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Abstract
We use the affine Robinson–Schensted correspondence to describe the structure of
bidirected edges in the Kazhdan–Lusztig cells in affine type A. Equivalently, we give
a comprehensive description of the Knuth equivalence classes of affine permutations.
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1 Introduction

1.1 Cells in Kazhdan–Lusztig theory

In a groundbreaking paper [14], Kazhdan and Lusztig laid a basis for a new approach
to representation theory of Hecke algebras. Since then, this approach has been signif-
icantly developed, and is called Kazhdan–Lusztig theory. (For a nice introduction to
Kazhdan–Lusztig theory, see [13, Ch. 7].) Of particular importance in this theory are
the objects called cells. Briefly, their definition is as follows. Each Hecke algebra is
associated with a Coxeter group W . Kazhdan and Lusztig define a pre-order ≤L on
elements of W . Some pairs v,w of elements of W satisfy both v ≤L w and w ≤L v,
in which case we say that they are left-equivalent, denoted v ∼L w. Similarly one
can define right equivalence ∼R . The respective equivalence classes are called the left
cells and the right cells.

Another way to describe cells is via the Kazhdan–Lusztig W -graph; it is a certain
directed graph whose vertices are the elements of W . The graph has the property
that v ≤L w precisely when there is a directed path from v to w. Thus the cells are
the strongly connected components of the W -graph. Some edges of the W -graph are
bidirected, i.e., between a pair of vertices v andw there is an edge v → w and an edge
w → v. In this case, of course, v and w belong to the same Kazhdan–Lusztig cell.

1.2 Type A

In (finite) type A, when W is the symmetric group, the Kazhdan–Lusztig cell structure
corresponds to something very familiar to combinatorialists, the Robinson–Schensted
correspondence. This is a bijective correspondence between elements of the symmetric
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group and pairs (P, Q) of standard Young tableaux of the same shape. It is well known
[1, 6, 11, 14] that

• two permutations lie in the same left cell if and only if they have the same recording
tableau Q, and

• two permutations lie in the same right cell if and only if they have the same insertion
tableau P .

The bidirected edges of the Kazhdan–Lusztig graph in this case are called Knuth
moves, and one can go between any two permutations with the same insertion tableau
(and hence between any two choices of the recording tableau Q) via a series of Knuth
moves.

1.3 Affine type A

In affine type A, when W is an affine symmetric group, Chmutov, Pylyavskyy, and
Yudovina [8] described, via a combinatorial algorithm called the Affine Matrix Ball
Construction (AMBC), a bijection W → �dom, where �dom is the set of triples
(P, Q, ρ) such that P and Q are tabloids of the same shape and ρ is an integer vector
(called a dominant weight) satisfying certain inequalities that depend on P and Q.
Relying on the work of Shi on Kazhdan–Lusztig cells in affine type A, they show that
this bijection affords a description of cells analogous to the non-affine case: fixing the
tabloid Q gives all affine permutations in a left cell while fixing the tabloid P gives all
affine permutations in a right cell. The bidirected edges in this case (what Shi called
star operations [19]) are natural analogues of Knuth moves—see Sect. 3.3.1 for the
definition.

1.4 Summary of results

The main accomplishment of this paper is to precisely describe the Knuth equivalence
classes of affine permutations, i.e., the equivalence classes of the relation generated by
Knuth moves. In the language of [22], we describe the Kazhdan–Lusztig molecules.
Unlike the case of finite type A, most Kazhdan–Lusztig cells are composed of many
molecules. Thismultiplicity comes in two varieties. First, while Knuthmoves preserve
the P tabloid, not all Q tabloids can be reached from a given one using Knuth moves;
the description of which ones can be reached, given in Sect. 8, is in terms of a variant
of the charge statistic. Second, even among affine permutations having the same P
and Q tabloids, one cannot reach every dominant weight ρ from every other using
Knuth moves; the different vectors ρ that can be reached are the subject of Sect. 7,
and they depend on the shape of the tabloids.

Along the way, we improve our understanding of some combinatorial aspects of
AMBC analogous to the combinatorics of the Robinson–Schensted correspondence.
We show how to read off the left and right descent sets of an affine permutation from
its image under AMBC (Proposition 3.6), as well as how to read off its sign (Theorem
4.4). We describe precisely how taking the inverse of or doing a Knuth move on an
affine permutation affects its image under AMBC (Proposition 3.1 and Theorem 3.11).
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In Sect. 6, we briefly discuss how the symmetry of the Dynkin diagram appears in our
setting. Finally, we give a better description, in terms of charge, for the inequalities
satisfied by an integer vector for it to be dominant (Theorem 5.10). The appearance
of charge suggests a connection to crystal graphs, which we describe in Sect. 9.

Section 2 contains the background information, including a summary of the main
results of [8], essential to understanding the rest of the paper. Sections 3 and 4 improve
our understanding of the various combinatorial aspects of AMBC. Sections 5, 7 and
8 describe the Knuth equivalence classes of permutations in terms of AMBC; these
sections rely heavily on the material in Sect. 3 but may be read independently of
Sect. 4.

There is a program available to compute AMBC [7]; the reader may want to use it
to explore additional examples.

2 Background

2.1 Notational preliminaries

For the duration of this paper, n will be a fixed positive integer. Let [n] := {1, . . . , n}.
For each i ∈ Z, denote by i the residue class i + nZ, and let [n] := {1, . . . , n}.

The symmetric group Sn is the Weyl group of type An−1. We may variously think
of its elements as bijections [n] → [n], as words of length n containing each element
of [n] exactly once, or as n × n permutation matrices. The extended affine symmetric
group ˜Sn is the extended affine Weyl group of type ˜An−1; it consists of bijections
w : Z → Z such that

w(i + n) = w(i) + n for all i .

The elements of ˜Sn are called extended affine permutations. We typically abbreviate
this term to permutations, and we distinguish the elements of Sn by the name finite
permutations. Denote by˜S0

n the affine symmetric group, i.e., the affine Weyl group of
type ˜An−1; it consists of permutations w ∈ ˜Sn such that

n
∑

i=1

(w(i) − i) = 0.

Note that Sn naturally embeds into˜S0
n � ˜Sn : a finite permutation w can be sent to the

unique affine permutation that takes the same values as w on [n].
A partial (extended affine) permutation is a pair (U , w) where U ⊆ Z has the

property that (x ∈ U ) ⇔ (x + n ∈ U ) and w : U → Z an injection such that
w(i +n) = w(i)+n. We suppress the explicit mention of the subset U in the notation
and just refer to the partial permutationw. Any permutation may be viewed as a partial
permutation with U = Z.
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Fig. 1 A proper numbering for the (extended, affine) permutation [4, 1, 6, 11, 2, 3]. The numbering is
semi-periodic with period 3

A permutation is determined by its values on 1, . . . , n. The window notation for a
permutation w is [w(1), . . . , w(n)]. A partial permutation w is also determined by its
values on 1, . . . , n, except it may not be defined on some of them.

We often think of permutations in terms of pictures such as the one in Fig. 1,
extending the notion of a permutation matrix to the affine case. More precisely, on the
plane we draw an infinite matrix; the rows are labeled by Z, increasing downward,
and the columns are labeled by Z, increasing to the right (usual matrix coordinates).
The positions in this matrix are called cells; there will never be confusion with cells
of the Kazhdan–Lusztig variety. To distinguish the 0-th row, figures have a solid red
line between the 0-th and 1-st rows, and similarly for columns. We also put dashed
red lines every n rows and columns. If w(i) = j then we place a ball in the i-th row
and j-th column. For example, the cell (1, 4) in Fig. 1 contains a ball. The balls of a
partial permutation will also be referred to by their matrix coordinates. Thus, formally,
both balls and cells are just ordered pairs of integers, and we use the word “ball” to
indicate that the relevant partial permutation takes a certain value on a certain input.
For a partial permutation w, we denote by Bw the collection of balls of w (a subset of
Z × Z).

For an integer k and a ball b = (i, j), the ball b′ = b + k(n, n) = (i + kn, j + kn)

is the k(n, n)-translate of b. Two balls b and b′ are translates if for some k one is
a k(n, n)-translate of the other. The set of all translates of a ball or set of balls is a
translation class.

We often assign numbers to balls of permutations, as well as to other cells ofZ×Z.
For a partial permutationw, a numbering ofw is a function d : Bw → Z. A numbering
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Fig. 2 Several tabloids of shape 〈3, 2, 1〉. The first two tabloids are equal, since they differ only by permuting
elements within rows

d of w is semi-periodic with period m if we have d(b + (n, n)) = d(b) + m for every
b ∈ Bw. When referring to a numbering in pictures, we write the number d(b) inside
the ball b as in Fig. 1, where we show a semi-periodic numbering of period 3.

We frequently use compass directions (north, east, etc.) to describe relative positions
of balls or cells, with north being toward the top of the page (smaller row numbers) and
east being toward the right of the page (larger column numbers). Adding the modifier
“directly” constrains one of the two coordinates: a cell (i, j) is directly south of (i ′, j ′)
if i � i ′ and j = j ′. By a composite direction (e.g., northeast) we mean north and
east. The relations are weak by default: a cell (i, j) is southwest of (i ′, j ′) if i � i ′
and j � j ′. Directions define partial orders on Z × Z: we say (i, j) �SW (i ′, j ′) if
(i, j) is southwest of (i ′, j ′).

A partition λ is a finite, weakly decreasing sequence of positive integers. We
typically treat a partition λ = 〈λ1, λ2, . . .〉 as equivalent to its Young diagram, a
left-justified collection of rows of boxes with top row having λ1 boxes, the row below
it having λ2 boxes, and so on. The number of rows of λ is denoted �(λ).

Given a partition λ having n boxes, a tabloid of shape λ is an equivalence class
of fillings of the Young diagram of λ with [n], where two fillings are considered
equivalent when one is obtained from the other by permuting elements within rows.1

Some examples are shown of Fig. 2; we draw representatives of the equivalence classes
and keep in mind that entries within rows can be permuted. Throughout this paper, all
tabloids will be filled with distinct residue classes.

Several special tabloids will be important in this paper. The first is the reverse row
superstandard tabloid of shape λ = 〈λ1, . . . , λk〉 with start at i : this is the tabloid
whose last row has entries

i, i + 1, . . . , i + λk − 1,

whose next-to-last row has entries

i + λk, i + λk + 1, . . . , i + λk + λk−1 − 1,

and so on. Thus the third and fourth tabloids in Fig. 2 are the reverse row superstandard
tabloids of shape 〈3, 2, 1〉 with starts at 1 and 3, respectively. Similarly, one can define
the column superstandard tabloid of shape λ with start at i as the tabloid that has i
in the first row, i + 1 in the second row, …, i + �(λ) − 1 in the last row, i + �(λ) in
the first row, and so on. The last two tabloids in the figure are column superstandard
tabloids of shape 〈3, 2, 1〉 with starts at 1 and 3, respectively.

1 Classically, one considers fillings with integers, but nothing is lost by this slightly nonstandard choice.
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If T is a tabloid then we denote by Ti the i-th row of T , viewed as a one-row tabloid
or, equivalently, as a subset of [n]. Similarly, we denote by Ti,i+1 the tabloid consisting
of the i-th and (i + 1)-st rows of T , and by T[i, j] the tabloid consisting of all rows of
T with indices between i and j , inclusive.

2.2 An analogue of the Robinson–Schensted correspondence

The paper [8] describes a bijection

� : ˜Sn → �dom,

where �dom is the set of triples (P, Q, ρ) such that P and Q are tabloids of the same
shape of size n and ρ is an integer vector satisfying certain inequalities depending on
P and Q. In this section, we give the relevant definitions and outline the construction
of the bijection via an algorithm called the Affine Matrix-Ball Construction (AMBC).
A detailed summary of these results occupies the first part of [8]; while the present
work is not completely independent of that part of [8], we hope that the short version
provided here is sufficient to understand most of the new results in the present paper.

Define � to be the collection of triples (P, Q, ρ) where P and Q are tabloids of
the same shape λ of size n and ρ ∈ Z

�(λ). Suppose (P, Q, ρ) ∈ � and P and Q
have shape λ. For i such that λi−1 = λi , there are associated integers ri (P, Q) called
offset constants (which are defined precisely in Definition 5.9). If (P, Q, ρ) satisfies
the conditions ρi � ρi−1 + ri (P, Q) then we say that ρ is dominant with respect to
(P, Q); the pair (P, Q) is usually clear from the context. We define

�dom = {(P, Q, ρ) ∈ � : ρ is dominant}.

A second algorithm [8, Sect. 4], referred to as the backward algorithm, gives a
surjection � : � → ˜Sn . By [8, Thms. 5.11 & 6.3], the restriction of � to �dom is
equal to �−1.

We now briefly describe AMBC, which is closely related to Viennot’s geometric
construction [23] for the Robinson–Schensted correspondence, called the Matrix-Ball
Construction by Fulton [10]. The first step is to produce a special numbering of the
balls of the permutation, called a channel numbering, as in Fig. 1. This numbering
partitions the balls into equivalence classes having the same number; for each class,
we form the zig-zag having those balls as inner corners, as in Figs. 5 and 6. We get a
new partial permutation from the outer corners of the zig-zags, and we iterate. At each
step of the iteration, we record basic data about the back corner-posts of the zig-zags
(illustrated by ∗’s in Figs. 5 and 6): their column-indices are recorded in a row of
P , the row-indices in a row of Q, and their altitude (a shift parameter distinguishing
among the collections occupying the same collection of rows and columns) in an entry
of ρ. The remainder of this section is concerned with providing the details behind this
summary.
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2.2.1 Channel numberings

Definition 2.1 Suppose we have a collection C of cells that is invariant under transla-
tion by (n, n) and forms a chain in the partial ordering �SE . Then the density of C is
the number of distinct translation classes in C .

In Fig. 1, the collection consisting of balls (2, 1), (5, 2), (6, 3), and their translates
has density 3.

Definition 2.2 Suppose w is a partial permutation. Then C ⊆ Bw is a channel if all of
the following hold:

• C is invariant under translation by (n, n),
• C forms a chain in the partial ordering �SE , and
• the density of C is maximal among all subsets of Bw satisfying the first two
conditions.

In Fig. 1, the collection consisting of balls (2, 1), (5, 2), (6, 3), and their translates is
a channel. On the other hand, balls (1, 4) and (3, 6) are not part of any channel, since
no translation-invariant chain of the ordering�SE with density 3 passes through both.

A curious fact about channels is that the collection of southwest-most (or northeast-
most) balls of a union of two channels is again a channel (see [8, Prop. 3.13] and the
comment following it). Thus there is always a southwest-most channel (in Fig. 1, it is
the channel formed by taking the balls (2, 1), (5, 2), (6, 3) and their translates) and a
northeast-most channel. In AMBC, we need to pick a distinguished channel at each
step; we pick the southwest one.

To perform a step of AMBC requires a special kind of numbering of a permutation,
which we define now.

Definition 2.3 For a partial permutation w, a function d : Bw → Z is a proper
numbering if it is

• monotone: for any b, b′ ∈ Bw, if b lies strictly northwest of b′ then d(b) < d(b′),
and

• continuous: for any b′ ∈ Bw there exists b northwest of it with d(b) = d(b′) − 1.

An example of a proper numbering is given in Fig. 1.

Proposition 2.4 [8, Prop. 3.4] Given a partial permutation w, let m(w) denote the
density of the channels of w. All proper numberings of w are semi-periodic with period
m(w).

Definition 2.5 Suppose w is a partial permutation and C is a channel of w. For a
ball b ∈ Bw and k ∈ Z

�0, a path of length k from b to C is a sequence of balls
(b0, b1, . . . , bk) such that b0 = b, bk ∈ C , and bi+1 lies strictly northwest of bi for
all i .

Suppose we have a channel C of some partial permutation w. We can ignore all
other balls of w and ask for proper numberings of just C itself. It is clear that up to an
overall shift there is just one of them, with the balls numbered consecutively by all the
integers as one moves from northwest to southeast. We can use this proper numbering
of C to produce a proper numbering of all the balls of w.
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Definition 2.6 Suppose C is a channel of w and d̃ is a proper numbering of C . Define
the channel numbering dC

w : Bw → Z of w by

dC
w(b) := max

k
max

(b0,b1,...,bk )
(d̃(bk) + k),

where the second maximum is taken over all paths from b to C .

Because the number of paths is infinite, it seems a priori that d̃(bk) + k could be
unbounded and so dC

w(b) undefined; however, by [8, Prop. 3.9] this is not the case.
Once we know that dC

w(b) is finite for any ball b, it is easy to see that dC
w is, in fact, a

proper numbering.

Remark 2.7 Given a channel, there is an infinite family of channel numberings asso-
ciated with it: they differ by shifting the numbers of all balls by the same amount. In
this paper, the distinctions between these numberings never matter, and we will use
the phrase “the channel numbering” to refer to a (locally fixed, but) arbitrary choice
among them.

