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Sign insertion and Kazhdan—Lusztig cells of

affine symmetric groups

Dongkwan Kim & Pavlo Pylyavskyy

ABSTRACT Combinatorics of Kazhdan—Lusztig cells in affine type A was originally developed
by Lusztig, Shi, and Xi. Building on their work, Chmutov, Pylyavskyy, and Yudovina in-
troduced the affine matrix-ball construction (abbreviated AMBC) which gives an analog of
Robinson—Schensted correspondence for affine symmetric groups. An alternative approach to
Kazhdan-Lusztig theory in affine type A was developed by Blasiak in his work on catabolism.
He introduced a sign insertion algorithm and conjectured that if one fixes the two-sided cell, the
recording tableau of the sign insertion process determines uniquely and is determined uniquely
by the left cell. In this paper we unite these two approaches by proving Blasiak’s conjecture.
In the process, we show that certain new operations we introduce called partial rotations con-
nect the elements in the intersection of a left cell and a right cell. Lastly, we investigate the
connection between Blasiak’s sign insertion and the standardization map acting on the set of
semi-standard Young tableaux defined by Lascoux and Schiitzenberger.

1. INTRODUCTION

In their groundbreaking paper [8], Kazhdan and Lusztig developed a new approach
to the representation theory of Hecke algebras. This gave birth to a whole area called
Kazhdan—Lusztig theory. Of particular importance in this theory are the objects called
cells. Their definition can be summarized as follows. Each Hecke algebra is associated
with a Coxeter group W. Kazhdan and Lusztig define a pre-order <y, on elements of
W. Some pairs v, w of elements of W satisfy both v <y w and w <, v, in which case
they are said to be left-equivalent, denoted v ~j w. Similarly one can define right
equivalence ~p. The respective equivalence classes are called the left cells and the
right cells.

In (finite) type A, i.e. when W is the symmetric group, the Kazhdan—Lusztig cell
structure is understood in terms of so-called Robinson—Schensted correspondence.
This is a bijective correspondence between elements of the symmetric group and pairs
(P, Q) of standard Young tableaux of the same shape. It is well known [1, 2, 7, §]
that two permutations lie in the same left (resp. right) cell if and only if they have
the same recording tableau @ (resp. insertion tableau P).

In affine type A, i.e. when W is an affine symmetric group, Chmutov, Pylyavskyy,
and Yudovina [6] constructed a bijection W — Q, where € is the set of triples
(P,Q, p) such that P and @ are tabloids of the same shape and p is an integer
vector satisfying certain inequalities. This bijection is called the affine matrix-ball
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construction, abbreviated AMBC. They show that, parallel to the finite type, fixing
the tabloid @ gives all affine permutations in a left cell, while fixing the tabloid P gives
all affine permutations in a right cell. Further properties of AMBC were developed
by Chmutov-Lewis—Pylyavskyy [5], Chmutov—Frieden-Kim-Lewis—Yudovina [4], and
Kim-Pylyavskyy [9].

In his work on catabolism and Garsia—Procesi modules, Blasiak [3] developed an
alternative algorithm to determine the left cell to which an affine permutation belongs.
He called his algorithm sign insertion. However, some of the key properties of the
algorithm remained open. In particular it was in fact Blasiak’s conjecture that once
one fixes a two-sided cell, recording tableaux of sign insertion algorithm are in one
to one correspondence with left cells. In this paper we prove this conjecture using
AMBC, thus relating the two existing approaches to Kazhdan—Lusztig combinatorics
in affine type A.

Structure of Kazhdan—Lusztig cells can be encoded by W-graphs, introduced in
the original work of Kazhdan and Lusztig [8]. The edges of the W-graphs fall into two
categories: directed and undirected. The undirected edges are the star operations, and
are generally easier to understand than the directed edges. In type A they coincide
with Knuth moves on permutations, and they are known to connect each Kazhdan—
Lusztig cell into a single connected component. In affine type A, however, these star
operations are not sufficient to connect the whole cell. The connected components in
that case were studied in [5].

The main tool we use in the proof of Blasiak’s conjecture is the new operations
called partial rotations and inverse partial rotations. We show that, under certain
assumption, they preserve both the left and the right cell of an affine permutation,
and thus the only piece of data they change is the weight p in terms of AMBC. We
also prove that (inverse) partial rotations turn the intersection of a left cell and a right
cell into a single connected component. We believe that this makes partial rotations
to have independent interest for future study of Kazhdan—Lusztig combinatorics in
affine type A.

Lastly, we discuss Blasiak’s sign insertion algorithm with the standardization map
of Lascoux and Schiitzenberger [12, 11]. The latter is a function which maps a semis-
tandard Young tableau to another tableau of the same shape but of different content.
This function is known to preserve the cocharge statistic of semistandard Young
tableaux. More precisely, the set of semistandard Young tableaux of fixed content is
equipped with a poset structure whose grading is given by cocharge statistic. Then
the function of Lascoux and Schiitzenberger yields a graded poset embedding between
such posets of different content.

In this paper, we describe how Blasiak’s sign insertion can be understood in terms
of the standardization map of Lascoux and Schiitzenberger. The validity of Blasiak’s
conjecture states that with each recording tableau of the sign insertion algorithm
one may associate corresponding row-standard Young tableaux which parametrize
corresponding left cells. As these cells are in different two-sided cells, these tableaux
should have different shapes. Then our theorem states that the images of (the reading
words of) such tableaux under RSK correspondence are closely related in terms of the
aforementioned standardization map. (See Theorem 7.1 for the exact statement.)

The paper proceeds as follows. In Section 2 we introduce notation we use when
working with affine symmetric groups. In Section 3 we remind the reader of the key
properties of Kazhdan—Lusztig cells and AMBC. In Section 4 we describe Blasiak’s
sign insertion and state our main theorem. In Section 5 we introduce partial rotations,
and show how they interact with AMBC and sign insertion. In Section 6 we prove
Blasiak’s conjecture. We also prove that partial rotations connect elements in the
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intersection of a left cell and a right cell. Finally in Section 7 we show how Blasiak’s
sign insertion is related to the standardization map of Lascoux and Schiitzenberger.

2. NOTATIONS AND DEFINITIONS

For a set A, we write #A to be its cardinal. For a,b € Z, we set [a,b] = {x €
Z|a<x<b}. A word is a finite sequence of integers, e.g. w = (w1, wa, ..., wy) for
ke N=1{0,1,2,...} and wy, ..., wy € Z. For such a word we also write w = wy - - - wg.
When k£ = 0, we also write w = &. For two words x and y, we write x — y to be their
concatenation.

We say that « is a composition of n, denoted « = n, if a = (aq,...,ax) for some
kyai,...,ar € N=1{0,1,2,...} where Zle a; = n. Here k is said to be the length
of a, also denoted by I(«). Unless otherwise specified, the length of « is the largest
integer such that a;,) # 0. However, sometimes we allow it to have a zero tail at
the end. A composition « = (ay,...,ax) | n is called a partition of n, denoted
atn, ifa; > - = a > 0. For a composition a = (a1,...,a,)) F n, we set
™V = {ayqa), - - -, a1}, which is also a composition of n.

A tabloid is a sequence T = (T4, ..., T)) where each T; is a sequence of positive in-
tegers. We also use its Young diagram to depict T where the i-th row is equal to T;. We
define its shape sh(T") to be the composition given by the lengths of parts of . When
sh(T) is a partition we say that T is a tableau. We define the length of the tabloid T
to be that of its shape, usually denoted by I(T). For a tabloid T, its reading word, de-
noted rw(T), is defined to be the concatenation of its rows from bottom to top. For ex-
ample, if T = ((3,6,7,9), (4,8,10), (1,5), (2)) then rw(T) = (2,1,5,4,8,10,3,6,7,9).
The content of a tabloid T is a composition, say o = (a1, as,...), where each a; is the
number of letters in T" equal to 1.

For a composition a = (ay,...,a;) E n, we write RSYT(«) to be the set of row-
standard Young tabloid of shape «, i.e. the set of tabloids T' = (Ti,...,T)) where
each element of [1,n] appears exactly once in T and each T; is an increasing sequence
of length a;. Also we let RSYT(n) = [ |,,,, RSYT(XA), the set of row-standard Young
tableaux of size n (only of partition shape). For a composition @ = (a1, ag,...) En
and a partition A F n, we denote by SSYT(\, «) the set of semistandard Young
tableaux of shape A and content a. We also set SSYT(n, ) = | |,,, SSYT(A, ). When
a = (1™) we write SYT(A) and SYT(n) instead of SSYT(A, (1)) and SSYT(n, (1)),
called the set of standard Young tableaux.

For n € Z~g, we set S, to the extended affine symmetric group defined by

S, = {w: Z — Z | w is bijective, w(i + n) = w(i) + n for i € Z}.

For w € S,, its window notation is defined to be [w(1),...,w(n)]. We often identify
w with its window notation. We define the affine symmetric group S,, to be

Sy ={weS, |wl)+- +wn)=n(n+1)/2},

which is a subgroup ofg;. Weset s; =[1,...,i—1,i+1,4,i4+2,...,n] fori € [1,n—1]
and sop = s, = [0,2,...,n — 1,n+1]. Then (S, {s1,---,8n_1,8, = So}) is an affine
Weyl group of type A. Moreover, if we set w =[2,3,...,n+1] € S,, then (w) is an
infinite cyclic group and :S’vn = (w) x S,,. Here w is called the shift element.

For n € Z~¢, we say that w is a (affine) partial permutation if there exists X C [1,n]
such that w is an injection from X + nZ to Z satisfying w(i + n) = w(i) + n for any
i € X +nZ. Note that X = [1,n] if and only if w € S,,. We identify w with its window
notation [w(1),...,w(n)] where we adopt the convention that w(i) = @ whenever
i ¢ X. We often identify a partial permutation w : X + nZ — Z for X C [1,n] with
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its graph {(z,w(z)) | # € X + nZ}. Thus for example, for two partial permutations
u: X+nZ—Zandv: X' +nZ — 7Z, we write u C v if X C X’ and u(x) = v(x) for
z € X. In addition, we consider the graphs to be placed on the xy-plane such that
the z-axis directs to the south and the y-axis directs to the east, i.e. it is obtained
from the zy-plane with the conventional direction by rotating 90° clockwise.

For n € Zsg, let R : Z — Z be an involution defined by R(z) = n+1—x. This also
induces an involution on the set of partial permutations defined by w +— Rowo R,
which we again denote by R. Pictorially, it corresponds to the rotation of the diagram
of w by 180 degrees which preserves the square [1,n] x [1,n].

For a sequence A = (Aj,...,A,) and a set X = {x1,...,25} C [1,7] so that
T < Ty < - <@g, weset Ax = (Agy,..., Az,). If X =[1,5] (vesp. X = [s,7]), we
also write A¢s (resp. A;) instead of Ax. We set Ay = (&, 4,,,9,...,9,4,,,9)
(i.e replacing A; with @ if i ¢ X). When w € S, and X C [1,n] we set w|y =
(w(1),...,w(n))|y, i.e. we identify w with its window notation and discard w(s) for
1 ¢ X. Note that this becomes a window notation of some partial permutation; we
abuse notation and also denote it by w|y.

3. CELLS, STAR OPERATIONS, AND AMBC

Kazhdan and Lusztig [8] introduced (two-sided, left, and right) cells for each Coxeter
group and defined (right and left) star operations. (The notion of cells is extended to
extended affine Weyl groups by Lusztig [13].) Here we focus on the case of (extended)
affine symmetric groups in terms of the affine matrix-ball construction.

For a row-standard Young tableau T and ¢ € [1,I(T) — 1] suppose that T; =
(a1,...,as) and Tj41 = (b1,...,b:). Then we define Ich;(T), called the local charge in
row i of T, to be the smallest d € N such that a;_4 < b; for l € [d+1, t].(l) Pictorially,
this corresponds to how much one needs to shift 7; to the right so that (T3, Tj4+1)
becomes standard. For example, if T; = (3,5,7,8) and T;11 = (1,2,4,6) then we have
Ich;(T") = 2 as depicted below.

3[5]7]8 357|8\
[1]2

For P,Q € RSYT(\) where A = (Aq,...,\;) is a partition, we define Spgo =
(s1,...,81) € Z, called the symmetrized offset constant of (P, Q), to be as follows.

o 0 ifi=1o0r \j_1 >\,
%7 U sio1 +lch;_1(P) — lch;_1(Q) otherwise.

