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Fock and Goncharov introduced a family of cluster algebras 
associated with the moduli of SLk-local systems on a marked 
surface with extra decorations at marked points. We study 
this family from an algebraic and combinatorial perspective, 
emphasizing the structures which arise when the surface has 
punctures. When k = 2, these structures are the tagged arcs 
and tagged triangulations of Fomin, Shapiro, and Thurston. 
For higher k, the tagging of arcs is replaced by a Weyl group 
action at punctures discovered by Goncharov and Shen. We 
pursue a higher analogue of a tagged triangulation in the 
language of tensor diagrams, extending work of Fomin and 
the second author, and we formulate skein-algebraic tools for 
calculating in these cluster algebras. We analyze the finite 
mutation type examples in detail.
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1. Introduction

The aim of cluster combinatorics is to identify, in a particular cluster algebra of 
interest, a labeling set for all of the cluster variables and a rule which specifies when two 
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such cluster variables are compatible in the sense of residing in the same cluster. With 
these rules uncovered, one knows the cluster monomials, a certain subset of a “canonical” 
basis for the cluster algebra. Contrary to the name, there are several constructions of 
canonical bases valid in various settings, e.g. the dual canonical, dual semicanonical, 
generic, Satake, and theta bases. These bases do not all coincide with one another, but 
it is believed, and in some instances proved, that each of these bases contains the cluster 
monomials.

The cluster algebras from surfaces [9] have been very widely studied, perhaps espe-
cially because their cluster combinatorics is completely understood. The story is very 
clean when the underlying marked surface S has no punctures. In this case, cluster 
variables in the associated cluster algebra A (S) are labeled by isotopy classes of arcs 
connecting marked points in S. Two cluster variables are compatible exactly when their 
corresponding arcs are noncrossing. The clusters are the maximal sets of noncrossing 
arcs, i.e. the ideal triangulations of S.

When S has punctures, the above description captures certain clusters in A (S), but 
not all of them. Fomin, Shapiro and Thurston identified the combinatorial wrinkle closing 
this gap. Each end of an arc which is at a puncture, i.e. not at a marked point on the 
boundary, needs to be tagged as either a plain or notched end. There is a compatibility 
notion for tagged arcs – the arcs themselves should be noncrossing and their taggings 
must satisfy some extra conditions. A tagged triangulation is a maximal set of pairwise 
compatible tagged arcs. With these notions in place, one has that the cluster variables in 
A (S) are exactly the tagged arcs and the clusters are exactly the tagged triangulations. 
(We exclude here the exceptional case of once-punctured closed surfaces.)

The above cluster algebras A (S) fit into a broader family of cluster algebras A (G, S)
indexed by a choice of surface S and simple Lie group G. Clusters in A (G, S) provide 
rational coordinate charts on the moduli space of decorated G-local systems on S and 
are part of an approach to Higher Teichmüller theory of S. These cluster algebras were 
introduced by Fock and Goncharov in type A [6] and extended to other Lie types in 
[24,16]. They include the aforementioned A (S) in the special case A (S) = A (SL2, S).

The cluster algebras A (SLk, S) (and their dual “X -space”) recover important struc-
tures in representation theory, for example the Knutson-Tao hive polytopes, the 
Schützenberger involution on semistandard Young tableaux, and the quantum group 
with its braid group action, see e.g. [15,14,16,20,31,26]. The cluster combinatorics of 
these cluster algebras is much more wild once k > 2 and is not yet well understood.

This paper presents conjectures and theorems concerning cluster combinatorics of 
A (SLk, S). We focus on the structures which arise when S has punctures, i.e. on the 
higher rank generalizations of tagged arcs and tagged triangulations. We now summarize 
our results and conjectures in a different order than they appear in the body of the paper. 
We use the following standard notations: T , P , and W for a maximal torus in G with its 
weight lattice and Weyl group; [k] := {1, . . . , k} and 

([k]
a

)
for the collection of a-subsets 

drawn from [k]; fλ for the number of standard Young tableaux of shape λ; Sg,h for the 
closed genus g surface with h punctures.
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One expects a connection between the cluster algebra A (G, S) and a related commu-
tative algebra Sk(G, S), the G-skein algebra on S. For example, when k = 2 and S has no 
punctures, one has A (S) ⊆ Sk(SL2, S) and this containment is typically an equality [28]. 
As a vector space, Sk(G, S) consists of formal linear combinations of G-tensor diagrams
modulo the G-skein relations. A tensor diagram is a certain graph drawn on S with edges 
labeled by fundamental G-weights. A contractible piece of a G-tensor diagram encodes 
a map between tensor products of fundamental G-representations and G-skein relations 
capture the linear relations between such maps. Multiplication in Sk(G, S) is induced by 
superposition of diagrams. The invariant [T ] encoded by a diagram T is its class in the 
skein algebra.

Tensor diagram calculus when G = SL2 is classical and involves arcs and Ptolemy 
relations. The calculus for rank two groups G was pioneered in [23] and is very rich while 
still being tractable. For S with no punctures, Fomin and the second author put forth 
precise and as yet unproved conjectures formulating cluster combinatorics of A (SL3, S)
in terms of SL3 tensor diagram calculus [8,7]. See [30,11,13,18,4,21] for subsequent work 
furthering this viewpoint.

Any element of the skein algebra is a linear combination of planar diagram invariants. 
The conjectures from [8,7] predict more strongly that each cluster monomial is an invari-
ant of a planar tensor diagram. This way of encoding a cluster variable is more compact 
than a Laurent polynomial expansion with respect to a particular seed, and moreover is 
independent of such a choice of seed. The conjectures also predict which planar invari-
ants are cluster monomials. Tensor diagram calculus becomes more cumbersome when 
k > 3, but we expect that variations on these recipes still hold. At a first pass, one can 
think that the higher rank generalization of an “arc” is a planar tensor diagram.

Goncharov and Shen [14] identified the higher rank generalization of tagging clus-
ter variables at punctures: if S has h many punctures, then there is an action of the 
h-fold product of Weyl groups 

∏h
i=1 W on the cluster algebra A (SLk, S) by cluster au-

tomorphisms. We define a tagged tensor diagram invariant as the pullback of a diagram 
invariant [T ] along this action. These serve as the higher rank generalization of tagged 
arcs. When k = 2, one has W = Z/2Z and the action interchanges plain and notched 
tags at punctures. Not every tagged tensor diagram invariant is a cluster variable al-
though we expect that the converse of this statement is true. In this paper, we address 
the question of when two tagged diagram invariants, each of which is a cluster variable 
in A (SLk, S), are compatible.