2.2.2 Zig-zags

The definition of AMBC involves certain collections of cells called zig-zags.

Definition 2.8 A zig-zag is a non-empty sequence (c1, c2, . . . , ck) of cells such that
both of the following hold:

• for 1 � i < k, ci+1 is adjacent to and either directly north or directly east of ci ,
and

• if k � 2, then c2 is directly east of c1 and ck is directly north of ck−1.

Given a zig-zag Z = (c1, c2, . . . , ck), we say that

• the back corner-post is the cell in the same column as c1 and the same row as ck ,
• the inner corner-posts are the cells of Z such that no cell directly north or directly
west of them is in Z , and

Fig. 3 The different corner-posts of a zig-zag
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• if k � 2, the outer corner-posts are the cells of Z such that no cell directly south
or directly east of them is in Z ; if k = 1 then there are no outer corner-posts of Z .

These definitions are illustrated in Fig. 3. Notice that the inner and outer corner-
posts are always part of the zig-zag. The back-corner post is not usually part of the
zig-zag; the only exception is a degenerate zig-zag with one cell, whose back corner-
post coincides with its inner corner-post (and which has no outer corner-post).

The zig-zags that appear in AMBC are attached to a proper numbering of a
permutation.

Definition 2.9 Given a proper numbering d of a partial permutation w, the collection
of zig-zags corresponding to d is the collection {Zi }i∈Z where Zi is the unique zig-zag
whose inner corner-posts are precisely the balls of w labeled i by d.

The number of translation classes of zig-zags is the number m(w) appearing in
Proposition 2.4.

2.2.3 Streams

The definition of AMBC involves a certain collection of cells called a stream: a set
that is invariant under translation by (n, n) and forms a chain in the partial ordering
�SE . Since streams are translation-invariant, if a stream has a cell with column k, then
it has cells in all the columns of k.

Definition 2.10 For any cell c = (c1, c2), let D(c) be the block diagonal of c,

D(c) :=
⌈c2

n

⌉

−
⌈c1

n

⌉

.

Thus, if one of the translates of c is in [n] × [n] then D(c) = 0; if a translate is in
{n + 1, n + 2, . . . , 2n} × [n] then D(c) = −1; etc.

Definition 2.11 For any translation-invariant collection X of cells, we define D(X) =
∑

x∈Y D(x), where Y is a subset of X containing one representative of each translation
class. If X is a stream, we call D(X) the altitude of X .

In [8, Sect. 3.4], a different definition was given of altitude of a stream; however,
it is an easy exercise to see that they are equivalent. The following result shows that
the set of rows, set of columns, and altitude uniquely specify a stream.

Proposition 2.12 (Essentially [8, Lem. 3.23 & Prop. 3.24]) Given two subsets A, B
of [n] of the same size and an integer r , there is a unique stream of altitude r whose
balls lie in rows indexed by A and in columns indexed by B.

This stream will be denoted str (A, B); the triple A, B, r is called its defining data.

Example 2.13 Let n = 6, A = {1, 3, 6}, and B = {2, 4, 5}. The streams st−1(A, B),
st0(A, B), and st1(A, B) are shown in Fig. 4. The stream st0(A, B) is the unique
choice with all of its cells in translations of [n] × [n]; st1(A, B) is obtained from
st0(A, B) by moving the cell in every row from its column east into the next available
column in

⋃

B.
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Fig. 4 Streams of altitude −1
(green), 0 (purple), and 1 (blue)
for A = {1, 3, 6} and
B = {2, 4, 5}

The streams that appear in AMBC come from a proper numbering of a permutation.

Definition 2.14 Suppose w is a partial permutation and d : Bw → Z is the southwest
channel numbering; let {Zi }i∈Z be the collection of zig-zags corresponding to d. For
each i , let bi be the back corner-post of Zi . Then st(w) := {bi }i∈Z is a stream.

2.2.4 The algorithm

We now define the algorithm AMBC, giving the map � : ˜Sn → �.

Definition 2.15 Suppose w is a partial permutation and d : Bw → Z is the southwest
channel numbering. Define fw(w) to be the permutation whose balls are located at the
outer corner-posts of all the zig-zags corresponding to d.

The algorithm is as follows.

• Input w ∈ ˜Sn .
• Initialize (P, Q, ρ) to (∅, ∅, ∅).
• Repeat until w is the empty partial permutation:

– Record the defining data of st(w) in the next row of P , Q, and ρ.
– Reset w to fw(w).

• Output (P, Q, ρ) ∈ �.

Example 2.16 Let n = 7 and consider the permutationw = [1, 2, 17, 5, 14, 18, 20]. In
the first step of AMBC, shown in Fig. 5,w is numbered in the SW channel numbering;
the stream consisting of the back corner-posts for the zig-zags corresponding to this
numbering has elements in rows 3, 6, and 7 and columns 1, 2, and 5, and has altitude 3.
Thus, the first row of P is 1 2 5 , the first row of Q is 3 6 7 , and the first row of ρ
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Fig. 5 First step of AMBC for w = [1, 2, 17, 5, 14, 18, 20]. The southwest channel numbering is shown
with the balls in the channel numbered in red. The balls of fw(w) are shown in green. The cells of st(w)

are marked by ∗’s

Fig. 6 Second step of AMBC for w = [1, 2, 17, 5, 14, 18, 20]

is 3. The second step is shown in Fig. 6, and produces second rows 4 6 7 , 2 4 5
and 3 for P , Q, and ρ. Finally, the third step begins with the outer corner-posts from
the second step; these form a partial permutation whose balls are exactly the translates
of (1, 10). Thus the stream for this permutation also consists of translates of the single
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Fig. 7 The blue zig-zag has balls ofw with lower value of d than the red zig-zag. The two zig-zag positions
shown on the left cannot occur: the first satisfies condition (b) of Proposition 2.17 but violates condition
(a), while the second satisfies condition (a) but violates condition (b). The two positions on the right are
valid

cell (1, 10), and so at the end of this step we set the third row of P to 3 , the third
row of Q to 1 , and the third row of ρ to 1. The resulting triple (P, Q, ρ) is

⎛

⎝

1 2 5
7 4 6
3

,
7 3 6
2 4 5
1

,

⎛

⎝

3
3
1

⎞

⎠

⎞

⎠ .

2.3 Zig-zags from a proper numbering

The following simple facts about how the zig-zags associated to a proper numbering
lie in the plane will occur repeatedly in the arguments that follow. Both halves of the
result are illustrated in Fig. 7.

Proposition 2.17 Suppose that w is a partial permutation, with balls labeled by a
proper numbering d. Divide the balls into zig-zags according to d.

(a) If b = (k, w(k)) and c = (�,w(�)) are consecutive balls in a zig-zag of w and
k < �, then there are no balls of w having larger value of d northwest of the cell
(�,w(k)).

(b) If b is the northeast (resp. southwest) ball of one zig-zag and c is the northeast
(resp. southwest) ball of another zig-zag and d(b) < d(c), then c lies strictly
south (resp. east) of b.

Proof For part (a), suppose for contradiction that there is such a ball a. By continuity
of d (possibly applied many times), there is a ball northwest of a with label d(b) =
d(c) < d(a). Since b and c are given as consecutive balls in their zig-zag, this ball
cannot be in the rectangle having b and c as vertices; however, by the monotonicity of
d it also cannot be northwest of b or of c. But every cell northwest of (�,w(k)) falls
into one of these three sets; this is a contradiction, so no such a exists, as claimed.

For part (b), suppose that c is the northeast ball in its zig-zag and d(b) < d(c).
By continuity of d, there is some ball b′ of w northwest of c such that d(b′) = d(b).
The northeast ball in this zig-zag is at least as far north as b′, hence is north of c, as
claimed. �
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3 Knuthmoves, descents, and inverses under AMBC

Themain result of this section is Theorem 3.11, which describes precisely howmaking
a Knuth move to a permutation affects its image under AMBC. It was already shown
in [8, Lem. 12.3] that the P-tabloid does not change; we furthermore show that the
Q-tabloid changes by a Knuth move and that ρ changes in a predictable way. This
result is crucial to our analysis of the Kazhdan–Lusztig dual equivalence graph in
Sects. 7 and 8.

Theorem 3.11 is also interesting in that it provides evidence that AMBC is the
“correct” analogue of the Robinson–Schensted correspondence, as it interacts in the
appropriate ways with other combinatorial constructions. The first steps towards the
proof also are of this form, showing that AMBC respects inverses and descent sets of
permutations in the same way as the Robinson–Schensted correspondence.

3.1 Inverses

In thefinite case, it is a classical result of Schützenberger [18] (or see [21, Thm. 7.13.1])
that taking the inverse of a permutation w exchanges the insertion and recording
tableaux in its image under the Robinson–Schensted correspondence. Here we show
the analogous result for AMBC.

Proposition 3.1 Suppose �(w) = (P, Q, ρ). Then �(w−1) = (Q, P, (−ρ)′), where
(−ρ)′ is the dominant representative of −ρ in the fiber under �(Q, P,−).

Proof Inverting a permutation reflects itsmatrix across themain diagonal; this switches
rows for columns, switches “SW” for “NE”, and switches “E” for “S”.Moreover, given
a stream, reflecting it in themaindiagonal negates the altitudeof the stream.Thus,when
we apply each step of AMBC to the inverse permutation w−1, using the NE channel
numbering (instead of the usual SW channel numbering) at each step, we recover
exactly the same steps as applying AMBC tow using the SW channel numbering, with
the following adjustments: first, because the roles of rows and columns are switched,
data recorded for w in the P-tabloid is recorded for w−1 in the Q-tabloid and vice-
versa; and second, because altitudes of streams are negated, each entry of ρ(w−1)

is the negation of the corresponding entry in ρ(w). It follows from a strong form of
the inverse relationship between � and � [8, Prop. 5.2] that �(Q, P,−ρ) = w−1.
Finally, we have by [8, Thm. 6.3] that�(w−1) = �(�(Q, P,−ρ)) = (Q, P, (−ρ)′)
where (−ρ)′ is the dominant representative of −ρ. �


Remark 3.2 It is not obvious from the definition of dominance that applying the oper-
ation (P, Q, ρ) �→ (Q, P, (−ρ)′) twice returns the original triple (as it must do, since
(w−1)−1 = w): the operation “take the dominant representative” depends on P and
Q in a nontrivial way. This oddity is explained in Sect. 5, following the description of
the offset constants in Theorem 5.10.
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3.2 Descent sets and the �-invariant

In the finite case, the descent set (appropriately defined) of the Q-tableau ofw is equal
to the (right) descent set of w (i.e., the set of integers i such that w(i) > w(i + 1)),
and the descent set of the P-tableau is the descent set of w−1 [21, Lem. 7.23.1]. Here
we show the analogous result for affine permutations and AMBC.

Definition 3.3 For a partial permutation w, the right descent set R(w) of w is defined
by

R(w) = {i ∈ [n] : w(i) > w(i + 1)}.

Similarly, the left descent set L(w) is defined by

L(w) = {i ∈ [n] : w−1(i) > w−1(i + 1)}.

So i is in R(w) (resp. L(w)) precisely when the ball in the (i +1)-st row (resp. column)
is west (resp. north) of the ball in the i-th row (resp. column). These definitions agree
with the usual notions from Coxeter theory.

We call the analogue of the descent set for tabloids the τ -invariant, in reference to
Vogan’s (generalized) τ -invariant [24].

Definition 3.4 For a tabloid T filled with all the elements of [n], define the τ -invariant
by

τ(T ) := {i ∈ [n] : i lies in a strictly higher row of T than i + 1}.

Example 3.5 The tabloid

T :=
2 9 5
8 7 6
3 1
4

has τ(T ) = {2, 3, 5, 9}.
Proposition 3.6 For any permutation w, L(w) = τ(P(w)) and R(w) = τ(Q(w)).

Proof It is sufficient to show L(w) = τ(P(w)); the other statement follows from
Proposition 3.1.

First, suppose i ∈ L(w), so that the ball b in the i-th column is south of the ball c in
the (i +1)-st column. It follows that every ball strictly northwest of c is also northwest
of b, and so by the continuity and monotonicity of the southwest channel numbering
d we have d(c) � d(b).

Consider the application of a single forward step of AMBC to w. The numbering
d induces a set of zig-zags. Since b is west of c, we have by Proposition 2.17(b)
that c is not the southwest ball in its zig-zag, and so there is a ball of fw(w) in the
(i + 1)-st column; moreover, by Proposition 2.17(a) this ball is north of b. Either b
is the southwest ball of its zig-zag, or not. In the first case, i appears in the first row
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of P(w) while i + 1 appears in a lower row. In the second case, neither i nor i + 1
appears in the first row of P(w), and the ball in the i-th column of fw(w) is south of
the ball in the (i + 1)-st column; thus we can repeat the argument until we end up in
the first case.

Conversely, if i /∈ L(w) then the ball b in the i-th column is north of the ball c in
the (i + 1)-st column. In this case d(b) < d(c) by monotonicity. If c is the southwest
ball of its zig-zag then i + 1 appears in the first row of P(w); thus i /∈ τ(P(w)),
as claimed. Alternatively, c is not the southwest ball of its zig-zag. Then the ball c′
southwest of c in its zig-zag is west of b, and by Proposition 2.17(b) b is not the
southwest ball of its zig-zag. Moreover, it follows from Proposition 2.17(a) that the
ball of fw(w) in the i-th column must be north of the ball in the (i + 1)-st column.
Thus we can repeat the argument to see that i + 1 cannot lie in a lower row of P(w)

than i , as claimed. �


3.3 Knuthmoves

Graphs whose vertices are combinatorial objects such as permutations or tableaux
and whose edges are analogues of Knuth moves occur frequently in the study of the
symmetric group—see, for example, [3, 5, 12]. In the affine setting, we deal with two
kinds of such graphs, one on the set of permutations and one on the set of tabloids.

3.3.1 Knuth moves for permutations and tabloids

In the finite setting, Knuth moves are certain elementary operations on finite permu-
tations, interchanging adjacent entries if one of the neighboring entries is numerically
between them—see [21, Ch. 7 App. 1]. The definition of Knuth moves in the affine
case is extremely similar.

Definition 3.7 Let i ∈ Z. Two partial permutationsw andw′ are connected by a Knuth
move at position i if all of the following hold:

• for all j such that j ≡ i (mod n), we have w′( j) = w( j + 1) and w′( j + 1) =
w( j);

• for all j such that j �≡ i (mod n), j �≡ i + 1 (mod n), we have w′( j) = w( j);
and

• at least one of w(i + 2) and w(i − 1) is numerically between w(i) and w(i + 1).

For example, the permutation w = [3, 1, 2] is connected by a Knuth move to [1, 3, 2]
(because w(3) = 2 has value between w(1) = 3 and w(2) = 1) and to [−1, 1, 6]
(because w(2) = 1 has value between w(0) = −1 and w(1) = 3) but not to [3, 2, 1]
(because neitherw(1) = 3norw(4) = 6have value betweenw(2) = 1 andw(3) = 2).

We call the translation class of the ball (i + 2, w(i + 2)) or (i − 1, w(i − 1))
mentioned in the last part of the definition a witness to the Knuth move.

An alternative way to describe the condition when exchanging the i-th and (i +1)-st
entries of a finite permutation constitutes a Knuth move is via the right descent set. It
is not difficult to see that the condition on the witness precisely means that the right
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descent sets of the two permutations are incomparable under the containment partial
ordering. Similarly, we can give an alternate condition in the affine case.

Proposition 3.8 Suppose w is a partial permutation such that w(i), w(i + 1), and
w(i + 2) are defined, and precisely one of i and i + 1 is in R(w). Then there exists
a unique permutation w′ connected to w by a Knuth move whose right descent set
contains precisely the other of i and i + 1.

Proof If exactly one of i, i + 1 belongs to R(w) then w(i + 1) is either the largest or
smallest of w(i), w(i + 1), w(i + 2), and so one of w(i), w(i + 2) lies numerically
between w(i + 1) and the other. Thus a Knuth move that switches w(i + 1) with
one of w(i), w(i + 2) is possible, witnessed by the other of w(i), w(i + 2). It is
straightforward to verify that this has the desired effect on the descent set, and that no
other Knuth move can have this effect. �


In the finite case, Knuth moves preserve the Robinson–Schensted insertion tableau
and induce transpositions of entries (which are also called Knuth moves) in the record-
ing tableau. We give the corresponding definition of Knuth moves on tabloids.

Definition 3.9 Two tabloids T and T ′ are connected by a Knuth move if T ′ is obtained
from T by exchanging i and i + 1 and τ(T ) and τ(T ′) are incomparable with respect
to inclusion.

Example 3.10 The tabloid

T ′ :=
2 1 5
8 7 6
3 9
4

is connected by a Knuth move to the tabloid T from Example 3.5: it is obtained by
exchanging 9 and 10 = 1, and τ(T ′) = {2, 3, 5, 8} is not contained in and does not
contain τ(T ) = {2, 3, 5, 9}.