In other words, we have s; — s;_1 = Ich;_1(P) — Ich;_1(Q) whenever A\;_; = \;. We
say that 0 = (p1,...,p) is dominant with respect to (P, Q) if p;_1 — s;_1 < p; — 8
whenever \;_1 = ;.

The affine matrix-ball construction (abbreviated AMBC), defined in [6], is a sys-

tematic method to understand the combinatorial properties of S, and yields two
functions

©:8, — | | RSYT(A) x RSYT()) x Z!,
AFn

U | |RSYT(A) x RSYT(A) x Z' — S,.
AFn

(D One can easily show that this definition coincides with [5, Definition 5.3].
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Here, we have im® = {(P,Q, p) | 7 is dominant with respect to (P,Q)} and im ¥ =
:S'; . Moreover, ¥li, ¢ and ® are inverse to each other. (Their constructions are ex-
plained in Section 5.1 in more detail.)

The two-sided cells of :S’vn are parametrized by partitions of n and we denote such
cells by ¢, for A b n. The left/right cells contained in ¢, are parametrized by row-
standard Young tableaux of shape )\, and we write I'z (resp. (I'z)~1) for T € RSYT())
for such a left (resp. right) cell. Here, we have w € ' if and only if ®(w) = (P, T, 7)
for some P and 7, and similarly w € (I'7) ! if and only if ®(w) = (T, Q, p) for some
@ and 7. Also we have ¢, = | |pcpgyrn I'T = UTeRSYT(A)(FT)A'

For w € S, and i € [1,n] such that either w(i) < w(i +2) < w(i + 1), w(i + 1) <
w(i+2) <w(), w(d) <w(@—1) <w(+1),orw(i+1) <w(i—1) < w(i), we define
the right star operation w +— w™* for * ~ ¢ to be the one obtained from w by swapping
w(i+kn) and w(i+ 1+ kn) for each k € Z. Similarly, we define the left star operation
w +— *w for * ~ i to be the composition w +— w=! — (w™1)* — ((w™!)*)~! when the
corresponding right star operation w=! + (w™1)* for x ~ i is well-defined. Then [9,
Proposition 5.10] states that when ®(w) = (P,Q, ) = (P,Q, Sp,q + .p) we have

q)(*w)_{(P*,Q,E’p Q@+ o) if x oL m,
(P*,Q.Bpeg+B—0(P1)+8(Pn) ifs~n
@(w*){( P.Q"Sre ) . if % ot

(7Q*’_>PQ* S+ 0(Q1) = 0(Q,n) ifx~m,

where P* and Q* are Knuth moves for * ~ ¢ deﬁngd in [9, Definition 5.7]. Also, for
T € RSYT(A), a € [1,I(T)], and s € T, we define 0 (T,s) = (d1,...,0;1)) to be

1 if Ag—1 > Aq = A; (here we set A\g = 00), and
0; = .
0 otherwise.

(In particular, ; = §; whenever \; = \;.)

Multiplication by w = [2,3,...,n+ 1] € :S’\;L preserves each two-sided cell but
permutes left /right cells. More precisely, when ®(w) = (P,Q, ) = (P,Q, Sp,o + p)
we have (see [9, Proposition 5.5])

B(w - w) = (@(P), @ Fu(ra + B+ 3 (P.n)), and
(I)(w'w_l) ( (Q)?g)Pw op_ 5(@7 ))

Here, w(T) is a tableau obtained from T by replacing each entry ¢ with ¢ + 1 for
1 #n and n with 1 (and reordering entries in each row if necessary so that the result
becomes row-standard).

EXAMPLE 3.1. Suppose that w = [1,6,8,14,17,5,0,19, 3,22] € S1o. Then we have

=[1,6,8,14,17,5,0,19, 2, 23] for * ~ 2,

=[12,6,8,14,17,5,0,19, 3, 11] for * ~ 10,
=[2,7,9,15,18,6,1,20,4, 23],

=[12,1,6,8,14,17,5,0,19, 3].

Algebraic Combinatorics, Vol. 6 #1 (2023) 217



D. Kim & P. PYLYAVSKYY

In each case we have (all the symmetrized offset constants are zero as the parts of
(4,3,2,1) are pairwise different)

d(w) = (((3,5,8,10), (1,4,9), (2,6), (7)), ((4,5,8,10), (1,2,3), (6,9), (7)), (4,0,0,0)),
d(*w) = (((2,5,8,10), (1,4,9), (3,6), (7)), ((4,5,8,10), (1,2,3), (6,9), (7)), (4,0,0,0)),
d(w*) = (((3,5,8,10), (1,4,9), (2,6), (7)), ((1,4,5,8), (2,3,10), (6,9), (7)), (3, 1,0,0)),
d(ww) = (((1,4,6,9), (2,5,10), (3,7), (8)), ((4,5,8,10), (1,2,3), (6,9), (7)), (5,0,0,0)),

lww™t) = (((3,5,8,10), (1,4,9), (2,6), (7)), ((1,5,6,9), (2,3,4), (7,10), (8)), (3,0,0,0)),

which are as expected from the observation above.

4. SIGN INSERTION AND THE MAIN THEOREM

Here we recall the sign insertion algorithm defined in [3] and state the first main
result of this paper (Theorem 4.5). Suppose that we have words P, Q,w such that
w # @ and P~ w is a window notation of some element in :S’; (Recall that ™y
is the concatenation of x and y.) Also we assume that 93 and 9 are both increasing
and of the same length. Let us write w = (a) ~ w” where a € Z is the first entry of
w and w” is the remaining part. For ¢ € Z~o bigger than any entry in £, we define
FE—1,8,9w) = (i,0,9,w) as follows.
o If a is bigger than any entry of 3, then we set P’ =P ~(a), Q' = Q" (7),
and w' = w".
e Otherwise, let b be the smallest element in B bigger than a. Then we set 3’
to be P after replacing b with a. Also we set Q' = Q and v’ = w” ~(n +b).

For w € :S'; , we start with the quadruple (0,2, @, w) and apply F recursively until
the last component becomes the empty word, say (4,9, Q, &). We write sgnfp(w) =
and sgng (w) = Q. The process w — (sgny (w), sgng (w)) is called sign insertion.

EXAMPLE 4.1. Let w = [17,13,4,20,9,24] € 3;_ Each step of the sign insertion applied
to w is described as follows.

l Py 9 w

0 2 2 17,13,4,20,9,24
1 17 1 13,4,20,9, 24
2 13 1 4,20,9,24,23
3 4 1 20,9,24,23,19
4 4,20 1,4 9,24.23,19
5 4,9 1,4 24,93,19, 26
6 4,9,24 1,4,6 93,19, 26

7 4,9,23 1,4,6 19,26, 30

8 4,9,19 1,4,6 26, 30, 29

9| 4,9,19,26 1,4,6,9 29

10| 4,9,19,26,30 | 1,4,6,9,10 29

11] 4,9,19,26,29 | 1,4,6,9,10 36
12/4,9,19, 26,29,36(1,4,6,9,10,12 1%}

Thus we have sgng (w) = (4,9,19, 26,29, 36) and sgng (w) = (1,4,6,9,10,12).

REMARK 4.2. Note that it is not exactly the same as, but equivalent to, the original
definition of Blasiak [3, Algorithm 9.7]. Indeed, in our convention the window notation
ofw e S, is [w(1), w(2),...,w(n)], whereas in [3] it is defined to be [n+1—w~1(1), n+
1—w™Y2),...,n+1—w!(n)]. Furthermore, our sign insertion algorithm uses the
first element of w in each step, whereas in [3] the last element is used. Therefore,
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Blasiak’s insertion algorithm applied to w is equivalent to our algorithm applied to
R(w™1).

Let us discuss some basic properties of sign insertion.

LEMMA 4.3. Suppose that F (i — 1,B,Q,w) = (4,9, Q",w’). Then either P~ w =
B~ w' orP T w' is obtained from P T w by applying a series of right star operations
followed by multiplication by w on the right. As a result, w and sgnm(w) are in the

same left cell for w € :S‘Vn

Proof. Suppose that P~ w £ P ~w'. If we let w = (a) ™ w”, then P’ is obtained
from B by the “bumping process”, i.e. regarding 3 as an one-row tableau and inserting
a to it using the usual Robinson—Schensted insertion algorithm. Thus if we let b be the
element bumped out from B, then it is clear that (b) ~ 9’ is obtained from B ~(a)
by a series of right star operations. Now the result follows as ((b) ™ ~w”) - w =
P ow' ~b+n) =P " w. O

LEMMA 4.4. Suppose that w € :9;

(1) sgng(w) = sgng (ww).

(2) If *w is well-defined for some % ~ i, then sgngy(*w) = sgng (w).
Proof. This is a reformulation of [3, Proposition 9.9 (h), (i)] with respect to our
convention. In [3] he only considers when * % n (see the comment right above [3,
Example 9.3]), however the argument still applies when * ~ n. g

Now we state the first main result of this paper, originally conjectured by J. Blasiak.

THEOREM 4.5. [3, Conjecture 9.17(b)] For A+ n and Q, the set {w € ¢, | sgng(w) =
0} is a single left cell (if nonempty).

REMARK 4.6. Since his sgn, (w) is equal to our sgng (R(w™")), his conjecture is trans-
lated to that {w € ¢, | sgng(R((w™!)71)) = sgng(R(w)) = Q} is a single left cell.
However, since R : S, — S, sends a left cell to a left cell (see [4, Theorem 3.1] for
more detail), these two statements are equivalent.

5. AMBC, PROPER PARTIAL ROTATIONS, AND SIGN INSERTION

Here we first review the construction of AMBC in detail. Then we introduce proper
partial rotations which play a central role in our paper and discuss how they are related
to both AMBC and Blasiak’s sign insertion. Eventually we verify the Diamond Lemma
(Lemma 5.15) which is a key step for the proof of Blasiak’s conjecture.

5.1. NoTIoNS FOR AMBC. Here we recap some definitions from [6] that will be used
in this paper. We fix a positive integer n.

For a partial permutation w, we define its Shi poset to be the poset P = P, on
{z € [1,n] | w(x) # @} such that i <p j if either [i > j and w(i) < w(j)] or
[w(j) > w(i) + n]. For such a poset, we define its Greene-Kleitman partition to be
A = (A1, A2, ...) where Zle A; is the maximum of the number of elements in the

union of k-antichains in P,,. Then by [14], if w € S, is an actual permutation then
the Greene—Kleitman partition A of P, parametrizes the two-sided cell that contains
w, i.e. we have w € ¢,. In such a case we define the width of P, to be the first row
of A, which is also equal to the maximum length of an antichain in P,,.

EXAMPLE 5.1. Let w = [8,1,19,14,16,2,25,13,10,27] € Spo. Its Shi poset P, is
described in Figure 1. Direct calculation shows that its Greene—Kleitman partition is
(3,3,3,1), which means that w € ¢33 5 1)-
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FIGURE 1. Hasse diagram of P[&l719714,16,2725713710727]

We say that a partial permutation S : X + nZ — Z for some X C [1,n] is a
stream if S is an increasing function. In such a case its density is defined to be #X.
When there exists another partial permutation w such that S C w, we say that S is a
channel of w if the density of S is equal to the width of P,. Indeed, a stream S C w
is a channel if and only if its density is maximum among the streams contained in w.
For a stream S : X +nZ — Z its altitude a(S) is defined to be Y . ([w(z)/n] —1)
where [t] is the smallest integer not smaller than ¢.

For (z,y),(2',y") € Z* we write (x,y) <sw (2/,y') if z > 2’ and y < 3 and
say that (z,y) is southwest of (z’,y’) or equivalently (z’,y’) is northeast of (z,y).
Similarly, we write (z,y) <yw (2/,y") if * < 2’ and y < ¢’ and say that (x,y) is
northwest of (z’,y’) or equivalently (z’,y’) is southeast of (x,y). (Note that this is
compatible with our convention of the xy-plane which is the clockwise rotation of
the usual convention by 90 degrees.) For two channels C,C’ C w we say that C is
southwest of C’, denoted C' <gw C’, if for any b € C there exists ¥’ € C’ such
that b <gw b'. If neither C <gw C’ nor C >gw C’ then we write C' ALgsy C'.
By [6, Proposition 3.13], for any partial permutation w there always exist channels
C,C" C w such that C <sw C” <gw C' for any channel C” C w. We call C (resp.
C") the southwest (resp. northeast) channel of w.