We introduce the class of pseudotagged tensor diagrams (T, ϕ), a pair consisting of an 
SLk tensor diagram T and a pseudotagging function ϕ. The edges e in a tensor diagram 
are labeled by fundamental weights, or equivalently by integers wt(e) drawn from [k−1]. 
The function ϕ is a choice of subset ϕ(e) ∈

( [k]
wt(e)

)
(that is, of a point in the W -orbit of 

the fundamental weight ωwt(e)) for every edge e which is incident to a puncture. When 
k = 2 every edge has weight 1 and the two possible values of ϕ correspond to plain or 
notched tagging.
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By appropriately incorporating the 
∏

i W action at punctures, a pseudotagged 
diagram (T, ϕ) encodes an invariant [(T, ϕ)] in the fraction field of the skein algebra. 
A pseudotagged diagram is tagged provided it satisfies the following additional condition: 
for any edges e and e′ ending at the same puncture, one has ϕ(e) ⊆ ϕ(e′) or ϕ(e′) ⊆ ϕ(e). 
This extra condition is equivalent to requiring that [(T, ϕ)] is the pullback of [T ] along 
the Weyl group action at punctures. When k = 2, an example of a diagram which is 
pseudotagged but not tagged is given by a loop based at a puncture with one of its ends 
plain and the other end notched. Another example is a union of two arcs whose taggings 
disagree at a puncture.

The seemingly exotic class of pseudotagged tensor diagram invariants is natural for 
the following reason. Multiplication of invariants is implemented by superposition of 
diagrams in the sense that [T1][T2] = [T1 ∪ T2], and such a superposition is typically 
pseudotagged but not tagged.

Our first result (the “flattening theorem” Theorem 9.1) clarifies the relationship be-
tween these two classes of diagram invariants: any pseudotagged diagram invariant is 
a Q-linear combination of tagged diagram invariants. In particular, the vector space 
spanned by tagged diagram invariants is an algebra. We expect that this algebra coin-
cides with the (upper) cluster algebra A up(SLk, S) in most cases.

The proof of the flattening theorem is constructive: we identify an algebraic relation 
between pseudotagged diagram invariants and show that repeated application of this 
algebraic relation “flattens” any pseudotagged diagram invariant into a linear combina-
tion of tagged diagram invariants. The Q-coefficients appearing in the flattening relation 
have binomial coefficients in their numerator and the fλ’s in their denominator. Certain 
exchange relations in A (SLk, S) are instances of the flattening relation, and we expect 
that every exchange relation is a consequence of the skein relations together with the 
flattening relations. Fig. 8 illustrates a typical application of the flattening relation in 
terms of tensor diagrams.

Our first main cluster combinatorics conjecture (Conjecture 8.18) asserts that every 
cluster monomial in A (SLk, S) is the invariant of a planar tagged diagram and also of a 
tagged diagram with no cycles on interior vertices. This conjecture extends those from 
[8,7] to higher rank, and more novelly to surfaces with punctures.

Our second main cluster combinatorics conjecture (Conjecture 8.20) posits a necessary 
and sufficient condition for a product of tagged tensor diagram invariants, each of which 
is a cluster variable, to determine a cluster monomial. For example, consider a set of 
cluster variables given by taggings (T, ϕi) of the same underlying tensor diagram T and 
whose tagging functions ϕi only disagree on a single edge e of T incident to some puncture 
p. Then we conjecture that the product of these variables is a cluster monomial. This 
conjecture is a higher rank version of the Fomin-Shapiro-Thurston compatibility rule for 
tagged arcs.

Our second result (the “spiral theorem” Theorem 9.6) is a skein-algebraic sense in 
which our two conjectures are consistent with one another. Consider a set of variables 
[(T, ϕi)] as in the preceding paragraph. The union of these diagrams is pseudotagged 
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and not tagged. Conjecture 8.20 predicts that the corresponding pseudotagged invariant ∏
i[(T, ϕi)] is a cluster monomial. Hence, by Conjecture 8.18, it should be the invariant of 

a tagged diagram with no interior cycles and also of a tagged planar diagram. The spiral 
theorem confirms the first of these expectations, and establishes the second expectation 
in a weak sense: we show that 

∏
i[(T, ϕi)] can be given by a tagged diagram which is 

“planar nearby the puncture p” in a certain sense. We give a stronger planarity statement 
when k = 3 in Proposition 9.11. We note that while the spiral theorem is motivated by 
our cluster combinatorics conjectures, the theorem itself is purely skein-theoretic. Fig. 9
illustrates the pictures underlying the spiral theorem.

Heading in a different direction, we turn our attention from the delicate setting of ten-
sor diagram calculus towards a coarser setting which nonetheless captures some essential 
features of A (SLk, S). When k = 2, this means forgetting the topological information 
encoded in a tagged arc and remembering only how many ends it has at each puncture 
and how the ends are tagged. This data is the weight of the corresponding cluster vari-
able with respect to a natural algebraic torus action on A (S). One can parse clusters 
in a similar way. At an even coarser level, each cluster comes in one of three flavors at 
any puncture p: either all arcs are plain at p, all are notched at p, or there is exactly one 
plain and one notched arc at p.

One might think that the tagging formalism is an unfortunate departure of cluster 
algebra theory from more aesthetically pleasing notions such as arcs and triangulations. 
To the contrary, tagging is the key ingredient in three notable phenomena in cluster 
algebra theory [9, Sections 9 and 10]. Namely:

• Each algebra A (Sg,1) does not admit a reddening sequence; the g-vector fan is 
contained in a half-space.

• The exchange graph of each A (Sg,2) admits a “long cycle,” i.e. an element of its 
fundamental group which is not a product of the 4- and 5-cycles coming from finite 
type rank 2 cluster subalgebras.

• The cluster complex of each A (Sg,h) is homotopy equivalent to an (h − 1)-sphere, 
providing an example of an infinite cluster type whose cluster complex is not con-
tractible.

These three phenomena rely heavily on the coarse structures alluded to above. The first 
relies on the fact that in order to pass from a tagged triangulation which is plain at p to 
one that is notched at p by mutations, we must pass through one that is both plain and 
notched at p as an intermediate step. The second relies on this, and also on the fact that 
when S = Sg,2 (or more generally when S = Sg,h), a tagged triangulation cannot have a 
plain and notched arc at every puncture. For the third, consider a sign vector ε = {±1}h
indicating a choice of plain or notched at each puncture. It determines a subcomplex 
Xε of the cluster complex, namely the subcomplex on the tagged arcs whose tagging at 
every puncture weakly agrees with ε. Then Xε, moreover any intersection of these, is 
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contractible, so that the cluster complex is homotopy equivalent to the h-cube by the 
nerve lemma from topology.

We propose higher analogues of these coarse structures with a view towards under-
standing the topology of the cluster complex and exchange graph of A (SLk, S). We 
introduce decorated ordered set partitions of [k], namely an ordered set partition with a 
choice of sign for each block of cardinality at least three. We call them dosp’s for short. 
We propose that a dosp at p is the higher rank generalization of the three flavors of 
tagged triangulation at p from above.

We also study the possible weights of clusters in A (SLk, S) with respect to the natural 
T -action at each puncture. We call such a set of weights a P -cluster. The mutation rule 
for P -clusters is linear algebra with integer vectors and can easily be experimented with 
by hand or on a computer.

Our third main conjecture (Conjecture 5.4) proposes a necessary condition which any 
P -cluster must satisfy. It is a combinatorial shadow of our second cluster combinatorics 
conjecture from above. By the good part of the exchange graph, we mean those clusters 
which can be reached from the initial seed by mutations which never violate Conjec-
ture 5.4. Our expectation is that this good part is in fact the entire exchange graph.