3.3.2 Knuth moves and AMBC

In this section we describe how a Knuth move on permutations looks after taking
images under AMBC.

Theorem 3.11 Suppose w is a partial permutation and w′ differs from w by a Knuth
move. Then P(w) = P(w′) and Q(w′) differs from Q(w) by a Knuth move. Moreover,
if the Knuth move on the Q-tabloids exchanges i and i + 1 for some i �= n then
ρ(w) = ρ(w′); if instead i = n is in row k of Q(w) while i + 1 = 1 is in row k′, then
ρ(w′) differs from ρ(w) by subtracting 1 from row k and adding 1 to row k′.

Example 3.12 Consider the permutation w = [1, 4, 6, 2, 5, 3]; under AMBC it corre-
sponds to

P = Q =
1 2 3
4 5
6

, ρ =
⎛

⎝

0
0
0

⎞

⎠ .
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Fig. 8 Streams for the permutation w = [1, 4, 6, 2, 5, 3] (+’s) and its image [−3, 4, 6, 2, 5, 7] (∗’s) under
a Knuth move; see Remark 3.14. On the left, the streams S, S′ encoded by the third row of the images under
AMBC. On the right, the streams T , T ′ encoded by the first row

Since w(4) < w(2) < w(3), we can apply a Knuth move at position 3. This yields
[1, 4, 2, 6, 5, 3], which corresponds under AMBC to the triple

P =
1 2 3
4 5
6

, Q′ =
1 2 4
3 5
6

, ρ =
⎛

⎝

0
0
0

⎞

⎠ .

Example 3.13 Again considerw = [1, 4, 6, 2, 5, 3]. Sincew(6) < w(5) < w(7) = 7,
we can apply a Knuth move to w at position 6. This yields [−3, 4, 6, 2, 5, 7], which
corresponds under AMBC to the triple

P =
1 2 3
4 5
6

, Q′′ =
6 2 3
4 5
1

, ρ′ =
⎛

⎝

1
0

−1

⎞

⎠ .

Remark 3.14 The condition on how the weight changes may be formulated in terms
of the streams encoded by the rows. Suppose that Q and Q′ differ by a Knuth move
exchanging i and i + 1, that i is in row k of Q, and that and i + 1 is in row k′ of Q.
Suppose ρ′ differs from ρ as described in the theorem. Then the stream S′ represented
by row k of (P, Q′, ρ′) differs from the stream S represented by row k of (P, Q, ρ) by
shifting the elements with row indices in i south by one cell, and similarly the stream
T ′ encoded by row k′ of (P, Q′, ρ′) differs from the stream T represented by row k′
of (P, Q, ρ) by shifting the elements with row indices in i + 1 north by one cell.

For example, withw as in Example 3.13, the streams S and S′ (shown on the left of
Fig. 8) are encoded by the third row of the triples, while the streams T and T ′ (shown
on the right of the figure) are encoded by the first row of the triples. The stream S
contains only one translation class of cells, in row n; to obtain the stream S′, one shifts
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Fig. 9 The positions of the balls
in Sect. 3.3.3. At least one of the
dashed balls must be present as a
witness for the Knuth move

each of those elements one cell south. The stream T contains three translation classes
of cells; to obtain the stream T ′, one shifts the elements in rows indexed by 1 one cell
north.

3.3.3 The proof of Theorem 3.11

We fix some notation for the duration of this section. Let w be a partial permutation
and let w′ be the permutation obtained from it by a Knuth move, affecting balls in
rows k and k + 1. Without loss of generality, assume w(k + 1) < w(k). Let b =
(k + 1, w(k + 1)) ∈ Bw, c = (k, w(k)) ∈ Bw, b′ = (k, w(k + 1)) ∈ Bw′ , and
c′ = (k + 1, w(k)) ∈ Bw′ . This situation is shown in Fig. 9.

Let d be the southwest channel numbering of w. Since every ball strictly northwest
of b is also northwest of c, we have by the properness of the numbering that d(c) �
d(b). Define a semi-periodic numbering d ′ of w′ as follows: for a ∈ Bw′ ,

d ′(a) = d(a) if a is not a translate of b′ or c′,
d ′(b′) = d(b), and

d ′(c′) =
{

d(c) if d(c) > d(b),

d(c) + 1 if d(c) = d(b),

and extend the numbering to all other balls by semi-periodicity. In other words, to
get from w to w′, we shift b (together with its translates) one cell north and shift c
one cell south; the numbering d ′ is obtained by keeping the numbering of the balls
being shifted, unless d(b) = d(c) (in which case keeping the numbering would yield
a non-monotone numbering). As the next lemma shows, this adjustment results in a
proper numbering.

Definition 3.15 The proofs that follow are divided into cases. We denote by A (for
after) the case when w(k + 2) is between w(k) and w(k + 1), and by B (for before)
the case when w(k − 1) is between w(k) and w(k + 1). We denote by S (for same)
the case when d(b) = d(c), and by D (for different) the case when d(c) > d(b).

A priori the preceding definition allows four sub-cases. However, the caseBS is impos-
sible when d is proper: using Proposition 2.17, one can show that for a witness a in
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the row before b and c, one must have d(b) � d(a) < d(c), and this contradicts
d(b) = d(c).

Lemma 3.16 The numbering d ′ described above is proper.

Proof We must check the monotonicity and continuity of the function d ′. In case D,
this is straightforward: no ball numbers change and no relation a �SE a′ between two
balls is destroyed, so d ′ is continuous; and the only newly created relations in the SE
order are translates of b′ >SE c′, and these are compatible with monotonicity since
d ′(b′) = d(b) < d(c) = d ′(c′).

Suppose instead that we are in case AS. Let a = (k + 2, w(k + 2)). Every ball
strictly northwest of a is strictly northwest of b, strictly northwest of c, or is b itself.
Since d(b) = d(c), the largest label of such a ball is d(b), and thus d ′(a) = d(a) =
d(b) + 1 = d ′(c′). Then to check continuity and monotonicity of d ′ it suffices to
observe that every ball southeast of c′ in w′ is also southeast of a. �

Definition 3.17 We denote by f the natural bijection f : Bw → Bw′ that commutes
with translation by (n, n), has f (b) = b′ and f (c) = c′, and is the identity on balls
that do not lie in rows congruent to k or k + 1 modulo n.

Lemma 3.18 If C is the southwest channel of w then f (C) is a channel of w′ that
intersects the southwest channel of w′.

Proof Let C1 be any channel of w. For any two balls a, a′ in Bw such that a <SE a′,
one also has f (a) <SE f (a′). Thus C ′

1 := f (C1) forms a chain in the southeast
ordering. By Lemma 3.16, the numbering d ′ is proper, so by Proposition 2.4 w′ has
the same channel density as w. Since C1 has this density, C ′

1 does as well, and so C ′
1

is a channel for w′.
Let C ′

SW be the southwest channel of w′. By [8, Prop. 3.13] and the surrounding
discussion, it follows that every ball of C ′

SW is weakly southwest of some ball in C ′
1.

Suppose furthermore that C ′
1 ∩ C ′

SW = ∅, so that we may replace the word “weakly”
in the preceding sentence with “strictly”. We will show that there is a channel of w

that contains a ball strictly southwest of some ball of C1.
Suppose first that C ′

SW contains at most one of b′ and c′. Then f −1(C ′
SW ) is a

channel of w. The map f −1 is order-preserving for the order <SW , so in this case
every ball of f −1(C ′

SW ) is strictly southwest of some ball of C1 = f −1(C ′
1), as

desired.
Suppose instead that C ′

SW contains both b′ and c′. Then C ′
1 contains neither, and

so C ′
1 = C1. In case B, removing b′ and c′ from C ′

SW and replacing them with
(k −1, w(k −1)) and c gives the desired channel of w. Similarly, in caseA, removing
b′ and c′ from C ′

SW and replacing them with b and (k + 2, w(k + 2)) gives the desired
channel of w.

We now take the contrapositive: ifC1 = C is the southwest channel ofw then (again
by [8, Prop. 3.13]) there is no channel of w that contains a ball strictly southwest of
some ball of C , and so C ′

1 = f (C) must have nonempty intersection with C ′
SW , as

claimed. �

Recall from Definition 2.5 that a path in a permutation w is a sequence of balls of

w in which each ball is strictly northwest of the preceding one.
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Lemma 3.19 The numbering d ′ is the southwest channel numbering of w′.

Proof Let C be the southwest channel of w. First, we show that for any x ′ ∈ Bw′ ,
there is a path in Bw′ from x ′ to f (C) along which d ′ decreases by 1 at each step.

Fix x ′ ∈ Bw′ and let x = f −1(x ′). By [8, Rem. 11.7], there is a path p = (x0 =
x, x1, . . . , xk) in w beginning at x and ending at xk ∈ C with d decreasing by 1 at
each step. By [8, Rem. 11.2], we may choose p so that it does not contain any pair
of balls in the same translation class. Then p′ = ( f (x0), . . . , f (xk)) is a path from
x ′ = f (x) to f (C) in w′.

In case D, we have d(xi ) = d ′( f (xi )) and so d ′ decreases by 1 at each step of p′,
as desired.

In case AS, if p does not contain a translate of c then d ′( f (xi )) = d(xi ) and so
d ′ decreases by 1 at each step of p, as desired. Otherwise, we assume without loss of
generality that c is part of p. In this case, c must be the first entry of p: if c = xi+1
were northwest of xi and d(c) + 1 = d(xi ), then c′ would be northwest of f (xi ) and
d ′(c′) = d(c) + 1 = d(xi ); but this contradicts the monotonicity of d ′ (Lemma 3.16).
Finally, we consider the possibility x ′ = c′. In this case, b′ is northwest of c′ and
d ′(b′) = d ′(c′)−1, and it follows from the preceding arguments in caseAS that there
is a path from b′ to f (C) with d ′ decreasing by 1 at each step; prepending c′ to this
path gives the desired one.

By [8, Rem. 11.7], it follows that d ′ is the channel numbering of w′ with respect to
f (C). Finally, since (by Lemma 3.18) f (C) intersects the southwest channel of w′,
we have by [8, Rem. 11.7 & Lem. 3.15] that d ′ is the southwest channel numbering
of w′, as claimed. �


For the next result, recall the notation st(w) from Definition 2.14.

Lemma 3.20 Precisely one of the following holds:

• st(w) = st(w′) and fw(w) differs from fw
(

w′) by a Knuth move, or
• for some � ∈ Z, st(w) differs from st(w′) by raising or lowering the cells in rows

� by one row, and fw(w) differs from fw
(

w′) by respectively lowering the balls in
rows � − 1 or raising those in rows � + 1 by one row.

Proof We begin with some preliminaries before moving on to case-analysis. By
Lemma 3.19, the numbering d ′ is the southwest channel numbering of w′, so the
stream st(w′) and permutation fw

(

w′) are computed in terms of this numbering.
Thus, in all cases, we consider the balls of w and w′ to be divided into zig-zags corre-
sponding to the numberings d and d ′, respectively. The position of every ball of fw(w)

and every cell of st(w) is determined by two balls of w, and similarly for w′; we call
these the parents. Finally, since d(b) � d(c) and c is northeast of b, it follows from
Proposition 2.17(b) that b is never the northeast ball in its zig-zag.

Case AD. Since we are in case D, for every x ∈ Bw, we have d(x) = d ′( f (x)).
Therefore, if a zig-zag Z induced by d does not contain a translate of b or c, the same
zig-zag (with the same inner-, outer-, and back-corner posts) is induced by d ′.

Let Zb be the zig-zag containing b induced by balls of w and let Zb′ be the zig-zag
containing b′ induced by balls of w′. As noted above, b is not the northeast ball in
Zb. Thus, the east parents of the back-corner posts of Zb and Zb′ are the same, while
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Fig. 10 The case AD of the
proof of Lemma 3.20 when c is
not the northeast ball of its
zig-zag

their south parents are either the same (if b is not the southwest ball of Zb) or lie
in the same column; thus the back-corner posts are equal. Similarly, except the ball
whose west parent is b, every ball of fw(w) in Zb has west parent unchanged by f
and north parent whose column is unchanged by f ; thus, each of these balls is also
a ball of fw

(

w′). Finally, the balls of fw(w), fw
(

w′) with west parents b, b′ have the
same north parent, so any ball with row index in k + 1 in Bfw(w) moves up one cell to
be a ball of Bfw(w′).

Now consider the zig-zags Zc and Zc′ . Suppose first that c is not the northeast ball
of its zig-zag. Then the same is true of c′. As in the previous paragraph, in this case Zc

and Zc′ have the same back-corner post, while any ball with row index in k in Bfw(w)

moves down one cell to be a ball of Bfw(w′). Therefore in this case st(w) = st(w′)
and the permutations fw(w) and fw

(

w′) differ by moving the balls in rows k + 1 up
into row k and moving the balls in rows k down into row k + 1, in the same way
that w and w′ differ (see Fig. 10). It remains to show that this is a Knuth move. Let
a = (k+2, w(k+2)) ∈ Bw be thewitness for theKnuthmovebetweenw andw′.Aside
from b, every ball northwest of a is also northwest of c; thus by continuity of d we have
d(b) < d(a) while by monotonicity we have d(a) � d(c). Using this last inequality
together with Proposition 2.17(b), a is not the northeast ball in its zig-zag. Then it
follows fromProposition 2.17(a) that (fw(w))(k) < (fw(w))(k+2) < (fw(w))(k+1).
Thus the ball in row k + 2 of fw(w) and fw

(

w′) is a witness for the fact that fw(w)

differs from fw
(

w′) by a Knuth move in position k.
If instead c is the northeast ball of its zig-zag, then the outer-corner posts of Zc and

Zc′ are equal, so fw
(

w′) differs from fw(w) by shifting the ball in row k + 1 north by
one cell, while the back-corner post of Zc′ is in row k + 1 instead of row k, so st(w′)
is obtained from st(w) by shifting the element in row k south by one cell.

Case BD. This case is similar toAD; the difference arises when choosing a witness
in the case that c is not the northeast ball in its zig-zag. Let a = (k − 1, w(k − 1))).
In this case we have d(b) � d(a) < d(c). The ball northeast of c in its zig-zag is
also north of a, so a must not be the northeast ball in its own zig-zag. This implies
(fw(w))(k + 1) < (fw(w))(k − 1) < (fw(w))(k), and so there is a ball in row k − 1
of fw(w) and fw

(

w′) that witnesses the claimed Knuth move.
Case AS. This case is more intricate because f affects parenthood in a nontrivial

way. Let a be the ball (of bothw andw′) in row k+2, whichwitnesses theKnuthmove.
It was shown in the proof of Lemma 3.16 that in this case d(a) = d(b)+1 = d(c)+1.
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We will now use this to show that fw(w) and fw
(

w′) differ at most in rows k + 1 and
k + 2.

Zig-zags that do not contain a, b, c or their translates are unaffected by the Knuth
move. Thus, we may restrict our attention to the two pairs of affected zig-zags. The
first pair consists of the zig-zags Zb,c, containing b and c induced by balls of w, and
Zb′ , containing b′ induced by balls of w′. These two zig-zags differ by removing
two consecutive balls (k, w(k)) and (k + 1, w(k + 1)) and replacing them with a
single ball (k, w(k +1)). This operation results in the deletion of the outer-corner post
(k + 1, w(k)), while the back-corner post and every other outer-corner post stays the
same.

The second pair consists of the zig-zags Za , containing a induced by balls ofw, and
Za,c′ , containing a and c′ and induced by balls ofw′. We have two cases to consider. If
a is not the northeast ball in Za , suppose that the next ball northeast of a is ( j, w( j)).
Necessarily j < k. Thus c′ is not the northeast ball in Za,c′ , and the back-corner
posts of Za,c′ and Za coincide. Therefore in this case st(w) = st(w′). Moreover,
inserting the new inner-corner post c′ between a and ( j, w( j)) results in the deletion
of their child at position (k+2, w( j)) and the creation of two new outer-corner posts at
positions (k+2, w(k)) and (k+1, w( j)). Combining this with the previous paragraph,
we have that fw

(

w′) differs from fw(w) by moving the ball in row k + 1 south one
cell into row k + 2 and moving the ball in row k + 2 north one cell into row k + 1.
Finally, we must show that this is a Knuth move. Since ( j, w( j)) ∈ Za , we have by
Proposition 2.17(b) that c is not the northeast ball in Zb,c, and so also b′ is not the
northeast ball in Zb′ . Thus fw(w) and fw

(

w′) contain some ball (k, y) in row k, and
by Proposition 2.17(a) we have w(k) < y < w( j). Thus this ball is a witness to the
fact that w and w′ differ by a Knuth move in position k + 1.