For a partial permutation w, a sequence ((x1,w(x1)),..., (zg, w(xg))) is called a
path in w if 1 < -+ <z, and w(xy) < -+ < w(xg), i.e. it is a chain with respect
to the southeast direction. Or equivalently, if (by, ..., bx) is a path in w then we have
bi <nw - <wyw be.® A numbering d : w — Z is called monotone if for any path
(b1, b2, ...,b;) we have d(by) < d(b2) < --- < d(b).

For a stream S we say that d : S — Z is a proper numbering if d(z, S(x)) <
d(y, S(y)) whenever z < y and d(z + n,S(z + n)) — d(z,S(z)) equals the density
of S for any z. Note that a proper numbering is unique up to shift. When C' is a
channel of w and d : C' — Z is a proper numbering, we define the channel numbering
dS =d® :w — 7 to be

d®(b) = max{d(b')+k | there exists a path (b’ = bg,br,...,b, = b) in w where b’ € C}.

Again d¢ is uniquely determined up to shift. When C' is the southwest channel of w
we also write d = d° (or d,, = d9), called the southwest channel numbering of w.
For two channels C,C’ C w, let us fix shifts of d° and d° so that they coincide
on some/any element in C. (These two conditions are equivalent since the restriction
of a proper numbering to a channel is also proper, see [6, Lemma 3.15].) Then the
distance between C' and C” is defined to be h(C,C") = |d°" (b) — d° (b)| for some/any
b € C'. This is indeed well-defined and satisfies that h(C,C’) + h(C’,C") = h(C,C")

(2)This is called a reverse path in [6] and a path is defined to be of the opposite direction. Here
we stick to our definition in order to avoid confusion to which way a path is directed.
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for any channels C,C’,C"” C w. Furthermore, if C' 7tgw C’ then h(C,C’) = 0 by [6,
Lemma 11.12]. (The converse is not true in general.) We say that R is a river of w if
it is of the form R = {C’ C w | C’ is a channel of w, h(C,C") = 0} for some channel
C C w. (Later by Lemma 5.4, such C' can be chosen to be any channel in R.)

EXAMPLE 5.2. Let w = [8,1,19, 14,16, 2, 25, 13,10, 27] € Sio as in Example 5.1. There
are three channels of w as follows:
C,=102,1,0,0,2,2,9,2,10, ],
Cy=1[8,0,0,14,16,9,0, 9, &, 2],
Cs=[9,9,19,0,0,,25, 0, &,27.

Here Cy is the southwest channel of w and Cj is the northeast channel of w. Let us
fix the proper numbering d of Cy such that d(2,1) = 0. Then the southwest channel
numbering d = d®* : w — Z is defined to be
(1,8),(2,1) — 0, (4,14),(6,2) — 1, (3,19), (5,16), (8,13),(9,10) — 2
(7,25) > 3, (10,27) — 4

Similarly, d°? : w — Z is defined to be

(2,1) — 0, (1,8),(6,2) — 1, (4,14),(8,13),(9,10) — 2
(5,16),(3,19) — 3, (7,25) — 4, (10,27) — 5,
and d°3 : w — Z is defined to be
(2,1) — 0, (1,8),(6,2) — 1, (4,14),(8,13),(9,10) — 2, (5,16) — 3,
(3,19) — 4, (7,25) — 5, (10,27) — 6

Therefore we see that h(Cq,Cs) =1, h(C2,C3) =1, and h(C1,Cs) = 2.

For a partial permutation w and its channel C' C w, we define fwe(w) and ste(w)
as follows. Let d = d€ : w — Z be the channel numbering defined above. For each
m € Z, we take x1,...,2 € Z such that x; > --- > x, and d(z;, w(x;)) = m for

€ [1, k]. Then we have w(z1) < - -+ < w(xg). (It follows from the monotone property
of d.) Set Z,, = Z, U Z!! UZ" where

Zy, = { (i, w(:)) | i € [1, K]},

Zy, ={(zi, w(zi)) i€ [LE - 1]},

Zpy = {(zx, w(z1))}-
The set Z,, is called the zigzag labeled m. Then w N Z,, = Z/,. We set fwe(w) =
L] Z! and st(w) = | Z. Then fwe(w) is a partial permutation and sto(w) is

meZ “m mezZ “m-
a stream whose density is equal to the width of P,. When C is the southwest channel

of w we simply write fw(w) and st(w) instead of fwe(w) and sto(w).

ExXAMPLE 5.3. Let w = [8,1,19,14, 16,2, 25,13, 10,27] € glvo as in Example 5.1 and
5.2. Then with respect to d = d°* we have

Z(/) - {(2’1)7(1a8)a(*3’ 15)]’3 Z(l)/ = {(2a8)7(1715)}7 Z(/JN = {( 371)}’
Zy ={(6,2),(4,14),(0,17)}, Zi’ = {(6,14), (4,17)}, zZ7" ={(0,2)},
75 = {(9,10), (3,13), (5,16), (3,19)}, 24 = {(9. 13), (8.16), (5,19)}, Z4' = {(3.10)}.
Also we have fw(w) = (ZyUZ{UZY)+ (n,n)Z and st(w) = (Z{'LZ"UZY") + (n,n)Z.

The map ® : S,, — Uye,, RSYT(A) x RSYT(A) x Z'N is defined as follows. Starting
with wg = w € :S'Vn, we successively calculate w; 1 = fw(w;) and S;11 = st(w;) until
we have an empty partial permutation. For each S; we set P;,Q; C [1,n] such that

i © Qi +nZ — P; +nZ is a bijection. Then we have ®(w) = (P,Q, p) where
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P = (P,P,...), Q = (Q1,Q2,...), and 7 = (a(S1),a(S2),...). Moreover, 7 is
always dominant with respect to (P, Q).

A stream S is said to be compatible with a partial permutation w if SNw = @, SUw
is still a partial permutation, and the density of S is not (strictly) smaller than the
width of P,,. In such a case we define the backward numbering d?*% = ¢?%% : w — 7Z
as follows. First we fix a proper numbering d : S — Z, and for (z,w(x)) € w we let
d(z,w(zx)) = max{d(y, S(y)) € S | y < ,S(y) < w(z)}. Now we repeat the following
process:

o Ifd(z,w(zx)) < d(y,w(y)) for any z,y such that z < y and w(z) < w(y), then
we terminate the process.
o Otherwise, choose (x,w(x)) such that:
- there exists y such that d(z, w(z)) > d(y, w(y)), < y, and w(zr) < w(y),

and
- for any z such that z < z and w(z) < w(z) we have d(z,w(z)) <
d(z, w(x)).
o For each i € Z we lower the value of d(x + in, w(x) + in) by 1.

After this process is finished we set d?**% = d. This numbering is always well-defined.

For a partial permutation w and a compatible stream S, we define bkg(w) as
follows. Let d be the proper numbering on S and d = d?° be the induced backward
numbering on w. Then for each m € Z, we take y,x1,...,x, € Z such that z; >
> xy and d(y, S(y)) = d(zi, w(x;)) = m for i € [1,k]. Then we have w(z1) < --- <
w(xg). (It follows from the monotone property of d.) Set Z,,, = Z/ U Z/ U Z!" where

Zyy = {(wipr,w(@:)) [ € [,k =1} U {(21, S))} U{(y, wlzx))},
Zy =A{(wi,w(z:)) i€ [LE},  Zy ={(y,S()}-

The set Z,, is called the zigzag labeled m. Then wN Z,, = Z/! and SNZ,,, = Z,!/. We
set bks(w) = | ,,,cz Z,- Then bkg(w) is a partial permutation the width of whose
Shi poset is equal to the density of S. .

The map ¥ : | ],,,, RSYT(A) x RSYT(\) x Z'M) — S, is defined as follows. For
P=(P,....,P), Q= (Q...,Q), and 7 = (p1,...,pm), we define S; to be the
unique stream which maps @Q; + nZ to P; + nZ and which satisfies a(S;) = p;. Now
starting with the empty partial permutation w; we successively define w;_; = bkg, (w;)
for ¢ € [1,1]. This process is well-defined and we set U(P,Q, g) = wp. (Here the
dominance of 7 is not required.)

5.2. CHANNELS AND RIVERS. Let us describe some properties of channels and rivers.
We start with observing the following lemma which strengthens [6, Proposition 3.17].

LEMMA 5.4. Suppose that C1,Cs, Cs are three (not necessarily disjoint) channels of a
partial permutation w. Then we have h(Cy,Cs) < h(C1, Co)+h(Cs, C3). Furthermore,
if h(C1,C3) =0, h(Cq,C3) =0, or C; <sw Co <sw Cs, then we have h(Cy,Cs) +
h(Cs,Cs) = h(C1,Cs).

Proof. Tt is indeed shown in the proof of [6, Proposition 3.17]. O

For a partial permutation of w whose Shi poset is of width r, we successively
choose C; to be the southwest channel of w — u;l;llcj until we fail to find a stream
of density r and let {C1,...,Cp} be its result. (This is always possible due to [6,
Proposition 3.13].) Then (Cy,...,Cy,) is a disjoint collection of channels of w where
Cy <sw -+ <sw Chm. By [6, Definition 3.7] and the argument thereafter, we see that
m equals the multiplicity of r (the width of P,) in the Greene-Kleitman partition of

P,,. This argument (and its reflection along the anti-diagonal of the zy-plane) shows
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the existence, but not uniqueness, of the following sequence. (Throughout this paper
only the existence of such a sequence is needed.)

DEFINITION 5.5. For a partial permutation w, we denote by €, = (C1,...,Cp,) a
sequence of the channels of w such that

(1) m is the multiplicity of \1 in the Greene—Kleitman partition A of Py,

(2) C1 <sw Co <sw -+ <sw Oy,

(3) Ci’s are pairwise disjoint, and

(4) this sequence contains all the northeast channels of rivers of w.
Similarly, we denote by €, = (C1,...,Cl.) a similar sequence which satisfies (1), (2),
(3), and

(4") it contains all the southwest channels of rivers of w.

REMARK 5.6. By Lemma 5.4, for a given w and two sequences €,, = (C1,...,Cp)
and €, = (C1,...,C}.) as above, there exist 0 = mq, my1, ma,...,m; = m where
0 <mp < myg < ...<m_1 < msuch that h(C;,C;) = h(C},C%) = 0 if and
only if ¢,5 € [1 + mg_1,my] for some k € [0,] — 1]. In other words, there are I
rivers Ry,..., Ry C w such that C;,C] € Ry, for k € [1,1] and i € [1 + mp_1, ms).
Then by maximality of €, (resp. @), the intersection of Cy1,,_, and the southwest
channel of Ry, (resp. the intersection of Cj, and the northeast channel of Ry) is
nonempty. In particular, the channel numbering corresponding to the southwest (resp.
northeast) channel of Ry is the same as that of Ci4,,, , (resp. C},, ). In addition,
when my_1 + 1 < my, it is possible to assume that both €, and € contain both the
southwest and northeast channel of Ry. (When my_1 +1 = my, the northeast and the
southwest channel of Ry have nonempty intersection but they may differ in general.)

EXAMPLE 5.7. Suppose that w = [6, 1,18, 3,19, 24, 12,15,17,10]. Then there are four
channels

Cy=12,1,0,3,9,8,0,9,d,10],
Cy,=16,0,0,9,0,2,12,15, @, 7],
Co=109,0,0,0,0,9,12,15,17, &,
Cs=19,2,18,2,19,24, 0, 9, &, 2].

Here {C4,Cy,C4} and {C5} are rivers of w. Also the sequence (Cy,Cs, C3) satisfies
the properties of both €, and ¢, .

Suppose that m = #¢&,, > 2. Then by [6, Corollary 14.11], there exists a sequence
Cow(w) = (D1,.-.,Dip—1) as in Definition 5.5 such that each D; is between C; and
Cit1. (When #¢€,, = 1, the width of Pry(y is strictly smaller than that of P,.) If we
let ®(w) = (P,Q,7) = (P,Q,Spq + ,p) where 0 = (p1,p2,...), Spg = (s1,2,...),
and g = (4p1, of2,- - -), then [6, Theorem 8.1] shows that h(Cy,Cs) = pa — p1 — 82 =
oP2 — oP1 and h(Ci,Ci+1) = h(Difl,Di) fori e [2,m — 1]

The distances between channels can be obtained from AMBC due to the following
lemma.

