermetric

Hitchin introduced a complete hyperkähler metric on the moduli space of Higgs bundles over a compact Riemann surface [34]. An
analogous picture holds for Higgs bundles on CP

1 with irregular singularity at z = ∞ [2–4]. We now briefly review the main facts
which we will need below.

Let Bd,0 ⊂ Bd denote the space of tuples (φ2, . . . ,φN) with deg(Pk) < k−1
N d − 1 for all k. Then for each h ∈ Bd/Bd,0 we consider

the affine space

Bd,h = h + Bd,0 ⊂ Bd. (2.18)

The Hitchin section described in Section 2.4 realizes each Bd,h as a subspace of a moduli spaceMd,h of polynomial Higgs bundles.
The spaceMd,h carries a complete hyperkähler metric, and by restriction one gets a canonical Kähler metric on each Bd,h.

The only case we will use explicitly in this paper is the case N = 2. In this case, given a polynomial h(z) of degree d, Bd,h ⊂ Bd is
the affine space of polynomials P2(z) of the form

P2(z) = h(z) + l(z) (2.19)

where deg l < d
2 − 1. Thus dimBd,h = ⌈ d

2 − 1⌉.
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In this case we can write a concrete formula for the Kähler metric on Bd,h, as follows. Fix a polynomial P2 ∈ Bd,h. Let u be the
solution of (2.9) for this P2. Next, consider a tangent vector to Bd,h at P2; such a tangent vector is represented by a polynomial Ṗ2
with deg Ṗ2 < d

2 − 1. Let F denote the unique bounded complex function in the plane obeying the complex variation equation:

(

� − 8(e2u + e−2u|P2|2)
)

F + 8e−2uP2Ṗ2 = 0. (2.20)

Then the norm of the tangent vector Ṗ2 is

‖Ṗ2‖2 =
∫

C

4e−2u
(

|Ṗ2|2 − Re(FP2Ṗ2)
)

dxdy. (2.21)

(For large |z| one has u ∼ 1
2 log|P2| and F ∼ 1

2
Ṗ2
P2
, so that the integrand I in (2.21) scales like |Ṗ22/P2|, i.e. like |z|2d′−d if Ṗ2 has degree

d′; thus the fact that we imposed d′ < d
2 − 1 is just what is needed to ensure the integral (2.21) converges.)

The integrand in the formula (2.21) is the same as the integrand for the metric on the Hitchin section of the SL2C-character
variety of a compact surface. The computation leading to (2.21) in that context is given in [16]; the same computation applies in the
present case.

2.8. The semiflat approximation

In this section we only consider N = 2. Suppose that the polynomial P2 has only simple zeros, and consider a rescaling

P2 → t2P2, t ∈ R+. (2.22)

Then in the limit of large t we expect a kind of “concentration” phenomenon: away from small discs around the zeros of P2, which

shrink to zero size as t → ∞, we should have u ≈ usf := 1
2 log|P2| and F ≈ Fsf := 1

2
Ṗ2
P2
. (One reason for this expectation is that an

analogous concentration phenomenon on a compact surface was established in [16, 40]; the only difference in our case is that instead
of a compact surface we are working on the plane with a growth condition as |z| → ∞.) This leads to a scheme for approximating
the L2 metric on Bd,h without solving any PDEs: we just replace u → usf and F → Fsf in (2.21), which leads to

‖Ṗ2‖2 ≈
∫

C

2
|Ṗ2|2
|P2|

dxdy. (2.23)

This is the semiflat approximation to the L2 metric.
As we discuss in Section 3.6, the conjectures of [26, 29] predict that the semiflat approximation is asymptotically close to the actual

metric (2.21): the difference between the two decays exponentially in t. For the SL2C-character variety of a compact surface C, the
analogous statement is known to be true [16, 23, 40].

2.9. The conformal limit

In this section we have been discussing two different families of connections associated to a point w ∈ B: ∇op
w (h̄) and ∇H

w (R, ζ ). It is
expected that the family ∇H

w (R, ζ ) reduces to the simpler family ∇op
w (h̄) in a double scaling limit known as the “conformal limit”:

lim
R→0

[∇H
w (R, ζ = Rh̄)] = [∇op

w (h̄)]. (2.24)

Here [∇] means the equivalence class of the connection; so (2.24) does not say the actual connections have a limit, but that their
equivalence classes do (and thus their Stokes data do, since the Stokes data depend on the connection only up to equivalence). This
relation was proposed in [25]; in our context of polynomial Higgs bundles it has not been proven, but in the case of Higgs bundles
on a compact surface it was proven in [7, 20].

3. Integral equations for Stokes data

In this section we recall the twistor Riemann–Hilbert conjecture, a conjectural method for computing the Stokes data of the families
of connections∇op

w (h̄) and∇H
w (R, ζ ). This method computes spectral coordinates for the connections, which are invariants related to

the determinants considered earlier.
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3.1. Spectral coordinates for N = 2

We first consider the case N = 2, so that w = φ2 = P2(z)dz2. We will treat the cases of opers and the Hitchin section in parallel. For
opers ∇op

w (h̄) we let ϑ = arg h̄; for the connections ∇H
w (R, ζ ) we let ϑ = arg ζ .

We define the ϑ-foliation to consist of the integral curves of the line field ker Im e−iϑ
√−φ2. This “foliation” has singularities at

the zeros of φ2; specifically, each simple zero of φ2 is a 3-pronged singularity. Thus a leaf can be bi-infinite, may end at a singularity,
or may be a segment between singularities. A segment of the latter type, occurring in the ϑ-foliation, is known as a saddle connection
with angle ϑ . When we refer simply to a “saddle connection” we mean a saddle connection with any angle.

We assume from now on (as happens in the examples we study) that φ2 has only simple zeros. For such φ2, an angle ϑ is BPS-free
if there are no saddle connections with angle ϑ ; otherwise ϑ is BPS-ful.

The union of the leaves of the ϑ-foliation emanating from the zeros of φ2 is the ϑ-critical graph. For BPS-free ϑ , the critical graph
is simply a union of 3 deg P2 half-infinite leaves. Each of these leaves goes to infinity in an asymptotic direction lying in the middle
of one of the 2 + deg P2 Stokes sectors for the connection ∇op

w (h̄) or ∇H
w (R, ζ ). (Several leaves may go to a single Stokes sector.)

The critical graph divides the plane into a collection of foliated strips and half-planes. The configuration of these strips and half-
planes is naturally encoded in a triangulated polygon T, depending on ϑ , that is defined as follows: The vertex set is the collection
of Stokes sectors of ∇op

w at infinity, and there is an edge from sector i to sector j if there is a bi-infinite ϑ-leaf (and hence strip or
half-plane) of φ2 asymptotic to both i and j. In this triangulated polygon, each triangle naturally corresponds to a simple zero of φ2,
such that the vertices of the triangle are the sectors to which the leaves emanating from that zero are asymptotic. Figures 1 and 2
show examples of critical graphs and corresponding triangulations.

The spectral curve Y is the holomorphic curve in C
2 defined by

Y = {(y, z) | y2 + P2(z) = 0}. (3.1)

The 1-form λ = y dz on Y satisfies π∗(φ2) = −λ2 where π(y, z) = z. Let Ŵ = H1(Y ,Z), which is the charge lattice.
Provided that ϑ is BPS-free, each saddle connection e gives rise to an element of Ŵ as follows. Let �e1, �e2 denote the two segments

in Y that project isomorphically to e, each oriented so that Im(λϑ ) is negative when applied to the tangent vector. Then �e1 + �e2 is a
cycle on Y , and its homology class [�e1 + �e2] ∈ Ŵ is called the ϑ-li� of e. It is not hard to see from the explicit form of the spectral
curve that the resulting map from the set of saddle connections to Ŵ is injective.

As a particular case of this construction, if d is an internal edge of the triangulated polygon for a BPS-free angle ϑ , then there is
a saddle connection ed naturally dual to d, in the sense that the two triangles adjacent to d correspond to the two zeros joined by ed.
Let γ ∈ Ŵ be the ϑ-li� of ed. We define the associated spectral coordinate as

Xγ = −p(q, r)p(s, t)

p(q, t)p(s, r)
, (3.2)

where q, r, s, t are the vertices of the quadrilateral of which d is the diagonal, with d joining q to s. That is, Xγ is a certain cross ratio
of the four subdominant solutions associated to triangles that have d as an edge. (This association of a cross ratio to a triangulation
of the polygon was introduced in [21], where it was used to define a cluster structure on an appropriate moduli space of PSL2C-local
systems.)

There is an extension of this construction, described in [29], whereby a spectral coordinate Xγ can be associated to every element
of Ŵ, and so that the resulting coordinates satisfy

XαXβ = Xα+β (3.3)

Figure 1. Spectral network (left) and triangulated polygon T (right) for (A1 , A2) (P2(z) = z3 − 1) atϑ = 0. The same triangulation arises for all |ϑ | < π
6 . The labeled saddle

connections correspond to−γ1 (red) and−γ3 (blue), and the dual edges in T are correspondingly colored.
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Figure 2. Spectral network (left) and triangulated polygon (right) for (A1 , A3) (P2(z) = z4 − 1) at ϑ = 0.4. The same triangulation arises for all 0 < ϑ < π
4 . At left, the

colored segments are the saddle connections corresponding to γ1 (red),−γ2 (green), and−γ3 (blue), and the dual edges in T are correspondingly colored.

for any α,β ∈ Ŵ. As special cases we have that X0 = 1 and X−γ = X−1
γ . In the examples we study, a basis of Ŵ is obtained from

internal edges of T, hence the equation above actually determines a formula for any spectral coordinate in terms of the ones arising
from internal edges.

3.2. Integral equation for opers

Consider a fixed w ∈ B′ and varying h̄ ∈ C
×. This gives a 1-parameter family of spectral coordinates Xγ (h̄) associated to the

connections ∇op
w (h̄). The twistor Riemann–Hilbert conjecture says that Xγ (h̄) can be computed by another method, which we now

describe. We will give a description of a family of functions Xγ (h̄), which a priori has nothing to do with flat connections; the
conjecture is that

Xγ (h̄) = Xγ (h̄). (3.4)

The functions Xγ are characterized in terms of a system of integral equations. To state these we will need to define periods and
BPS counts. A class γ ∈ Ŵ has a period Zγ ∈ C defined by

Zγ =
∫

γ

λ. (3.5)

The theory of [28] associates to γ ∈ Ŵ an integer 
(w, γ ), the BPS count. In these N = 2 examples 
(w, γ ) is simply given by


(w, γ ) =
{

1 if ± γ is associated to a saddle connection,

0 otherwise.
(3.6)

Note that 
(w, γ ) = 
(w,−γ ). Let Ŵ′ ⊂ Ŵ denote the set of homology classes γ for which 
(w, γ ) �= 0. In the examples we
consider, Ŵ′ is a finite set.