Alternatively, suppose that a is the northeast ball in its zig-zag inBw. By an analysis
similar to the preceding one, we see that fw(w) � fw

(

w′) consists of all translates
of (k + 1, w(k)), while fw

(

w′)
� fw(w) consists of all translates of (k + 2, w(k)),

and that st(w) has an element in row k + 2 while in st(w′) this element appears
one cell north, in row k + 1. This is precisely the second situation in the proposition
statement. �


With these preliminary results in hand, we move to the proof of the main result of
this section.

Proof of Theorem 3.11 Fix a partial permutation w, related to the partial permutation
w′ by a Knuth move. Begin applying forward moves of AMBC to both w and w′. By
Lemma3.20, the streams of the twopermutationsmay remain equal for several forward
steps while the resulting permutations differ by a Knuth move; thus, the corresponding
rows of P(w), Q(w) and ρ(w) are respectively equal to those of P(w′), Q(w′) and
ρ(w′). Sincew �= w′ and AMBC is a bijection, wemust at some point reach a forward
step where we fall into the second case of Lemma 3.20; without loss of generality,
we may assume that this is the first step, and that for some � ∈ Z, st(w) differs from
st(w′) by raising the elements in rows � by one cell, and fw(w) differs from fw

(

w′)

by lowering the balls in rows � − 1 by one cell (as in Example 3.12).
In this case, the first rows of P(w) and P(w′) are equal, the first rows of Q(w) and

Q(w′) differ by swapping � − 1 with �, and fw(w) differs from fw
(

w′) by moving
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balls between rows � − 1 and � (leaving the other row empty). If � �= 1 then the
elements of st(w) have the same block diagonals as the corresponding elements of
st(w), and so in this case the first rows of ρ(w) and ρ(w′) are equal. If instead � = 1
then the element of the stream that moves also decreases its block diagonal by 1, and
so the first rows of ρ(w) and ρ(w′) differ by 1 in this case (as in Example 3.13).

It is straightforward to check from the definition of AMBC that if u and u′ are
partial permutations such that u′ is obtained from u by shifting the balls in rows � − 1
down by one cell into an empty row, then P(u) = P(u′) and Q(u′) is obtained from
Q(u) by replacing � − 1 with �. If � �= 1 then the corresponding streams of both
permutations have the same altitudes and so ρ(u′) = ρ(u); if instead � = 1 then at the
forward step that places � into Q(u′) and � − 1 into Q(u), the stream coming from u′
has altitude one less than the stream coming from u.

Finally, it follows from the preceding discussion that P(w′) = P(w), Q(w′) differs
from Q(w) be exchanging the two entries � and � − 1, and ρ(w′) differs from ρ(w)

as described in the theorem. The fact that the change from Q(w) to Q(w′) is a Knuth
move is a consequence of Proposition 3.6. �


3.4 Covering

In this short section, we prove that any Knuth move on tabloids can be realized as the
change in Q-tabloids under a Knuth move on permutations.

Definition 3.21 For a partition λ, the Kazhdan–Lusztig dual equivalence graph (KL
DEG)Aλ of shape λ is the graph whose vertices are the tabloids of shape λ and whose
edges are the Knuth moves. Say that a permutation w has shape λ if the tabloids in its
image under AMBC are of shape λ.

The KL DEG A〈4,1,1〉 is shown in Fig. 11.

Lemma 3.22 Consider the graph on permutations of shape λ whose edges are Knuth
moves. The map w �→ Q(w) is a graph covering of Aλ.

Proof By Theorem 3.11, this map is a surjective graph morphism; we only need to
check that it is an isomorphism around each vertex. Consider a permutationw. Suppose
for some i , exactly one of i and i + 1 is in R(w). By Proposition 3.8, there exists a
unique Knuth move to a permutation w′ with exactly the other of i and i + 1 is in
R(w′). By considering the various possible relative locations of i − 1, i , i + 1, and
i + 2, it is easy to show that the same is true for tabloids with respect to τ . Combined
with the fact that R(w) = τ(Q(w)) (Proposition 3.6), this finishes the proof. �


In fact, the following stronger statement follows from the proof of Lemma 3.22.

Proposition 3.23 If tabloids Q and Q′ are related by a Knuth move, then for any
tabloid P and any weight ρ, the permutation w = �(P, Q, ρ) is related by a Knuth
move to a permutation w′ with Q(w′) = Q′.
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Fig. 11 The KL DEG A〈4,1,1〉. The τ -invariants are shown in red

4 Signs

It is folklore that recovering the length (i.e., number of inversions) of a finite permuta-
tion from its image under the Robinson–Schensted correspondence is hard. However,
Reifegerste showed how to recover the sign of a permutation from its image [17]. In
this section, we prove an analogous result in the affine case.

Reifegerste’s theorem statement requires two definitions. First, given a standard
Young tableau T of size n, define the inversion number inv(T ) to be the number of
pairs (i, j) such that i < j and i appears strictly below j in T . Second, given a partition
λ, define its inversion number inv(λ) to be the sum λ2 + λ4 + · · · of its even-indexed
parts.

Theorem 4.1 (Reifegerste) Given a finite permutation w ∈ Sn, let (P, Q) be the pair
of standard Young tableaux associated to w by the Robinson–Schensted correspon-
dence, both having shape λ. The sign of w is given by

sgn(w) = (−1)inv(P)+inv(Q)+inv(λ).

Define the length �(w) of a permutationw in ˜Sn to be the number of inversions, that
is, translation classes of pairs (a, b) of balls ofw with a northeast of b. Define the sign
sgn(w) of w to be (−1)�(w). If w belongs to the (non-extended) affine Weyl group˜S0

n ,
these definitions agree with the usual Coxeter length and sign of w; moreover, they
extend naturally to give the sign and the length of any partial permutation.

To state our generalization of Theorem 4.1, we need some additional definitions.
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Definition 4.2 There is a natural cyclic order on [n]. In this section, it is convenient to
“break” this order into a linear order, as follows:

1 < 2 < · · · < n.

We refer to this total ordering as the broken order. (See Sect. 6 for more on this
symmetry-breaking.)

Definition 4.3 Given a tabloid T , define the inversion number inv(T ) to be the number
of pairs (i, j) such that 1 � i < j � n in the broken order and i appears strictly
below j in T . Given a shape λ and a weight ρ ∈ Z

�(λ), define the inversion number
invλ(ρ) to be the sum of the entries of ρ that correspond to rows of λ of odd length.
The inversion number inv(λ) of a partition continues to have the same meaning as
above.

Theorem 4.4 Given w ∈ ˜Sn, let (P, Q, ρ) be the triple associated to w by AMBC,
with P and Q of shape λ. The sign of w is given by

sgn(w) · (−1)
∑n

i=1(w(i)−i) = (−1)inv(P)+inv(Q)+inv(λ)+invλ(ρ). (1)

Remark 4.5 In the case thatw belongs to the (non-extended) affineWeyl group˜S0
n , we

have that
∑n

i=1(w(i) − i) = 0 and that sgn(w) agrees with the usual notion of sign
in a Coxeter group. In this case, Theorem 4.4 becomes

sgn(w) = (−1)inv(P)+inv(Q)+inv(λ)+invλ(ρ).

In the case that w belongs to the finite symmetric group Sn , we have that ρ is the
all-zero vector, so invλ(ρ) = 0, and we recover Theorem 4.1.

The proof makes use of a variation of the following result from [8]. Denote by ∼
the translation equivalence relation.

Lemma 4.6 For a cell c = (c1, c2), let D(c) denote the diagonal of c, i.e., D(c) =
c2 − c1. If w ∈ ˜Sn with �(w) = (P, Q, ρ), P and Q having shape λ, then

n
∑

i=1

(w(i) − i) =
∑

b∈Bw/∼
D(b) =

�(λ)
∑

i=1

⎛

⎝

∑

c∈stρi (Pi ,Qi )/∼
D(c)

⎞

⎠ = n

⎛

⎝

�(λ)
∑

i=1

ρi

⎞

⎠ .

Proof The first equality is the definition of D. The second equality is a repeated use of
[8, Lem. 10.3], as described in the paragraph following its proof. The third equality
is [8, Lem. 10.4]. �


The same exact arguments can be applied to block diagonals (the reader may wish
to recall the relevant definition from Sect. 2.2.3) to get the following result.
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Lemma 4.7 Suppose w ∈ ˜Sn and �(w) = (P, Q, ρ), where P and Q have shape λ.
Then

D(w) =
�(λ)
∑

i=1

D(stρi (Pi , Qi )) =
�(λ)
∑

i=1

ρi .

That is, the sum of block diagonals of translate classes of balls of a permutation is
equal to the sum of block diagonals of translate classes of cells of all the streams
involved in the application of AMBC to the permutation.

We now give the proof of the main theorem of this section. The reader may wish
to consult Example 4.8 below while reading the proof.

Proof of Theorem 4.4 In order to make an argument by induction, we carefully track
how the two sides of (1) change in the application of a single forward step of AMBC.

A monotone numbering of a partial permutation corresponds to a division of the
balls into zig-zags. This also induces a division of the inversions of the partial per-
mutation into two classes: those that occur between balls in the same zig-zag and
those that occur between balls in different zig-zags. We give the corresponding counts
names, as follows: for the partial permutation w with numbering d : Bw → Z and
corresponding zig-zags {Zi }i∈Z, the internal inversion number is

int(w) :=
∑

Z/∼
|{a, b ∈ Z ∩ Bw : a is strictly northeast of b}| ,

a sum over translation classes of zig-zags, and the external inversion number is

ext(w) :=
∑

(Z ,Z ′)/∼

∣

∣{a ∈ Z ∩ Bw, b ∈ Z ′ ∩ Bw : a is strictly northeast of b}∣∣ ,

a sum over translation classes of pairs of zig-zags.
Fix a partial permutation w. The balls of w will be numbered by its southwest

channel numbering d. Let w′ = fw(w) be the partial permutation that results from
a single forward step of AMBC. Let d ′ be the numbering of balls of w′ induced
from this step, i.e., the balls of w′ numbered i are precisely the ones contained in Zi .
(This numbering is monotone by Proposition 2.17(a).) We count internal and external
inversions of w relative to d, and of w′ relative to d ′.

First, we consider the internal inversions of w. Choose a zig-zag Z of w, and
suppose it includes k balls in Bw. Any pair of these balls forms an inversion. Thus
Z contributes

(k
2

)

internal inversions to w. Obviously Z includes exactly k − 1 balls

in Bw′ , and so the number of inversions of w′ in Z is
(k−1

2

)

. The difference between
these two numbers is k − 1 = |Z ∩ Bw| − 1. Let λ be the shape of w. The number of
translation classes of balls inw is |λ| and the number of translation classes of zig-zags
is λ1, so

int(w) =
∑

Z/∼

(|Z ∩ Bw|
2

)
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=
∑

Z/∼
(|Z ∩ Bw| − 1) +

∑

Z/∼

(|Z ∩ Bw′ |
2

)

= |λ| − λ1 + int(w′)

= int(w′) +
∑

i>1

λi . (2)

Next, we consider external inversions. For a pair of integers i < j , we partition
the collection of inversions of w between the i-th and j-th zig-zags into four parts.
Recall that, by definition, to say that (a, b) is an inversion is to say that a is strictly
northeast of b, and recall also the notation a <SW b means that a is strictly southwest
of b. Define

Ei, j
1 = {(a, b) ∈ B2

w : b <SW a, a ∈ Zi , b is the southwest ball of Z j },
Ei, j
2 = {(a, b) ∈ B2

w : b <SW a, a ∈ Zi , b is not the southwest ball of Z j },
Ei, j
3 = {(b, a) ∈ B2

w : a <SW b, a ∈ Zi , b is the northeast ball of Z j }, and

Ei, j
4 = {(b, a) ∈ B2

w : a <SW b, a ∈ Zi , b is not the northeast ball of Z j }.

Note that this really is a partition, in that
⋃4

k=1 Ei, j
k is the collection of all inversions

between the i-th and j-th zig-zags and the Ei, j
k pairwise do not intersect.

Suppose that (b′, a′) is an inversion of w′ with a′ ∈ Zi , b′ ∈ Z j . Let a, b be the
balls of w in the same rows as a′, b′, respectively, so a is directly west of a′ and b
directly west of b′. It follows from Proposition 2.17(a) that (b, a) is an inversion in w.
Moreover, b is not the northeast ball of Z j , so (b, a) ∈ Ei, j

4 . Conversely, it follows

from Proposition 2.17 that every inversion (b, a) ∈ Ei, j
4 arises from an inversion of

w′ in this way.
By the same argument, inversions (a′, b′) of w′ with a′ ∈ Zi , b′ ∈ Z j are in

bijection with Ei, j
2 . Thus the number of inversions of w′ with one ball in Zi and the

other one in Z j is
∣

∣

∣E
i, j
4

∣

∣

∣ +
∣

∣

∣E
i, j
2

∣

∣

∣. Summing this over all translation classes of pairs

(Zi , Z j ) of zig-zags with i < j gives

ext(w′) =
∑
(∣

∣

∣E
i, j
4

∣

∣

∣+
∣

∣

∣E
i, j
2

∣

∣

∣

)

= ext(w) −
∑
(∣

∣

∣E
i, j
1

∣

∣

∣+
∣

∣

∣E
i, j
3

∣

∣

∣

)

. (3)

We turn our attention to the summands in this last expression.
If a, b are balls of w and d(a) < d(b) then, by monotonicity of d, a cannot lie

southeast of b. Consequently (a, b) is an inversion if and only if a lies to the east of
b. When b is the southwest ball of its zig-zag Z j , a ball a lies to the east of b if and

only if it lies to the east of the back-corner post c j of Z j . Thus,
∣

∣

∣E
i, j
1

∣

∣

∣ is equal to the

number of balls in Zi ∩Bw lying strictly east of c j . Similarly, when b is the northeast

ball of Z j , (b, a) is an inversion if and only if a lies to the south of b, and so
∣

∣

∣E
i, j
3

∣

∣

∣

is equal to the number of balls of Zi ∩ Bw lying strictly south of c j . Also note that
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Fig. 12 The dependence of
fix(b, j) on the congruence
classes of rows and columns of b
relative to c j

Zi has no balls which share a row or a column with c j (since i �= j). Combining the

above observations, we have that
∣

∣

∣E
i, j
1

∣

∣

∣+
∣

∣

∣E
i, j
3

∣

∣

∣ is congruent modulo 2 to the number

of balls of Zi ∩ Bw that lie either strictly northeast or strictly southwest of c j .
Now we sum this expression over all translation classes of pairs (Zi , Z j ) with

i < j . We choose as representatives the pairs i < j such that 1 � j � m, where m
is the number of translation classes of zig-zags (i.e., the number appearing in Propo-

sition 2.4). By the preceding paragraph,
∑
(∣

∣

∣E
i, j
1

∣

∣

∣+
∣

∣

∣E
i, j
3

∣

∣

∣

)

is congruent modulo

2 to the number of pairs ( j, b) such that 1 � j � m, b ∈ Bw, d(b) < j , and b is
either strictly northeast or strictly southwest of c j . By Proposition 2.17(b), if i � j
then Zi contains no balls either strictly northeast or strictly southwest of c j . Hence we
may drop the condition d(b) < j and, using the notation ≡ for congruence modulo
2, conclude that

∑
(∣

∣

∣E
i, j
1

∣

∣

∣+
∣

∣

∣E
i, j
3

∣

∣

∣

)

≡ ∣∣{( j, b) ∈ [m] × Bw : b <SW c j or b >SW c j }
∣

∣ .

Now fix j and a ball b = (b1, b2) of w. Let the coordinates of c j be given by
c j = (c j,1, c j,2). We claim that the number of translates of b that lie either strictly
northeast or strictly southwest of c j is equal to

∣

∣D(b) − D(c j ) + fix(b, j)
∣

∣, where

fix(b, j) :=
({

1 if b1 < c j,1

0 if b1 � c j,1

)

−
({

1 if b2 < c j,2

0 if b2 � c j,2

)

(4)

and the inequalities between equivalence classes are in the broken order. (This is
illustrated in Fig. 12: the coordinates of b and c j are reduced modulo n so that they lie
in the same n × n square, and then the value of fix(b, j) is determined by the relative
positions of the two.) Since each row and column congruence class of b can be either
smaller, equal, or greater than the corresponding class for c j , in principle there are
nine cases of this claim to consider. The cases are very similar, so we only discuss two
of them in detail.

First, consider the case when b1 > c j,1 and b2 > c j,2 in broken order. Without
loss of generality, assume that D(b) � D(c j ), so that translates of b can be northeast
but not southwest of c j (see Fig. 13 for examples with D(b) − D(c j ) being 1, 2, and
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Fig. 13 Counting translates of b
lying northeast of c j when
D(b) − D(c j ) = 1 (solid),
D(b) − D(c j ) = 2 (dashed),
and D(b) − D(c j ) = 3 (dotted)

3). The translate b + k(n, n) is northeast of c j if and only if c j,1 > b1 + kn and
c j,2 < b2 + kn (where now we are comparing integers, not residue classes). Thus, the
number of translates of b northeast of c j is equal to the number of integer solutions k
to the inequalities

c j,1 − b1
n

> k >
c j,2 − b2

n
.