Our third main result (developed in Sections 6 and 7) associates a dosp at each 
puncture to any cluster in the good part of the exchange graph. The construction depends 
only on the P -cluster, i.e. not on the cluster variables themselves. We identify a mutation 
operation on dosp’s which models mutation of clusters: performing a mutation in the 
good part of the exchange graph changes at most one of the dosps at the punctures and 
does so by a dosp mutation. When k = 2, this mutation operation captures the first fact 
from above, i.e. that we cannot pass from plain at p to notched at p by a mutation. We 
show moreover that every dosp mutation “comes from” a mutation of clusters when ∂S
carries at least two boundary points.

To broaden our family of examples, we introduce a “Grassmannian version” of the 
Fock-Goncharov moduli space. In this version, marked points on boundary components 
are decorated by vectors rather than by affine flags. We use primes A ′(SLk, S) to denote 
the Grassmannian version of the cluster algebra. All results and conjectures in this paper 
work equally well for both versions A (SLk, S) and A ′(SLk, S) of the cluster algebra.

As a fourth result, we explore our conjectures for those A (SLk, S) and A ′(SLk, S) of 
finite mutation type. Building on prior work and some coincidences, there are only three 
cluster algebras which need to be understood. Each of these is an A ′(SLk, S), either 
when S is a once-punctured digon and k = 3 or 4 or when S is a once-punctured triangle 
and k = 3. In each case, we prove that any cluster can be moved to a finite set of clusters 
modulo the action of some explicit quasi cluster automorphisms using the ideas from [11, 
Section 10]. We carry out the needed finite check in the two k = 3 examples, verifying 
all of our conjectures in these cases. We view the success of these calculations in the 
k = 3 case as further evidence in support of the conjectures from [8,7]. The finite check 
required in the k = 4 case is lengthy and we did not carry it out.
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Fifth and finally, we prove that the Weyl group action on A (SLk, Sg,1) is cluster when 
k > 2. This case was left open in [14,16]. Modulo some missing extra details, one can 
conclude that the Donaldson-Thomas transformation on A (SLk, Sg,1) is cluster when 
k > 2.

The paper is organized as follows.
Sections 2 through 4 provide background with some new definitions and results as 

needed to fill in gaps. Section 2 collects standard background on type A combinatorics, 
cluster algebras, and cluster algebras from surfaces. It ends with a discussion of P -
clusters, which is not a new notion although our terminology is. Section 3 recalls the 
Fock-Goncharov moduli space, introduces its Grassmannian cousin, and discusses cluster 
algebras associated to both moduli spaces. Section 4 recalls the Weyl group action at 
punctures and proves that this action is cluster in the case of A ′ and also when S = Sg,1
and k > 2.

Sections 5 through 7 concern the possible weights of cluster variables at punctures. 
Section 5 introduces a compatibility notion for weight vectors and states our main con-
jecture concerning P -clusters. Section 6 explains that when this P -cluster conjecture 
holds, then one can associate a dosp at every puncture to a cluster. It also shows that 
mutation of clusters induces a mutation of dosps. Section 7 studies the extent to which 
every dosp mutation is induced by a mutation of clusters. The answer is sensitive to the 
chosen surface S.

Sections 8 and 9 concern tensor diagram calculus and its pseudotagged version. Sec-
tion 8 introduces tensor diagrams and skein relations, pseudotaggings and taggings, and 
states our two main cluster combinatorics conjectures. Section 9 states and proves the 
flattening and spiral theorems and discusses the special case k = 3.

Section 10 discusses the finite mutation type examples.
Acknowledgements. We thank Ian Le, Greg Muller, Linhui Shen, and David Speyer 

for conversations which inspired parts of this work. We thank the referees for helpful sug-
gestions and for spotting errors in our original proofs of Lemma 3.7 and Proposition 5.6.

2. Background

We collect background on cluster algebras, aspects of type A combinatorics, cluster 
algebras from surfaces, and P -clusters. All but the last of these is standard.

Convention. Throughout the paper we use the notation M when we have fixed in 
mind one of the two possible versions of moduli space of decorated G-local systems. As 
we will explain, the symbol M implicitly requires that one has made a choice of marked 
surface S, type A complex simple Lie group G = SLk for some k, and style of decoration 
at boundary points, either by affine flags (the “Fock − Goncharov version” of the moduli 
space) or by vectors (“the Grassmannian version”).

With such an M fixed, we use the notation A (M) for the associated cluster algebra 
defined below. We use primes A (G, S) versus A ′(G, S) to distinguish between the Fock-
Goncharov and Grassmannian versions of the cluster algebra when this is needed.
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2.1. Cluster algebras

We assume familiarity with the construction of a cluster algebra and upper cluster 
algebra from an initial seed inside an ambient field of rational functions, and with the 
terminology of mutable and frozen variables, clusters, cluster monomials, cluster com-
plex, and exchange graph. Two cluster variables are compatible when they reside in the 
same cluster, i.e. when their product is a cluster monomial. The cluster type is the 
underlying mutation pattern of mutable subquivers.

A cluster automorphism is an algebra automorphism which separately permutes the 
mutable and frozen variables while preserving the clusters. The cluster modular group can 
be defined as the cluster automorphism group of the cluster algebra once frozen variables 
are specialized to 1. A quasi cluster automorphism is a looser notion of automorphism of 
cluster algebra which allows for “rescalings” of cluster and frozen variables by Laurent 
monomials in frozen variables [12].

We assume familiarity with the related constructs of reddening sequences, maximal 
green sequences, and cluster Donaldson-Thomas transformations. The first of these is a 
mutation sequence which reaches the cluster variables whose g-vectors are the negative 
of the g-vectors of the initial cluster variables, the second is a restricted class of such 
sequences in which each mutation is “positive” in a certain sense, and the third is a quasi 
cluster automorphism which can be computed by a reddening mutation sequence.

2.2. Marked surfaces and triangulations

Let S = (S, M) be an oriented marked surface [9]. The set of marked points M

decomposes into the set of punctures M◦ := M ∩ int S and the set of boundary points
M∂ := M ∩∂S. Denote by Sg,h the oriented closed genus g surface with h punctures and 
by Dn,h the n-gon with h punctures.

We henceforth exclude the following surfaces which have no ideal triangulations: the 
sphere with 2 or fewer punctures and the unpunctured monogon or digon. We also 
exclude the once-punctured monogon D1,1. This last exclusion is not essential – it is 
possible to assign a cluster algebra to the Fock-Goncharov version of D1,1, at least when 
k > 3. We thank L. Shen for explaining this to us. However, explaining the details of 
this construction and accordingly modifying our proofs adds extra technicalities to our 
presentation which we have chosen to avoid.