LEMMA 5.8. Suppose that ®(w) = (P,Q, Spg + o) where 8 = (op1, op2,--.) and
€y = (Ch,...,Cp). Then fori € [1,m — 1] we have h(C;, Cit1) = oPit1 — oPi-

Proof. When i = 1 we already observed that h(C7,C3) = ,p2— 401 which follows from
[6, Theorem 8.1]. However, the second part of the aforementioned theorem states that
h(Ci,Ciy1) = h(D;—1, D;) where C;, D; are as above, and thus the result follows from
induction on ¢ and the fact that ®(fw(w)) = (Ps2, Q>2, (Sp.g + o8)>2)- O
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In particular, the indices 0 = mg, m1,ms,...,m; = m in the above remark are
chosen in a way that ,p; = ,p; if and only if 4,5 € [1 + my_1,my] for some k € [1,1],
i.e. each river of w corresponds to a subset of [1,m] having the same values of ,p.

For a partial permutation w and a compatible stream S, the indexing river of
bkg(w) corresponding to (w, S) is defined to be the collection of channels C' € bkg(w)
such that (if we fix a shift of dgks(w) properly then) dgks(w) (b) = m for any b € bkg(w)
if and only if b € Z], where Z/, is as in 5.1 (the set of elements labeled m). Then the
collection is indeed a river. Moreover, when (w,S) = (fw(v),st(v)) for some partial
permutation v then the southwest channel of v is contained in the indexing river of
(w, S) since the forward numbering (i.e. the southwest channel numbering) and the
backward numberings are compatible in this case.

For a partial permutation w and a compatible stream S with the proper numbering
d:S — Zand d = d?®% : w — 7Z, we say that (z,w(z)) € w is N-terminal (resp.
W-terminal) with respect to S if there exists (y,S(y)) € S such that d(y, S(y)) =
d(z,w(zr))+1and x < y (resp. w(x) < w(y)). Also we say that b € w is N-terminating
(resp. W-terminating) with respect to S if there exists a path b = by, ..., bx € w such
that by is N-terminal (resp. W-terminal) and d(b;—1) + 1 = d(b;) for i € [1, k].

By [6, Lemma 14.22] and [6, Lemma 16.15], if S is a stream compatible with w and
R is a river of w then either every b € |Joc C is N-terminating or every b € (Jocr C
is W-terminating, thus we may say that the river R is either N-terminating or W-
terminating. Furthermore, by [6, Corollary 16.17] at most one river of w is both N-
and W-terminating. These notions are related to the indexing river of bkg(w) as
described in the lemma below. (Also see Figure 2.)

LEMMA 5.9. Suppose that v is a partial permutation, S is a stream compatible with v,
and w = bkg(v). Then (x,w(zx)) € w is in the indexing river corresponding to (v, S)
if and only if in the zigzag Z containing (x,w(x)) (in the backward step of AMBC)
the elements (y,v(y)) € ZNw such that x < y (resp. w(z) < v(y)) are W-terminating
(resp. N-terminating.)

Proof. The if part follows directly from [6, Remark 16.7]. For the converse, suppose
that (z,w(x)) is in the indexing river, say R. Let (c,w(c)), (¢, w(c’)) € w be such
that ¢ is the minimum among the elements in (Jo.p C N Z and ¢’ is the maximum.
Then we have (¢/,w(c')) <sw (z,w(z)) <sw (c,w(c)). By [6, Lemma 16.5, 16.8]
and their “reflection statements along the anti-diagonal” (or equivalently considering
w~! instead), if we let (y,v(y)) € v (resp. (y',v(y’)) € v) be the most northeast W-
terminating element (resp. the most southwest N-terminating element) of Z Nwv then
¢ <y and w(c) = v(y) (resp. ¢ =y and w(c') < v(y’)). (If no such (y,v(y)) exists
then (¢, w(c)) = (¢, w(c)) = (x,w(x)) is the most southwest element of Z, and if no
such (y',v(y")) exists then (c,w(c)) = (¢, w(c¢')) = (x,w(x)) is the most northeast
element of Z.) Thus the result follows. O

As a result, elements of v which are northeast of the indexing river of bkg(v) corre-
sponding to (v, S) are N-terminating but not W-terminating, and a similar statement
holds for balls southwest of the indexing river.

ExaMPLE 5.10. Figure 2 describes a zigzag which appears in the backward step of
AMBC. Here, the striped ball is an element of S, the white ones are the elements
of v, and the shaded ones are the elements of w = bkg(v). The curvy lines denote
channels in the indexing river. The elements C' = (¢, w(c)),C’ = (¢/,w(c')) in Lemma
5.9 are depicted as in the diagram, and the white balls labeled N (resp. W, resp.
NW) are N-terminating but not W-terminating (resp. W-terminating but not N-
terminating, resp. both N- and W-terminating).
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FIGURE 2. Indexing river and N /W-terminating elements

5.3. PROPER PARTIAL ROTATION AND AMBC. Here we define (proper) partial ro-
tations and study their interactions with AMBC.

DEFINITION 5.11. For a partial permutation w and a stream S C w, let us set x; for
i € Z so that S = {(x;, w(z;)) | it € Z} and i < j if and only if x; < x;. We define the
partial rotation on w with respect to S, denoted prg(w), as follows.

B w(;z:i+1) if a = x;,
prg(w)(a) = {w(a) otherwise.

Likewise, we also define the inverse partial rotation prgl(w) as follows.

-1 ~ Jw(zimr) fa=ay,
prs (w)(a) = {w(a) otherwise.
We often abbreviate the partial rotation (resp. inverse partial rotation) to PR (resp.
IPR). We say that the partial rotation prg (resp. the inverse partial rotation prgl)
applied to w is proper if S is the northeast (resp. southwest) channel of some river
of w.

In [6], the term shift is used in order to denote the PR/IPRs. Moreover, the nota-
tions w(l) g, w(—1) g, S(1), and S(—1) in [6] are translated to prg(w), prg ' (w), prg(S),
and prg'(S) in our language. When R is a river of w and C' (resp. C”) is the northeast
(resp. southwest) channel of R, then w(l), and w(—1), in [6] are equal to prs(w)
(resp. pra,l(w)) which is by definition a proper partial rotation (resp. a proper inverse
partial rotation). We stick to our notations in this paper, but allow ourselves to use
S(1) and S(—1) instead of prg(S) and prg'(9).

Let us describe the relation between proper PR/IPRs and AMBC.
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THEOREM 5.12. For a partial permutation w with a sequence €, = (Ci,...,Cp)
(resp. €, = (C1,...,CL)) as in Definition 5.5, assume that R is a river of w whose
northeast (resp. southwest) channel is C, for some r (resp. C., for some r'). Note

that both pre, and pI“E,l are proper with respect to w. Suppose that ®(w) = (P,Q, 7).

Then we have
®(pre, (w)) = (P,Q,p +€.) and @(prgﬂll (w)) = (P,Q, P — €m).

Here, €; is a vector whose i-th coordinate is 1 and 0 elsewhere.

Proof. We first prove ®(pro (w)) = (P,Q,7 + €). Assume that r = 1. Let us
write (v,S) = (fw(w),st(w)) so that w = bkg(v), ®(v) = (Ps2,Q>2, P>2), and
a(S) = p1. Since C; has a nontrivial intersection with the southwest channel of w,
R is the indexing river of w corresponding to (v,.S). Thus by [6, Theorem 16.9] we
have prg, (w) = bkgqy(v). Since h(C1,C) > 0 by assumption, we have ,p1 < ,p2
by Lemma 5.8, which implies that p + € is still dominant with respect to the pair
(P,Q). Thus from the definition of backward algorithm we see that ®(prg, (w)) =
®(bkg(1y(v)) = (P,Q, 7 + €1) (note that a(S(1)) = p1 + 1) as desired.

In general, we successively define (v1,51) = (fw(w),st(w)) and (v;,S;) =
(fw(vi_1),5t(v;—1)) for i € [2,7]. Let C. = D° C w,D! C vy,...,D" C v, be
the (m + 1 — r)-th northeast channel in &, €,,,...,&, , respectively. Note that each
of them is the northeast channel of some river, say D’ € R?, by Lemma 5.8 since so
is C, = D€ R =R.

The above argument for r = 1 case shows that prp.—1(v,.—1) = bkg_(1y(v,) and thus
O (prpr-1(vr—1)) = (Psry Qsr, (P + €r)>r). Now recall that the southwest channel of
vp_g is in the indexing river corresponding to (v,.—1,S,—1). In particular, any ball in
vp—1 i8 N-terminating by Lemma 5.9. Thus (the reflection statement along the anti-
diagonal of) [6, Proposition 16.39] shows that bkg _, (prpr—1(vr—1)) = prpr—2(vs—2).
(Here, D"~? is the northeast channel of R"~2, and R"~? contains the most southwest
channel among the ones of v,_o that are northeast of D"~!.) Thus it follows that
(Pt p2(vy2)) = D(bks, (DT prs (V1)) = (Por1, @sr1, (F + Tr)zr_1).

Now we iterate this process and eventually reach the conclusion that pro (w) =
bks, (prpi(v1)) = (bks, o bkg,)(prpz(v2)) = -+ = (bkg, o---obks,_, obkg, ))(vr).
Therefore from the definition of backward algorithm we see that ®(pro.(w)) =
®((bkg, o ---obkg, _, obkg 1y)(vr)) = (P,Q, B + €,) as desired. (Here we use the
fact that g + €, is dominant with respect to (P, Q).)

To prove the second claim <I>(pr6,1/ (w)) = (P,Q, p — €,) one may similarly argue
as above. The case when 7 = 1 is almost the same as the above, and for the inductive
argument one needs to use (the reflection statement along the anti-diagonal of) [6,
Proposition 16.38] instead of [6, Proposition 16.39]. We omit the details. O

EXAMPLE 5.13. Suppose that w = [6,1, 18,3, 19,24, 12, 15,17, 10] € Sy as in Example
5.7. Then we have

o(w) = (P,Q, 7)
= (((1,3,10),(2,5,6), (4,7,9), (8)), ((3,5,6), (7,8,9), (1,4,10),(2)), (2, 3,2,0))

and Spo = (0,1,1,0) — (0,0,2,0) = (0,1,—1,0). Thus .3 = 7 — Spo = (2,2,3,0).
(This again shows that there are two rivers Ry © Cy,Cs and Ry 3 C3.) If we calculate
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pro(w) and prgt(w) for each C' € €, when the operations are proper then

pre. (w) = [6,0,18,1,19,24,12,15,17, 3]

= (((1,3,10),(2,5,6), (4,7,9), (8)), ((3,5,6), (7,8,9), (1,4,10), (2)), (1,3,2,0)),

pre, (w) = [6,1,18,3,19,24,15,17,22, 10]

N (((1,3,10), (2,5,6), (4,7,9), (8)),((3,5,6),(7,8,9), (1,4, 10), (2)), (2,4, 2,0)),

pre, (w) = [6,1,14,3,18,19,12,15,17, 10]

AN (((1,3,6,0),(2,5,9),(4,7),(8)),((3,5,6,9), (4,7, 8), (1, 10), (2)), (2, 3,1,0)),

pre) (w) = [6,1,19,3,24, 28,12, 15,17, 10]
= (((1,3,6,0), (2,5,9), (4,7), (8)), ((3,5,6,9), (4,7,8), (1,10), (2)), (2,3,3,0)),
as expected.

5.4. PROPER PARTIAL ROTATION AND SIGN INSERTION. Here we show that the proper
PR/IPRs do not affect the result of sign insertion as the following theorem states.

THEOREM 5.14. Suppose that pro and pr(_;,1 are proper with respect to w € :92 for
some C,C" C w. Then we have sgng (w) = sgng (pre(w)) = sgng (pre) (w)).

The main tool to prove this theorem is the following Diamond Lemma discussing
interactions between right star operations and proper PR/IPRs.