Part of the twistor Riemann-Hilbert conjecture is the statement that a set of functions {Xγ | γ ∈ Ŵ} can be uniquely determined
by the system of integral equations

Xγ (h̄) = exp



h̄−1Zγ + 1

4π i

∑

µ∈Ŵ


(w,µ)〈γ ,µ〉
∫

R−Zµ

dξ

ξ

ξ + h̄

ξ − h̄
log

(

1 + Xµ(ξ)
)



 (3.7)

where 〈γ ,µ〉 denotes the intersection pairing on Ŵ = H1(Y ,Z). Note that the formally infinite sum in (3.7) has only finitely many
nonzero terms, because it includes a coefficient 
(w,µ) and so can be reduced to a sum over µ ∈ Ŵ′. Thus by considering only
γ ∈ Ŵ′ we obtain from (3.7) a finite collection of coupled integral equations.

Assuming this conjecture holds, it suggests a method to compute the collectionX• = {Xγ | γ ∈ Ŵ′}: LetF denote the right-hand
side of (3.7), considered as a self-map of the set of tuples of functions of h̄ indexed by γ ∈ Ŵ′. In terms of this function, the conjecture
is that X• is a fixed point of F , i.e. that X• = F(X•). We can further optimistically conjecture that this fixed point is unique, and

then attempt to find it by iteration, starting with the initial guessX
(0)
γ (h̄) = exp(h̄−1Zγ ) and inductively definingX

(k)
• = F(X

(k−1)
• )

for any k > 0 — or some similar iteration with the same fixed points (see Section 7.5 for the precise iteration we use in practice).
Finally, once X• has been determined, we can easily compute Xγ for any γ ∈ Ŵ if desired, using (3.3).

We refer to this iterative process as the integral equation method, which we sometimes abbreviate IEQ in tables and plots.
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3.3. Integral equation for the Hitchin section

In the previous subsection we discussed a conjectural integral equation method for computing the Stokes data of the family ∇op
w (h̄),

for a fixed w. There is a very similar conjecture for the Stokes data of the family ∇H
w (R, ζ ), for a fixed w and R. Instead of (3.7) we

consider

Xγ (R, ζ ) = exp



Rζ−1Zγ + RζZγ + 1

4π i

∑

µ∈Ŵ


(w,µ)〈γ ,µ〉
∫

R−Zµ

dξ

ξ

ξ + ζ

ξ − ζ
log

(

1 + Xµ(R, ξ)
)



 . (3.8)

The data Ŵ, Z, 
 entering (3.8) are exactly as they were for (3.7), so all of the discussion from Section 3.2 carries over intact to this
case. Indeed, the only differences between (3.7) and (3.8) are:

• in (3.8) the variable is called ζ ∈ C
× instead of h̄ ∈ C

×, and is rescaled by a factor R in some places,
• (3.8) includes the extra term RζZγ which is not present in (3.7).

Also in parallel to Section 3.2, we can attempt to produce functions Xγ (R, ζ ) obeying (3.8) by iteration, starting from the initial

functions X
(0)
γ (R, ζ ) = exp

(

Rζ−1Zγ + RζZγ

)

. Then the twistor Riemann-Hilbert conjecture is that this iteration converges and

the spectral coordinates of ∇H
w (R, ζ ) are given by

Xγ (R, ζ ) = Xγ (R, ζ ). (3.9)

Incidentally, as observed in [25], one can obtain (3.7) from (3.8) by performing the conformal limit ζ = Rh̄, R → 0, as in
Section 2.9. In this sense the three conjectures we have discussed—the integral equation for opers, the integral equation for the
Hitchin section, and the conformal limit—are compatible.

3.4. Spectral coordinates and integral equations for N = 3

Compared to the N = 2 case outlined above, there are just a few differences in the predictions for N = 3. Since the predictions for
N = 3 are developed carefully in [44], we omit some details here and refer to that article for additional discussion.

In this case, the spectral curve is the 3-fold branched cover of C defined by

Y = {(y, z) | y3 + yP2(z) + P3(z) = 0}. (3.10)

As before, the charge lattice Ŵ = H1(Y ,Z). Any γ ∈ Ŵ has a period Zγ which is the integral of λ = y dz over that cycle. Our
experimental studies focus primarily on the cyclic casew = (0,φ3) ∈ Bd (i.e. vanishing quadratic differential) inwhich caseπ∗(φ3) =
−λ3.

The rank-3 analogue of the critical graph is the WKB ϑ-spectral network, a graph embedded in the plane with edges labeled by
certain topological data. We describe it in detail only in the cyclic case, and when P3 has only simple zeros. First, a ϑ-trajectory of φ3

(or w) is an oriented curve z(t) in C equipped with a pair of continuous sections y(z), ŷ(z) of π over the curve satisfying

(

y(t) − ŷ(t)
) dz(t)

dt
= eiϑ . (3.11)

Of course, if a local labeling of the sheets of the spectral curve as y1, y2, y3 has been given, then in this region and for some i, j the
functions y and ŷ are restrictions of yi and yj, respectively, and we can label the trajectory according to its type (i, j). As a global
labeling of this type is generally not possible, it is necessary to introduce branch cuts that divide the plane into simply connected
regions and indicate labels in each region, as well as the permutation of labels when crossing the branch cut. Also note that reversing
orientation of a trajectory of type (i, j) gives a trajectory of type (j, i).

A simple zero of P3 has eight ϑ-trajectories emerging from it, and the ϑ-spectral network is defined to include the maximal
extensions of these trajectories. We also add additional curves to the spectral network: If trajectories with local labels (i, j) and (j, k)
meet (at p), then they do so at angle π

3 or 2π
3 . In the latter case, there is a trajectory of type (i, j) bisecting the angle between their

tangent vectors at p, and we add the maximal extension of this trajectory to the network as well. This may result in new intersections,
and then we repeat the rule above to possibly add additional trajectories from the intersection points. The ϑ-spectral network is the
union of all trajectories that arise from iterating this procedure. In the examples we consider, it is a finite union of trajectories.

We say that ϑ is BPS-free if no trajectory of the ϑ-spectral networkmeets a zero of P3, except possibly at its origin point; otherwise
ϑ is BPS-ful.

As in rank 2, there is a procedure which associates to γ ∈ Ŵ a spectral coordinate Xγ which is given by some combination
of determinants of subdominant solutions. The general procedure to construct this mapping from homology classes to coordinate
functions is significantly more complicated than for N = 2, and we will not describe it. Instead, we will indicate the result of that
procedure in the examples we study (referring to [44] for both the general procedure and the detailed calculations in these examples).

The functions Xγ and the conjectural integral equation are defined exactly the same as before (i.e., (3.7) or (3.8)), though to
make sense of this equation in rank 3 we must describe the meaning of 
(w,µ). Recall that in rank 2 we defined 
(w,µ) to be 1
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or 0 depending on whether ±µ is represented by a saddle connection. In the cyclic rank 3 case, there are cycles in Ŵ associated to
trajectories joining zeros (essentially, rank-3 saddle connections) and to tripods consisting of three trajectories joining three zeros
to a common point (with labels (i, j), (j, k), (k, i)). In the examples we study1, the BPS count 
(w,µ) is the total number of such
saddle connections and tripods whose associated cycle is ±µ. As in rank 2 we will only study examples where 
(w,µ) = 0 for all
but finitely many µ ∈ Ŵ, allowing the same integral iteration strategy sketched above to extend naturally to rank 3.

Finally, we allow parameterized deformations of a cyclic example, i.e. w = (φ2(�),φ3) with � a complex parameter and φ2(� =
0) = 0. For sufficiently small |�|, it is not necessary to fully generalize the spectral network and spectral coordinate constructions
to this case, as all of the relevant choices are locally constant: a homology basis for � = 0 extends to the spectral curves over a
neighborhood of � = 0 using the Gauss–Manin connection, and the associated determinantal invariants also remain unchanged.

3.5. Spectral coordinates and the hyperkählermetric

In this section we specialize to N = 2 and revisit the Kähler metric gd,h on the space Bd,h introduced in Section 2.7.
In parallel to the usual case of Higgs bundles over a compact surface, the metric gd,h is the restriction of the hyperkähler metric

onMd,h. On a hyperkähler manifold one has three distinguished complex structures I1, I2, I3, and corresponding Kähler forms ω1,
ω2, ω3. In our case, Bd,h is an I3-complex subspace ofMd,h, and thus the restriction of ω3 to Bd,h is the Kähler form for the metric
gd,h.

On any hyperkähler manifold, the Kähler forms for any two of the distinguished complex structures can be organized into a
holomorphic-symplectic form for the third; in particular, the I2-holomorphic-symplectic form is


2 = ω3 + iω1. (3.12)

The key reason why the spectral coordinates can be used to understand the hyperkähler metric onMd,h is that the functions

yγ := Xγ (R = 1, ζ = 1) (3.13)

are Darboux coordinates for the holomorphic-symplectic form
2 [21, 28, 29]. More precisely, choosing a basis {γi} forŴ and setting
ǫij := 〈γi, γj〉, yi := yγi , we have


2 = 1

2

n
∑

i,j=1

ǫij d log yi ∧ d log yj. (3.14)

When restricted to Bd,h the functions yγ are real, so combining (3.14) with (3.12) gives on Bd,h

ω3 = 1

2

n
∑

i,j=1

ǫij d log yi ∧ d log yj. (3.15)

Finally, we have g(·, ·) = ω3(·, I3·), and thus

g =
n

∑

i,j=1

ǫij d log yi ⊗ dc log yj, (3.16)

where dcf ∈ 
1(Bd,h) is defined by dcf · v = df · I3v.
Using (3.16), any method of computing the functions yγ on Bd,h gives a method of computing the metric gd,h. In particular, we

can use the integral equation method from Section 3.3 to compute yγ , and thus obtain an integral equation computation of gd,h.

3.6. Leading-order approximations

In this section we have been discussing a method of computing spectral coordinates Xγ for the connections ∇op
w (h̄) or ∇H

w (R, ζ ),
which involves solving either (3.7) or (3.8), respectively. Although the full solutions Xγ (h̄) or Xγ (R, ζ ) are complicated and do not
seem to admit explicit exact formulas, we can nevertheless derive explicit asymptotic formulas. The details are slightly different in
the two cases:

• In the case of opers, if one makes the assumption thatXγ (h̄) → 0 as h̄ → 0 along the axis h̄ ∈ R−Zγ , then it follows that the sum
of integrals in (3.7) goes to zero as h̄ → 0,2 and thus

Xγ (h̄) ∼ exp(h̄−1Zγ ) as h̄ → 0. (3.17)

1Inmore general rank 3 cases it would be necessary to consider other types of “degenerations”of the spectral network; an algorithm for defining and computing

(w,µ) in general is given in [28].