An arc on S is an immersion γ : [0, 1] → S, such that γ(0), γ(1) ∈ M and γ restricts 
to an injection (0, 1) ↪→ S \ (M ∪ ∂S). Such arcs are considered up to isotopy fixing M. 
A loop is an arc whose endpoints coincide. The subset of ∂S which connects adjacent 
boundary points along a boundary component is a boundary interval. An arc which is 
isotopic to a union of (at least two) consecutive boundary intervals is a boundary arch. 
An arc which is not a boundary arch is a spanning arc – such an arc either has its two 
endpoints on two different boundary components or has at least one end at a puncture.
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Two arcs are noncrossing if one can find representatives for their isotopy classes which 
do not intersect except perhaps at their endpoints. A triangulation Δ of S is a maximal 
set of noncrossing arcs. Such a Δ decomposes S into “triangles” whose sides are either 
arcs or boundary intervals and whose vertices are marked points.

A triangulation is regular if it contains no loop γ which encloses a single puncture 
p on either of its two sides. In a regular triangulation, each triangle has three distinct 
sides. Because we exclude once-punctured monogons, any S considered in this paper has 
a regular triangulation.

A regular triangulation is taut if each of its triangles has at most one side which is 
a boundary interval. Equivalently, a taut triangulation is one which has no boundary 
arches.

In the n-gon, every arc is a boundary arch, so there are no taut triangulations. On 
the other hand, provided S is not the n-gon, then it admits a taut triangulation. For 
example, the unique taut triangulation of a once-punctured n-gon is the one in which 
each boundary point is connected to the puncture by an arc.

2.3. Cluster algebras from surfaces

Fomin, Shapiro, and Thurston associated to any marked surface S a cluster algebra 
A (S) [9]. Initial seeds for A (S) are the k = 2 case of the construction presented in 
Section 3. In this section, we summarize the cluster combinatorics underlying A (S).

To tag an arc γ is to make a binary choice (either plain or notched tagging) at every 
endpoint of γ which is a puncture. There is no binary choice for endpoints which are 
boundary points. We indicate notched tagging using the bowtie symbol 	
. If γ is a loop 
based at p, we require that both ends of γ are tagged the same way. We also require that 
the underlying arc γ is not contractible to a puncture or a boundary interval and does 
not cut out a once-punctured monogon.

Distinct tagged arcs are compatible if the arcs which underlie them are noncrossing and 
the following additional conditions on their taggings are satisfied. If the underlying arcs 
do not coincide, then their taggings agree at any puncture which they have in common. 
If the underlying arcs do coincide, then the taggings disagree at exactly one end. For 
example, if γ is a loop based a puncture p and tagged plain at p, then any tagged arcs 
which are compatible with γ are also plain at p if they have an endpoint at p. A tagged 
triangulation of S is a maximal set of pairwise compatible tagged arcs.

Suppose that S �= Sg,1 for some g ≥ 1. Then cluster variables (resp. clusters) in A (S)
are in bijection with tagged arcs (resp. tagged triangulations) in S. The case S = Sg,1
is exceptional: in this case the cluster variables (resp. clusters) in A (S) are in bijection 
with the arcs (resp. triangulations) of S.

In Section 10, we assume familiarity with the following nested sequence of subgroups 
associated to a given S: the pure mapping class group PMCG(S), the mapping class group 
MCG(S), and the tagged mapping class group MCG��(S). The first of these consists of 
mapping classes which fix each puncture pointwise, the second allows mapping classes 
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to permute the punctures, and the third allows compositions of mapping classes and 
tag-changing transformations (interchanging plain tags with notched tags) at punctures. 
These groups act on the cluster algebra A (S) by cluster automorphisms. In particular, 
the reader should be familiar with half-twists dragging one puncture over another punc-
ture [5, Section 9]. The square of such a half-twist is a Dehn twist about the simple 
closed curve enclosing the two punctures.

2.4. Type A combinatorics

We use the following standard Lie theoretic terminology in the special case of G =
SL(V ) for a complex k-dimensional vector space V , with hopes that our constructions 
might also be valid in other Lie types.

The group G has Weyl group W = Wk the symmetric group on k letters. It has a 
Coxeter presentation generated by the simple transpositions si = (i, i + 1) for i ∈ [k− 1]
modulo the relations

sisj = sjsi when |i− j| > 1 and sisi+1si = si+1sisi+1. (1)

A reduced expression for an element w ∈ W is a minimal-length factorization of w as a 
product of simple transpositions, i.e. and expression w = si1 · · · si� with � minimal.

A weight is an algebraic group homomorphism T → C∗, where T ⊂ G is a choice 
of maximal torus. We can choose a basis e1, . . . , ek for V so that T ⊂ G is identified 
with the set of unimodular diagonal matrices. Then a weight is a Laurent monomial map 
diag(t1, . . . , tk) 
→ tλ, for a weight vector λ ∈ Zk/(1, 1, . . . , 1). We denote by

P = Zk/span(1, 1, . . . , 1)

the weight lattice, inside the ambient real vector space PR := P ⊗Z R. We have fun-
damental weights ωi = e1 + · · · + ei ∈ P . For S ⊂ [k], we have an indicator vector
ιS :=

∑
s∈S es ∈ P .

In examples, we often choose to encode weight vectors in “multiplicative notation,” 
i.e. as (Laurent) monomials in the letters a, b, c, . . . . For example, we would encode the 
weight vector e1 + 2e3 + e4 as the monomial ac2d.

An ordered set partition of [k] (an osp for short) is a tuple Π = B1|B2| · · · |B� of 
nonempty disjoint subsets with union [k]. The Bi are the blocks of the osp. Block of 
cardinality one and two are called singletons and doubletons respectively.

An osp Π = B1| · · · |B� encodes a Weyl region C(Π) ⊂ P consisting of vectors whose 
coordinates satisfy the inequalities determined by the blocks of Π. That is, (λ1, . . . , λk) ∈
C(Π) means that λa = λb whenever a and b are in the same block of Π, and λa > λb

whenever a ∈ Bi, b ∈ Bj , and i < j. Given λ ∈ P , we write Π(λ) for the osp which 
encodes its coordinate inequalities: λ ∈ CΠ(λ).

Thinking instead of C(Π) as a subset of PR, the Weyl regions are the faces of a 
geometric realization of a flag simplicial complex (the Coxeter complex). The partial 
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order which encodes the closure of Weyl regions is the coarsening order on ordered set 
partitions. That is, C(Π′) is in the closure of C(Π) if each block of Π′ is a union of 
several consecutive blocks of Π. We also say that Π refines Π′ in this case. For example, 
12|3|57|68|9 is a refinement of 12|35678|9. We use overlines to denote closures of Weyl 
regions, writing e.g. C(Π) for the union of the Weyl regions indexed by Π and those osp’s 
which coarsen Π.

We write ∨ for the operation of taking the least upper bound of several ordered 
set partitions in the refinement partial order when this least upper bound exists. For 
example, 13|245|67 ∨ 1|3|24567 ∨ 13|24|567 = 1|3|24|5|67. The Weyl region closure of the 
right hand side contains the three regions on the left hand side and is the minimal region 
with this property.

The group W acts on the weight lattice P by coordinate permutation:

w · (λ1, . . . , λk) = (λw(1), . . . , λw(k)).

We say that distinct weight vectors λ and μ are w-conjugate if w · λ = μ. We typically 
use this notion when w is an involution, in which case the notion is symmetric in λ and 
μ. They are conjugate if they are w-conjugate for some w. For example, every indicator 
vector ιS is conjugate to a fundamental weight ω|S|.