Since b1 > c j,1, the largest integer smaller than (c j,1−b1)/n is
⌈

c j,1/n
⌉−�b1/n�−1,

while since b2 > c j,2 the smallest integer larger than (c j,2 − b2)/n is
⌈

c j,2/n
⌉ −

�b2/n�; thus, the displayed inequalities are equivalent to

⌈c j,1

n

⌉

−
⌈

b1
n

⌉

− 1 � k �
⌈c j,2

n

⌉

−
⌈

b2
n

⌉

.

The number of solutions k is

(

⌈c j,1

n

⌉

−
⌈

b1
n

⌉

− 1

)

−
(

⌈c j,2

n

⌉

−
⌈

b2
n

⌉)

+ 1 = D(b) − D(c j )

= ∣∣D(b) − D(c j ) + 0
∣

∣ .

Finally, in this case fix(b, c j ) = 0, as needed.
Second, consider the case that b1 < c j,1 in broken order and b2 = c j,2. Since

b2 = c j,2, the ball b is a translate of the ball in the same column as c j . By the
definition of AMBC, this ball lies directly south of c j , so necessarily D(b) < D(c j )

and we seek translates of b that are strictly southwest of c j . By the same analysis as
in the previous case, these translates correspond to integer solutions of

c j,1 − b1
n

< k <
c j,2 − b2

n
.
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By the hypotheses on the relative values of the bi and c j,i , this is equivalent to

⌈c j,1

n

⌉

−
⌈

b1
n

⌉

+ 1 � k �
⌈c j,2

n

⌉

−
⌈

b2
n

⌉

− 1.

Thus in this case the number of solutions is D(c j )− D(b)−1 = ∣∣D(b) − D(c j ) + 1
∣

∣.
Since fix(b, c j ) = 1, this gives the desired result.

The other seven cases are extremely similar to these two.
We now plug the claim in to (3). Since |x | ≡ x ≡ −x , we can drop absolute values

and extra negative signs to get

ext(w) − ext(fw(w))

≡
∑

b∈(Bw/∼)

m
∑

j=1

∣

∣D(b) − D(c j ) + fix(b, j)
∣

∣

= λ1 ·
∑

b∈(Bw/∼)

D(b) + |λ| ·
m
∑

j=1

D(c j ) +
∑

b∈(Bw/∼)

⎛

⎝

m
∑

j=1

fix(b, j)

⎞

⎠ .

By Lemma 4.7, the first sum is equal to
∑

i ρi . The second sum is the definition
of the altitude of st(w), and so is equal to ρ1. For the third sum, we break it into two
pieces as in (4), one involving the row indices and one involving the column indices.
The sum involving the row indices is equal to the number of pairs of a ball b and
a stream cell c j such that b1 < c j,1. Note that the numbers c j,1 constitute the first
row of Q, while the other rows of balls will necessarily appear in the lower rows of
Q. Thus the desired number of pairs is precisely equal to inv1(Q), where invi (T ) is
the number of inversions of a tabloid T such that the top row involved is row i . The
same analysis applies to the other piece, and so the last sum in the previous displayed
equation simplifies to inv1(Q) − inv1(P). Therefore

ext(w) − ext(fw(w)) ≡ |λ| ρ1 + λ1
∑

i�1

ρi + inv1(Q) + inv1(P).

Combining this with (2) yields

�(w) − �(fw(w)) ≡
∑

i>1

λi + λ1
∑

i�1

ρi + |λ| ρ1 + inv1(Q) + inv1(P). (5)

Now suppose w ∈ ˜Sn . The congruence (5) holds at each step of AMBC, with
appropriate adjustments to the indexing (i.e., the first row of P(fw(w)) should be
numbered 2, not 1); after the last step ofAMBC,we are leftwith the empty permutation,
which has 0 inversions. Thus the sum of the left side of (5) over all the steps gives
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�(w). By Lemma 4.6, we have n
∑

i�1 ρi =∑n
i=1(w(i) − i), and so

�(w) ≡
�(λ)
∑

j=1

⎛

⎝

∑

i> j

λi + λ j

∑

i� j

ρi + ρ j

∑

i� j

λi + inv j (Q) + inv j (P)

⎞

⎠

=
�(λ)
∑

i=1

(i − 1)λi +
�(λ)
∑

j=1

⎛

⎝λ j

∑

i� j

ρi + ρ j

∑

i� j

λi

⎞

⎠+ inv(Q) + inv(P)

≡ inv(λ) +
�(λ)
∑

j=1

⎛

⎝λ jρ j + λ j

∑

i�1

ρi

⎞

⎠+ inv(Q) + inv(P)

= inv(λ) +
�(λ)
∑

j=1

λ jρ j + n
∑

i�1

ρi + inv(Q) + inv(P)

≡ inv(λ) + invλ(ρ) +
n
∑

i=1

(w(i) − i) + inv(Q) + inv(P).

Raising −1 to the power of each side yields the desired result. �


Example 4.8 Thepermutationw = [7, 2, 4, 1] in ˜S4 is shown inFig. 14. For readability,
we label inversions using only the column index, so that the seven inversions of w are
(7, 2), (7, 4), (7, 1), (7, 6), (7, 5), (2, 1), and (4, 1). Under AMBC, w corresponds to
the triple

P =
1 4
2
3

, Q =
1 3
2
4

, ρ =
⎛

⎝

0
0
1

⎞

⎠ ,

having inv(P) = 2, inv(Q) = 1, inv(λ) = 1, and invλ(ρ) = 1. Thus in this case,
Theorem 4.4 asserts that (−1)7 · (−1)4 = (−1)5. Of the seven inversions, (7, 2),
(7, 1), and (2, 1) are internal, while w′ = fw(w) has a single internal inversion (7, 2);
the difference 3 − 1 is equal to |λ| − λ1 = 2. The four external inversions of w

are partitioned as follows: E1,2
1 = {(7, 4)}, E1,3

2 = {(7, 6)}, E1,3
1 = {(7, 5)}, and

E1,2
3 = {(4, 1)}. The inversion (7, 6) corresponds to the unique external inversion

(7, 6) in w′. Finally, we note that fix(b, j) = 0 except for the case b = (4, 1) and
j = 2 (with c2 = (3, 4)).

Remark 4.9 Reifegerste proves Theorem 4.1 by induction, using a result of Beissinger
[4] to show that it holds for an element in eachKnuth equivalence class and thenproving
that its validity is preserved under Knuth moves. The second half of this argument
(the inductive step) is straightforward using Theorem 3.11; however, it is not clear
what Knuth class representatives could play the role of Beissinger and Reifegerste’s
involutions for the base case.
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Fig. 14 One forward step of AMBC, starting with the permutation [7, 2, 4, 1]

5 Charge

The purpose of this section is to introduce a statistic on tabloids we call local charge.
Charge (originally defined in [15]; see also [16] for an exposition) is a classical statistic
for tableaux, which generalizes naturally to tabloids. What is most useful to us is a
“local” version that depends on a pair of adjacent rows, rather than the entire tabloid,
and in this section we only define it in this context. This statistic arises in two ways in
our theory. First, the instance we deal with in this section, is that it plays a crucial role
in understanding the offset constants the definition of dominance (see Proposition 3.1
and Remark 3.2). This is captured in Theorem 5.10, the main result of this section.
Second, as will be described in Sect. 8, it appears in the description of the connected
components of the KL DEG Aλ.

5.1 Definitions and basic properties

Definition 5.1 Suppose T is a tabloid of shape 〈m, m〉. An activation ordering for T
is a bijection o : [m] → T1 � [n]. We think of activation orderings as linear orderings
of the entries of the top row of T . The standard activation ordering is the activation
ordering in which the entries of the top row are arranged to increase in the broken
order (see Definition 4.2).

Whenever an activation ordering is needed but not specified, we assume that the
standard activation ordering is used.

Definition 5.2 Suppose T is a tabloid whose k-th and (k + 1)-st rows have the same
size m, and o is an activation ordering for Tk,k+1 (the tabloid consisting of the k-th
and (k + 1)-st rows of T ). Then the charge matching between rows k and k + 1 of T
with ordering o is the matching of entries in row k with entries in row k + 1 defined
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as follows. Suppose

Tk,k+1 = a1 a2 . . .am

b1 b2 . . .bm
, (6)

where ai = o(i) for all i . For i = 1, 2, . . . , m, match ai with the smallest (in broken
order) unmatched b j such that b j > ai , if such a b j exists; otherwise, match ai to the
smallest unmatched b j .

Definition 5.3 Suppose T is a tabloid whose k-th and (k + 1)-st rows have the same
size m, and o is an activation ordering of Tk,k+1. The local charge in row k of T ,
denoted lcho

k(T ), is the number of elements a of the k-th row of T such that a is
matched to b and a > b. We may say that such an entry a (or the corresponding b, or
the pair (a, b)) contributes to the charge. If o is the standard ordering, we omit o from
the notation and write lchk(T ).

Example 5.4 Consider the tabloid

T =
2 4 6 10
3 7 8
1 5 9

.

The local charge lch1(T ) is not defined since the first and second rows of T have
different lengths. With the standard activation ordering, the charge matching between
the second and third rows is 3 ↔ 5, 7 ↔ 9, 8 ↔ 1. The only pair that contributes to
charge is (8, 1), so lch2(T ) = 1.

Suppose now we use a non-standard activation ordering between the second and
third rows, say, o(1) = 8, o(2) = 7, o(3) = 3. Then the charge matching is 8 ↔ 9,
7 ↔ 1, 3 ↔ 5. For this o, the only pair that contributes to the charge is (7, 1), and so
lcho

2(T ) = 1.

We now show that the coincidence in the example above is not an accident: local
charge does not depend on the choice of activation ordering.

Lemma 5.5 Suppose T is a tabloid whose k-th and (k + 1)-st rows have the same size
m. Then lcho

k(T ) = lchk(T ) for every activation ordering o.

Proof Suppose Tk,k+1 is as in (6) with o(i) = ai for 1 � i � m. Since any permutation
is a product of adjacent transpositions, it is sufficient to prove that lcho

k(T ) = lcho′
k (T ),

where o′ is the ordering defined by

o′( j) = a j+1,

o′( j + 1) = a j , and
o′(i) = ai if i �= j or j + 1.

Furthermore, with this choice, the entries a1, . . . , a j−1 match to the same elements
of the second row in the charge matchings with orderings o, o′. Thus, we may as well
remove these j − 1 entries from both the first and second rows, and consider the case
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j = 1. As a final simplification, we may assume that a1 < a2: if not, switch the roles
of o and o′.

Let bi1 and bi2 be the elements of the second row with which a1 and a2 match in the
charge matching with ordering o. We seek to show that in the charge matching with
ordering o′, a1 and a2 still match (in some order) to bi1 and bi2 in a way that preserves
the number of contributing pairs.

A priori, there are 12 possible orders for the four values a1, a2, bi1 , bi2 in broken
order; however, six of these are incompatible with the fact that a1 matches to bi1 in
the matching with ordering o. This leaves six cases to check; we present the two most
complicated here, and leave the other four to the reader.

Suppose a1 < bi1 < bi2 < a2. Since a2 matches to bi2 in the matching with
ordering o, there are no values in Tk+1 larger than a2, and the only value in Tk+1
smaller than bi2 is bi1 . It follows that in the matching with ordering o′, a2 matches to
bi1 and a1 matches to bi2 . Then a1 does not contribute to charge in either matching
and a2 contributes to the charge in both matchings.

Suppose bi2 < a1 < a2 < bi1 . Since a1 matches to bi1 in the matching with
ordering o, bi1 is the smallest value in Tk+1 larger than a1, and hence is the smallest
value in Tk+1 larger than a2. Moreover, since a2 matches to bi2 , there can be no other
values in Tk+1 larger than a2, and therefore none larger than a1; and bi2 is the smallest
value in Tk+1. Thus in the charge matching with ordering o′, a2 matches to bi1 and a1
matches to bi2 . Thus bi2 contributes to the charge in both matchings, while bi1 does
not contribute to the charge in either.

Since the same twoelements in the second roware paired to {a1, a2} in thematchings
corresponding to o and o′, it follows that all pairs involving ai for i > 2 are also the
same in both matchings. Thus the two local charges are equal, as claimed. �


5.2 A formula for the offset constants

Recall the discussion of the offset constants in Sect. 2.2. The goal of this section is
to give a formula for these constants in terms of local charge. Before we can do that,
we need to precisely define the constants. We use the following convention: whenever
we have a stream S and a proper numbering of its cells, we let S(i) denote the cell
numbered i .

Proposition-Definition 5.6 Suppose S and T are streams of the same density m such
that no cell of S shares a row or a column with a cell of T , and S is properly numbered.
Then there is a unique proper numbering of T with the following properties:

(1) for all i , S(i) is northwest of T (i), and
(2) for some j , S( j+1) is not northwest of T ( j).

This numbering is called the backward numbering of T with respect to S.

Proof A different definition of the backward numbering is given in [8]; the proof
proceeds by showing they are equivalent. The proof may be skipped without harming
understanding of the rest of this section.

Letd be the backward numbering of T constructed in [8, Sect. 4.1]. By construction,
d is monotone and it satisfies point (1). As described in [8, Rem. 13.3], it also satisfies
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point (2). Thus such numberings exist. Let d ′ be any numbering satisfying (1) and
(2). By [8, Rem. 13.1], d ′(x) � d(x) for every x ∈ T . Since d ′ satisfies (2), it must
coincide with d on at least one translation class of cells. However, [8, Prop. 13.2]
states that d is, in fact, proper (i.e., T is numbered by consecutive integers). Thus any
monotone numbering that coincides with it on a translate class must coincide with it
everywhere, so d ′ = d. �


Condition (2) in the definition of the backward numbering may be met in two
different ways: T ( j) might be either north or west of S( j+1). The situation when both
occur simultaneously is special.

Definition 5.7 [8, Def. 5.4] Suppose S and T are streams of the same density m,
and no cell of S shares a row or a column with a cell of T . Number S with a proper
numbering and number T with the backward numbering with respect to S. Then T is
said to be concurrent to S if there exist i and j (possibly equal) such that T (i) is north
of S(i+1) and T ( j) is west of S( j+1).

Proposition 5.8 [8, Prop. 5.6] Suppose A, B, A′, B ′ are equinumerous subsets of [n]
with A ∩ A′ = B ∩ B ′ = ∅. Then there exists a unique integer r such that str (A′, B ′)
is concurrent to st0(A, B).

Definition 5.9 [8, Def. 5.8] Suppose P and Q are tabloids of the same shape λ, and
that λi = λi+1. The dominance constant ri+1(P, Q) is the unique integer r such that
str (Pi+1, Qi+1) is concurrent to st0(Pi , Qi ). The weight ρ is dominant for P, Q if
and only if

ρi+1 � ρi + ri+1(P, Q)

for every i such that λi = λi+1.

Theorem 5.10 Suppose that P and Q are two tabloids of shape λ and λi = λi+1.
Then the dominance constants are given by

ri+1(P, Q) = lchi (P) − lchi (Q).

Before proceeding with the proof we need a technical lemma.

Lemma 5.11 Fix m ∈ Z
>0. Suppose we have two sets of integers A = {a1, a2, . . . , am}

and B = {b1, b2, . . . , bm} with 1 � a1 < · · · < am and 1 � b1 < · · · < bm. Define
�(A, B) to be the maximal integer such that there exist indices 1 � i1 < i2 < · · · <

i�(A,B) � m satisfying

a1 < bi1 , a2 < bi2 , . . . , a�(A,B) < bi�(A,B)
.

Choose b′ > max(am, bm), and let B ′ = {b2, . . . , bm, b′}. If �(A, B) < m then
�(A, B ′) = �(A, B) + 1.
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Proof The proof is illustrated in Fig. 15. Let k be the largest integer such that ik = k
(and if i1 > 1 then take k = 0). For 1 � j � k, define b′

i j
= bi j +1(= b j+1). For

k + 1 � j � �(A, B), define b′
i j

= bi j . Define b′
i�(A,B)+1

= b′. Since ik+1 > k + 1 =
ik + 1, the b′

i j
are distinct. For 1 � j � �(A, B), we have a j < bi j � b′

i j
, and also

a�(A,B)+1 � am < b′
i�(A,B)+1. Thus �(A, B ′) � �(A, B) + 1.

Conversely, if for some integer k there are inequalities

a1 < b′
i1 , a2 < b′

i2 , . . . , ak < b′
ik

such that the right sides are distinct elements of B ′, then removing the inequality
involving b′

m = b′, if it exists, leaves k − 1 inequalities between elements of A and
elements of B, so �(A, B ′) � �(A, B) + 1. This completes the proof. �


We are now prepared for the proof of the main result of this section.