2To verify this it is convenient to rewrite the sum of integrals by combining the terms for µ and −µ, as we do in Section 7.5.
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• In the case of the Hitchin section, one can make a sharper asymptotic statement, as follows. If we take ζ ∈ R−Zγ , the sum of
integrals in (3.8) is real and negative; this implies that, for ζ ∈ R−Zγ , |Xγ (ζ )| is bounded above by exp(−2R|Zγ |). This in turn
implies that the integral term in (3.8) is O(e−2RM) whereM = min{|Zµ| : µ ∈ Ŵ′}. We conclude that

Xγ (R, ζ ) = exp
(

Rζ−1Zγ + RζZγ + O(e−2RM)
)

as R → ∞. (3.18)

In particular, at ζ = 1 we have

Xγ (R, ζ = 1) = exp
(

2RReZγ + O(e−2RM)
)

as R → ∞. (3.19)

The asymptotic formula (3.19) also leads to an asymptotic formula for the Kähler metric on Bd,h, as follows. We consider a ray
on Bd,h given by w = tw0, in the sense of (2.7), and the metric along this ray, gt = g(w = tw0). gt is determined by the Darboux
coordinates xγ (tw0) = Xγ (tw0,R = 1, ζ = 1) = Xγ (w0,R = t, ζ = 1). Then

yγ (tw0) = exp
(

2t ReZγ (w0) + O(e−2tM)
)

as t → ∞. (3.20)

Using the relation Zγ (tw0) = tZγ (w0), we can also write this

yγ (tw0) = exp
(

2 ReZγ (tw0) + O(e−2tM)
)

as t → ∞. (3.21)

Finally, substituting this in (3.16) gives the approximate formula

gt = gsf + O(e−2tM) as t → ∞, (3.22)

where we define

gsf =
n

∑

i,j=1

ǫij dReZi ⊗ dc ReZj. (3.23)

We remark that the metric gsf defined here is actually equal to the semiflat approximation to g which we described in Section 2.7.
Indeed (3.23) expresses gsf in terms of a bilinear form in periods Żγ =

∮

γ
λ̇ and their complex conjugates, which by Riemann bilinear

identity can be related to the integral
∫

Y λ̇ ∧ ˙̄λ; likewise (2.23) can be related to the same integral. Thus the twistor Riemann–Hilbert

conjecture leads to the prediction that the semiflat approximation is exponentially good: it holds up to corrections of order e−2tM .
With this connection in mind we refer to the asymptotic formula (3.18) as the semiflat approximation to Xγ (ζ ).

3.7. Exact coordinates for pure flavor charges

In general, it is difficult to write explicit exact formulas for the functionsXγ obeying (3.7) or (3.8). There is one exception, however:
this is the case when γ lies in the radical of the intersection pairing 〈·, ·〉. (Such γ are called “pure flavor charges” in the physics
literature; geometrically, in our examples, they arise from cycles on � which are peripheral, i.e. they lie in a small neighborhood of
∞.)

When γ is pure flavor, the integral terms in (3.7), (3.8) vanish, leaving simply

Xγ (h̄) = exp(h̄−1Zγ ), (3.24)

and

Xγ (R, ζ ) = exp(Rζ−1Zγ + RζZγ ). (3.25)

In other words, when γ is pure flavor, the asymptotic formulas (3.17), (3.18) simplify to exact formulas. Combining these with the
twistor Riemann-Hilbert conjecture gives exact formulas for Xγ (h̄) and Xγ (R, ζ ). These formulas are also conjectural, but should
be much simpler to establish than the conjecture for general γ , and in at least one case they are already known: when N = 2, the
formula Xγ (R = 1, ζ = 1) = exp(2 ReZγ ) is proven in [31].

4. Experimental studies of Stokes data

4.1. Examples

4.1.1. The N = 2 examples

In general we will refer to the examples for given N and d using the theory name (AN−1,Ad−1), following the notation of [5] for the
associated generalized Argyres-Douglas quantum field theory. For N = 2 we consider the cases d = 3 and d = 4, i.e. the (A1,A2)

and (A1,A3) theories.
In each case we choose a base point in Bd and a BPS-free angle ϑ0, and introduce a basis B = {γ1, . . . , γd−1} of Ŵ. The homology

calculations for these base points naturally extend to all polynomials in a small neighborhood of the base point (which we also
parameterize explicitly, in the cases we study) and for all ϑ near ϑ0. Fixing a homology basis allows us to limit our calculations to the
spectral coordinates Xk := Xγk , which determine all others using (3.3).

In describing our homology bases use the shorthand notation [x, y] to refer to the element of Ŵ that is the ϑ0-li� of the saddle
connection from x to y, and −[x, y] for its opposite. The data describing these examples are summarized in Tables 1 and 2, and the
homology calculations are detailed below.
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Table 1. Summary of data for the N = 2 examples we study.

Theory Family Basepoint ϑ0 Ŵ-basis Periods at basepoint

(A1 , A2) P2 = z3 − �z − c � = 0 0 γ1 = −[1,ω] Zγ1 = e5π i/6M, M =
√
3π

Ŵ(4/3)
Ŵ(11/6)

c = 1 ≈ −2.52393 + 1.45719i

γ2 = [ω,ω2] Zγ2 = −iM
≈ −2.91438i

(A1 , A3) P2 = z4 − 1 — 0.4 γ1 = [−1, 1] Zγ1 = 2
√

π
Ŵ(5/4)
Ŵ(7/4)

≈ 3.49608

γ2 = −[−1, i] Zγ2 = 1
2 (1 + i)Zγ1

≈ 1.74804(1 + i)
γ3 = −[1,−i] Zγ3 = Zγ2

Table 2. Intersection form and classes with nonzero BPS counts in
the N = 2 examples, with respect to the bases in Table 1. Since
Ŵ′ = −Ŵ′ , we list only one from each pair±γ .

Theory 〈·, ·〉 Ŵ′

(A1 , A2)

(

0 1
−1 0

)

(1, 0), (0, 1), (1, 1)

(A1 , A3)





0 1 1
−1 0 0
−1 0 0





(1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 0,−1), (1,−1, 0), (1,−1,−1)

Example (A1,A2). We take as base point the polynomial P2(z) = z3 − 1 and the BPS-free angle ϑ0 = 0. Here, the spectral curve
is the double cover of C branched over the third roots of unity {1,ω,ω2} (where ω = exp(2π i/3)), which as a Riemann surface is
the hexagonal punctured torus. For each pair of roots of unity there is a unique saddle connection joining them, and for j = 1, 2, 3
we define γj = (−1)j[ωj−1,ωj]. These cycles satisfy γ1 + γ2 + γ3 = 0, with any two of them forming a basis for Ŵ ≃ Z

2. We fix the
basis B = {γ1, γ2} for our calculations, which has intersection form 〈γ1, γ2〉 = 1. The set Ŵ′ (i.e. the µ with 
(w,µ) = 1) consists of
±γ1,±γ2,±γ3 = ∓(γ1 + γ2). The periods of the basis elements are listed in Table 1.

The spectral network and triangulated polygon in this case are shown in Figure 1. The cycles −γ1 and −γ3 are associated to
internal edges of T, and so the procedure described in the previous section determines their associated spectral coordinates, X−γ1

and X−γ3 . The relation (3.3) then determines Xγ2 = X−γ1X−γ3 . Explicitly, for the basis elements this gives

X1 = p(2, 3)p(1, 5)

p(1, 2)p(3, 5)
, X2 = p(2, 3)p(4, 5)p(1, 3)

p(1, 2)p(3, 4)p(3, 5)
. (4.1)

In this example we also study a parameterized family within B3 containing the base point by taking P2(z) = z3 − �z − c where
� and c are complex parameters.

Example (A1,A3). We use P2(z) = z4 − 1 as a base point. Here ϑ = 0 is BPS-ful, but angles in the range (0,π/4) are all BPS-free
and give the same triangulation; for concreteness we choose ϑ0 = 0.4.

The spectral curve is the twice-punctured square torus, with Ŵ ≃ Z
3. The spectral network and triangulated polygon are shown

in Figure 2. As in the previous example, for any pair of zeros, there is a unique BPS-ful angle giving a saddle connection joining them.
Let γ1 = [−1, 1], γ2 = −[−1, i] and γ3 = −[−i, 1], which give a basis of Ŵ. Their periods are shown in Table 1.

For each of these basis cycles, one of ±γk is associated to an internal edge of T, and the associated spectral coordinates are the
cross ratios:

X1 = p(1, 3)p(4, 6)

p(1, 6)p(3, 4)
, X2 = p(2, 3)p(1, 4)

p(1, 2)p(3, 4)
, X3 = p(1, 4)p(5, 6)

p(4, 5)p(1, 6)
. (4.2)

In this example, we restrict our study to the base point, and do not consider any parametric family in B4.
In this example, the cycle γf := γ2 − γ3 lies in the kernel of the intersection pairing, i.e., it is a pure flavor charge. Moreover,

this cycle has Zγf = 0. Thus, from (3.24), (3.25), we see that Xγf (h̄) = 1 and Xγf (R, ζ ) = 1 identically. The corresponding spectral
coordinate is

Xγf = X2X
−1
3 = p(2, 3)p(4, 5)p(1, 6)

p(1, 2)p(3, 4)p(5, 6)
. (4.3)

Thus the twistor Riemann–Hilbert conjectureXγ = Xγ would imply that this combination is identically equal to 1, i.e., thatX2 = X3.
For the particular basepoint, we consider, P2(z) = z4 − 1, we actually have an extra symmetry under the holomorphic

automorphism z �→ −z, which implies that indeed X2 = X3 in this case. Because of the fact that X2 = X3, we omit X3 when
showing experimental results in this example. (More generally, we could have considered say P2(z) = z4 + az+ b; in this case we do
not have the extra symmetry anymore, but we do still have Zγf = 0, and thus the conjecture would imply that X2 = X3 even in this
case.)
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4.1.2. The N = 3 examples

Recall that we refer to examples by theory name (AN−1,Ad−1). ForN = 3 we consider the (A2,A1) and (A2,A2) theories, and in this
section we recall the choices of base points, homology bases, and associated spectral coordinates as computed in [44]. The results of
this discussion are summarized in Tables 3 and 4.

Example (A2,A1). We take as base point the polynomial P3(z) = 1
2 (1 − z2) and the BPS-free angle ϑ = 0. Here Y is a 3-fold

cover of C branched over ±1, which as a Riemann surface is the hexagonal punctured torus, i.e., the Riemann surface obtained by
gluing opposite pairs of sides of a regular hexagon, and then removing a point that corresponds to three of the original vertices. Its
homology has rank two, i.e. Ŵ ≃ Z

2,
To construct a homology basis for the spectral curve, we consider an oriented figure-eight curve around±1 as shown in Figure 3.

This curve has three li�s to simple loops on the spectral curve, distinguished by their periods which have arguments π
6 ,

5π
6 , 3π2 ; these

correspond to three segments joining opposite pairs of sides in the hexagon model of the spectral curve. The set Ŵ′ consists of these
three cycles and their inverses. We fix the basis γ1, γ2 corresponding to the li�s with period arguments 5π

6 and 3π
2 , respectively.

Table 3. Summary of data defining the N = 3 examples.