The root system Φ consists of the vectors (themselves known as roots) ea− eb ∈ P for 
a �= b ∈ [k]. Such a root determines a root hyperplane in PR defined by the coordinate 
equality λa = λb. The action of the transposition (ab) ∈ W on P is by reflection about 
this root hyperplane.

A subset S ∈
([k]
a

)
determines a Grassmannian permutation wS ∈ W whose first a

symbols (resp. last k−a symbols) in one-line notation are the elements of S (resp. [k] \S) 
written in sorted order. We abbreviate �(S) := �(wS) where the latter is Coxeter length. 
The subset S also determines a lattice walk in the a × (k − a) rectangle consisting of 
unit steps in the (0, 1) direction at times S and in the (1, 0) direction at times [k] \ S. 
This lattice walk determines a Young diagram λ(S), namely the boxes which are in the 
a × (k − a) rectangle and which lie weakly northwest of the lattice walk. It is known 
that the number of reduced expressions for the permutation wS equals the number 
fλ(S) of standard Young Tableaux (SYT’s) of shape λ(S). Moreover, this set of reduced 
expressions is connected by the commutation moves sisj = sjsi only, see e.g. [2].

2.5. P -clusters

Cluster algebras often come with a grading by an abelian group such that each cluster 
variable is a homogeneous element. See [17] for a general discussion. The cluster algebras 
considered in this paper are graded by the direct sum P⊕M◦ of copies of the G-weight 
lattice indexed by the punctures in S.
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Definition 2.1. A P -seed is a pair (Q, wt(v)v∈V (Q)) consisting of a quiver Q (with no 
frozen vertices) and a weight vector wt(v) ∈ P⊕M◦ for each vertex v of Q, subject to the 
balancing constraint

∑
u→v in Q

wt(u) =
∑

v→u in Q

wt(u) for all vertices v. (2)

The P -cluster is the multiset of weights at the vertices (wt(v)v∈V (Q)). It consists of 
P -cluster variables.

To mutate a P -seed at a mutable vertex v, we perform quiver mutation at v and we 
modify the weight at v according to

wt(v) 
→ −wt(v) +
∑

u→v in Q

wt(u)

leaving the other weights unchanged.

It is known that mutation of a P -seed again yields a P -seed [17]. The P -exchange 
graph is the graph whose vertices are the P -seeds and whose edges indicate mutations.

In what follows, the weight vector wt(v) represents the grading of a cluster variable 
x(v) with respect to a natural 

∏
M◦

T -action. The common weight of the two terms in 
(2) is the weight of the right hand side of the exchange relation describing mutation at 
the cluster variable x(v) out of the current seed. Thus, there is a map from clusters to 
P -clusters which commutes with mutations.

3. Cluster nature of the moduli spaces

Fock and Goncharov associated a cluster algebra to the moduli space of decorated 
G-local systems. We review this construction and introduce its “Grassmannian cousin.”

3.1. Fock-Goncharov version of the moduli space

Definition 3.1. Let V be a complex vector space of dimension k with a fixed volume form 
ξ ∈

∧k(V ) ∼= C. An affine flag F in V is a choice of tensors F(i) ∈
∧i(V ) subject to 

the normalization F(k) = ξ and also the flag condition: for each i ∈ [k − 1], there exists 
v ∈ V such that F(i) ∧ v = F(i+1).

Due to the normalization condition, these are sometimes called affine flags for SLk.
The left G-action on V , hence on 

∧i(V ), induces an action on affine flags. The sta-
bilizer of any affine flag is a maximal unipotent subgroup in G. In particular, a matrix 
which stabilizes an affine flag is unipotent. (All of its eigenvalues equal 1.)
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We have a right T -action on affine flags by rescaling the steps of the affine flag:

(F · t)(i) := t1 · · · tiF(i) ∈
(i)∧

V for t = diag(t1, . . . , tk) ∈ T. (3)

Remark 3.2. One can specify an affine flag F by setting F(i) := v1 ∧ · · · ∧ vi where 
v1, . . . , vk−1 is a linearly independent sequence of vectors. Each vi is determined modulo 
span{v1, . . . , vi−1}. The sequence of subspaces spanF(i) := span(v1, . . . , vi) is a complete 
flag of subspaces depending only on F , not on the chosen vi’s. Two affine flags give rise 
to the same complete flag if and only if they are related by the right T -action on affine 
flags (3).

Suppose for the moment that k is odd. By a G-local system on S we will mean a copy 
Vp of the vector space V with its volume form ξ at every point p ∈ S, and a transport 
isomorphism Ξα : Vp → Vq for every path α : p → q in S, preserving the form ξ and 
depending only on the isotopy class of α.

Once we have chosen a choice of G-local system, every closed curve α based at a 
point p ∈ S determines a monodromy matrix Mα ∈ Aut(Vp) ∼= G given by the transport 
isomorphism along α. The local system is unipotent if the monodromy up of a simple 
closed curve contractible to p is a unipotent matrix.

A decorated G-local system on S is a G-local system on S together with a choice of 
affine flag Fp ∈ Vp at every marked point p ∈ M, subject to the extra constraint that the 
monodromy up around every puncture p ∈ M◦ stabilizes the corresponding affine flag 
Fp at p. (The affine flags are “decorations.”)

When k is even one makes essentially the same definitions, except that rather than 
considering local systems on S, one considers local systems on the punctured tangent 
bundle of S whose monodromy in the fiber direction equals −Id ∈ G. Fock and Gon-
charov call these twisted local systems. The space of twisted decorated G-local systems 
is isomorphic to the space of decorated G-local systems but the isomorphism involves 
making certain choices. Making a different choice of isomorphism will perhaps change 
certain cluster variables and tensor diagram invariants we discuss below by a sign. The 
details of these signs do not strongly affect the combinatorial results presented here. 
One can typically change the sign of a tensor diagram invariant as needed by “migrating 
hairs,” i.e. the constructions below are typically flexible enough to capture any needed 
sign ambiguity.

We denote by AG,S the moduli space of (twisted) decorated G-local systems on S, i.e. 
the set of decorated G-local systems considered up to simultaneous G-action.

Let g be the genus of the closed surface obtained from S by filling in all of the boundary 
components with disks, and let b be the number of such boundary components. Then

dimAG,S = (2g − 2 + b + |M|)|G| − |M∂ |dimU. (4)
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3.2. Grassmannian version of the moduli space

Elements in the moduli space just defined come with an affine flag at every marked 
point. We now introduce a variation in which boundary points carry a different type of 
decoration.

Definition 3.3. Denote by A′
G,S the space of twisted G-local systems on S together with 

an affine flag Fp in Vp at every puncture p and a vector vp ∈ Vp at every boundary 
marked point p, considered up to simultaneous G-action.

When k = 3, this version of the moduli space matches the perspective of [8,7]. We 
introduce it here in hopes that it will appear in future contexts. More immediately, it 
provides us with a richer set of explicit examples in which our cluster combinatorics 
conjectures can be tested.