Proof of Theorem 5.10 Both sides of the desired equality depend only on a pair of
adjacent rows of the same size. Hence, in the remainder of the proof we assume that
P and Q are tabloids of shape 〈m, m〉 with entries in [n] for some m � n/2.

Consider S := st0(P1, Q1). Number S properly so that the north-most ball south-
east of the origin is numbered 1, and therefore S(1), . . . , S(m) lie in [n] × [n]. Let
r = lch1 P − lch1 Q and T = str (P2, Q2). We must show that T is concurrent to S.
First, we give a description of the backward numbering of T .

Denote P1 = {a1, . . . , am}, P2 = {b1, . . . , bm}, Q1 = {a′
1, . . . , a′

m}, and Q2 =
{b′

1, . . . , b′
m}, with representatives chosen so that 1 � a1 < a2 < · · · < am � n, and

similarly for the other three rows. Extend the indices to all of Z via ai+m = ai + n,

so that
⋃

P1 = {· · · < a−1 < a0 < a1 < · · · } and a0 � 0 < a1, and similarly for the
other rows. With this choice, we have S(i) = (a′

i , ai ) for all i . Define a numbering of
T as follows: the ball numbered i is

(

b′
i+lch1(Q), bi+lch1(P)

)

=: T (i).

This is clearly a proper numbering of T ; we claim that this is the backward numbering
of T with respect to S. To prove this, we must show that S(i) is northwest of T (i) for
every i , and that S( j+1) is not northwest of T ( j) for some j .

Define the local charge on a pair of equinumerous sets of integers (rather than equiv-
alence classesmodulo n) in the obviousway, so that lch({a1, a2, . . . , am}, {b1, b2, . . . ,

Fig. 15 A figure illustrating the proof of Lemma 5.11. The red lines represent inequalities between an
element a j of A and a larger element B (left) or B′ (right). In this example, i1 = 1 and i2 = 2, while i3 > 3
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bm}) = lch1(P). We apply Lemma 5.11 repeatedly, each time replacing the smallest
entry bi in the second row with bi+m = bi + n; this yields

lch({a1, a2, . . . , am}, {b1+lch1(P), . . . , bm+lch1(P)}) = 0.

Therefore ai < bi+lch1(P) for all i , and so S(i) is west of T (i) for all i . Applying the
same argument to Q (mutatis mutandis) yields that S(i) is north of T (i) for all i .

For the second half of the claim, we have two cases: first, if the original local charge
is positive, so in the previous paragraph Lemma 5.11 is applied a positive number of
times, then applying the lemma one fewer time produces

lch({a1, . . . , am}, {blch1(P), . . . , bm−1+lch1(P)}) = 1.

Therefore there is some j such that b j−1+lch1(P) < a j , and so S( j) is not west (and a
fortiori not northwest) of T ( j−1). Second, if the original local charge is 0, we need a
variant of Lemma 5.11 in which the largest element in the bottom row is replaced by
a new minimal element; the proof is no harder, we apply the variant lemma once, and
the conclusion is the same. This completes the proof that the numbering described is
the backward numbering of T with respect to S.

Moreover, applying the same argument as in the previous paragraph to Q instead
of P yields that there is some j such that S( j) is not north of T ( j−1). Together, these
two paragraphs establish that T is concurrent to S. �


5.3 Resolving a conundrum

As described in Sect. 2.2, the compositemap�◦� is a surjection from� to�dom, and
the image of (P, Q, ρ) is a triple (P, Q, ρ′)where ρ′ is the dominant representative of
ρ. In this section, we use Theorem 5.10 to resolve a mystery mentioned in Remark 3.2:
why does applying the operation (P, Q, ρ) �→ (Q, P, (−ρ)′) twice return the original
triple?

In this context, it is convenient to define the symmetrized offset constants

si (P, Q) :=
i
∑

j=i ′+1

r j (P, Q),

where i ′ is the smallest integer such that λi ′ = λi . We may reformulate Definition 5.9
in terms of these constants: ρ is dominant if for each 1 � i < �(λ) one of the following
holds:

• λi > λi+1, or
• λi = λi+1 and (ρ − s)i+1 � (ρ − s)i ,

where s = (si (P, Q))1�i��(λ). Suppose that λ has k distinct part sizes, occurring with
multiplicities m1, . . . , mk ; let m′

i := m1 + · · · + mi . According to [8, Sect. 6], the
dominant representative of ρ can be computed as follows:

• Let x = ρ − s.
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• For each 1 � j � k, let (ym′
j−1+1, ym′

j−1+2, . . . , ym′
j
) be the increasing rearrange-

ment of (xm′
j−1+1, xm′

j−1+2, . . . , xm′
j
).

• Let ρ′ = y + s.

We now resolve the mystery: by Theorem 5.10, ri (Q, P) = −ri (P, Q) for all i ,
and so also sk(Q, P) = −sk(P, Q). If λi = λi+1 = · · · = λ j is a maximal string of
equal part sizes then for any i � k � j , there exists i � � � j such that (−ρ)′k =
−ρ� − s�(P, Q) + sk(P, Q). Therefore (−(−ρ)′)k = ρ� + s�(P, Q) − sk(P, Q). To
take the dominant representative of this vector, we subtract sk(Q, P) = −sk(P, Q),
giving a vector whose k-th entry is ρ� + s�(P, Q); since ρ is dominant, this is the
�-th largest of these numbers, so after rearranging we add s�(Q, P) = −s�(P, Q),
returning the value ρ�, as desired.

6 Symmetries

The definition of the extended affine symmetric group (as in Section 2.1) gives no
special standing to the interval [n] over any other interval of n consecutive integers.
This indifference can be seen in the expression ˜Sn = ˜S0

n � Z for ˜Sn as a semidirect
product of the non-extended affine Weyl group ˜S0

n and the infinite cyclic subgroup
generated by the “shift” permutation s = [2, 3, . . . , n + 1]. It may also be seen in
the Dynkin diagram of the group ˜S0

n , which is a cycle on n vertices, each vertex
representing a simple transposition: conjugation of ˜S0

n by s is equivalent to rotating
the Dynkin diagram by one position.

The broken order of Sects. 4 and 5 breaks this symmetry by giving special standing
to the link from n to 1. This corresponds to other broken symmetries in our setting: the
definition of altitude of a stream (and so everything that follows from it) gives special
standing to the square [n] × [n].

The shift permutation s has a natural action on tabloids, sending i to i + 1 for all i .

Proposition 6.1 Fix a partition λ. The action of s is a graph automorphism of the KL
DEG Aλ.

Proof It is immediate from the definitions that s commutes with Knuth moves. �


7 Monodromy

In this section and the next, we study the Kazhdan–Lusztig molecules of ˜Sn : given a
permutation w corresponding to a triple (P, Q, ρ) under AMBC, we specify exactly
which triples (P ′, Q′, ρ′) correspond to a permutation w′ in the same Knuth equiva-
lence class asw. By Theorem 3.11, it is necessary that P ′ = P . In this section, we ask
which values of ρ′ are possible if also Q′ = Q; in the next section, we consider which
tabloids Q′ are possible. Together, the answers to these questions provide a complete
classification.

Our approach is to use Lemma 3.22: if there is a sequence (w = w1, w2, . . . , wk =
w′) of permutations in which each consecutive pair is connected by a Knuth move
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Fig. 16 A loop in A〈2,1,1〉 and the corresponding weight change vector

and Q(w) = Q(w′), we may project this sequence via wi �→ Q(wi ) =: Ti to a
sequence L = (T1, . . . , Tk) of tabloids in the KL DEG Aλ for the associated shape
λ. By Lemma 3.22, consecutive elements of L are connected by Knuth moves, and
by hypothesis T1 = Tk , so this sequence is a loop (i.e., a closed walk on the graph).
Moreover, by Theorem 3.11, the weight change vector ρ(w′) − ρ(w) depends only
on the loop L . This suggests the following definition.

Definition 7.1 Given a permutation w ∈ ˜Sn , the monodromy group Gw based at w is
the set

Gw := {ρ(wk) − ρ(w)}(w=w1,...,wk ),

where the indexing tuple (w1, . . . , wk) runs over all sequences of permutations such
that Q(wk) = Q(w) and wi+1 is connected by a Knuth move to wi for all i .

Implicit in this definition is the fact that Gw is an (abelian) group under vector addition.
This is easy to see using Theorem 3.11: the concatenation of two loops in a KL DEG
has a lift whose monodromy group element is the sum of the lifts of the two individual
loops.

Example 7.2 Figure 16 shows a loop in the KL DEG of shape 〈2, 1, 1〉, beginning and
ending at the column superstandard tabloid with start at 1. The red vectors give the
weight change at each step of the loop. The monodromy element of any lift of the loop
is (2,−1,−1).

Remark 7.3 If Q(w) and Q(w′) are connected in the KL DEG, then it follows by the
standard topological argument (again, using Theorem 3.11) that Gw = Gw′ as subsets
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of Z
�(λ). Thus monodromy is base-point independent on connected components of

KL DEGs. (In fact, one consequence of Theorem 7.28, the main result of this section,
is that Gw only depends on the shape of Q(w).)

The next lemma shows it suffices to understand Gw when Q(w) is column super-
standard.

Lemma 7.4 Every connected component of a KL DEG contains a reverse row super-
standard tabloid and a column superstandard tabloid.

Proof The Shi combing procedure (originally from [19], and explained in our lan-
guage in [8, Sect. 9]) produces a sequence of Knuth moves from any permutation
to a permutation whose right descent set is a singleton. By Theorem 3.11 and Propo-
sition 3.6, this can be used to produce a sequence of Knuth moves from any tabloid
to a tabloid whose τ -invariant is a singleton. The tabloids with a unique descent are
exactly the reverse row superstandard tabloids. This completes the first claim.

By the first claim, each column superstandard tabloid lies in the same connected
component as some reverse row superstandard tabloid. The automorphism s of Propo-
sition 6.1 acts transitively on the classes of column superstandard and reverse row
superstandard tabloids; applying it to our sequence of Knuth move shows that, in
fact, every reverse row superstandard tabloid has a column superstandard tabloid in
its connected component. This completes the second claim. �


7.1 Bounding themonodromy group from above

In this section, we establish some restrictions on the monodromy group which, in
particular, imply that the monodromy group for rectangular shapes in trivial. In the
next section, we will prove that these are the only restrictions.

Proposition 7.5 Suppose λ is a partition and w is a permutation of shape λ. Suppose
α ∈ Gw. If λi = λi+1 then αi = αi+1.

For example, in Example 7.2 the coordinates of the monodromy element corre-
sponding to the two rows of length 1 are equal.

Proof If this were not the case then repeating the monodromy or its inverse would
eventually lead to a weight ρ for which the difference ρi − ρi+1 is arbitrarily large.
From Definition 5.9, such a weight is non-dominant. However, since the image of
AMBC is�dom, it follows from Theorem 3.11 that Knuth moves preserve dominance.

�

This result has an interesting corollary.

Corollary 7.6 If λ is a rectangle then for any w of shape λ, the monodromy group Gw

is trivial and the Knuth equivalence class of w is finite.

Proof Each Knuth move preserves the sum of the entries of ρ. Thus, every element in
Gw has sum of coordinates 0. By Proposition 7.5, if λ has parts of a unique size, then
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every element in Gw has all coordinates equal. Putting the two together gives the first
half of the claim. For the second half, there are only finitely many choices of a tabloid
Q of a given shape, and by the first half of the claim there is at most one choice of ρ

in the equivalence class once P, Q are fixed. �

Wewill see as part of Theorem 7.28 that for any non-rectangular shape, there exists

a non-trivial monodromy, so the corresponding Kazhdan–Lusztig molecule is infinite.

Definition 7.7 Suppose λ = 〈rm1
1 , . . . , rmk

k 〉 is a partition whose distinct row-lengths
are r1 > · · · > rk > 0, of multiplicities m1, . . . , mk , and let m′

i = m1 + · · · + mi be
the distinct part-sizes of λ′. For 1 � i � k, let ei ∈ Z

�(λ) be the vector with 1’s in its
first m′

i rows and 0’s afterward. Define

Gup
λ =

{

k
∑

i=1

ai ei

∣

∣

∣

∣

a1, . . . , ak ∈ Z and
k
∑

i=1

ai m
′
i = 0

}

. (7)

Example 7.8 For the shape λ = 〈32, 23, 1〉, one has e1 = (1, 1, 0, 0, 0, 0), e2 =
(1, 1, 1, 1, 1, 0), and e3 = (1, 1, 1, 1, 1, 1). The space Gup

λ consists of vectors in
the Z-span of the ei whose sum of coordinates is 0, such as 3e1 − 6e2 + 4e3 =
(1, 1,−2,−2,−2, 4).

Proposition 7.9 We have Gw ⊆ Gup
λ .

Proof Taking e0 = 0 by convention, the vector ei − ei−1 has 1’s exactly in those
indices for which the corresponding row of λ has length ri . Thus, Gup

λ contains all
integer vectors α with entry sum 0 such that αi = αi+1 whenever λi = λi+1. Then
the result follows from Proposition 7.5. �

The next section is devoted to proving the reverse inclusion Gw ⊇ Gup

λ , and thus
equality.

7.2 Explicit description of monodromy generators

In this section, we construct an explicit set of monodromies that generate all of Gup
λ .

We start by describing a Z-basis for the lattice of solutions of a linear Diophantine
equation in many variables.

7.2.1 Linear Diophantine equations in many variables

Let m′
1, . . . , m′

k ∈ Z. Consider the lattice (in Z
k) of solutions to the equation

k
∑

i=1

m′
i xi = 0. (8)

Some solutions of this equation are obvious.
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Definition 7.10 For 1 � i < j � k, define x(i, j) ∈ Z
k by

x (i, j)
l =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− m′
j

gcd(m′
i ,m

′
j )

if l = i,

m′
i

gcd(m′
i ,m

′
j )

if l = j,

0 otherwise.

The main result of this section is that these obvious solutions generate the full
lattice. (We suspect that this result is known, but have not been able to find it in the
literature.)

Proposition 7.11 The lattice of solutions of (8) is the Z-span of x(i, j).

Example 7.12 Consider the equation

3x + 2y + 6z = 0.

The three obvious solutions are (−2, 3, 0), (0,−3, 1), and (−2, 0, 1). The claim is
that these three vectors span the (2-dimensional) lattice of solutions.

We begin the proof of Proposition 7.11 with a technical lemma.

Lemma 7.13 For any integers m′
1, . . . , m′

j , we have

gcd

(

m′
1

gcd(m′
1, m′

j )
, . . . ,

m′
j−1

gcd(m′
j−1, m′

j )

)

= gcd(m′
1, . . . , m′

j−1)

gcd(m′
1, . . . , m′

j )
.

Proof Consider a prime p. For each 1 � i � j , denote by vi the maximal power of p

dividing m′
i . First, suppose that v j > vi for some i . Then p does not divide

m′
i

gcd(m′
i ,m

′
j )
,

and similarly p does not divide
gcd(m′

1,...,m
′
j−1)

gcd(m′
1,...,m

′
j )

. Thus p does not divide either side of

the claimed equality.
Second, suppose v j � min{v1, . . . , v j−1}. Then the maximal power of p that

divides the right-hand side is min{v1, . . . , v j−1} − v j , while the maximal power of p
that divides the left-hand side is min{v1 −v j , . . . , v j−1 −v j } = min{v1, . . . , v j−1}−
v j . Since these are equal and p is arbitrary, the result follows. �


Proof of Proposition 7.11 Suppose we have some solution x(0) = (x (0)
1 , . . . , x (0)

k )

of (8). Clearly m′
k x (0)

k is divisible by gcd(m′
1, . . . , m′

k−1). Thus x (0)
k is divisible

by
gcd(m′

1,...,m
′
k−1)

gcd(m′
1,...,m

′
k )

. By Lemma 7.13 and the Euclidean algorithm, there are integers

c1, . . . , ck−1 such that

k−1
∑

i=1

ci · m′
i

gcd(m′
i , m′

k)
= x (0)

k .
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Then

x(1) := x(0) −
k−1
∑

i=1

ci · x(i,k)

is a solution of (8) with the last entry x (1)
k = 0. Repeating the argument to successively

eliminate coordinates produces an expression for x(0) as an integer linear combination
of the x(i, j), as desired. �


7.2.2 Column rebases

In this section and the next, we provide the building blocks necessary to produce an
explicit set of paths in Aλ that, when lifted to permutations, correspond to elements
in the monodromy group Gw and generate Gup

λ . By Remark 7.3 and Lemma 7.4, it
suffices to understand the situation in which we start with a column superstandard
tabloid. Thus, our constructions are adapted to this case.

It is convenient to work not with tabloids but with associated tableaux, filled with
equivalence classes modulo n, that arise by ordering the entries of each row into
columns. We use usual matrix coordinates to refer to entries of tableaux, so that (1, 3)
is the entry in the first (= top = longest) row and third column.