Theory Family Basepoint ϑ0 Ŵ-basis Periods

(A2 , A1) P3 = 1
2 (1 − z2) c = 0 0 (Figure 3) Zγ1 = e5π i/6 12×22/3×π3/2

5Ŵ(−1/6)Ŵ(2/3)
P2 = c ≈ −2.00324 + 1.15657i

Zγ2 = e2π i/3Zγ1
≈ −2.31315i

(A2 , A2) P3 = 1
2 (z3 − 3z2 − 2) — 0 (Figure 4) Zγ1 ≈ 2.30298

P2 = 0 Zγ2 ≈ 5.47033 + 4.48792i
Zγ3 ≈ −4.31884 + 2.49348i
Zγ4 ≈ −4.98697i

Table 4. Intersection form and classes with nonzero BPS counts in the N = 3 examples,

with respect to the bases in Table 3. As before we list only one from each pair±γ in Ŵ′ .

Theory 〈·, ·〉 Ŵ′

(A2 , A1)

(

0 1
−1 0

)

(1, 0), (0, 1), (1, 1)

(A2 , A2)







0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0







(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0),
(0, 1, 1, 0), (0, 1, 1, 1), (1, 0,−1, 0),
(1, 0,−1,−1), (1,−1,−1, 0), (1,−1,−1,−1),
(1,−1,−2,−1), (1,−2,−2,−1), (2,−1,−2,−1)

Figure 3. Spectral network (left) and projected homology basis (right) for (A2 , A1), with P3(z) = 1
2 (1 − z2)).
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Figure 4. Spectral network (left) and projected homology basis (right) for (A2 , A2), with P3(z) = 1
2 (z3 − 3z2 − 2). The cycles γ1 and γ2 intersect over the indicated point.

Using a correspondence between homology classes and “Abelianization trees” described in [44], this basis gives rise to a pair of
spectral coordinates, which for ϑ = 0 (or more generally any |ϑ | < π

6 ) are:

X1 = p(2, 3, 4)p(1, 4, 5)

p(1, 2, 4)p(3, 4, 5)
, X2 = p(2, 4, 5)p(1, 2, 3)p(1, 4, 5)

p(1, 2, 5)p(1, 2, 4)p(3, 4, 5)
. (4.4)

Example (A2,A2). We take as base point P3(z) = 1
2 (z

3 − 3z2 − 2) and BPS-free angle ϑ = 0. We denote the zeros by z0, z1, z2 with
z1, z2 complex conjugates and Im(z1) > 0. Here, the spectral curve is a three-punctured torus, so Ŵ ≃ Z

4. We use a basis γ1, . . . , γ4
that, as in the previous case, can be described in terms of li�s of loops around the zeros of P3. Specifically, for γ1 and γ2 we choose li�s
of figure eight loops around z0, z2 and z1, z2, respectively, while γ3 and γ4 are each li�s of a large counter-clockwise circle enclosing all
of the roots. Thus, on the spectral curve, {γ1, γ2} gives a basis of the homology of the torus obtained by filling in the punctures, while
γ3 and γ4 are represented by small loops around punctures (thus γ3 and γ4 are examples of pure flavor charges.) These are shown in
Figure 4. As before the ambiguity in choice of a li� of each curve is resolved by specifying the periods, and numerical approximations
of these appear in Table 3. In this case, the set Ŵ′ has 24 elements, which are indicated in Table 4.

As explained in [44], the associated spectral coordinates are

X1 = q(1, 2, 3, 4, 5, 6)

p(1, 2, 3)p(4, 5, 6)
, X2 = p(1, 2, 5)p(3, 5, 6)p(4, 5, 6)

p(1, 5, 6)p(2, 5, 6)p(3, 4, 5)
,

X3 = p(1, 2, 6)p(3, 4, 5)

p(1, 2, 3)p(4, 5, 6)
, X4 = p(1, 5, 6)p(2, 3, 4)

p(1, 2, 6)p(3, 4, 5)
,

where the function q in X1 is the hexapod invariant discussed in Section 2.5.

4.2. Results of numerical studies of opers

We now turn to reporting results of calculating spectral coordinates for the opers, comparing the differential equation (DE) and
conjectural integral equation (IEQ) methods. In tabulating and plotting the results for a given w, we fix the argument ϑ = arg h̄ and
then take |h̄|−1 as the independent variable rather than |h̄| itself. This is convenient since |h̄|−1 → ∞ corresponds to divergence
in the moduli space, and is analogous to R → ∞ in the Hitchin section results presented in the next section, thus giving the same
expected behavior in the plots and tables of these two sections.

We begin with explicit numerical results in one example. Consider the (A1,A2) theory with � = 0.8i, c = 1, which corresponds
to taking

w = φ2 = (z3 − (0.8i)z − 1) dz2. (4.5)

There are two spectral coordinates (X1,X2), and we denote the results of calculating the spectral coordinates by the two methods by

XDE
i (h̄) and XIEQ

i (h̄). Tables 5 and 6 shows numerical results for this example for several values of h̄with ϑ = 0, as well as the relative
difference between the DE and IEQ results,3 and an estimate of the relative error in the DE results arising from numerical solution

3Here we define the relative difference between real or complex quantities a and b to be reldiff(a, b) = 2|a−b|
|a|+|b| , that is, reldiff(a, b) describes the difference as a

fraction of the average of |a|, |b|.
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Table 5. Calculated spectral coordinate X1 for (A1 , A2) at� = 0.8i, c = 1, ϑ = 0.

Rel. ODE

|h̄|−1 XDE1 X IEQ1 reldiff(XDE1 , X IEQ1 ) err. est.

exp(−6) 6.197 565 467 441 × 10−1 6.197 565 467 441 × 10−1 2.5 × 10−15 1.2 × 10−13

−3.078 848 587 097 × 10−3i −3.078 848 587 098 × 10−3i

exp(−3) 6.098 896 929 797 × 10−1 6.098 896 929 797 × 10−1 6.2 × 10−14 1.2 × 10−13

−1.502 048 140 005 × 10−2i −1.502 048 140 001 × 10−2i

exp(0) 1.241 494 034 799 × 10−1 1.241 494 034 799 × 10−1 6.0 × 10−13 1.8 × 10−13

4.675 580 545 520 × 10−2i 4.675 580 545 526 × 10−2i

exp(1.5) −4.541 501 969 871 × 10−5 −4.541 501 970 009 × 10−5 8.9 × 10−12 2.4 × 10−11

1.652 861 158 678 × 10−4i 1.652 861 158 672 × 10−4i

exp(2.25) −7.867 354 971 295 × 10−9 −7.867 355 151 333 × 10−9 2.0 × 10−8 6.4 × 10−8

−7.713 362 317 977 × 10−9i −7.713 362 195 515 × 10−9i

exp(3) −6.050 397 949 632 × 10−18 −6.288 168 615 191 × 10−18 3.2 × 10−2 2.0

1.341 932 452 591 × 10−17i 1.301 568 577 212 × 10−17i

Table 6. Calculated spectral coordinates X2 for (A1 , A2) at� = 0.8i, c = 1, ϑ = 0.

Rel. ODE

|h̄|−1 XDE2 X IEQ2 reldiff(XDE2 , X IEQ2 ) err. est.

exp(−6) 9.910 196 824 725 × 10−1 9.910 196 824 725 × 10−1 1.7 × 10−14 1.8 × 10−13

−2.459 625 969 598 × 10−3i −2.459 625 969 583 × 10−3i

exp(−3) 9.017 178 663 077 × 10−1 9.017 178 663 078 × 10−1 7.7 × 10−14 1.8 × 10−13

−8.117 380 424 180 × 10−2i −8.117 380 424 181 × 10−2i

exp(0) −2.797 839 029 129 × 10−1 −2.797 839 029 132 × 10−1 1.1 × 10−12 2.1 × 10−13

−1.019 844 898 950 × 10−1i −1.019 844 898 951 × 10−1i

exp(1.5) 4.437 252 973 127 × 10−3 4.437 252 973 159 × 10−3 6.6 × 10−12 2.1 × 10−11

−2.267 783 957 724 × 10−3i −2.267 783 957 721 × 10−3i

exp(2.25) −1.086 698 308 145 × 10−5 −1.086 698 331 057 × 10−5 2.0 × 10−8 4.7 × 10−8

−7.680 370 178 260 × 10−6i −7.680 370 312 705 × 10−6i

exp(3) −2.017 168 705 958 × 10−11 −2.112 193 509 873 × 10−11 4.1 × 10−2 8.1 × 10−1

−4.428 933 036 588 × 10−11i −4.255 436 289 723 × 10−11i

of the parallel transport ODE. Each calculation method involves a number of internal parameters, and the calculation details and
parameters used here are given in Section 7.

A pattern seen in these tables is present in all of the computations we report: For sufficiently small |h̄|−1 the two methods are in
close agreement, but for larger |h̄|−1 the relative difference grows quickly. This is to be expected, since the relative numerical error in
the results of the DE computation is expected to grow with |h̄|−1.

Plots of the spectral coordinates and relative errors for all of the examples discussed in Sections 4.1.1 and 4.1.2 are shown on the
next several pages (Figures 5–11). Each of these “four-pane” plots has the following structure: The top row of plots shows results for
|h̄|−1 < 0.1 (“small parameter”) and the bottom show results for |h̄|−1 � 0.1 (“large parameter”). In each case, the le� plot shows
the spectral coordinates themselves (as computed by both methods), and the right shows the relative difference between the two
methods, as well as the relative difference in the DE result corresponding to an estimate of the error in that calculation. The error
model used in this estimate is described in Section 7.2. The upper limit of |h̄|−1 in each set of experiments is chosen as a point where
the error estimate for the direct method becomes comparable to the spectral coordinate itself; beyond that point, the DE results are
dominated by numerical error and comparison with IEQ is meaningless. The relative differences are always shown on a logarithmic
y-axis scale, and all relative error plots use the same y-axis limits (5 × 10−14 to 5). The scales for the other axes are adapted to the
different regions: For small |h̄|−1, the |h̄|−1 axis uses a logarithmic scale, as is suited to the exponential spacing of the sample points.
For large |h̄|−1, the |h̄|−1 axis uses a linear scale and the |Xi| axis is logarithmic; this has the effect of making the leading-order WKB
asymptotic (3.17) a linear function, which is shown as a dashed line. For small |h̄|−1, the WKB asymptotic is not expected to be
accurate and is not shown, except for the pure flavor coordinates X3 and X4 of the (A2,A2) example where it is expected to give an
exact formula.
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Figure 5. Oper comparison: (A1 , A2) family at base point (� = 0, c = 1) with ϑ = 0.
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Figure 6. Oper comparison: (A1 , A2) family at base point (� = 0, c = 1) with ϑ = 0.1.
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Figure 7. Oper comparison: (A1 , A2) family at� = 0.8i, c = 1 with ϑ = 0.
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Figure 8. Oper comparison: (A1 , A3) example with ϑ = 0.1.
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Figure 9. Oper comparison: (A2 , A1) family at base point (� = 0) with ϑ = 0.
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Figure 10. Oper comparison: (A2 , A1) family at c = 1
2 with ϑ = 0.
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Figure 11. Oper comparison: (A2 , A2) example with ϑ = 0.1. The coordinates X3 and X4 are associated to pure flavor charges, so the WKB asymptotic is conjecturally an
exact formula in those cases.
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Table 7. Calculated spectral coordinates for (A1 , A2) Hitchin section,� = 0, c = 1, ϑ = 0.1.