LEMMA 5.15 (Diamond lemma). Suppose that we are given a partial permutation w
with €, = (C1,...,Cn), p € [1,n], and q € [1,m]. Assume that:

o Fither w(p — 1) is between w(p) and w(p + 1) so that a right star operation

w — w* that switches w(p) and w(p+1) is well-defined, or w(p+1) is between

w(p—1) and w(p) so that a right star operation w — w* that switches w(p—1)

and w(p) is well-defined. Let us call it “the right star operation centered at

»”

. pq s a northeast channel of a river of w.
Then, we have:
o The g-th southwest channel Cy of €y« = (C7,...,Cy), where € is as in
Definition 5.5, is a northeast channel of a river of w*.
e The right star operation centered at p is well-defined for pre, (w), say
Prc, (w)*.
Furthermore, we have pr¢, (w)* = pre- (w*). In other words, we may “canonically
complete the commutative diagram” when we are given w — w* and w — pre, (w).
The same result also holds when one replaces proper partial rotations with proper
inverse partial rotations and/or replaces right star operations with multiplication by
w on the right.

Since star operations and multiplication by w preserve each two-sided cell, or equiv-
alently the Greene—Kleitman partition of a Shi poset, it makes sense to take the ¢-th
southwest channel in €« and €,,.., in the lemma above. Also note that the statement
for multiplication by w on the right is straightforward because the channels of w - w
are simply the shifts of those of w.

EXAMPLE 5.16.Let w = [6,1,18,3,19,24,12,15,17,10] as in Example 5.7 and
5.13. Then the star operation w — w* centered at 7 is well defined and w* =
[6,1,18,3,19,12,24,15,17,10]. Let us consider

pre, (w) = [6,1,18,3,19, 24,15, 17,22, 10].

Algebraic Combinatorics, Vol. 6 #1 (2023) 227



D. Kim & P. PYLYAVSKYY

Then prg, (w) = pre, (w)* centered at 7 is well defined and
pre, (w)* =[6,1,18,3,19,15,24,17, 22, 10].

Moreover, w* +— prg, (w)* is the proper partial rotation with respect to the channel
9,9,0,9,9,12,9,15,17, &].

First let us discuss how to use Lemma 5.15 to prove Theorem 5.14.

Proof of Theorem 5.14, assuming Lemma 5.15. Tt suffices only to prove for the

proper partial rotation, i.e. sgng(w) = sgng(pro(w)). Let us set wy = w,
Po = Qo = @ and sequentially define (4,B;, Qi,wi) = F (1 — 1L, Pi1, i1, wi—1)
for i € [1,N] where wy = @. Thus in particular we have sgng(w) = Py and

sghg(w) = Qn. Let us set v; =P; ~ w; for i € [0, N]. Note that either v; = v;_1 or
v; is obtained from v;_1 by applying right star operations followed by multiplication
by w on the right (cf. the proof of Lemma 4.3).

Let @ = pro(w) where pr applied to w is proper. Then by Lemma 5.15, we may
(uniquely) find @w = 9, ¥1,...,0n such that v; — ©; is a proper partial rotation,
v; = v;—1 if and only if ©¥; = ¥;_1, and if ©¥; # ¥;_1 then ¥; is obtained from o;_1
by a series of right star operations followed by multiplication by w on the right. We
claim that there exist ;, w; for i € [0, N] such that ©; = P; ~w; for i € [0, N] and
(i, B4, Qi 0;) = F (i — 1,B4_1,Qi_1,W;_1) for i € [1, N]. (In particular the lengths of
B, Bi, and Q; are all equal.)

We prove by induction on 4. It is obvious when ¢ = 0 by setting By = @ and
Wy = W, so suppose that it is true up to ¢ — 1. Let p be the length of 3;_1. Then we
have ?)1'_1(1) < e < Ui—l(p) and 171_1(1) < e < 171_1(])) If vi—l(p) < Ui—l(p + 1),
then it means that v;_1 = v;, i.e. v,_1 — v; is a trivial step, which implies v;_1 = ¥;
by assumption. We claim that @;_;(p) < @;_1(p + 1) so that we may set 9B; and w;
similar to 3; and w;. Indeed, if ¥;—1(p) > 0;,—1(p + 1) then it is possible to apply the
right star operation centered at p on 9;,_;. However, by Lemma 5.15, it means that
the same star operation can be applied to v;_1, which is a contradiction.

It remains to consider the case when v;_1(p) > v;—1(p + 1). Then v; is obtained
from v;_1 by applying the right star operations centered at p,p—1, ..., 2, respectively,
followed by multiplication by w on the right. By Lemma 5.15, the same process applies
to ¥;—1 to get ¥;. However, as 9;—1(1) < -+ < 0;—1(p) and ¥;—1(p) > ¥;—1(p + 1) by
assumption, one can easily show that this is the usual “bumping process” (which
inserts @;_1(p + 1) to P;_1) followed by multiplication by w on the right. This is
clearly a valid step of the sign insertion algorithm. Thus, if we set J; to be the first
p-th characters of ©; and w; to be the remainder then the induction step is also valid
in this case. It suffices for the proof. O

EXAMPLE 5.17. We compare the sign insertion of w = [6,1,18,3,19,24,12,15,17, 10]
and prg, (w) = [6,1,18,3,19,24,15,17,22, 10]. The underlined numbers are where the
proper partial rotation is applied. It is clear that the sign insertion processes for w
and prg, (w) are parallel.

i B 9 w

0 1%} 1%} 611831924 12 1517 10
1 6 1 118319241215 17 10
2 1 1 1831924 12 1517 10 16
3 118 13 31924121517 10 16
4 13 13 19 24 12 15 17 10 16 28
5 1319 135 24 12 15 17 10 16 28
6 131924 1356 12 1517 10 16 28

7 131224 1356 15 17 10 16 28 29
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8 131215 1356 17 10 16 28 29 34
9 13121517 13567 10 16 28 29 34

10 13101517 13567 16 28 29 34 22

11 131015 16 13567 28 29 34 22 27

12 131015 16 28 1356712 29 34 22 27

13 13101516 28 29 135671213 34 22 27

14 13101516 28 29 34 135671213 14 22 27

15 13101516 22 29 34 135671213 14 27 38

16 131015 16 22 27 34 135671213 14 38 39

17 1310 15 16 22 27 34 38 1356712131417 39
181131015162227343839 1356712131418 %]

i L 9 w

0 Z] Z] 61183192415 172210
1 6 1 11831924 1517 22 10
2 1 1 1831924 15 17 22 10 16
3 118 13 3192415 17 22 10 16
4 13 13 19 24 15 17 22 10 16 28
5 1319 135 24 15 17 22 10 16 28
6 131924 1356 1517 22 10 16 28
7 131524 1356 17 22 10 16 28 29

8 131517 1356 2210 16 28 29 34
9 131517 22 13567 10 16 28 29 34

10 13101722 13567 16 28 29 34 25

11 131016 22 13567 28 29 34 25 27

12 131016 22 28 1356712 29 34 25 27

13 131016 22 28 29 135671213 34 25 27

14 131016 22 28 29 34 135671213 14 25 27

15 131016 22 2529 34 135671213 14 27 38

16 131016 22 25 27 34 135671213 14 38 39

17 1310 16 22 25 27 34 38 1356712131417 39
181131016222527343839 1356712131418 %]

5.5. PROOF OF DIAMOND LEMMA. It remains to prove Lemma 5.15. Recall the def-
inition of €,, given in Definition 5.5.

LEMMA 5.18. For a partial permutation w, right star operations and multiplication by
w on the right do not change the distances between channels in €.

Proof. This follows from Lemma 5.8 together with the last part of Section 3. (Here,
it is crucial that 0 (T, s) = (01, ...,d;) satisfies that d; = §; whenever \; = \;.) O

The following lemma describes the reason why the proper PR/IPRs are useful.

LEMMA 5.19. If C C w € S, is a channel then pre(w) (resp. prg'(w)) and w are in
the same two-sided cell if and only if S is the northeast (resp. southwest) channel of
a river of w. (In this case such an element is in the same left and right cell of w by
Theorem 5.12.)

Proof. Here we prove only for partial rotations; the inverse case can be proved simi-
larly. The if part follows from Theorem 5.12 and it remains to prove the only if part.
Assume that C' C w is a channel which is not the northeast in its river, but its partial
rotation yields a permutation in the same two-sided cell. By assumption there exists
a channel ¢’ # C such that C' <gw C’ and h(C,C") = 0, i.e. d© and d°" are equal
up to shift by [6, Definition 3.16]. We fix shifts of d° and d®" such that they coincide,
and let ¢; € C and b; € C’ be balls such that d€(c;) = d° (¢;) = d°(b;) = d (b;) = i
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for ¢ € Z. Note that by assumption either b; = ¢; or ¢; <sw b;, and there exists i € Z
such that b; # ¢;.

We claim that there exists j € Z such that b; = (y,w(y)) € C'—C (thus ¢; <sw b;)
and ¢;_1 = (z,w(z)) € C satisfies x < y and w(z) < w(y). If ¢;_1 = bj_1 then the
claim is obvious, thus it suffices to consider the case when CNC’ = &. However, if the
assumption is false for any j € Z then we may lower the labels of the balls in C’ by
1 and the numbering still satisfies the monotone property, which is a contradiction.
Thus such j always exists.

Now for ¢ € Z let d; be a ball in the partial rotation of C so that ¢; and d; share
the same z-coordinate, or equivalently the y-coordinate of d; is the same as that of
¢it1. Let b; € C" — C be as above. Then it follows that z-coordinate of b; is between
those of c;_1 and ¢; and the y-coordinate of b; is bigger than that of ¢;, which in turn
means that d;_; is northeast of b;. In addition, similar argument shows that there
exists k € Z such that by is northeast of dj.

By adjusting the shift of d° and d°’ necessary, we may assume that 1 <j <k <r
where r is the density of C. Then the conditions above imply that ({b; | 7 < i <
ktud{di|1<i<j—lork<i<r}) +2Z(n,n) Cwisa stream of density r + 1,
which contradicts the assumption that pr(w) is in the same two-sided cell of w (cf.
[6, Corollary 11.5]). Thus the result follows. O

EXAMPLE 5.20. Suppose that w = [6,1,18,3,19,24,12,15,17,10] as in Example 5.13
and 5.7. We already calculated pra1 (w), pre, (w), pre, (w), and prES1 (w), and their
images under ®. Let us calculate the remaining possibilities.

pro, (w) = [6,3,18,10,19,24,12,15,17, 11]

= (((1,3,6,10),(2,5,9), (4,7), (8)), ((3,5,6,9), (4,7,8), (1,10), (2)), (3,4,1,0)),

pre. (w) = [6,1,18,3,19,24,7,12, 15, 10]

s (((1,3,7,10),(2,5,6), (4,8,9)),((1,3,5,6),(7,8,9), (2,4, 10)), (1, 3,2)),
prey (w) = [12,1,18,3,19,24,15,16,17, 10]

= (((1,3,7,10), (2,5,6), (4,8,9)), ((1,3,5,6), (7,8,9), (2,4,10)), (3,3, 2)),
prgg(w) =[5,1,18,3,19,24,6,12,17, 10|

g (((17 37 67 10)7 (2’ 57 9)7 (47 7)7 (8))7 ((3’ 57 67 9)7 (47 7’ 8)7 (1’ 10)’ (2))7 (17 47 17 0))
Note that w € ¢(3 3,3,1) but these elements are not contained in this two-sided cell.

We are ready to prove Lemma 5.15. To recap, we assume that to an affine permu-
tation w one can apply two operations: (1) a right star operation centered at p for
p € [1,n]; (2) a proper PR/IPR applied to the ¢-th southwest channel C' in &,,. Let
us denote by w* the outcome of the right star operation and by @ the outcome of
such a proper PR/IPR. First we claim the following.

LEMMA 5.21. Suppose that there exists w* € g; such that W — w* is again the right
star operation centered at p and w* — w* is a PR/IPR. Then the latter operation is
proper and applied to the q-th southwest channel of w*.