Our first construction, called a column rebase, is defined below; the definition is
illustrated in Example 7.15 and Fig. 17.

Definition 7.14 Suppose that T is a tabloid and ˜T is a corresponding tableau such that,
for some column indices c1, c2 and some nonnegative integers i, k, l, column c1 of
˜T is filled (in order from top to bottom) with the elements i + 1, i + 2, . . . , i + k + l
and column c2 is filled with the elements i + k + l + 1, i + k + l + 2, …, i + k + 2l.
Then the forward column rebase of type (i, k, l) of ˜T is the sequence of tableaux
(˜T = ˜T0,˜T1, . . . ,˜T(k+l)·l), where ˜Tj is formed from ˜Tj−1 by switching the elements
in positions ((k + l)m − j + 1, c1) and (m, c2), where m = � j/(k + l)� is the unique
integer such that

(k + l) · (m − 1) + 1 ≤ j ≤ (k + l) · m.

We say that the reversed sequence is the backward column rebase of ˜T ′ := ˜T(k+l)·l .
The forward column rebase of T is the sequence of tabloids that we get by forgetting
the row orders in every tableau in the forward column rebase of ˜T , and similarly for
the backward column rebase of the tabloid T ′ associated to ˜T ′.

Example 7.15 Below is a forward column rebase of type (6, 2, 2). The affected columns
are the first and third ones.

7 6 2
8 4 3
9 5
1

→
7 6 1
8 4 3
9 5
2

→
7 6 9
8 4 3
1 5
2

→
7 6 8
9 4 3
1 5
2

→
8 6 7
9 4 3
1 5
2
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Fig. 17 Sequence in which exchanges are to be performed

→
8 6 7
9 4 2
1 5
3

→
8 6 7
9 4 1
2 5
3

→
8 6 7
1 4 9
2 5
3

→
9 6 7
1 4 8
2 5
3

Proposition 7.16 In the forward column rebase (T0, . . . , T(k+l)·l) of type (i, k, l) of
the tabloid T0, every two consecutive tabloids are either equal or connected by a Knuth
move.

Proof Let (˜T0, . . . ,˜T(k+l)·l) be the associated sequence of tableaux, and let c1 and
c2 be the indices of the relevant columns. Choose j ∈ [1, (k + l) · l] and write
j = (k + l) · (m − 1) + j ′ for integers m, j ′ with 1 � m � l and 1 � j ′ � k + l. It
is straightforward to show by induction that column c1 of tableau ˜Tj consists of the
entries

i + m, i + m + 1, . . . , i + m + k + l − j ′ − 1,

i + m + k + l − j ′ + 1, i + m + k + l − j ′ + 2, . . . , i + m + k + l

in order from top to bottom, while column c2 consists of the entries

i + 1, i + 2, . . . , i + m − 1, i + m + k + l − j ′,
i + m + k + l + 1, i + m + k + l + 2, . . . , i + k + 2l.

The last swap taken was between the entries i + m + k + l − j ′ and
i + m + k + l − j ′ + 1 in positions (k+l− j ′+1, c1) and (m, c2). If k+l− j ′+1 = m
then the corresponding tabloids are equal. If k + l − j ′ + 1 > m then τ(Tj−1)

includes i + m + k + l − j ′ − 1 but not i + m + k + l − j ′ while τ(Tj ) includes
i + m + k + l − j ′ but not i + m + k + l − j ′ − 1, and so the swap is a Knuth
move. Similarly, if k + l − j ′ + 1 < m then τ(Tj−1) includes i + m + k + l − j ′
but not i + m + k + l − j ′ + 1 while τ(Tj ) includes i + m + k + l − j ′ + 1 but not
i + m + k + l − j ′, and so the swap is a Knuth move. This completes the proof. �
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It follows from the preceding proof that in the final tabloid T(k+l)·l of a forward
column rebase, the shorter column c2 is filled (in order from top to bottom) with the
elements i + 1, i + 2, . . . , i + l while the longer column c1 is filled with the elements
i + l + 1, i + l + 2, …, i + k + 2l.

We now describe how weight changes under a column rebase. We will need two
pieces of notation.

Definition 7.17 Suppose we have a partition λ and a positive integer l � �(λ). Let
ul
col ∈ Z

�(λ) be the vector with 1 in the first l rows and 0 in the remaining rows. (There
will never be ambiguity about the shape λ, so we suppress it from the notation.)

The second piece is somewhat more involved. Consider a tableau ˜T of shape λ such

that one can apply a column rebase of type (i, k, l). Informally, the vector u
˜T ,l
disp keeps

track of how far 1 shifts in the process of a column rebase. If 1 does not lie in the

two columns of interest, define u
˜T ,l
disp := ul

col. If 1 does lie in one of these columns,
consider the cyclic order on the columns shown in Fig. 18. Let F be the set of l cells
following the cell containing 1 in this cyclic order, not including the cell itself, and

define u
˜T ,l
disp ∈ Z

�(λ) by

(

u
˜T ,l
disp

)

m
:= number of cells of F in row m.

Example 7.18 Consider the column rebase from Example 7.15, so l = 2. In this case
the collection F consists of the second and third cell in the first column. Thus

ul
col =

⎛

⎜

⎜

⎝

1
1
0
0

⎞

⎟

⎟

⎠

and u
˜T ,l
disp =

⎛

⎜

⎜

⎝

0
1
1
0

⎞

⎟

⎟

⎠

.

Proposition 7.19 Suppose T is a tabloid of shape λ to which one can apply a forward
column rebase of type (i, k, l), with associated tableau ˜T . Then the weight change
vector of the rebase is

ul
col − u

˜T ,l
disp.

Proof If 1 is not in either of the two columns involved in the rebase, then by Theo-
rem 3.11 the weight change is 0 at each step, as claimed. Otherwise, 1 lies somewhere
in the two columns of interest. There are three cases, depending on the position of 1;
these are pictured in Fig. 19. The three cases involve similar considerations, so we
provide a detailed analysis of just one of them.

Suppose that 1 is in the shorter of the two relevant columns in ˜T , i.e., the column
that does not contain i + 1, and let r be the index of the row in which it appears. (In
Fig. 19, this is the blue region; in Fig. 20, it corresponds to the right panel.) The
first (k + l) · (r − 1) steps of the column rebase do not involve the cell containing
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Fig. 18 A cyclic order on the
cells of two columns

Fig. 19 The cases for the
position of 1 in the proof of
Proposition 7.19

Fig. 20 The action of a forward column rebase on weights, depending on the initial position of 1

1, and so by Theorem 3.11 do not change the weight. In step (k + l) · (r − 1) + 1,
the entry 1 in row r is swapped with the entry n in row k + l; this adds 1 to ρr and
subtracts 1 from ρk+l . The next k + l − 1 swaps to do not involve the entry 1. Finally,
for m = 1, . . . , l − r , we have that in the mth remaining set of k + l swaps, the entry
1 begins in row k + l − m + 1, is swapped with the entry 2 in row r + m, and then
is swapped with entry n in row k + l − m. This last swap is the only one that affects
the weight ρ: it adds 1 to ρm+r and subtracts 1 from ρk+l−m . (This is illustrated in
Fig. 20.) The net effect of these additions is to add 1 to ρ in rows r , r + 1, . . . , l and
to subtract 1 from ρ in rows k + l, k + l − 1, . . . , k + r . This coincides exactly with

ul
col − u

˜T ,l
disp. �
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7.2.3 Column cycles

In this section, we make a second step towards explicit monodromy generators by
stitching column rebases together into longer paths in the KL DEG. Again, for the
terminological convenience of being able to talk about columns, we often deal with
tableaux.

Definition 7.20 Suppose λ is a partition and i ∈ Z. Let λ′ be the conjugate partition of
λ. The column superstandard tableau of shape λwith start i is the tableau with whose
first column contains in order from top to bottom the entries i, i + 1, . . . , i + λ′

1 − 1,

whose second column contains i + λ′
1, i + λ′

1 + 1, . . . , i + λ′
1 + λ′

2 − 1, and so on.

Note that our definition differs slightly from the usual one, in which there is only a
single column superstandard tableau of each shape (with start 1). For every column
superstandard tabloid, it is possible to assign the entries of each row to columns in
order to produce a column superstandard tableau, and forgetting the row assignments
in a column superstandard tableau leaves a column superstandard tabloid. An example
of a column superstandard tableau is given in Fig. 22.

Definition 7.21 Suppose T is the column superstandard tabloid of shape λ with start
i , and ˜T is the corresponding tableau. The forward column cycle of ˜T with respect to
column j is the following sequence of tableaux: it is the concatenation of the forward
column rebase of ˜T on the ( j − 1)-st and j-th columns, the forward column rebase
of the resulting tableau on the ( j − 2)-nd and j-th columns, etc., through a forward
column rebase on the first and j-th columns, followed by the reverse column rebase
on the j-th and λ1-th (last) columns, then the reverse column rebase on the j-th and
(λ1−1)-st columns, etc., through the reverse column rebase on the j-th and ( j +1)-st
columns.

The forward column cycle on T is the sequence of tabloids that one gets by forget-
ting the row orders in every tableau in the forward column cycle of ˜T . The reversed
sequences of tableaux and tabloids are called reverse column cycles.

Example 7.22 A forward column cycle of a tableau with respect to the second column
is shown below; the first step is a forward column rebase, and the latter two are reverse
column rebases:

10 3 7 9
11 4 8
1 5
2 6

→
3 10 7 9
4 11 8
5 1
6 2

→
3 9 7 2
4 10 8
5 11
6 1

→
3 7 11 2
4 8 1
5 9
6 10

.

Proposition 7.23 Forward column cycles are well defined. Furthermore, if ˜T is the
column superstandard tableau of shape λ and start i , then the last tableau in the
forward column cycle of ˜T is the column superstandard tableau of shape λ and start
i + λ′

j .
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Proof It is conceptually straightforward but notationally cumbersome to check by
induction that, after each rebase, every column consists of an interval in [n] and the
two columns that are relevant for the next rebase have entries that are related in the
appropriate way. We leave the details to the reader. �


Now we describe the effect of a column cycle on the weight. As before, we start by
introducing a vector tracking the displacement of 1. Suppose ˜T is a column superstan-
dard tableau of shape λ and k is an integer. Consider the cyclic order on the cells of λ

illustrated in Fig. 21: every cell not in the first row is followed by the cell directly above
it, the top cell in the first column is followed by the bottom cell in the last column,
and the top cell in every other column is followed by the bottom cell in the previous
column. Denote by F the collection of k cells following the cell of ˜T containing 1 in

this order. Define v
˜T ,k
disp ∈ Z

�(λ) by

(

v
˜T ,k
disp

)

m
:= number of cells of F in row m.

Example 7.24 Suppose ˜T is the column superstandard tableau of shape 〈4, 3, 22〉 with
start 10; it is shown in Fig. 22. The four cells following the cell with 1 are shown in

the figure with red squares. Thus v
˜T ,4
disp =

⎛

⎜

⎜

⎝

2
2
0
0

⎞

⎟

⎟

⎠

.

Proposition 7.25 Suppose T is a column superstandard tabloid of shape λ, with cor-
responding tableau ˜T . Consider performing a forward column cycle with respect to

Fig. 21 The cyclic order on the
partition 〈4, 3, 22〉

Fig. 22 The column
superstandard tableau of shape
〈4, 3, 22〉 with start at 10. The
four cells following 1 are boxed
in red
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the j-th column. Then the weight change vector is


wt = u
λ j ′
col − v

˜T ,λ′
j

disp .

Example 7.26 Consider the column cycle of Example 7.22. Computing the weight
change for the three column rebases via Proposition 7.19, the total weight change
vector is


wt =

⎛

⎜

⎜

⎝

0
0
0
0

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

−1
0
1
0

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

0
−1
0
1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−1
−1
1
1

⎞

⎟

⎟

⎠

.

On the other hand, the vector v
˜T ,4
disp was computed inExample 7.24. Sincewe are dealing

with the longest column, the vector u
λ′
1

col consists of all 1’s. Thus by Proposition 7.25,
the weight change is


wt =

⎛

⎜

⎜

⎝

1
1
1
1

⎞

⎟

⎟

⎠

−

⎛

⎜

⎜

⎝

2
2
0
0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−1
−1
1
1

⎞

⎟

⎟

⎠

.

Proof of Proposition 7.25 There are five cases, depending on where 1 is in the tabloid:
whether it is in the first λ′

j rows or not, and if so whether it is in the first column,
between column 1 and column j , in column j , or in a larger-numbered column. These
are illustrated in Fig. 23; we refer to them below by their color in this figure. (If j = 2,
the blue case does not occur; if j = 1, the blue and purple cases do not occur.)

The green case, when 1 is in a row lower than λ′
j , is the easiest one; in this case 1

is only involved in a single column rebase, and it is easy to see that u
˜T ,λ′

j
disp = v

˜T ,λ′
j

disp .
This gives the desired result.

In the blue case, when 1 is in the first λ′
j rows in a column between column 1

and column j , there are two column rebases affecting 1. The first one is of the kind

portrayed on the left of Fig. 20; in such a rebase, the vectors u
λ′

j
col and u

˜T ,λ′
j

disp are equal,
and so the weight does not change. In the second rebase, the shorter column involved
has length λ′

j . In addition, in this rebase the longer column is directly to the right of the

one in which 1 originally started; thus, u
˜T ,λ′

j
disp for the second rebase is equal to v

˜T ,λ′
j

disp .
This gives the desired result.

If 1 is in the purple region (so j > 1) then only one rebase affects the position of 1
and it is exactly the same as the second rebase of the blue case.

In the red and yellow cases, the position of 1 can be affected by more than two
column rebases, making these more complicated to analyze. These cases are very
similar, so we will only consider the yellow case in detail. Suppose that 1 begins in the
yellow region, say in column j ′ > j and in row r . Then the weight does not change
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Fig. 23 The cases in the proof of
Proposition 7.25

until the reverse rebase between column j and column j ′; during this rebase, 1 moves
from column j ′ to column j and remains in row r . What follows is several (possibly
none) reverse rebases during which 1 moves lower in column j : after the first one it
will be in row r + λ′

j ′−1, then in row r + λ′
j ′−1 + λ′

j ′−2, etc. Let j ′′ be the last column
for which the reverse rebase affects the weight. This can happen in one of two ways:
either j ′′ = j + 1 and the algorithm ends with 1 in column j , or the rebase transfers
1 into column j ′′, where it stays until the end. Let r ′′ be the final row of 1.

If 1 ends up in column j , then λ′
j � r ′′ = r + λ j+1 + · · · + λ j ′−1 and so by direct

examination of the cyclic order on cells of λ we have

u
λ′

j
col − v

˜T ,λ′
j

disp = u
λ′

j
col −

(

ur−1
col + u

λ′
j ′−1

col + · · · + u
λ′

j+1
col +

(

u
λ′

j
col − ur ′′−1

col

))

= ur ′′−1
col − u

λ′
j+1

col − u
λ′

j+2
col − · · · − u

λ′
j ′−1

col − ur−1
col .

Otherwise,

u
λ′

j
col − v

˜T ,λ′
j

disp = u
λ′

j
col − (u

λ′
j ′′

col − ur ′′−1
col ) − u

λ′
j ′′+1

col − u
λ′

j ′′+2
col − · · · − u

λ′
j ′−1

col − ur−1
col .

On the other hand, we can track the weight change at each stage of the column cycle
using Proposition 7.19. Since we are doing reverse column rebases, the contributions
from the col-vectors are negated relative to the proposition, and they sum to

−u
λ′

j ′
col − u

λ′
j ′−1

col − · · · − u
λ′

j ′′
col .

By tracking the position of 1 after each column rebase, we have that if 1 ends up in
column j , then the total contribution from the disp-vectors is

ur ′′−1
col +

(

u
λ′

j ′
col − ur−1

col

)

.
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If instead 1 ends up in column j ′′ �= j , this contribution is ur ′′−1
col +

(

u
λ′

j ′
col − ur−1

col

)

+

u
λ′

j
col. In both cases, the resulting weight change matches the computed value u

λ′
j

col −
v
˜T ,λ′

j
disp . �

Corollary 7.27 The weight change vectors associated to column cycles with respect to
different columns of the same length are equal.

7.2.4 Building monodromy group generators from column cycles

Consider the partition λ = 〈rm1
1 , . . . , rmk

k 〉. For 1 � i � k, let m′
i = m1 + · · · + mi

be the distinct part-sizes of λ′. Recall the space Gup
λ from Definition 7.7.

Theorem 7.28 Suppose λ is a partition and w is a permutation of shape λ. Then
Gw = Gup

λ .