Rel. PDE

R XDE1 X IEQ1 reldiff(XDE1 , X IEQ1 ) error est.

exp(−6) 6.161 191 878 × 10−1 6.161 191 872 × 10−1 1.0 × 10−9 2.3 × 10−10

exp(−3) 5.511 806 552 × 10−1 5.511 806 344 × 10−1 3.8 × 10−8 8.5 × 10−9

exp(0) 8.800 765 041 × 10−3 8.800 772 243 × 10−3 8.2 × 10−7 –

exp(1.5) 6.111 579 918 × 10−10 6.171 310 177 × 10−10 9.7 × 10−3 9.8 × 10−3

exp(1.875) 1.418 541 282 × 10−13 3.981 788 142 × 10−14 1.1 2.0

Rel. PDE

R XDE2 X IEQ2 reldiff(XDE2 , X IEQ2 ) error est.

exp(−6) 9.994 046 408 × 10−1 9.994 046 406 × 10−1 2.0 × 10−10 4.8 × 10−11

exp(−3) 9.787 121 061 × 10−1 9.787 120 991 × 10−1 7.1 × 10−9 1.7 × 10−9

exp(0) 5.589 112 961 × 10−1 5.589 110 919 × 10−1 3.7 × 10−7 5.7 × 10−7

exp(1.5) 7.369 086 545 × 10−2 7.368 779 561 × 10−2 4.2 × 10−5 4.3 × 10−5

exp(1.875) 2.252 230 986 × 10−2 2.249 418 541 × 10−2 1.2 × 10−3 1.2 × 10−3

4.3. Results of numerical studies for the Hitchin section

Now we turn to the case of the flat connections ∇H
w (R, ζ ) discussed in Section 2.4, and reporting the results of computing the

associated spectral coordinates by the DE and IEQ methods. As with our numerical results for opers, we begin by presenting a
table of computed values in the theory (A1,A2). In this case, we tabulate results for the basepoint P2(z) = z3 − 1 (i.e. parameters
� = 0, c = 1) and ζ = exp(iϑ) where ϑ = 0.1. Spectral coordinates calculated for several values of R are shown in Table 7. Recall
that the parameter R in this case is analogous to |h̄|−1 for opers. Analogously to the results in the oper case, we see that the relative
difference of the DE and IEQ methods grows as R increases.

The rightmost column of Table 7 shows an error estimate for some of the DE calculations, which is also included in all of the
plots to follow. This estimate is not based on a theoretical error analysis, but rather on testing the dependence of the DE results on
the grid spacing �x in the discretization of the PDE and applying Richardson extrapolation to predict a limit value as �x → 0.
When the dependence on the spacing is approximately quadratic in�x (the expected form), the difference between the extrapolated
value and the one calculated with the finest grid is taken as an estimate of PDE discretization error. In other cases the dependence
on �x does not exhibit the expected form, and no error estimate is obtained; this would be expected to happen when, for example,
discretization error is not the dominant source of error in the DE calculation. This error estimation technique is described in more
detail in Section 7.4.

Plots of the spectral coordinates and relative errors for this example and the others introduced above are shown on the next
several figures (Figures 12–17). Each of these “four-pane” plots has the same structure described in Section 4.2, with the additional
complication that error estimates are only shown for values of R where the Richardson extrapolation is successful. Generally, the
extrapolation succeeds for most large R and yields an error estimate that increases with R. The upper limit of R in each experiment
is chosen to be a point where the resulting error estimate first becomes comparable in size to the spectral coordinates themselves,
i.e. the largest R for which this error estimate suggests the DE results are meaningful. Analogously to the WKB asymptotic in the
opers results, the semiflat approximation to Xi is shown as a dashed line in the large-R plots (where it is expected to be a good
approximation) and in all R for the pure flavor coordinates X3 and X4 of the (A2,A2) example (where it is expected to be exact).
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Figure 12. Hitchin section comparison: (A1 , A2) family at base point (� = 0, c = 1) with ϑ = 0.
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Figure 13. Hitchin section comparison: (A1 , A2) family at base point (� = 0, c = 1) with ϑ = 0.1.
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Figure 14. Hitchin section comparison: (A1 , A2) family at� = 0.8i, c = 1 with ϑ = 0.
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Figure 15. Hitchin section comparison: (A1 , A3) example with ϑ = 0.1.
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Figure 16. Hitchin section comparison: (A2 , A1) family at base point (c = 0) with ϑ = 0.



30 D. DUMAS AND A. NEITZKE

Figure 17. Hitchin section comparison: (A2 , A2) example with ϑ = 0.1. The coordinates X3 and X4 are associated to pure flavor charges, so the semiflat asymptotic is
conjecturally an exact formula in those cases.
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5. Experimental studies of the hyperkähler metric

We consider the metric discussed in Sections 2.7 and 3.5, in the (A1,A2) example. Take

h(z) = z3 − �z (� ∈ C), l(z) = −c (c ∈ C). (5.1)

This gives a 1-parameter family of Kähler manifolds B� := Bd,h, indexed by � ∈ C; each B� is 1-dimensional (coordinatized by
c ∈ C) and carries a Kähler metric

g = g(c)|dc|2. (5.2)

5.1. Direct PDE computation

Our first approach to computing the metric g is to use the definition as an L2 norm directly. Thus, given the polynomial

P2(z) = z3 − �z − c, (5.3)

and the tangent vector corresponding to ∂/∂c,

Ṗ2(z) = −1, (5.4)

we first solve the nonlinear PDE (2.9) for u, then solve the linear PDE (2.20) for F, then compute the integral (2.21) to get the desired
metric coefficient g(c).

5.2. Integral equation computation

Our second method of computing the metric g is the integral equation method discussed in Section 3.5. In the (A1,A2) example
there are just two independent spectral coordinates X1, X2, and the formula (3.16) specializes to

g(c) = d log y1 ⊗ dc log y2 − d log y2 ⊗ dc log y1. (5.5)

Even more concretely, if we write c = a + ib, then

g(c) = g(∂a, ∂a) = (∂a log y1)(∂b log y2) − (∂a log y2)(∂b log y1). (5.6)

We use the integral equation method from Section 3.3 to compute y1 and y2 at various values of c, thus compute the derivatives
appearing (5.6) by finite differences, and finally use (5.6) to compute g(c).

5.3. Experimental comparison

We have described two methods of computing the Kähler metric on B�. We applied both of these methods to compute g(c) in the
case � = 0 and c ∈ R+. When � = 0, there is a rotational symmetry, so that g(c) depends only on |c|; thus, the values of g(c) for
c ∈ R+ determine the full g. The result is shown in Figure 18; the observed difference |gDE − gIEQ| < 1.2× 10−4 over the range of c
we studied.

Figure 18 also shows the semiflat approximation gsf (c) discussed in Section 2.8 and Section 3.6. In this example, we can compute

gsf in closed form, using (3.23) and the fact that Zγ (c) = Zγ (c = 1)c
5
6 , with Zγ (c = 1) tabulated in Table 1; the result is

gsf (c) = 25M2

6
√
3

|c|− 1
3 ≈ 20.4325|c|− 1

3 , M =
√
3π

Ŵ
(

4
3

)

Ŵ
(

11
6

) . (5.7)

The figure shows that the semiflat approximation is increasingly accurate for large |c| and not at all accurate for small |c|, as expected:
It could hardly be accurate near c = 0 since gsf (c) has a singularity at that point while g(c) is smooth.

6. Gallery

6.1. The hyperkählermetric integrand

In Figure 19, we illustrate some features of the numerical computation of the metric (2.21) in the simple case N = 2, d = 3,
P2(z) = z3 − c, Ṗ2(z) = −1. The theoretical expectation based on [16, 29, 40] is that

• the pointwise difference I−Isf decays exponentially as a function of the distance from the zeros of P2(z) (measured in themetric
|P2 dz2|),

• the integral of I − Isf over a disc in the metric |P2 dz2|, centered on a zero of P2 and not containing any other zero, decays
exponentially as a function of the radius of the disc.
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Figure 18. Left: The metric coefficient g(c) for � = 0 and c ∈ R+ . The blue marks show values of g(c) computed using two methods: the direct PDE approach and the

integral equations. The dashed line shows the semiflat approximation. Right: The absolute difference gDE − gIEQ .

Figure 19. The integrand in the computation of the hyperkähler metric as an L2 norm, when P2(z) = z3 − c, Ṗ2(z) = −1. Left: the integrand I of the L2 metric (2.21),

plotted in the z-plane. Middle: the integrand Isf of the semiflat approximation to the L2 metric. Right: the difference I − Isf .
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Figure 20. xinstγ1
(h̄) in the (A1 , A2) example, evaluated at the values h̄ = − exp(t + i arg Zγ ), for t ∈ [−20, 20] (horizontal axis).

Figure 21. xinstγ1
(R, ζ ) in the (A1 , A2) example, evaluated at the values ζ = − exp(t + i arg Zγ ), for t ∈ [−20, 20] (horizontal axis). The 20 curves correspond to the values

R = exp(−k/2) for k = 0, 1, . . . , 19.

In other words, I − Isf can be large near the zeros, but there is a local cancellation around each zero which makes its integral
nevertheless small; see [16] for the precise statement. We see this phenomenon in the figure: near each zero we have I − Isf large
and negative, but there is a halo a bit further out, where I − Isf is positive.

We also observe that as |c| increases the error I−Isf becomesmore concentrated around the zeros, as expected since the distances
in themetric |P2dz2| grow as |c| increases.Moreover, in the limit of large |c| the individual zeros effectively decouple fromone another;
indeed the solution in a neighborhood of each zero approaches a standard “fiducial” solution [6, 29] when written in the coordinate
w =

∫ √
P2dz.

6.2. The functionsXγ

We consider the (A1,A2) example. Let xinstγ denote the integral term in (3.7) (for opers) or (3.8) (for the Hitchin section).
In this case, the integral equations (3.7), (3.8) coincide with ones which have been studied extensively in the literature on the

thermodynamic Bethe ansatz, beginning with [52], and also in the context of the ODE/IM correspondence beginning with [12]. All
of the main features of the xinstγ which we discuss in this section are also noted in [52]; we present them here for completeness and
for readers not familiar with that reference.

In Figure 20, we show the function xinstγ1
(h̄), evaluated along the ray h̄ ∈ R−Zγ1 . A few features are worthy of comment:

• As h̄ → 0, xinstγ1
(h̄) approaches 0. This confirms our expectation from Section 3.6, and the consequence that in this limit the full

xγ1(h̄) = h̄−1Zγ1 + xinstγ1
is asymptotic to h̄−1Zγ1 .

• As h̄ → ∞, xinstγ1
(h̄) approaches a nonzero finite limit, and hence so does the full xγ1(h̄) = h̄−1Zγ1 + xinstγ1

. This limit corresponds

to the polynomial P2(z) = z3, for which the oper has a Z/5Z symmetry which determines its Stokes data as

lim
h̄→∞

xγ1(h̄) = x∗ := log

(√
5 − 1

2

)

≈ −0.4812, (6.1)

matching the asymptotic value in the figure.