Proof. By Theorem 5.12, ®(w) and ®(w) differ by a single value of 7 on the top
block. Since w, w, w*, w* all lie within the same two-sided cell by assumption, Lemma
5.19 tells us that the PR/TPR w* — @* should be proper. Since the distances between
channels of w* (resp. w*) are the same as those of w (resp. @) by Lemma 5.18, we
see that the PR/IPR w* — @* should be applied to the ¢g-th channel of w*. O
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Thus, it is enough to show that the commutative diagram can be completed by a
PR/IPR (without checking properness) applied to a channel of w* (without checking
that it is the ¢-th southwest channel). Meanwhile, without loss of generality we may
assume that p € [2,n — 1]; if p € {1,n}, then we may multiply w on the right so
that the right star operation is centered in [2,n — 1]; this process also respects proper
PR/IPRs. (See the comment after Lemma 5.15. Also, here n > 3 since the right star
operation is not well-defined for n < 2.) Moreover, it suffices only to consider partial
rotations because the inverse case can be deduced by considering w~?.

We write @ = pro(w) where C' C w is a northeast channel of a river. We set a,b, ¢ €
Z to the y-coordinates of some elements in C' such that w=!(a) < w=1(b) < w™1(c).
(Recall that the y-axis directs to the east in our convention.) We assume that no other
elements in C' are between them, i.e. if (y,w(y)) € C and a < w(y) < ¢ then b = w(y).
(If the density of C' is 2 (resp. 1) then we have ¢ = a+n (resp. c=b+n =a+ 2n).)

We argue case-by-case based on the size of [p—1,p+ 1]N X where X is a subset of
[1,n] such that X +nZ is the domain of C. Here we will verify that (1) the right star
operation centered at p is well-defined for w, and (2) there exists a channel C’ C w*
such that its corresponding partial rotation coincide with w*.

Case 0. Suppose that #([p — 1,p + 1] N X) = 0. In this case the two operations
simply commute, and the commutative diagram can be trivially completed.

Case 1. Suppose that #([p—1,p+1]NX)=1.
(1) The right star operation looks like (here either side can be w):
..xby...c... PPV ...bxy...c...

(a) Suppose that © < y < b. Since z < y < ¢, after the partial rotation we
get a valid right star operation

and a valid channel C’ C w* whose y-coordinates are identical to C so
that the commutative diagram can be completed.

(b) Suppose that b < y < x. If ¢ > y then y and its translates can be
inserted to C' to yield a longer stream in w, which is a contradiction.
Thus ¢ < y < x and after the partial rotation we get a valid right star
operation

and a valid channel C’ C w* whose y-coordinates are identical to C so
that the commutative diagram can be completed.
(2) The right star operation looks like (here either side can be w):

(a) Suppose that < y < b. Since z < y < ¢, after the partial rotation we
get a valid right star operation

and a valid channel C’ C w* whose y-coordinates are identical to C' so
that the commutative diagram can be completed.

(b) Suppose that b < y < z. If ¢ > y then y and its translates can be
inserted to C(1) to yield a longer stream in w, which is a contradiction.
Thus ¢ < y < x and after the partial rotation we get a valid right star
operation
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and a valid channel C’ C w* whose y-coordinates are identical to C so
that the commutative diagram can be completed.
(3) The right star operation looks like (here either side can be w):

Without loss of generality we may assume that x < y,ie.x <b<y.Ilfc>y
then y and its translates can be inserted to C(1) to yield a longer stream in
w, which is a contradiction. Thus x < ¢ < y and after the partial rotation we
get a valid right star operation

and a valid channel C’ C w* whose y-coordinates are identical to C' so that
the commutative diagram can be completed.
(4) The right star operation looks like (here either side can be w):

Without loss of generality we may assume that x < y,i.e. x <b<y.Ilfc>y
then y and its translates can be inserted to C to yield a longer stream in w,
which is a contradiction. Thus z < ¢ < y and after the partial rotation we get
a valid right star operation

and a valid channel C’ C w* whose y-coordinates are identical to C' so that
the commutative diagram can be completed.

Case 2. Suppose that #([p— 1L,p+1]NX)=2.
(1) The right star operation looks like:
w:..oazbq..C.o./\/\—)w*:.qnzab...C..o'

Here we should have a < b < z. If z < ¢, then z and its translates can be
inserted to C(1) to yield a longer stream in @, which is a contradiction. Thus
b < ¢ < z and after the partial rotation we get a valid right star operation

w:...a...bzc...ww :...a...zbc...

and a valid channel C’ C w* whose y-coordinates are identical to C' so that
the commutative diagram can be completed.
(2) The right star operation looks like:

w:zabcww :azbc

Here we should have a < b < z.
(a) If ¢ < z, then after the partial rotation we get a valid right star operation

w:azbcww*:abzc

and a valid channel C’ C w* whose y-coordinates are identical to C so
that the commutative diagram can be completed.
(b) If ¢ > z, then after the partial rotation we get a valid right star operation

'lD:CLZbCW'LU :azcb

and a valid channel C" = ... a,z,¢,... C w* (i.e. replacing b with z in
() so that the commutative diagram can be completed.
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(3) The right star operation looks like (here either side can be w):
axbc PUVRS abxc .

Here we should have x < a < b < ¢. After the partial rotation we get a valid
right star operation

abxcwabcx

and a valid channel C’ C w* whose y-coordinates are identical to C' so that
the commutative diagram can be completed.
(4) The right star operation looks like:

Here we should have a < y < b < c. After the partial rotation we get a valid
right star operation

w:...a...bcy...ww :--~a-~-byC"'

and a valid channel C' = ... a,y,¢,... C w* (i.e. replacing b with y in C) so
that the commutative diagram can be completed.
(5) The right star operation looks like:

w:-..yab...c...ww*:...yba...c....

Here we should have a < y < b < c¢. However, it is impossible since y and its
translates can be inserted to C(1) to yield a longer stream in .

Case 3. Suppose that #([p — 1,p + 1] N X) = 3. However, this is impossible since
it means that w(p — 1) < w(p) < w(p + 1) and the right star operation cannot be
applied.

We exhausted all the possibilities and this finishes the proof of the Diamond
Lemma.

6. PROOF OF BLASIAK’S CONJECTURE

6.1. SAME LEFT CELL IMPLIES SAME £). We are ready to prove half of Theorem 4.5,
ie. {w € ¢y | sgng(w) = Q} is a union of left cells. To this end the following lemma
is essential.

LEMMA 6.1. For v,w € Sy, let us write v(i,7) = in +v(j) and w(i,j) = in + w(j)
where i,j € Z. For X C [1,n], suppose that
(a) the relative orders of {v(i,)}icio,n—1],0ex and {w(i,x)}icio,n—1],0ex are the
same, i.e. for any i,i’ € [0,n —1],7,7 € X we have v(i,j) < v(i,j") if and
only if w(i,j) < w(@,j).
() v(y) +n? <v(z) and w(y) +n? < w(z) forx € X and y € [1,n] — X, and
(c) sgng(vjn)-x) = sgng (Wit n)-x)-
Then sgng (v) = sgng (w).

Proof. First suppose that X = [1,n], so that the conditions (b) and (c) are vacuous.
In this case, the statement directly follows from the definition of the sign insertion
algorithm. More precisely, first note that the entries which appear in one of B3; or
v; (resp. w;) in the sign insertion algorithm are contained in {v (i, j)}ico,n—1],je[1,n]
(resp. {w(i,J)}icjo,n—1].je[1,n]) SiNCE an entry cannot be bumped more than n times
during the process. Thus, one can show by induction on the steps of sign insertion
that indeed £; are the same for v and w, using the assumption that the relative orders
of {v(i, ) }iefo,n—1].je(1,n) and {w(i, j)}ico,n—1),je[1,n are the same.

In general, condition (b) implies that v(i,y) < v(i',z) and w(i,y) < w(i’,x) for
any 4,7 € [0,n — 1], € X, and y € [1,n] — X. In other words, v(¢/,x) and w(i’, x)
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for i/ € [0,n — 1] and = € X behave as if they are very large compared to v(i,y) and
w(i,y) for i € [0,n — 1] and y € [1,n] — X. Since condition (c) gives the equality of
two Q’s when the sign insertion algorithm is applied to the “smaller part” of v and
w, respectively, similarly to above one can use induction on the steps of sign insertion
to conclude the claim. g

Let us prove that sgng (v) = sgng (w) when v and w are in the same left cell indexed
by @ € RSYT()A). Let m be the multiplicity of A\; in A and let €, = (Cy,...,Cp)
be a sequence in Definition 5.5. Let X; = {z € [1,n] | (z,w(x)) € C;}. If we let
X; = {a1,...,ar} where a3 < --- < aj then by definition of the channel we have
w(ay) < -+ < w(ag) < w(ai) + n. Moreover, since proper PR/IPR do not affect
sghg (w) and the left cell of w, by applying them repeatedly we may assume that
0 € p1 € -+ < pm, which results in w(y) < w(r1) € -+ K w(zy) for any
yeln — L, Xi, 21 € X1, .., T € X

Let us recall the description of AMBC in terms of asymptotic realization, i.e. [6,
Section 7]. We observe the following statement.

LEMMA 6.2. For w € S, and X C [1,n], suppose that {(x,w(x)) | x € X + nZ} is
a channel of w. Also assume that w(y) < w(z) for any x € X and y € [1,n] — X.
Then ®(w) = (P,Q, p) for some P and 7 if and only if Q1 = X (as sets) and
D(wly - x) = (P, @2, 7") for some P" and 7"

Proof. Here we prove the only if part, but its converse is proved similarly. Note that
Q@ is equal to the recording tableau modulo n where the usual Robinson—Schensted
algorithm is applied to an infinite sequence (w(1),w(2),...). (This is implicit in [6,
Section 7] and shown in the proof of [10, Theorem 10.3].) The condition implies that
w(in+x) > w(y) forany i € Z, x € X, and y € [1,in+x —1]. Thus when w(in+x) is
inserted to the infinite insertion tableau it is always located at the end of the first row.
Thus it follows that the first row of @ should contain all the elements in X. However,
since #X is equal to the length of the first row of Q; because {(z,w(x)) | z € X +nZ}
is a channel, it follows that Q1 = X.

On the other hand, the bumping process of w(in+y) for i € Nand y € [1,n] — X is
almost the same as considering the partial permutation w|[1’n]_ » except that at the
end of each step it bumps some element of the form w(jn + z) for j € Nand = € X.
It means that the recording tableau of the infinite word corresponding to w|[17n]7 x is
the same as that corresponding to w after the first row is removed. Thus by taking

residues modulo n we obtain the second claim. g
In our situation, by iterating the above lemma we see that X; = @Q,41-; for
i € [1,m]. The most important part of this observation is that Xi,..., X, only

depend on Q whenever 0 < p; < --- < pm,. More precisely, if we set p such that
pi + N < piy1 for i € [1,m — 1] and p; > N for a sufficiently large N, then the set
of z-coordinates of each disjoint channel C1, ..., (), stabilizes as N grows. Moreover,
if we set X = ||, X;, then w(y) + n® < w(z) for z € X and y € [1,n] — X, and
[w(i,j) < w(i',j') for i, € [0,n — 1] and j,j' € X] if and only if either [j,j' € X}
and j < j' for some k € [1,m]] or [j € X}, and j' € X for some 1 < k < k' < m].

Now assume that both 7 and E satisfy 0 <K ;1 € - <K ppp and 0K 91 € -+ - K
®m, which is again possible. By the argument above and Lemma 6.1, in order to
prove sgng (v) = sgng (w) it suffices to show sgng (vy1,n)—x) = sgng (wp n)—x) Where
X = |_|;7;1 X; = |_|:';1 Q;. However, Lemma 6.2 implies that the partial permutations
”|[1,n}—x and wl; ,,;_x have the same @) tableau under AMBC. Therefore, the result
follows from induction on n.

Algebraic Combinatorics, Vol. 6 #1 (2023) 234



Sign insertion and Kazhdan—Lusztig cells of affine symmetric groups

6.2. SAME Q AND SAME TWO-SIDED CELL IMPLIES SAME LEFT CELL. Let us continue
with the other half of Theorem 4.5, i.e. here we prove that sgng (w) # sgng (v) if w and
v are in the same two-sided cell but in different left cells. Suppose that a partition A - n
of length I = I(\) and a tableau T' € RSYT()) is given. Let us write L; = Z;:Hl Aj
for i € [0,1] so that L,y — L; = A;. Recall that we set Ax = (Ay,,...,A,.) for a
sequence A = (Ay,..., A,) and a set X = {z1,...,25s} C [1,7] such that 21 < 23 <

-+ <z For N € Z, we consider an element wr y € S,, where
(wrn)r, = (Nn(l—4¢)+L; +1,Nn(l —4)+ L; +2,...,Nn(l —i) + L;—1) .
Usually N will be a sufficiently large natural number.