We have

dimA′
G,S = (2g − 2 + b + |M◦|)|G| + k|M∂ |. (5)

Remark 3.4. The moduli space A′
SLk,Dn,0

is the space of n-tuples of vectors in Ck modulo 
simultaneous SLk action. Its algebra of regular functions is the homogeneous coordinate 
ring of the Grassmannian Gr(k, n) of k-subspaces in Cn in the Plücker embedding. More 
generally, for unpunctured surfaces S, a point in A′

SLk,S
consists of a tuple of vectors 

v ∈ V together with a tuple of endomorphisms M ∈ End(V ), with such tuples considered 
up to simultaneous G-action. This is a classical object of study in invariant theory, see 
[8] for some discussion.

Remark 3.5. We have the following relationships between the two flavors A versus A′ of 
moduli space. First, the two moduli spaces coincide when G = SL2 or when S has no 
boundary.

Second, we will shortly associate a cluster algebra A (SLk, S) (resp. A ′(SLk, S)) to the 
moduli space ASLk,S (resp. A′

SLk,S
). There is a projection ASLk,S � A′

SLk,S
induced by 

forgetting all but the first step of each affine flag. We conjecture that this map is a cluster 
fibration [25, Definition 3.2], i.e. that the inclusion of algebras A ′(SLk, S) ↪→ A (SLk, S)
sends a cluster in the former to a partial cluster in the latter while moreover preserving 
the mutable part of the quiver. This holds when S = Dn,0 is an n-gon [25, Proposition 
3.4.(3)].

Third, we expect the following generalization of [11, Section 7] from n-gons to arbitrary 
surfaces. Suppose that every boundary component of S has an even number of marked 
points. Associate to it a new marked surface S′ in which we change neither the underlying 
surface S nor the number of punctures but we increase the number of boundary points 
on each boundary component by a factor of k

2 . We expect that the cluster algebras 
A (SLk, S) and A ′(SLk, S′) are related by a quasi cluster isomorphism, namely the one 
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already proposed in [11]. One needs to verify that this candidate map indeed sends a 
seed in the former cluster algebra to one in the latter in the appropriate sense.

3.3. A family of quivers

Before introducing initial seeds for the moduli spaces AG,S and A′
G,S, we take a detour 

to introduce a family of quivers Qs
k where k ∈ Z≥2 and s ∈ [k − 1]. This wider family 

shows up in certain of our proofs.
We let Ĥk = {(a, b, c) ∈ N3 : a +b +c = k} and Hk = Ĥk \{(k, 0, 0), (0, k, 0), (0, 0, k)}. 

We think of Hk as the vertex set of a quiver Qk whose arrows are obtained by drawing 
small counterclockwise triangles as indicated in the examples of Q4 and Q5 below:

301 310

202 211 220

103 112 121 130

013 022 031
Q4

401 410

302 311 320

203 212 221 230

104 113 122 131 140

014 023 032 041
Q5

The larger family of quivers Qs
k for s ∈ [k − 1] is obtained from Qk by identifying 

the vertices (a, b, c) ∼ (a, b + c, 0) ∈ Hk when b = s and a �= 0 and deleting the vertices 
(a, b, c) when b ∈ [s + 1, k − 1]. We draw below this family of quivers when k = 5:

• •

• • •

• • • •

• • • • •

• • • •

• •

• • •

• • • •

• • • •

• • •

• •

• • •

• • •

• • •

• •

• •

• •

• •

• •

•

Q4
5 Q3

5 Q2
5 Q1

5

Note that Qk = Qk−1
k , and that each row of Qs

k has no more than s + 1 vertices.

3.4. Initial seeds for AG,S

Fock and Goncharov described, for each choice of regular triangulation Δ of S, a seed 
Σk(Δ) = (Qk(Δ), xk(Δ)) in the field of rational functions on M = AG,S. They proved 
that seeds from different triangulations are mutation-equivalent, so that the seeds Σk(Δ)
together give rise to a cluster algebra A (G, S).
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The initial quiver Qk(Δ) is obtained as follows. To each triangle δ ∈ Δ we associate a 
copy Qk(δ) of the quiver Qk from above. We identify the three vertices p1, p2, p3 of the 
triangle δ with the three coordinates (k, 0, 0), (0, k, 0), (0, 0, k) in Ĥk. We associate k−1
vertices of Qk to each side of the triangle δ, associating e.g. the vertices (a, k − a, 0) for 
a ∈ [k − 1] to the side p1p2 of δ.

If triangles δ and δ′ have a common side γ ∈ Δ then we can glue the quiver fragments 
Qk(δ) and Qk(δ′) by identifying the k − 1 vertices associated to this shared side. The 
initial quiver Qk(Δ) is the result of carrying out all such gluings:

Qk(Δ) =
∐
δ∈Δ

Qk(δ)/ ∼, (6)

where ∼ here indicates the gluing. The sides of triangles corresponding to boundary 
intervals are not glued during this process. We declare the k − 1 vertices associated to 
such a boundary side as frozen vertices of Qk(Δ), for a total of (k− 1)|M∂ | many frozen 
vertices. If any oriented two-cycles are created in the gluing process then they should be 
deleted from the quiver.

The initial cluster xk(Δ) is obtained as follows. A choice of point z ∈ M determines 
an affine flag Fp at every marked point p ∈ M. Given a triangle δ ∈ Δ, the cluster 
variable xδ(a, b, c) indexed by vertex (a, b, c) ∈ Qk(δ) evaluates on z as follows. First, 
we parallel transport the tensors Fp1,(a), Fp2,(b), and Fp3,(c) to a common point p′ in the 
interior of δ, and then we set xδ(a, b, c)(z) := Fp1,(a) ∧ Fp2,(b) ∧ Fp3,(c) ∈

∧k(Vp′) ∼= C.

3.5. Initial seeds for A′
G,S

We now carry out a similar procedure for the alternative version of the moduli space. 
As noted in Remark 3.4, when S is an n-gon, the moduli space is a Grassmannian and 
one should use the well-known initial seeds coming from plabic graphs. Excluding this 
case, we can assume that S admits a taut triangulation Δ.

Given such a taut Δ, we construct an initial seed Σ′
k(Δ) = (Q′

k(Δ), x′
k(Δ)). We 

subsequently check that seeds from different taut triangulations are related by mutations, 
so that we obtain in this way a cluster algebra A ′(SLk, S).

Recall that a choice of point z ∈ A′
G,S provides us with an affine flag at each puncture 

and a vector at each boundary point. We associate a “proxy affine flag” Fp to boundary 
points p by the following construction. Let C be a component of ∂S carrying boundary 
points p1, . . . , pm in counterclockwise order. A choice of z yields vectors vi := vpi

. We 
define vi for i ∈ Z using the monodromy matrix MC around the component C: vi+jm :=
M j

C(vi) where i ∈ [m] and j ∈ Z. Then the proxy affine flag Fpi
which we associate to 

the boundary point pi has steps Fpi,(a) := vi ∧ vi+1 ∧ · · · vi+a−1 for a ∈ [k − 1]. (This 
recipe only works for sufficiently generic vi’s, but that is all we need to specify our initial 
cluster variables.)