In Figure 21 we show the function xinstγ1
(R, ζ ), evaluated along the ray ζ ∈ R−Zγ1 , for various values of R. Some features apparent

from Figure 21 are:

• For all R, xinstγ1
(R, ζ ) → 0 as ζ → 0 or ζ → ∞.
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Table 8. Parameters used for the direct method for opers (ODE
solver) in the calculations presented in Section 4.2.

Name Value Description

ode_method dopri5 ODE Solver from scipy.ode

ode_thresh 10−14 Relative error goal for ODE solver

ode_rstep 10−4 Initial ODE step size

• For small R, xinstγ1
(R, ζ ) has an approximate plateau at the value x∗, in a neighborhood of |ζ | = 1; the length of this plateau grows

as R → 0, so that for any fixed ζ , limR→0 xinstγ1
(R, ζ ) = x∗ (but not uniformly in ζ ).

• For small R, the crossover region between x ≈ 0 and x ≈ x∗ has a universal shape, which moreover looks like the graph of xinstγ1
(h̄)

in Figure 20, where we make the substitution ζ = h̄R.

This last feature is a manifestation of the “conformal limit” which we discussed in Figure 2.9; indeed the Stokes data of ∇H
w (R, ζ )

should converge to those of ∇op
w (h̄) in that limit, which would imply

lim
R→0

xinstγ1
(R, ζ = h̄R) = xinstγ1

(h̄), (6.2)

and this is what we observe in the figures.

7. Implementation details

In this sectionwe discuss the implementation of the experiments presented in Sections 4–6 inmore detail. The source code is available
at [18].

7.1. Direct method for opers

The parameter values used in computing Stokes data for opers by the direct method (as reported in Section 4.2) are shown in Table 8.
The meanings of these parameters are described below. In our Python implementation, direct method calculations for opers are
performed by the framedatamodule.

Recall that the direct method computes parallel transport matrices for ∇op
w from a basepoint z0 to d + N points on a circle of

radius r, and then uses the eigenvectors of these matrices of smallest eigenvalue to approximate the subdominant solutions.
More precisely, given the tuple of differentials w (as coefficient vectors of the associated polynomials) and the parameter h̄, we

first compute the scaled tuple h̄−1w = (h̄−2φ2) or h̄
−1w = (h̄−2φ2, h̄

−3φ3) and then apply a holomorphic change of coordinates to
make the connection behave as much like the one associated to zddzN as possible. Specifically, we find a ∈ R+ and b ∈ C so that
pulling back by the coordinate change f (z) = az + b has the effect of making the leading coefficient of h̄−NPN have unit modulus
and so that the coefficient of zd−1 vanishes (properties we call “quasi-monic” and “centered”, respectively). A�er this change, it is
natural to take z0 = 0 as the basepoint for parallel transport, and we use the bisectors of the Stokes sectors as the directions for the
d+N rays. We select the radius r by finding a disk |z| < r0 containing the roots of all of the nonzero polynomials Pk and then setting
r = max(8, 8r0). In practice only PN is considered here, as the examples we consider have Pk constant for k < N. This choice for r is
based on the heuristic that deviation of the connection from its asymptotic behavior is concentrated near the zeros of PN , and so we
select a radius significantly larger than those of the zeros.

With the entries of the connection form ϕh̄−1w given explicitly by (2.3) or (2.4), the computation of the parallel transport along a
segment (which we parameterize by [0, 1]) now reduces to solving an explicit ODE; for this we use the scipy.ode module with
the dopri5 integration method (an implementation of the Dormand-Prince method of order 4(5)). This ODE solver is applied
with a fixed relative precision goal ode_thresh, an initial step size ode_step, and a maximum step size 2∗ode_step. Such a
solution is computed for a segment [0, reiη] bisecting each Stokes sector, resulting in d +N frame matrices Fi. The eigenvectors of Fi
are then computed and the normalized eigenvector with minimum eigenvalue is selected, giving the subdominant vectors vi. These
vectors represent the values in the fiber over 0 of horizontal sections that approximate the subdominant solutions for ∇op

w . Finally,
the spectral coordinates XDE

i are computed by taking ratios of products of determinants formed from the subdominant vectors.
While thismethod of calculation is simple to implement, it suffers from significant loss of relative precisionwhen the determinants

involved inXi are close to zero, as these determinants are sums of floating-point numbers of approximately unit norm. Unfortunately
this is the generic case for large |h̄|−1: The asymptotic behavior of the coordinates Xi is exponential in |h̄|−1, and the individual
determinants are bounded, so the generic situation of Xi → 0 or Xi → ∞ requires at least one determinant to approach zero. Thus
it is expected that this method of calculation will be accurate only for sufficiently small |h̄|−1.
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7.2. ODE error estimate

Wenow explain the error estimate that is included in Figures 5–11 (results of calculations for opers). Recall that this estimate concerns
the effect on the spectral coordinates of the limited accuracy of the numerical solution of the parallel transport ODE. We expect this
to be the dominant source of error for large |h̄|−1.

We first consider the calculations that apply to a single Stokes sector, which involve a frame matrix (numerical approximation

of parallel transport) F and its eigenvectors v1, . . . , vN . Let F̂ denote the corresponding exact parallel transport matrix for the same
points. More generally in this section we use a hat decoration to indicate exact quantities, in contrast to computed approximations.
The ODE solver is given a requested relative tolerance ode_thresh and absolute tolerance 0. Assuming that the solver produces

an approximate solution satisfying this request, the result is that the error in the frame matrix δF := F − F̂ satisfies

|(δF)ij| � ode_thresh · |Fij|. (7.1)

To analyze the propagation of this error to subsequent calculations, we will freely use linearizations of the functions applied to the
frame matrices, and will then derive upper bounds on the resulting expressions. The results are therefore estimates for an upper
bound on the error, but they do not constitute rigorous upper bounds on the error due to the use of linearization. For brevity we will
use the term estimated error bound to refer to such an upper bound on the linearized error, and write δA � B to mean that B is such
an estimated error bound for δA.

Let v1, . . . , vN denote the normalized eigenvectors of F, ordered so that the eigenvectors λ1, . . . , λN increase in magnitude. The
subsequent calculations involve only the lowest eigenvector v1 (the subdominant vector), the error in which can be estimated in
terms of δF using the first-order variation formula for eigenvectors [50, Section 2.10]:

δv := v − v̂ ≈
N

∑

j=2

v∗
j (δF)v1

λ1 − λj
(7.2)

Here v∗
1 , . . . , v

∗
N denotes the dual basis. Using (7.1), each component of the vector on the right hand side of (7.2) has absolute value

bounded by the corresponding component of

ode_thresh ·
N

∑

j=2

|v∗
j ||F||v1|

|λ1 − λj|
(7.3)

In this expression, the absolute value of a vector or matrix represents the result of applying the absolute value componentwise, i.e. the
components of |v| are the absolute values of the components of v, and the entries of |F| are |Fij|. The expression above is thus used as
the estimated error bound for the components of each subdominant vector.

Turning now to the calculation of the determinantal invariants and spectral coordinates, it is convenient to change notation
slightly and denote by v1, . . . , vd+N the collection of subdominant vectors of the frame matrices for all of the Stokes sectors. Having
estimated the componentwise error in each of the vectors vi, we now promote this to an estimated error bound for the relevant
invariants p(i, j, k) and q(i, j, k, l,m, n). To do this we compute the partial derivative of the invariant at (v1, . . . , vd+N) with respect to
each vector component and contract this with (7.3). In our implementation, the partial derivatives of the determinantal invariants
are numerically approximated by finite differences with a fixed step size of 10−12.

Finally, the spectral coordinates have the form Xi = A1···Ak
Ak+1···Ar

where each quantity Ai is one of the determinental invariants

discussed above. Using logarithmic differentiation we arrive at an estimated error bound for Xi in terms of those of Ai,

|δXi| � |Xi|
∑

j

|δAj|
|Aj|

(7.4)

Our final linearized estimate for δXi is obtained by substituting the error estimate for each invariant Ai obtained above.

7.3. Direct method for the Hitchin section

The parameter values used in computing Stokes data for the Hitchin section by the direct method (as reported in Section 4.3)
are shown in Table 9, and the meanings of these parameters are described below. In our Python implementation, direct method
calculations for the Hitchin section are performed by the framedatamodule.

Recall (from Section 2.6) that the direct method for the Hitchin section builds on the same ODE integration technique applied to
opers, and hence it involves all of the same parameters and solution steps used there, as well as an important additional step: For the
Hitchin section, the connection matrix involves the density function u of the harmonic metric, which is computed by numerically
solving the self-duality equation (Equation 2.9).

To do this, we first discretize the problem by introducing a uniform rectangular grid in {Re(z) � r, Im(z) � r} of size
pde_nmesh×pde_nmesh. The same radius r is used for the subsequent ODE solution step, and as in the case of opers we choose r
to exceed themagnitude of the roots ofPN by a significantmargin. In this case the precise algorithm to select the radius is slightlymore
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Table 9. Parameters used for the direct method for Hitchin section (PDE solver) in the calculations
presented in Section 4.3.

Name Value Description

method fourier PDE solver strategy (euler or fourier)
pde_nmesh 8191 PDE mesh size for presented results

2047, 4095, 8191 PDE mesh sizes for Richardson extrapolation error estimate

pde_thresh 1 × 10−9 Absolute error goal for PDE solver
&ODE parameters from Table 8

complicated, incorporating a heuristic to balance two potential sources of error in the final results; the algorithm itself is documented
in the source (approx_best_rmax() in [18, polynomial_utils.py]).

Next, we compute an approximation to the harmonic metric u as a function on the grid. Rather than working with u directly, we
introduce a smooth function u0 (the model) that is computed directly from PN in closed form, and which has the same asymptotic
behavior as u. We then consider the difference v = u − u0 and the PDE equivalent to (2.9) that it satisfies. In our implementation
the model is given by

u0(z) = 1

N + 2
log

(

|PN(z)|2 + σ(z) exp(−|PN(z)|4)
)

(7.5)

where σ is a smooth function that is positive on a disk |z| < 0.9r and vanishes elsewhere.4 (ForN = 2 thismodel should be compared
to the function usf approximating u that was discussed in Section 2.8; indeed we have u0(z) = usf (z) for all large |z|, and in general
these functions are close except near the zeros of P2 where u0 is smooth while usf has logarithmic singularities.)

We then solve for v on the grid with the Dirichlet condition v = 0 at the boundary, which is a reasonable approximation as v is
expected to decay exponentially in some power of |z|. As Equation 2.9 is nonlinear, we useNewton’smethod, i.e. iteratively solving the
linearization of the equation to improve an initial guess. The iteration terminates when the size of the residual�u−4(eku−e−2u|PN |2)
is less than a parameter pde_thresh, in terms of a specific norm (which depends on the method, as described below).