When N > n > 0, it is not hard to show that (sgng(wr N))[L,41,2,_,) 1S obtained
from (wy n )7, by applying partial rotations, i.e. there exists m; € [0,n — 1] such that
(sgng (wr N )iz, 41,0, 1) = (Pry (wr,n))1;- (This can be proved using induction on
the steps of sign insertion.) On the other hand, let C; = {(jn + =, jn + wr n(z)) |
x € T;,j € Z} be a stream of wp . Similarly, we regard sgnm(wTyN) as an affine
permutation and set C; = {(jn + =, jn + sgng (wr n)(z)) | € [Li + 1, Li1],j € Z}
which becomes a stream of sgny; (wr, ). Then it is easy to show that when 0 < k < N
we have prg, (sgny (wr,n)) = sgng (pre, (wr,n)), i-e. the partial rotation “commutes
with” sgngs. Z(This follows from a similar argument to the proof of Lemma 6.1 when
X = [1,n].) Therefore, if we set k; = nA; —m; > 0 for ¢ € [1,1] and define Wy =
(prlé}1 o-- -prlg’l)(wT’N) then it satisfies

(Sgniﬁ(wT,N))[Li+1,Li—1] = (Nn(l — Z) +n?+ Liy+1,....Nn(l—1)+ n? + Lz)
=(wr )T, + (n%,n?, ..., n?).

(Note that sgng (17, x) only depends on A and N but not 7.

In general pr’& are not proper because C;’s do not need to be channels. However,
as N > 0, using inductive argument based on Lemma 6.2, one can easily show in this
case that wr v is contained in the left cell parametrized by T, i.e. ®(wr ) = (P, T, 7)
for some P and p.

EXAMPLE 6.3. Let T = ((3,6,7,9), (4,8,10), (1,5), (2)) € RSYT(4,3,2,1). Then we
have
wr,10 = [102, 1,307,204, 103, 308, 309, 205, 310, 206].

(Here, N = 10 is sufficiently large for our purpose.) Direct calculation shows that

sgny (wr,10) = (1,103,112, 206, 214, 215, 318, 319, 320, 327).
Here m; = 5,mg = 2,m3 = 1,my = 0. Thus if we set @wr,10 = (pr}> o pri} o pry) o
pri0) (wr,10) = [193, 101, 390, 205, 202, 397, 398, 296, 399, 304] then we have

sgngs (r,10) = [101, 202,203, 304, 305, 306, 407, 408, 409, 410]

as desired. Furthermore, we have

13610 3679 /155

3 259 4 810 88

®(dr10) = | 75 "1 5 139 ||
7 2 10

i.e. wr 10 is contained in the left cell parametrized by T

We are ready to prove the other half of Theorem 4.5. For w,v € :S'Vn, suppose that
w € 'y and v € T's where S,T € RSYT(A) for some A - n but S # T. Here we
prove that sgng(w) # sgng(v). Since we already showed that the elements in the
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same left cell have the same image under sgng, it suffices to assume that w = wr n
and v = Wg, v for sufficiently large IV.

By the argument above, we have sgny(dr,n) = sgng(Ws,n), i-e. sgng(dr )
does not depend on T but only on A once N > 0 is fixed. However, the map
w > (sgng(w),sgng (w)) is injective by the argument in [3, p.2333]. It follows that
sghy (Wr,N) = sgng (Ws,n) if and only if Wy v = Wg,n if and only if T' = S. Therefore,
we have sgnq (0r n) 7 sghg (W, n) as desired.

6.3. PARTIAL ROTATIONS AND LEFT CELLS. As a by-product of our argument, we
may connect the elements in the intersection of a right cell and a left cell by (inverse)
partial rotation. To this end first we observe the following lemma.

LEMMA 6.4. For a partial permutation w and X C [1,n], suppose that wx is a channel
of w and w(y) € w(z) forx € X andy € [I,n] — X. Let X' = {n+1—x |z €
imwx N [1,n]}. If we let ®(w) = (P,Q,—) and ®(wpy n-x) = (P',Q',—), then we
have P = evac((X') ~ evac(P’)) and Q@ = (X) — Q' where evac is the affine evacuation
defined in [4].

Proof. By Lemma 6.2 we have X = ;. Moreover, if we consider R(w™!) and
X' instead then the conditions of Lemma 6.2 is still valid and X’ is equal
to the first row of evac(P) because ®(R(w™!)) = (evac(Q),evac(P),—). Since
R(w™ N pm—x = R((wp,n—x)~"), it follows that evac(P) = (X') ™ evac(P’), i.e.
P =evac((X') " evac(P’)) as desired. O

The main statement of this section is as follows.

THEOREM 6.5. Suppose that P,Q € RSYT(A) and w,w € ('p)~' NTg. Then there
exists a sequence w = wo, w1, . .., wx = W, which all lie in (Cp)~ NTq, such that for
i € [1,k] either w; = prg, (w;—1) or w; = prgil_l(wi_l) where S;_1 1s a stream (not
necessarily a channel) of w;_1.

Proof. Let ®(w) = (P,Q,7p) and ®(@) = (P,Q,P) for some p = (p1,p2,-..) and
@ = (¢1,%2, - -.). By applying the proper partial rotations to the northeast channels
of w and @, respectively, we may assume that p1,p; > 0. Then by Lemma 6.2, we
see that wg, and W, are channels of w and @, respectively. Moreover, Lemma 6.4
implies that imwg, = imwg, = {n+1— 2z | x € evac(P)1} + nZ. Therefore, by
applying proper partial rotation we may assume that wg, = wg, while w(y) < w(x)
and w(y) < w(x) for x € X and y € [1,n] — X. Now again by Lemma 6.4, it suffices
to show that wyy - x and W[y, x are connected by a similar sequence described in
the statement. Thus the claim follows from induction on the length of P and Q. [

7. SIGN INSERTION AND LASCOUX—SCHUTZENBERGER STANDARDIZATION

Let us set To = {T € RSYT(n) | sgng(w) = Q for some w € I'r}. Then Theorem
4.5 implies that T NRSYT()) is a singleton if nonempty. Our goal in this section is
to provide a relation between elements in T, necessarily in different shapes.

7.1. TABLEAUX, CRYSTAL OPERATORS, AND ROBINSON—SCHENSTED ALGORITHM.
For a }= n and a row-standard Young tabloid T € RSYT () we consider its associated
two-row array A(T) whose first row records (length of ) + 1 — (row number) and
whose second row is rw(T'). For example, if T = ((2), 2, (3,5,6), (1,4)) then A(T) =

1122214
<1 43562
(see [17, Chapter 7] for more detail) to A(T). Let us denote this map by RSK :
RSYT(a) — ]y, SYT(X) x SSYT(A, a*V); it sends T — (RSKp(T),RSKq(T)).
This is indeed a bijection.

). Then we may apply the usual Robinson—Schensted—Knuth algorithm

Algebraic Combinatorics, Vol. 6 #1 (2023) 236



Sign insertion and Kazhdan—Lusztig cells of affine symmetric groups

Let Soo be the set of permutations of Z~ of finite support. (In other words, S, =
Un>1 Sp.) Let s; € So be the transposition swapping ¢ and 7 + 1. For a composition
a = n, we may regard it as an infinite sequence all of whose entries but finite are zero,
say @ = (a1, Qa,...). Then s;-a = (a1, 2, ..., @1, @41, Q4 Qiya, . . .) is well-defined
and there exists a bijection s; : SSYT(n,«) — SSYT(n,s; - a) such that rw(7T) —
rw(s;(T)) is a crystal reflection operator defined by Lascoux and Schiitzenberger [12]
(see also [16, 3.2]). These operations are involutions and satisfy the braid relation,
and thus these yield an action of Sec on | |,_,, SSYT(n, a).

Moreover, there exists a bijection R; : RSYT () — RSYT(s; - «), called a combi-
natorial R-matrix, which comes from an isomorphism of tensor products of one-row
Kirillov—Reshetikhin crystals. (See [15, 4.8] or [4, Definition 3.11].) These operations
are also involutions and satisfy the braid relation, and thus these yield an action of Sy,
on| ], , RSYT(«), denoted by Ry for o € Soo. Then by [15, Proposition 5.1] (see also
[4, Proposition 3.21] and the footnote thereafter), we have RSKp(R;(T")) = RSKp(T)
and RSKq (Ri(T)) = si(1)—i RSKq(T). Therefore, if o € Sy then RSKp(R,(T)) =
RSKp(T') and RSKg(R,(T')) = (woowy) RSK(T') where wy is the longest element
of Sl(T)-

7.2. LASCOUX—SCHUTZENBERGER STANDARDIZATION. We recall the standardization
map of Lascoux and Schiitzenberger. Here we mainly follow the argument and nota-
tions from [16]. Suppose that we are given two compositions «, 8 |= n whose rearrange-
ments are partitions o™, 81 F n, respectively. Assume that o™ > 87 with respect to
dominance order. Then there exists an injective map 62 : SSYT(n,a) — SSYT(n, 3)
defined as follows.
e If ot = 8T then choose any permutation o € S, so that o -« = 8 and let
95 =o0.
e If B =q;fori>3and 1 +1=a; > Py =ay+1, then 9@ acts on a tableau
by changing the rightmost letter 1 to 2 (which is always possible).
e In general, there exists a sequence a = «q,aq,...,ar = 8 where each a; —
i1 is either in the first or the second case. Then we define 85 = 63+ o---o
OgL.
Then by [11] this map is well-defined (i.e. it does not depend on the choice of a =
ap, a1, ..., = [ on the last part) and also satisfies 67 o 08 = 07.

For a = n, note that SSYT(n, «) is endowed with a graded poset structure by
cyclage where the grading is given by cocharge. By [12] and [11], the map 62 :
SSYT(n,a) — SSYT(n,B) is indeed a grade-preserving poset embedding (see also
[16, Theorem 44, 45]).

7.3. INVESTIGATION OF Y. The main result of this section is the following theorem.
THEOREM 7.1. Suppose that Tq = {T € RSYT(n) | sgng (w) = Q for some w € I'r}
is nonempty. Then,
o RSKp(Tq) consists of a single element.
« If S,;T € Tq and sh(S) > sh(T) then 635 (RSK(S)) = RSKq(T).
Moreover, if T € Tq and sh(T') > X for some partition A & n then
Qg\gz;)rev(RSKQ(T)) € RSKq(Yq). In other words, RSKgo(Tgq) is “stable

under 0.
As a corollary we obtain the following.
COROLLARY 7.2. For each n € Zsq, {sgng(w) | w € S, } is canonically bijective with
RSYT(1").
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Proof. If we define RSYT(1™) — {sgng(w) | w € :S’vn} : T+ sgng (vr) where v is any
element in 'y, then this map is well-defined and injective by Theorem 4.5. We claim
that this is also surjective. Indeed, suppose that T # @and T € TQ Then Theorem

7.1 implies that RSKp(Yq) = {RSKp(T)} and RSKq(Ta) 3 601 ... (RSK(T)).

Now if we let S € RSYT(1™) be the preimage of (RSKp(T),GSh(T) «(RSKq(T)))
under RSK then we see that T 3 S as desired. d

ExXAMPLE 7.3. When n = 4, the sets Tq are as follows.