Since Δ is a taut triangulation, each triangle δ has at most one side which is a 
boundary interval. If δ has no such sides, we assign to it the same quiver fragment 



C. Fraser, P. Pylyavskyy / Advances in Mathematics 412 (2023) 108796 17
Qk(δ) and initial cluster variables xδ(a, b, c) as in the previous section, using the proxy 
flags Fp at boundary points p. If δ has a boundary side, we assign to it the quiver 
fragment Q1

k (cf. Section 3.3) with the bottom row of Q1
k identified with the boundary 

side and with the bottom left corner of Q1
k following the bottom right corner of Q1

k in 
the counterclockwise order around ∂S. The cluster variables on the right and left sides 
are of the form xδ(a, k−a, 0) and xδ(a, 0, k−a). The vertex on the bottom side is frozen, 
and it carries the cluster variable det(vi, . . . , vi+k−1) in the notation of the preceding 
paragraph. There are |M∂ | many frozen vertices in total. The quiver Q′

k(Δ) is obtained 
by gluing the quiver fragments associated to triangles along their shared edges.

This completes our description of initial seeds. To complete our definition of the 
corresponding cluster algebra, our next three lemmas will establish that seeds from 
different taut triangulations are related by mutations.

We denote by d(Δ, Δ′) the distance between triangulations in the flip graph, i.e. the 
minimal number of flips needed to transform Δ into Δ′.

We let b(Δ) denote the number of boundary arches present in the triangulation Δ. We 
write Δ ∼ Δ′ to indicate that Δ′ can be obtained from Δ by a flip and use the notation 
γ 
→ γ′ to indicate that a given flip move replaces the arc γ ∈ Δ with the arc γ′ ∈ Δ′. 
We classify the flip Δ ∼ Δ′ as either a 0-move, a 1-move, or a −1-move according to the 
value of b(Δ) − b(Δ′).

Clearly, if d(Δ, Δ′) = 1 and both Δ and Δ′ are taut, then the flip between them is a 
0-move.

Lemma 3.6. Let Δ and Δ′ be taut triangulations satisfying d(Δ, Δ′) ≥ 2. Then any 
minimal-length sequence of flips connecting Δ to Δ′ has at least two 0-moves.

Proof. We will assume that there are either no 0-moves in the flip sequence, or that 
there is exactly one 0-move in the flip sequence, and eventually contradict the length-
minimality of the flip sequence.

When we perform a 1-move, we flip a spanning arc γ to obtain a boundary arch 
γ′. Any boundary arches which γ′ nests will remain boundary arches until we perform 
another flip at γ′. That is, boundary arches are removed in a “last in first out” order.

Let us focus on the last 1-move performed in our minimal flip sequence. The local 
picture before such move is drawn in Fig. 1. Vertices L, M, R ⊂ M reside on some 
boundary component C while p ∈ M \ C. We write γ = pM as a shorthand to say that 
γ has endpoints p and M . The below calculations take place in a polygon so we lose 
nothing by labeling arcs by endpoints in this way. We have γ′ = LR, have arcs β1 = LM

and β2 = MR nested by γ′ (either boundary arches or boundary intervals, depending 
on whether the vertices L, M , and R are adjacent vertices along C), and have spanning 
arcs α1 = pL and α2 = pR forming part of the quadrilateral containing γ.

If there are no 0-moves in our flip sequence, then after the flip γ 
→ γ′, we do not flip at 
either of the arcs αi because these would not be −1-moves. And by the “last in first out” 
property, we do not flip at either of the arcs βi until we have first performed the inverse 
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L M R

pq

γ

β1 β2

α1 α2

Fig. 1. The local picture before the last 1-move in the proof of Lemma 3.6. Here L, M , R, q, p indicate 
marked points whereas αi, βi, and γ indicate arcs. The flip at γ is a 1-move.

flip γ′ 
→ γ. At some point we must perform the −1-move at γ′, but after appropriately 
commuting terms in the flip sequence, we see that the given flip sequence contains the 
subsequence γ 
→ γ′ 
→ γ contradicting the length-minimality of the sequence.

If there is a 0-move in the flip sequence, then the preceding argument shows that this 
0-move comes after the last 1-move, and moreover that this 0-move must be a flip at 
one of the αi’s or one of the βi’s.

In each of these four cases, one can use the flip identity in a pentagon (together with 
commutation moves) to obtain a shorter sequence of flips, contradicting the supposed 
minimality of the sequence. For example, consider the case that the 0-move is performed 
at α1 to obtain a new arc α′

1 = qR. Since this is a 0-move, we have q /∈ C. In the 
given flip sequence, we see the flips γ 
→ γ′, followed by the flip α1 
→ α′

1 followed by 
γ′ 
→ γ′′ = qM . But up to commutation moves, we can replace these three flips by the 
shorter sequence α1 
→ γ′′ followed by γ 
→ α′ contradicting minimality. (Note that the 
flip at qL is forbidden because it is not a −1-move. Flips at qp are possible in the case 
that q and p are on the same boundary component, but the resulting arc will never be 
flipped again in the sequence. The contradiction from the preceding sentences still works 
in this case.) The case that we flip at a βi is similar. �

Lemma 3.7. The set of taut triangulations of S is connected by flips.

By a taut flip sequence we will mean a set of sequence of flips which never leaves the 
set of taut triangulations.

Proof. Observe that any triangulation Δ is exactly b(Δ) many flips away from a taut 
triangulation in the flip graph: one can reach such a triangulation by performing −1-
moves at boundary arches in “last in first out” order.

We now prove by induction on d(Δ, Δ′) that any two taut triangulations Δ, Δ′ are 
connected by a taut flip sequence.

Let Δ := Δ = Δ0 ∼ Δ1 ∼ · · · ∼ Δd = Δ′ be a shortest walk from Δ to Δ′ in the flip 
graph. Abbreviate bi := b(Δi).

Define i ≥ 1 by the property that the first i − 1 many moves in the flip sequence are 
1-moves and the ith move is either a 0-move or a −1-move. Thus, bi−1 = i −1 and bi < i. 
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Altogether, the flip sequence has at least i − 1 many 1-moves, thus at least i − 1 many 
−1-moves, and also at two many 0-moves by Lemma 3.6. Thus, 2i ≤ d.

By the observation in the first paragraph, we can choose a taut triangulation Δ′′

whose distance from Δi in the flip graph equals bi. Then

d(Δ′′,Δd) ≤ d(Δ′′,Δi) + d(Δi,Δd) = bi + (d− i) < d

and similarly

d(Δ0,Δ′′) ≤ d(Δ0,Δi) + d(Δi,Δ′′) = i + bi < 2i ≤ d.

By induction, Δ′′ is connected to both Δd and Δ0 by a taut flip sequence, so that Δd

and Δ0 are connected to each other by a taut flip sequence as required. �
Lemma 3.8. If Δ and Δ′ are taut triangulations related by a flip, then Σ′

k(Δ) and Σ′
k(Δ′)

are mutation-equivalent seeds.

Proof. If neither of the two triangles involved in a flip has a boundary side, then the 
statement is a specialization of Fock and Goncharov’s [6, Proposition 10.1].