Proof By Proposition 7.9, Gw ⊆ Gup
λ . We now prove the opposite containment. By

(7), there is a natural bijection between elements ofGup
λ and integer solutions (ai )1≤i≤k

of the equation
∑k

i=1 ai m′
i = 0. By Proposition 7.11, the solution set of this equation

is theZ-span of the vectors x(i, j) ∈ Z
k defined in Definition 7.10. Themap associating

an element of Gup
λ to a solution is obviously Z-linear, so it is sufficient to show that

v(i, j) := m′
i

gcd(m′
i , m′

j )
e′

j − m′
j

gcd(m′
i , m′

j )
e′

i

is an element of Gw.
As explained in Remark 7.3, by Lemma 7.4, we may restrict ourselves to the case

when Q(w) is column superstandard. Given such a tabloid T , consider the following
concatenation of column cycles in Aλ:

(1) a sequence of
m′

j

gcd(m′
i ,m

′
j )
reverse column cycles with respect to a column of size

m′
i , followed by

(2) a sequence of
m′

i
gcd(m′

i ,m
′
j )
forward column cycles with respect to a column of size

m′
j .

(By Corollary 7.27, it doesn’t matter which columns of the given lengths are selected.)
By Proposition 7.23, the final tabloid of this sequence of tabloids is equal to the initial
tabloid T , i.e., this sequence is a loop in Aλ. By Proposition 7.25, the weight change
vector associated to this loop is equal to


wt = − m′
j

gcd(m′
i , m′

j )
u

m′
i

col +
m′

j / gcd(m
′
i ,m

′
j )−1

∑

k=0

v
˜T +km′

i ,m
′
i

disp
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+
⎛

⎜

⎝

m′
i

gcd(m′
i , m′

j )
u

m′
j

col −
m′

i / gcd(m
′
i ,m

′
j )−1

∑

k=0

v
˜T +m′

i m′
j / gcd(m

′
i ,m

′
j )−km′

j ,m
′
j

disp

⎞

⎟

⎠
,

where by ˜T + m we mean the result of adding m to every entry of the tableau ˜T .
Observe that the two sums of disp-vectors cancel exactly: the reverse cycles and the

forward cycles deal with the same (multi)set of
m′

i m′
j

gcd(m′
i ,m

′
j )

consecutive cells in the

cyclic order. Thus


wt = m′
i

gcd(m′
i , m′

j )
u

m′
j

col − m′
j

gcd(m′
i , m′

j )
u

m′
i

col = m′
i

gcd(m′
i , m′

j )
e′

j − m′
j

gcd(m′
i , m′

j )
e′

i

= v(i, j).

Lifting this cycle from Aλ to the graph on permutations shows that v(i, j) ∈ Gw for
every 1 � i < j � k. This completes the proof. �


8 Components of KL DEGs

In this section, we finish the description of the Knuth equivalence classes of permuta-
tions by describing which tabloids can be reached from a given one by Knuth moves.
Using the machinery from the previous section, it is easy to see that certain column
superstandard tabloids are connected byKnuthmoves; together with the fact that every
Knuth class of tabloids contains a superstandard tabloid, this gives an upper bound on
the number of connected components. Then we use the charge statistic to produce a
matching lower bound.

Definition 8.1 For a partition λ, define

dλ := gcd(λ′
1, λ

′
2, . . . ),

where λ′ is the conjugate partition of λ. Equivalently, dλ is the greatest common divisor
of the multiplicities of parts of λ.

Recall that Aλ denotes the KL DEG of shape λ (see Definition 3.21).

Proposition 8.2 The number of connected components of Aλ is no larger than dλ.

Proof Column cycles are walks in Aλ that take a column superstandard tabloid to
another one, related by adding λ′

j to each entry for some j . Since dλ is a Z-linear
combination of the λ′

j ’s, two column superstandard tabloids that differ by dλ are in the
same connected component. By Lemma 7.4, every connected component of Aλ con-
tains a column superstandard tabloid, so there are at most dλ connected components.

�
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We seek to prove that this upper bound is in fact the correct value. Our proof makes
use of the charge statistic, which was partially introduced in Sect. 5.

Definition 8.3 Given a tabloid T of shape λ, extend Definition 5.3 of local charge by
defining lchi (T ) = 0 if λi �= λi+1. The charge of T is defined by

charge(T ) :=
�(λ)−1
∑

i=1

i · lchi (T ).

Remark 8.4 The definition of charge given here is not the conventional one (as in, e.g.,
[9, Sect. 5]). However, it is straightforward to see using Lemma 5.5 that our definition
of the charge of a tabloid T differs by a multiple of dλ from the conventional charge
of the word whose i-th letter is the index of the row of T containing i . In light of the
statement of Theorem 8.6 below, this is sufficient for our purposes, and the present
definition is easier to work with.

Before finishing the description of the connected components of Aλ, we need a
lemma regarding the charges of column superstandard tabloids.

Lemma 8.5 Suppose λ is a partition of n and 1 � i � n. Let T be the column
superstandard tabloid of shape λ starting at i , and T ′ be the column superstandard
tabloid of shape λ starting at i + 1. Then charge(T ′) ≡ charge(T ) − 1 (mod dλ).

Proof By construction, all the local charges for a column superstandard tabloid are
0, except if n is located in the row directly above the row containing 1 and the two
rows have the same size, in which case the local charge is 1. If n is in row r of T and
λr−1 = λr = λr+1 then charge(T ) = r + 1 and charge(T ′) = r , and the result holds.
If λr−1 = λr > λr+1 or if r = �(λ) then charge(T ) = 0 and charge(T ′) = r − 1.
In this case, r = λ′

i for some i , so r ≡ 0 (mod dλ) and the result holds. Similar
considerations apply if λr−1 < λr = λr+1 or if r = 1. Finally, if λr−1 < λr < λr+1
then dλ = 1 and the result is trivial. �

Theorem 8.6 Let λ be a partition and suppose T and T ′ are tabloids of shape λ. Then
T and T ′ are in the same connected component of Aλ if and only if

charge(T ) ≡ charge(T ′) (mod dλ).

Proof We will show that if T and T ′ are two tabloids of shape λ connected by a
Knuth move, then charge(T ) ≡ charge(T ′) (mod dλ). The “only if” direction of the
claimed result follows immediately by induction. The “if” direction then follows using
Proposition 8.2 and Lemma 8.5.

Suppose the Knuth move between T and T ′ exchanges the entries i and i + 1;
without loss of generality, we may assume that i is in a higher row of T than i + 1.
We consider two cases, depending on the value of i .

Case i �= n. In this case, i and i + 1 are either both larger or both smaller in broken
order than each other entry in the tabloid. Thus, if these entries lie in non-adjacent
rows then the local charge between each pair of adjacent rows is the same in T and T ′,
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and so charge(T ) = charge(T ′). Suppose instead that i and i + 1 lie in adjacent rows
r , r + 1. The only local charge that could differ between T and T ′ is lchr , and so the
only interesting case is when λr = λr+1. Moreover, the only way the local charge lchr

could differ between T and T ′ is if i is matched with i + 1 in the charge matching in
T . By Lemma 5.5, the local charge does not depend on the activation ordering, so it
suffices to produce an activation ordering for T in which i is not matched with i + 1.

In order for the swap of i and i + 1 to be a Knuth move, the descent sets τ(T ) and
τ(T ′)must be incomparable. This is possible only if Tr contains i − 1 or Tr+1 contains
i + 2 (or both). Suppose first that Tr contains i − 1. In this case, take an activation
ordering that begins with i − 1: if i �= 1, then i + 1 is the smallest value larger than
i − 1 in broken order, so (i − 1, i + 1) belongs to the charge matching; if i = 1 then
i − 1 = n matches to the smallest element of T2, which is 2 = i + 1. Since i − 1
matches with i + 1 in both cases, i does not, as needed.

Now suppose instead that Tr+1 contains i + 2. In this case, take an activation
ordering that ends with i : if i �= n − 1 then i + 2 gets matched strictly after i + 1
does, so i + 1 is matched to something earlier that i ; if i = n − 1 then the second row
contains i + 2 = 1, which again gets matched strictly after i + 1 = n. In both cases,
i does not match to i + 1, as needed.

Case i = n. Suppose that n is in row r1 in T and 1 is in row r2 > r1. Then lch j (T ) =
lch j (T ′) for every j /∈ {r1−1, r1, r2−1, r2}, and so the charge difference charge(T )−
charge(T ′) depends only on those four or fewer local charges. For convenience, define

 j := j lch j (T )− j lch j (T ′). We have numerous possible cases to consider: whether
or not λ j = λ j+1 for each j ∈ {r1 − 1, r1, r2 − 1, r2}, and whether r2 = r1 + 1 or not.

Suppose that λr1−1 = λr1 . Then we have by Lemma 5.11 that lchr1−1(T ) =
lchr1−1(T ′) − 1, and so 
r1−1 = 1 − r1. If instead λr1−1 < λr1 or r1 = 1 then
r1 ≡ 1 (mod dλ) and so 
r1−1 = 0 ≡ 1 − r1 (mod dλ) in this case as well.

It is not hard to modify the proof of Lemma 5.11 to the situation in which the largest
and smallest elements are swapped out of the top, rather than bottom, row; it follows
from this modified lemma and an argument identical to the preceding paragraph that

r2 ≡ −r2 (mod dλ).

Suppose now that rows r1 and r2 are not adjacent, so that Tr2−1 = T ′
r2−1. If λr2−1 =

λr2 then byLemma5.11we have lchr2−1(T ′) = lchr2−1(T )−1, and so
r2−1 = r2−1.
As before, if λr2−1 > λr2 then r2 ≡ 1 (mod dλ) and so
r2−1 = 0 ≡ r2−1 (mod dλ)

in this case as well. Similarly, as in the preceding paragraph we have 
r1 ≡ r1
(mod dλ).

Combining the results of the previous three paragraphs, when r1 < r2 − 1 we have
that

charge(T ) − charge(T ′) = 
r1−1 + 
r1 + 
r2−1 + 
r2 ≡ (1 − r1)

+r1 − r2 + (r2 − 1) ≡ 0 (mod dλ),

as claimed.
In the remainder of the proof, we consider the case that r := r1 is equal to r2 − 1,

so that 1 and n lie in adjacent rows in T and T ′. In this case, there are (at most) three
contributions to the charge difference: charge(T )−charge(T ′) = 
r−1+
r +
r+1.
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Fig. 24 Activation orders used in the proof of Theorem 8.6 in the case that n and 1 are swapped and lie in
adjacent rows. Black numbers are tabloid entries; black ∗’s represent entries whose values are irrelevant;
and red numbers represent the activation order

The analyses of the second and third paragraphs of the case i = n still apply in this
setting, giving 
r−1 ≡ 1 − r and 
r+1 ≡ −1 − r modulo dλ.

First, suppose that λr > λr+1. Then
r = 0, and so
r−1+
r +
r+1 ≡ −2r ≡ 0
(mod dλ), as needed.

Second (and last), suppose thatλr = λr+1 =: k.We claim that lchr (T )−lchr (T ′) =
2. Since the swap of n and 1 is a Knuth move, either n − 1 is in row r of T or 2 is in
row r + 1. We use different activation orders depending on which situation we are in;
they are illustrated in Fig. 24. We analyze the case when n − 1 is in row r (the top half
of the figure). Since the other case is similar, we omit the details, but we do provide
the relevant illustration in the bottom half of the figure.

In T , we use the activation order that begins with n first, then proceeds through the
other values in some order, then ends with n − 1. With this ordering, n matches with
1 in row r + 1 and contributes 1 to the local charge. The next k − 2 entries match in
some order to k − 2 of the elements in row r + 1. Finally, in the last activation in T ,
n − 1 contributes 1 to the local charge (since the only entry of T larger than n − 1
is n, and it is not in row r + 1). In T ′, we use the order that begins with n − 1, then
proceeds through the other values in the same order as in T , then ends with 1. With
this activation ordering, n − 1 matches to n in row r +1 and does not contribute to the
local charge. At this point, the unmatched entries in row r + 1 of T ′ are exactly the
same as the unmatched entries in row r +1 of T after the first pair are matched; hence
the next k −2 edges of the charge matching are exactly the same in T ′ as in T , with the
same contribution to charge. Finally, the last match is between 1 and something larger
in broken order, with no contribution to local charge. Thus indeed the local charge
between these rows is 2 less for T ′.

Putting everything together, we have in this case that 
r = 2r and so

charge(T ) − charge(T ′) = 
r−1 + 
r + 
r+1 ≡ (1 − r) + 2r + (−1 − r)

= 0 (mod dλ),

as claimed. This completes all cases. �


123



Monodromy in Kazhdan–Lusztig cells in affine type A

One interesting corollary is that we can determine exactly when a Kazhdan–Lusztig
cell consists of a single Knuth equivalence class.

Corollary 8.7 The Kazhdan–Lusztig cell containing the permutation w consists of a
single Knuth equivalence class if and only if the shape λ of w has all rows distinct.

Proof Choose a permutationw ∈ ˜Sn of shapeλ. Ifλ has a repeated part, sayλr = λr+1,
then by Theorem 7.28, the difference ρ(w′)r −ρ(w′)r+1 is the same for everyw′ in the
Knuth equivalence class ofw. However, from the definition of�dom, this is not the case
for every w′ in the same Kazhdan–Lusztig cell as w. Thus distinct rows is a necessary
condition. On the other hand, if all rows of λ are distinct then by Theorem 8.6, the
Knuth class contains permutations with every possible Q-tabloid of shape λ, and by
Theorem 7.28, for each Q-tabloid the Knuth class contains permutations with every
possible weight vector ρ. Thus in this case the Knuth class is equal to the Kazhdan–
Lusztig cell. �

Remark 8.8 The results of this section combined with Proposition 6.1 imply that the
action of the shift permutation s = [2, 3, . . . , n, n +1] on tabloids of shape λ provides
graph isomorphisms between the dλ connected components of Aλ.

9 Crystals

In this section, we briefly describe a connection to affine crystals that is suggested by
the importance of the charge statistic; the finite version of the connection has been
developed by Assaf [2]. We use notation for affine crystals from [20, Sect. 4], except
we label crystal operators fi and ei by residue classes modulo n as opposed to by the
representatives of these classes from {0, 1, . . . , n − 1}.

There is a reading word map RW from the set of tabloids of shape λ =
〈λ1, λ2, . . . , λ�〉 to the set of vertices of B := B1,λ� ⊗ B1,λ�−1 ⊗ · · · ⊗ B1,λ1 : it
reads the rows from bottom to top and takes representatives in [n] for all residue
classes. For example,

RW

⎛

⎜

⎜

⎝

2 3 7
1 4
5
6

⎞

⎟

⎟

⎠

= 6 ⊗ 5 ⊗ 1 4 ⊗ 2 3 7 .

The image of this map is precisely the set of vertices of B where each element of [n]
is used exactly once; call this set of vertices V . For i ∈ [n], let Ki be the composition
of crystal operators ei ei+1 fi fi+1.

Proposition 9.1 Suppose T and T ′ are tabloids of the same shape. Then T and T ′ are
connected by a Knuth move if and only if RW (T ) �= RW (T ′) and the two reading
words are connected by some Ki .

Proof sketch Suppose T and T ′ are connected by a Knuth move that exchanges i and
i + 1; without loss of generality i /∈ τ(T ). Suppose i is in row k of T and i + 1 is in
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row �; so k > �. Since the exchange of i and i + 1 is aKnuthmove, we know that either
i − 1 lies in a row weakly below � and strictly above k, or i + 2 lies in a row strictly
below � and weakly above k. We treat the first of these cases; the second is identical.
One easily checks by definition of the crystal operators that Ki−1(RW (T )) = RW (T ′)
(the computation depends on whether i = 1, i = n, or neither).

Now suppose that RW (T ) �= RW (T ′) and Ki (RW (T )) = RW (T ′). One needs to
check that whatever the positions of (the representatives in [n] of) i , i + 1 and i + 2
in RW (T ), the result of the action by Ki yields either the reading word of a tabloid
related to T by a Knuth move, or RW (T ) again, or some vertex of B that is not in V .
The computation depends on whether i = n, i = n − 1, or neither. �


Finally, we give a simple application of the crystal connection. Notice that the
definition of KL DEGs Aμ does not rely on the shape μ being a partition.

Proposition 9.2 Suppose μ is a composition and λ is the partition formed from μ by
sorting. Then there is a graph isomorphism ϕ : Aλ → Aμ.

Proof It is sufficient to show that Aμ is isomorphic to Aμ′ whereμ′ is obtained fromμ

by switching two adjacent parts. By [20, Thm. 4.8], there is an isomorphism between
B1,r ⊗ B1,s and B1,s ⊗ B1,r for any r and s (it is called the combinatorial R-matrix).
Moreover, the explicit description of this morphism in the same section shows that it
preserves the number of times each letter appears in the tableaux. Applying this mor-
phism to two adjacent factors of B and pulling back the results using Proposition 9.1
(which also does not rely on the shape being a partition) finishes the proof. �
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