T2z = (((1,2,3,4)),((2,3,4),(1)),((3,4),(1,2)), ((3,4), (2), (1)), (4), (3), (2), (1))
T2z = (((1,2,3),(4)),((2,3), (1,4)),((2,3), (4), (1)), ((3), (4), (2), (1)))
T2, = (((1,2,4),(3)),((2,4), (1,3)),((2,4), (3), (1)), ((2), (4), (3), (1)))
Ts4,5 = (((1,3,4),(2), ((1,4),(2,3)), ((1,4), (3), (2)), (1), (4), (3), (2)))
Tasse = (((1,3),(2,4)),((1,3),(4),(2)), (3), (1), (4),(2)))

T2s6 = (((1,2),(3,4)),((1,2),(4),(3)), ((2), (1), (4), (3)))

T = (((1,4),(2),3)),((1),(2),(4), (3)))

Tassmn = (((1,3),(2),(4)), (1), (3), (4),(2)))

Tazsm = (((1,2),(3),(4)), ((2),(3), (4),(1)))

Ta2se = (((2,3),(1),(4)),((3),(2),(4),(1)))

T246 = (((2,4),(1),(3)), ((4),(2),(3),(1)))

T340 = (((3,4),(1),(2), (4),(1),(3),(2)))

Ta,79 = (((4),(1),(2),(3))) Tas79 = (3),(1),(2),(4))
Tz = (((2),(1),(3),(4)) Tazsm = (((3),(2),(1),(4))
T2a7 = (((4),(2),(1),(3))) T4 = (((4),(3),(1),(2)
Ts65 = (((3),(4),(1),(2)) T265 = (((2),(4),(1),3)))
(1,55 = (((1),(4),(2),(3))) T(1,5810 = (((1),(2),(3), (4)))
Tasss = (((1),3),(2), (4))) Ta2s8 = (((2),3), (1), (4)))

If we apply the RSK to the elements in each set, then we get the following.
RSKp(Y(1,2,34) ={((1,2,3,4))} RSKP(Y(1,2,3,5) = {((1,2,3),(4))}
RSKp(Y(124.5) ={((1,2,4),(3)} RSKpP(Tas5.4.5) = {((1,3,4),(2))}
RSKp(Y(1,356) = {((1,3),(2,4)} RSKP(Ta,25.6) = {((1,2),(3,4))}
RSKpP(T,,5m) = {((1,4),(2), (3))} RSKp(Y(1,3,5m) = {((1,3),(2),(4))}
RSKP(Ta,2,5m) = {((1,2),(3), (4))} RSKp(Y(1,2,3,6) = {((1,2,3),(4)}
RSKP(T(,2,46) = {((1,2,4),(3))} RSKp(T(1,3,4,6) = {((1,3,4),(2))}
RSKp(Y(1.4.7.9) = {((1,4),(2), (3))} RSKp(Y(1,3.7.9) = {((1,3),(2), (4))}
RSKp(Y(1,2,7,9) ={((1,2),(3),(4))} RSKp(Y(1,2,3,m) = {((1,2,3),(4)}
RSKpP(YT(,2,4m) = {((1,2,4),(3))} RSKp(Y1s.4,m) ={((1,3,4),(2)}
RSKp(Y(15.6.5) = {((1,3),(2,4)} RSKp(Y(1.2.6.5) = {((1,2), (3,4))}
RSKp(Y(1,45,8) = {((1,4),(2),(3))} RSKP(T(1,5,810) = {((1),(2),(3), (4)}
RSKP(Y(1,5,58) = {((1,3),(2), (4)} RSKp (Y1 2:5,8) ={((1,2),(3),(4)}
RSKq(Y(1,2,34) ={((1,1,1,1)),((1,2,2,2)),((1,1,2,2)),((1,2,3,3)),((1,2,3,4))}
RSKQ(Y(1,2,3,5) = {((1,2,2),(2)), ((1,1,2),(2)), ((1,2,3), (3)), ((1,2,3), (4))}
RSKQ(Y(1,2,4,5) = {((1,2,2),(2)),((1,1,2),(2)), ((1,2,3),(3)), ((1,2,3), (4))}
RSKq(Y(1,3,4,5) = {((1,2,2),(2)),((1,1,2),(2)), ((1,2,3),(3)), ((1,2,3), (4))}
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RSKq(T(1,356) = {((1,1),(2,2)),((1,2),(3,3)), ((1,2), (3,4))}

RSKqQ(T(1,2,56) = {((1,1),(2,2)),((1,2),(3,3)), ((1,2), (3,4))}

RSKq(Yas7) = {((1,3),(2),3)), ((1,2), (3), (4))}

RSKQ(T(1,3.57) = {((1,3),(2),(3)), ((1,2), (3), (4))}

RSKqQ(T(1,2,5,7) = {((1,3),(2), (3)), ((1,2), (3), (4))}

RSKq (Y236 = {((1,3,3),(2)), ((1,2,4),(3))}

RSKQ(T(1,2.46) = {((1,3,3),(2)), (1,2,4), (3))}

RSKoQ(T(1,34,6) = {((1,3,3),(2)), ((1,2,4), (3))}

RSKq(Y(1.4,7.9) = {((1,4),(2), (3))} RSKQ(T@3,79) = {((1,4),(2),(3))}
RSKQ(Tu 2 7,9)) ={((1,4),(2),(3))} RSKQ(T(I 2,3 7)) ={((1,3,4),(2)}
RSKQ(Y(1,2,4,7) = {((1,3,4),(2))} RSKo(T(1,3.4,m) = {((1,3,4),(2))}
RSKQ (T 36.8) = {((1,3),(2,4)} RSKQ (T 2.6.8) = {((1,3),(2,4)}
RSKQ(T<145,8)) ={((1,3),(2), (4)} RSKQ(T(l 5,8, 10)) ((1),(2),(3), (4)}
RSKQ(T(l 3,5 8)) {((1, 3),(2), (4))} RSKQ(TU 2,5 8) = { (1, 3)» (2), (4))}

Here RSKp(Yq) is a singleton and the elements in each RSKq (T
by the standardization map 6. For example, for RSKq (Y (1,2,3,6)) We have

eg’;‘j’;)” 9815“
l l B

For the proof of Theorem 7.1, we generalize the definition of wr y to the case when
T is a row-standard Young tabloid that is not necessarily a tableau. The formula is
. I o _ _ . -
identical; for a composition « = sh(T') of length [ = I(«) let us erteii =it
for i € [0,1] so that L,_y — L; = c;. Then for N € Z we set wp ny € S, so that

145

(wrN)r, = (Nn(l—4)+ Ly + L, Nn(l—4¢)+ L; +2,... ,Nn(l —4) + L;_1) .
We claim the following.

LEMMA 7.4. Suppose that S and T are row-standard Young tabloids such that S =
R.(T) for some combinatorial R-matriz Ry. If N > 0 then ws n and wp, N are in the
same left cell.

Proof. We first claim that wg x and wr, n are contained in the same two-sided cell
parametrized by the rearrangement of sh(S). By the construction of wg n, for i,j €
[1,n] we have ¢ < j in the Shi poset of wg n if and only if j is in the upper row of
S than . In this case, it is easy to show that the corresponding Greene—Kleitman
partition is given by the rearrangement of sh(S) as desired. Since the same result
holds for wr n, we see that wg y and wr y are in the same two-sided cell.

Thus, by Theorem 4.5 it suffices to show that sgng (wg n) = sgng(wr n). Since
S; =1T; for 1 < ¢ < t, from Lemma 6.1 it suffices to assume that ¢ = 1. Moreover,
if we again apply Lemma 6.1 to R(ws n) and R(wr,n), respectively, then indeed it
suffices to assume that S and T are two-row tabloids.

Without loss of generality we may assume that S; is longer than S;. Then wg y €
I's as before. It is also clear that R(wr n) € T'pe where T is the tableau satisfying
It={n+l—-z|zeDhhland Ty ={n+1—z |z e Ii} as sets. By [4, Theorem
3.18], it follows that wy n is contained in the cell parametrized by Ri(T) = S (i.e.
the image of T° under the affine evacuation) as desired. O

The lemma below is another ingredient for the proof of Theorem 7.1.
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LEMMA 7.5. Let S = (S1,...,S5;) € RSYT(«) where a = (o, ..., 0q) is a composition
of n of length 1, S; = (z1,...,2q,), and ay_1 = 0. Let T be a row-standard Young
tabloid where T; = S; fori & {l — 1,1}, Ti—1 = (z4,), and T} = (z1,...,2q,-1). If
N > 0 then we have sgng (wg n) = sgng (wr,N).

Proof. We set U = (Uy,...,U;) to be the row-standard Young tabloid such that
U =T, = 8; fori ¢ {l -1}, U_1 = (z2,...,24,), and U; = (x1). Note that
R;_1(U) = T which means that wy x and wy,y have an identical image under sgng
by Theorem 7.4. Direct calculation shows that

ay ay
wy N = ws N + ZNnE’i =wsN + ZNnE’i — Nn'ey
=2 1=1
where €; is the standard vector with 1 on the i-th coordinate.

It follows from Lemma 6.1 that sgng(ws,n) = sgng(ws,n + Y oiny Nn'€;) if we
set X = [1,n] — S;. Now the element wy,n is obtained from wg n + Y i+, Nn€; by
replacing 1 + Nn on the first coordinate with 1. However, as 1 + Nn was already
the smallest element of wg n + Z;”:l Nn'€;, lowering this entry does not affect the
sign insertion process as it is inserted at the first step and not bumped by any other
elements, which implies that sgng (wy,n) = sgng (ws, v+ iy Nn'€;). Thus the result
follows. O

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. Suppose that T' € Tq NRSYT(A) for some A F n and assume
that (P,Q) = (RSKp(T'),RSKq(T)). We regard A as a composition of length n (with

n — l(\) zeroes at the end) and let Q' = Gf\lm)(Q). Then there exists a path A =

g, a1, ...,ap = (1) where each «; is a composition of n and «; — ;41 is either

rearrangement of parts or of the form (0,...,0,a,0,...) — (0,...,0,1,a—1,...). (Here

we allow rearrangement which permutes nonzero parts Wlth zero parts but this does
1y ol ey grev

(rkev of f‘eV; 0+ 0l fe 0030 )(Q)-

not cause any problem.) Then we may write Q' = (6,

Let us write T = Tp, T,..., Ty, where (RSKp(T3), RSKq (1)) = (P, (6t 0+

[e3%

Ozz}v o Hi\ylwv)(Q)) We claim that Ty, € Tq by successively showing sgng (wr, n) = Q
for N > 0. The i = 0 case is trivial. Now if a;41 = 0 - o; for some o € S,,, then
as we observed above we have T;11 = wyowg - T; where wy is the longest element
of S,,, thus the claim follows from Lemma 7.4. In the other case, first note that the
shapes of T;11 and T; are (...,1,a—1,0,...,0) and (...,0,a,0,...,0) for some a > 0,
respectively. Now direct calculation shows that 75,1 is obtained from T; by the similar
process to Lemma 7.5, i.e. changing T; = (..., 9, (21,...,2%),9,...,9) to Tj41 =
(.o (@), (21, -y 2R—-1), D, . .., &). Thus, by Lemma 7.5 the claim also follows.

As a result, for any T € Tgq such that (P Q) = (RSKp(T),RSKq(T)) there

exists T/ € Tq NRSYT(1") such that (P, esh(T)“eV (Q)) = (RSKp(T"),RSKq(T)).

Now suppose that S € Tq and set S € Tq N RSYT(1") similarly. As Tq N
RSYT(1™) is a singleton by Theorem 4.5, we should have S = T’ which implies

that RSKp(T) = RSKp(T') = RSKp(S') = RSKp(S) and th(T v (RSKq(T)) =
RSKq(T") = RSKq(S') = Hsh(s rov (RSK(S)). Now if sh(S) > sh(T') with respect
to dominance order then (G(i(%)rev o QZEg)rev)(RSKQ(S)) Gii(;)rev (RSKq(9)) =
05}11’:%),.@ (RSKq(T)) which implies that GSh(T,ev (RSKq(S)) = RSKq(T) as HSh(T,eV
is an injection (it is an embedding of a poset)

Finally, suppose we are given T' € Tq such that (P,Q) = (RSKp(T),RSKg(T))
and sh(T) > A for some partition A F n. Let S € RSYT(n,A"®) be such that

Algebraic Combinatorics, Vol. 6 #1 (2023) 240



Sign insertion and Kazhdan—Lusztig cells of affine symmetric groups

(RSKp(S),RSKqg(S)) = (P, 05)\£EVT)rev(Q)> and suppose that S € Ygq for some Q.
We set T" € To NRSYT(1") and S € T3 NRSYT(1") as above. Then RSKp(T") =
RSKp(T) = RSKp(S) = RSKp(S') and RSKq(T") = 65 . ... (RSKq(T)) = (¢ o
02y J(RSKg(T)) = 6510 (RSKq(S)) = RSKq(S). Since the RSK algorithm is
injective it follows that S’ = T" which implies that Q = . Thus we have S € Tq. It
suffices for the proof. O
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