For the core step of solving the linearization of (2.9) at a given point, our implementation offers twomethods, named euler and
fourier, which can be selected at runtime. Bothmethods are rather elementary andwere selected for simplicity of implementation.
Thoughmost results in Section 4.1 use thefouriermethod, it is helpful to first explain the simplereulermethod sincefourier
can be understood as a more complicated analogue of it with different trade-offs.

The euler solver uses the a finite-difference Laplacian based on the standard five-point stencil (see e.g. [47, Section 4.2]).
The linearized equation thus becomes a linear system of rank (pde_nmesh)2 which is solved using scipy.linalg.lstsq.
In this method, we measure the size of the residual in the Newton iteration using the C0 norm. This method stores several
dense (pde_nmesh)2 × (pde_nmesh)2 matrices and hence suffers from high memory consumption (approximately 12 GiB for
pde_nmesh = 2000). Since we have found that increasing pde_nmesh significantly improves the accuracy of these calculations,
this limitation of the euler solver prompted development of a less memory-intensive alternative.

The fourier solver uses a simple spectral method, based on the 2D discrete Fourier transform, to avoid storing any dense
(pde_nmesh)2 × (pde_nmesh)2 matrices or solving any linear systems in the iterative step. However, to make this possible, the
fourier solver does not solve the linearization of (2.9) itself, which has the form (� − κ)u = f for a scalar function κ . Rather,
following Concus-Golub [8] we replace the linearization with an approximating Helmholtz equation (� − C)v = f (for a constant
C) which therefore has a closed-form solution in frequency space. Here the constant C is chosen to approximate the (non-constant)
function κ in the true linearization. As in [8] we use the “minimax” value C = 1

2

(

sup κ + inf κ
)

where both sup and inf are taken
over the grid points.

To implement the desiredDirichlet boundary conditions on v in thefourier solver we use the 2D discrete sine transform (DST),
which is equivalent to extending v as a doubly-periodic function which is odd with respect to reflections in the grid boundaries.
Also, in this method, we measure the size of the residual in the Newton iteration using the L2 norm, since this can be computed
directly in frequency space, thus avoiding an additional Fourier transform step in the iteration. The fact that the Helmholtz equation
is a poor approximation of the true linearization has the effect of requiring many more iterations of Newton’s method to reach a
desired accuracy (in comparison to the euler solver). However, in practice, the high iteration count is more than compensated
by the high speed of the Fast Fourier Transform when pde_nmesh > 1000 and when the size has the optimal form for DST,
i.e. pde_nmesh = 2j − 1 for some positive integer j.

A�er solving the discretized self-duality equation, the result is a vector of values for u at the grid points. Since the next step of
solving the ODE for parallel transport of the flat connection (Equation 2.11) requires evaluation of the self-dual metric density u
at arbitrary points, the interpolation scheme from scipy.RectBivariateSpline is used with order 3 in x and y to produce
an approximation to the function u on the bounding rectangle of the grid. The same interpolation is applied to the finite difference
approximations of the partial derivatives ux and uy, which also appear in the connection form. Finally, with a means of evaluating
the connection form in hand, the process of solving the parallel transport ODE and computing Stokes data proceeds by the same
process described in Section 7.1.

4 We take σ(z) = s(1 − |z|/(0.9r)) where s(t) is the smoothed step function s(t) = 0 for t < 0, s(t) = 1 for t > 1, and s(t) = 1
2 (1 − cos(π t)) for t ∈ [0, 1].
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7.4. PDE error estimate

Wenow explain the error estimates that are included in Figures 12–17 (results of calculations for the Hitchin section), which concern
the discretization error introduced by solving an analogue of the self duality equation on a grid, using finite differences or discrete
Fourier transforms instead of differential operators. While in general this error is expected to be bounded by a multiple of (�x)2,
where �x = 2r/pde_nmesh is the spacing of the grid points (along both the x- and y-axes), it would require a more subtle
theoretical analysis of the method to derive the constant of proportionality. Rather than conducting such a theoretical analysis, as
mentioned in Section 4.3, we derive an empirical error estimate using Richardson extrapolation. The general theory of Richardson
extrapolation is discussed in more detail in e.g. [45, Section 8.3]).

We recall the basic principle of this method: First, we assume that the final quantity Xi is subject to error that is approximately
proportional to (�x)p for some real p (rather than being merely bounded by a quantity of this form). Then, using results of
calculations for three values of �x (equivalently, of pde_nmesh), it is possible to both recover the value of p that best fits the
observed results, and to extrapolate to obtain a refined estimateXRich

i for the limit as�x → 0. In presenting our results we do not use
this extrapolated value for the spectral coordinates directly, and instead we show the value computed with the largest pde_nmesh.
However, the difference |XDE

i − XRich
i | is taken as the approximation of the discretization error in XDE

i . In addition, this method of
empirical error estimation also allows a test for a fit between the error model and the observed results; we expect the best fit exponent
p to be approximately 2, and significantly different values indicate that the hypothesis of discretization error being dominant and
proportional to (�x)2 is not consistent with the results. For this reason, PDE error estimates are only shown in Figures 12–17 in
cases where the best fit exponent lies in the interval [1.6, 2.4].

7.5. Integral equationmethod for opers

Here we describe some implementation details of our integral equation computation of spectral coordinates for the opers ∇op
w . In

our Python implementation, these calculations are performed by the integralequationsmodule.
As explained in Section 3.2 the problem is to find a solutionX• of the system of integral equations (3.7). Since (3.7) represents the

desired functions Xγ as exponentials, it is convenient to write Xγ = exp xγ and study xγ directly.
We begin with the initial guess

x(0)
γ (h̄) = h̄−1Zγ (7.6)

and then, defining

(F(x))γ (h̄) = h̄−1Zγ + 1

4π i

∑

µ∈Ŵ′

(µ)〈γ ,µ〉

∫

R−Zµ

dξ

ξ

ξ + h̄

ξ − h̄
log

(

1 + exp(xµ(ξ))
)

, (7.7)

our iteration step is

x(n+1)
γ = (1 − p)F(x(n))γ + px(n)

γ (7.8)

where p = damping is a damping parameter. Note that for any p ∈ [0, 1) the fixed points of the iteration are the same as the fixed
points of F ; nevertheless the rate of convergence can depend on p. Importantly, in the iteration process we do not need to use the
values of xγ (h̄) for arbitrary γ and h̄: all we need is the values of xγ (h̄) when γ lies in the finite set Ŵ′ and h̄ lies on the ray R−Zγ .

We approximate the iteration numerically as follows. For each charge γ ∈ Ŵ′ we parameterize the ray h̄ ∈ R−Zγ by a parameter

t ∈ R, related to h̄ by h̄ = −ei arg(Zγ )+t . We work with discrete approximations to functions x(n)
γ (t), sampled atM = steps evenly

spaced points t ∈ [−L, L], where L = L is a cutoff parameter.We first construct x(0)
γ (t) by sampling the function h̄−1Zγ = −|Zγ |e−t .

Then, to construct x(n+1)
γ , we numerically evaluate the right-hand side of (7.8) at each sampling point t.

To do the numerical integrations by Simpson’s rule requires ∼ M2 work at each iteration, because we need to evaluate ∼ M
different integrals each of which involves summing over ∼ M sampling points. We reduce this work to ∼ M logM as follows. First,
the map F preserves the property xγ (t) = x−γ (t) (to see this we use the fact that 
(γ ) = 
(−γ )). Using this symmetry we can
reduce our work in several ways. First, we only need to compute xγ for half of the γ ∈ Ŵ′, say all the ones where Zγ lies in some
chosen half-plane. Second, using the symmetry to average the term for µ with the term for −µ, we can rewrite (7.7) as

F(x)γ (t) = −|Zγ |e−t + 1

4π i

∑

µ∈Ŵ′

(µ)〈µ, γ 〉

∫ ∞

−∞
dt′

log(1 + exp xµ(t′))
sinh((t − t′) + iδγµ)

, δγµ = argZγ − argZµ, (7.9)

and the integral on the RHS is a convolution F ∗ G where F(t) = log(1 + exp xγ (t)) and G(t) = 1
sinh(t+iδγµ)

. Such a convolution

can be evaluated approximately, at all sampling points t at once, by the device of transforming F and G to Fourier space (with a
periodic boundary condition at the ends of the interval [−L, L]), multiplying them, and then transforming back. Using the Fast
Fourier Transform this takes work∼ M logM. (Our implementation offers this method as well as the slower, more direct method by
Simpson’s rule.)
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Table 10. Parameters used for the integral equation method for opers and the Hitchin
section in the calculations presented in Sections 4.2 and 4.3.

Name Value Description

L 200 Interval size: t = log|h̄| runs over [−L, L]
steps 217 Number of sampling points

tolerance 2 × 10−15 Target L∞ norm of difference between iterations
method fourier Method for numerical integration (fourier or simps)
damping 0.3 Damping factor in the iteration step

We repeat the iterative process until the maximum value of |x(n+1)
γ (t) − x(n)

γ (t)| over all sampling points and all γ ∈ Ŵ′ is smaller
than the constant tolerance for 5 consecutive iterations, and then stop. The final xγ (t) so obtained give a discrete approximation
to a solution of the integral equation (3.7), with each xγ computed along the ray h̄ ∈ R−Zγ . Finally, in order to evaluate the desired
Xγ (h̄) for more general h̄ (as we must do in order to test the conjecture), we just numerically evaluate the RHS of (3.7) once more
(this time using Simpson’s rule instead of Fourier transforms, since we only need to evaluate one integral instead ofM of them.)

7.6. Integral equationmethod for the Hitchin section

The methods we use for the integral equation computation for the Hitchin section are essentially identical to those we use for opers
(and are implemented in the same module, integralequations). The same parameter values (from Table 10) are used as well.
There are just a few slight changes in the formulas, since we now need to solve (3.8) rather than (3.7). The initial guess (7.6) is replaced
by

x(0)
γ (ζ ) = Rζ−1Zγ + RζZγ , (7.10)

(7.7) is replaced by

(F(x))γ (ζ ) = Rζ−1Zγ + RζZγ + 1

4π i

∑

µ∈Ŵ′

(µ)〈γ ,µ〉

∫

R−Zµ

dξ

ξ

ξ + ζ

ξ − ζ
log

(

1 + exp(xµ(ξ))
)

, (7.11)

and (7.9) is replaced by

F(x)γ (t) = −2R|Zγ | cosh t + 1

4π i

∑

µ∈Ŵ′

(µ)〈µ, γ 〉

∫ ∞

−∞
dt′

log(1 + exp xµ(t′))
sinh((t − t′) + iδγµ)

. (7.12)

7.7. Direct method for the hyperkählermetric

The direct PDE computations of the hyperkähler metric, as reported in Section 5.1, are handled by the module hkmetric (in
particular, the function fdcomputeG). Here, we first need to solve the PDE (2.9) for (a discrete approximation of) u, then solve the
linear PDE (2.20) for (a discrete approximation of) F. The computation of u is done using the same routines described in Section 7.3;
this time we use the euler solver instead of fourier. The computation of F uses the same code, but runs for only one iteration
since the equation is linear. The parameters we use are listed in Table 11.

Once F and u have been computed, the last remaining step is to evaluate the integral (2.21). For this we divide the plane into the
regions |z| < r and |z| > r, where r = rmax. In the region |z| < r we just approximate the integral by a Riemann sum, using our
pde_nmesh× pde_nmesh grid of sampling points; call this sum Iin. In the region |z| > r we do not have a numerical solution of

the PDEs available, so we have tomake dowith the asymptotic formulas u ∼ 1
2 log|P2| and F ∼ 1

2
Ṗ2
P2
; when P2 has leading term zn and

Ṗ2 = 1, this gives for the integrand I ∼ 2|z|−n+1. Using this we estimate the integral over the region |z| > r to be Iout = 4π
(n−2)rn−2 .

(In Section 5.1 we have n = 3, so Iout = 4π
r .) Our final result for the integral is then

I = Iin + Iout . (7.13)

Table 11. Parameters used for the direct method for the hyperkähler metric in
the calculations presented in Section 5.

Name Value Description

method euler PDE solver strategy (euler or fourier)
rmax 10 Size of region for PDE solver
pde_nmesh 1400 PDE mesh size

pde_thresh 5 × 10−11 Absolute error goal for PDE solver
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Table 12. Parameters used for the integral equation computation of the hyperkählermetric
in the calculations presented in Table 5.

Name Value Description

L 200 Interval size: t = log|ζ | runs over [−L, L]
steps 217 Number of sampling points

tolerance 10−15 Target L∞ norm of difference between iterations
method fourier Method for numerical integration (fourier or simps)
damping 0.3 Damping factor in the iteration step

eps 10−6 Step size in finite difference estimate of derivatives

7.8. Integral equationmethod for the hyperkählermetric

Here, we describe some details of the integral equation computation of the hyperkähler metric reported in Section 5.2. These
calculations are performed by the module hkmetric (in particular, the function ieqcomputeG).

Using (5.6) we see that what we need is to to compute the first derivatives of the quantities yi = logXi(R = 1, ζ = 1) with respect
to the real and imaginary parts of the parameter c, at various values of c.

The first step is to use the integral equation method (as described in Section 7.6) to compute yi itself at various values of c. For
this purpose, we need to know the periods Zγ as functions of c; fortunately, in this particular example, the periods are of the simple

form Zγ = const × c
5
6 . Next, we approximate the desired derivatives by the method of finite differences, choosing a small ǫ = eps

and computing ǫ−1(yi(c + ǫ) − yi(c)) and ǫ−1(yi(c + iǫ) − yi(c)). Finally we plug into (5.6) to get our estimate of g(c).
The parameters we use are listed in Table 12.

8. Sample numerical calculation

Here is a sample session using our code to compute the cross-ratio invariants quoted in the introduction, and which can be run on
a laptop:

$ ipython3 harmonic.py

[ ... ]

In [1]: xar = integralequations.computeXar(theoryname="A1A2")

[ ... ]

[MainProcess] [integralequations] [INFO] Finished in 13.5 s

In [2]: xar.getCluster()

Out[2]: [-0.006415703123337184, -1.0]

In [3]: fd = framedata.computeFrames(theoryname="A1A2", pde_nmesh = 1023)

[ ... ]

[MainProcess] [framedata] [INFO] Finished in 192.6 s

In [4]: fd.getCluster()

Out[4]: [-0.006415963850395493, -0.9999999999999987]

The result from the PDE calculation (the last line of the output above) differs a bit from the result quoted in the introduction; the
result in the introduction is obtained if one sets pde_nmesh = 8191, which however requires more RAM than is available on a
typical laptop in 2020.

A note about signs: the code uses a different convention in defining the Xγ than this paper does. For charges γ ∈ Ŵ′ the relation
is simply

X
code
γ = −X

paper
γ . (8.1)

For more general charges γ the relation is X code
γ = σ(γ )X

paper
γ where σ(γ ) = ±1 is a certain quadratic refinement of the pairing

(−1)〈,〉.

9. Discussion

9.1. Interpretation of results

The quantitiesXDE
i andXIEQ

i reported in Section 4 are numerical approximations of two quantities that themain conjecture asserts to

be equal. Therefore, assuming the conjecture, the difference between XDE
i andXIEQ

i would reflect only the numerical error in the two
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computations. We have analyzed one source of error in XDE
i for each class of experiments (ODE error for opers, PDE discretization

error for Hitchin section) and obtained an estimate that in practice grows rapidly with the relevant parameter (R or |h̄|−1). Broadly,

our experiments show that the relative difference ofXDE
i andXIEQ

i is either small (for small parameter values), or else is comparable to
the single-source error estimate (for large parameter values). This is consistent with the hypothesis that the conjecture holds, and that
the source of error considered in our estimates is the dominant one for large parameter values, while other sources of error become
dominant for small parameters. Notably absent from our results are any strong candidates for counterexamples to the conjecture,

such as examples where a large relative difference between XDE
i and XIEQ

i is both stable under variation of the parameter and greatly
exceeds the single-source error estimate.

In our experiments computing spectral coordinates for opers, the relative difference between XDE
i and XIEQ

i is less than the ODE
error estimate whenever |h̄|−1 > 2, and is less than 10−9 (1 PPB) for |h̄|−1 � 2. For the Hitchin section, an additional complication
is that the error estimate is not always available; recall that the empirical PDE error estimate is applied to each spectral coordinate
separately, and it requires the results for varying mesh sizes to match a theoretical model. Nevertheless the results exhibit similar
behavior to the case of opers, though with relative error that is roughly 1000 times larger: For R less than an example-dependent
threshold (approximately 0.5 for (A2,A2) or 1 for the other examples) the relative difference remains below 10−6 (1 PPM), and the
error estimate o�en does not apply in this region. This is consistent with the hypothesis that other sources of error dominate here,
preventing the Richardson extrapolation from seeing the expected dependence on the mesh size. For R above the threshold, the
error estimate succeeds in most cases, and gives a result that closely tracks (and o�en exceeds) the observed difference. The (A1,A3)

experiment is the least consistent with this overall pattern, as the error estimate fails for a significant number of large-R data points.
In general the (A1,A3)Hitchin section computations were also the most computationally expensive for the direct method, requiring
significantly more iterations than other examples at comparable parameter values (e.g. those which ultimately give similar relative

difference withXIEQ
i ), and we expect this is related to this example having the highest-degree polynomial differential among all those

considered.
Our experiments with the hyperkähler metric for the (A1,A2) case show that using the integral equation method to calculate

this metric through Equation 3.16 has reasonably close agreement with the results of a direct calculation of the metric by solving
the relevant PDE. The agreement between the two hyperkähler metric calculation methods is not as close (in terms of relative
difference) as that of the spectral coordinates themselves, however this is to be expected. Bothmethods of calculating the hyperkähler
metric involve an additional layer of approximation that builds on the spectral coordinate computations: For the direct method, the
numerical approximation of the self-dual metric u is used as input to another PDE solver which computes the complex variation F,
allowing error in u itself to propagate to a larger error in F. In the integral equation method, we take finite differences of the spectral
coordinates, amplifying the error in the individual coordinate calculations and introducing additional truncation error.

9.2. Limitations

Our experimental approach initially prioritized simplicity of implementation, and was incrementally improved to explore additional
aspects of the twistor Riemann-Hilbert conjecture. If a substantial revision or full redesign were considered, it would be natural to
attempt to address the following limitations of our approach.

• Numerical instability of the direct method. This significant limitation of our approach was already mentioned in Section 7.1: As
|h̄|−1 → ∞ or R → ∞, a typical spectral coordinate approaches 0 or ∞, and hence one of the determinants p(i, j) or p(i, j, k)
involved in its calculationmust approach 0. For large parameters we are therefore computing the determinant of a nearly-singular
matrix whose entries are of size ∼ 1 and which are known to fixed relative precision, resulting in a significant loss of precision.
This phenomenon is the reason our current implementation is unable to test the twistor Riemann-Hilbert conjecture for larger
parameter values.

• High memory usage of the direct method (Hitchin section). While the fourier method requires much less memory than the
eulermethod,memorywas still themain factor constraining the values ofpde_nmeshwewere able to study. This is significant
since discretization error is expected to be the dominant source of numerical error in the direct method calculations for large R
or |h̄|−1, and in our current approach, discretization error is roughly proportional to (pde_nmesh)−2. However, rather than
attempting to reduce the memory requirements of the current method, we believe a better approach would be to use a PDE solver
that can achieve higher accuracy at a given pde_nmesh.

• Lack of error bounds. As noted earlier, our study of the numerical error in our calculations is limited: We do not consider the
error in the integral equation method at all, and our analysis of error in the direct method is an estimate, not a rigorous bound.
While working out precise error bounds for these methods would be a substantial undertaking, it would be necessary in order to
make rigorous positive statements about the bearing of the results on the main conjecture, e.g. to say that the predictions of the
conjecture in a given case hold to within numerical error.

9.3. Future directions

Our work suggests several directions that could be pursued in future experiments, though each brings its own challenges.
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• Changing the base Riemann surface. All of our experiments involve Higgs bundles or opers on the complex plane. The use of a
single global coordinate chart and the expression of the holomorphic differentials as polynomials are deeply embedded in our
implementation, and so a change of this type would require substantial revision. The cylinderC∗ is the case accessible by the least
modification of our code; there it would be possible to work on the universal cover, imposing suitable mixed boundary conditions
on a rectangular region projecting to an annulus ǫ � |z| � 1/ǫ.

• Changing the rank. We have considered Higgs bundles of rank N � 3, because these are exactly the cases where the self-duality
equation reduces to a single scalar equation. It would be relatively straightforward to generalize our study of opers to higher rank,
but it would require major changes to study the Hitchin section in higher rank due to the need to handle systems of PDE.

• Moving off the Hitchin section. It would also require considerable changes to our implementation to study Higgs bundles that are
not in the Hitchin section (even for rank N = 2). However, generalizing the code in this direction would be especially appealing;
the full hyperkählermetric onMd,h is a considerably richer object than the Kählermetric onBd,h, andwhile the twistor Riemann-
Hilbert conjecture does extend to the wholeMd,h, we are not aware of any numerical studies in this direction. The asymptotics of
the full metric onMd,h have been the subject of extensive study recently (see e.g. [23, 41] and the survey [22]); the results support
the twistor Riemann-Hilbert conjecture.

• Integral equation prediction for self-dual metric. While we have focused on the conjecture’s predictions for spectral coordinates
(and the hyperkähler metric, as computed from derivatives of spectral coordinates), in the case of Higgs bundles it is also possible
to refine the twistor Riemann-Hilbert conjecture to give a conjectural formula for the self-dual metric itself in terms of integral
equations described in [27]. If this extension of the integral equation approach were implemented, it would be very convenient
to compare the results to the direct methods already implemented in our code. Indeed, such a comparison would avoid all of the
complexity of computing parallel transports and determinantal invariants, and quite possibly be easier to analyze rigorously to
obtain bounds on numerical error.

We hope to pursue some of these directions in the future.
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