We next consider the case that one of the two triangles involved in the flip has a 
boundary side. We indicate the mutation sequence which implements the flip in the case 
G = SL4 in the below picture. The triangle pb1b2 has an exposed side b1b2. The quiver 
pqb1 has no exposed sides, and we wish to perform the flip at the arc pb1 obtaining the 
non-exposed triangle pqb2 and the exposed triangle qb1b2. The mutation sequence which 
simulates this flip of triangulations is to mutate at the vertices labeled 1,2,3,4,5,6 (in 
that order) in the left picture below. The result is the right picture, which is the quiver 
we expect after performing the flip pb1 
→ qb2.

(7)

We have used primes to denote the result of performing the mutation, so that e.g. 1′ is 
the result of mutating at vertex 1. The asserted mutation sequence readily extends to 
the SLk case.

One should check that the cluster variables transform as expected. To see this, observe 
that each vertex in the mutation sequence is 4-valent at the moment it is mutated. 
The corresponding exchange relation is an instance of the three-term Plücker relations. 
Suppose the proxy affine flag at b1 is represented by vectors v1, . . . , vk, the proxy affine 
flag at b2 is represented by v2, . . . , vk+1, the affine flag at p is represented by u1, . . . , uk, 
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and the affine flag at q is represented by w1, . . . , wk. (See Remark 3.2 for the notion of 
vector representatives of an affine flag.) Let (α, β, γ, η) denote the function

det(u1, . . . , uα, w1, . . . , wβ , v1, . . . , vγ , v2, . . . , v1+η),

then the mutation sequence sends the variable (α, β, γ, 0) to the variable (α−1, β+1, 0, γ)
via the Plücker relation

(α, β, γ, 0) × (α− 1, β + 1, 0, γ)

= (α, β, 0, γ) × (α− 1, β + 1, γ, 0) + (α, β + 1, 0, γ − 1) × (α− 1, β, γ + 1, 0).

For example, in the above example, mutation at vertex 1 (whose variable is 
det(u1u2u3v1)) yields the new variable given by det(u1u2w1v2). The right hand side 
of the Plücker relation is

det(u1u2v1v2)det(u1u2u3w1) + det(u1u2w1v1)det(u1u2u3v2).

Note that 1′ is a mutable variable in the seed fragment Σr(δ) where δ is the triangle 
pqb2. This completes our discussion of the case in which we have one boundary side.

Finally we consider the case that both triangles have a boundary side. Since the 
flip results in a taut triangulation, these two sides must be opposite each other in the 
quadilateral in which the flip is performed. There are k − 1 vertices of Qk(δ) on the 
edge which needs to be flipped. These vertices have no arrows between them and each 
vertex is four-valent in the quiver. Mutating at each of them (in any order, since these 
mutations commute) realizes the flip. As above, each exchange relation is a three-term 
Plücker relation, and the variable that results is the one which we would expect to see 
when we perform the flip. �
Remark 3.9. We do not prove here that our initial clusters provide rational coordinate 
systems on A′

SLk,S
although we believe this should be true. One might be able to prove 

these statements by mimicking the proofs of these statements given in [6], or by estab-
lishing the cluster fibration property from Remark 3.5.

We content ourselves here by showing that the size of our initial cluster matches the 
dimension of the moduli space. Indeed, the difference in the dimensions of the two moduli 
spaces is |M∂ |(dimG/U − dimV ) = |M∂ |(

(
k
2
)
− 1) using (4) and (5). By inspection, the 

quiver Q1
k has 

(
k
2
)
− 1 fewer vertices than Qk. The cardinality |M∂ | is the number of 

boundary intervals, which is the number of times Q1
k rather than Qk is used when creating 

the quiver Q′
k(Δ). The claim follows.

Example 3.10. When S is an annulus with one point on each boundary component, the 
cluster algebra A ′(S, SLk) has the same cluster type as the Q-system of type Ak−1 see 
e.g. [22].



C. Fraser, P. Pylyavskyy / Advances in Mathematics 412 (2023) 108796 21
Recall that Dn,1 has a unique taut triangulation, hence A ′(SLk, Dn,1) has a canonical 
choice of initial seed. The mutable part of this seed is the cylindrical triangulated grid 
quiver Qm,n considered in [20]. Thus Lemma 4.5 below provides a different proof of 
Theorem 3.2 therein.

Remark 3.11. We believe that it is possible to assign a seed in the cluster algebra A ′
G,S

to any regular triangulation Δ, not only to the taut ones. We explain this recipe now 
without proof.

Suppose that δ ∈ Δ has exactly one side γ which is a boundary arch contractible to 
s many consecutive boundary intervals. Then one should associate to this triangle the 
quiver Qmin(s,k−1)

k . If s ≤ k − 1, then the rightmost vertex on the bottom side is frozen.
If δ has two such sides, one should apply this recipe to both of the exposed sides 

(deleting and gluing vertices as in the definition of Qs
k(δ)). See [7, Figure 21] for an 

illustration of this recipe when G = SL3.

3.6. Weights of cluster variables

Let M be one of the moduli spaces either AG,S or A′
G,S. Recall the right T -action 

(3) on affine flags by rescaling the F(i)’s. It determines a right action M � TM◦ by 
separately rescaling the decorations at each puncture.

We let PM◦ denote the direct sum of weight lattices indexed by the punctures in S, 
and denote by

πp : PM◦ → P

the projection onto the copy of the weight lattice indexed by a given puncture p ∈ M◦.
A rational function f ∈ C(M) is homogeneous if there exists a weight vector λ ∈

P⊕M◦ such that

f(z · t) = tλf(z), for z ∈ M, t ∈ TM◦ .

For such an f , define

wt(f) := λ ∈ P⊕M◦ , the weight of f wtp(f) := πp(λ) ∈ P, the weight of f at p.

Each of the initial cluster variables in A (M) is a homogeneous function with nonzero 
weight at three or fewer punctures. For example, let δ ∈ Δ be a triangle with three 
distinct vertices and with “top vertex” p1 a puncture rather than a boundary point. Then 
the initial cluster variable xδ(a, b, c) in this triangle has weight ωa at p1. One can see 
that the two cluster monomials on the right hand side of its exchange are homogeneous 
functions of the same weight, i.e. they satisfy the balancing condition (2) necessary to 
determine an initial P -seed. The frozen variables have weight zero, so one can delete 
them with no effect on the P -cluster variables.
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Henceforth when we refer to P -clusters, P -cluster variables, etc., we always have in 
mind that we have fixed a choice of moduli space M and are discussing those P -clusters 
which are reachable from our initial P -seeds by mutations.

For a P -cluster C ⊂ PM◦ and puncture p, the projection πp(C) ⊂ P is the P -cluster 
at p.

Example 3.12. When k = 2, a plain (resp. notched) end of a tagged arc ending at a 
puncture p contributes a copy of the standard basis vector e1 (resp. e2) to the weight 
of the corresponding cluster variable at p. Thus, the weight of any cluster variable at p
lies in {0, e1, e2, 2e1, 2e2}. The P -cluster at p is either a multiset drawn from {0, e1, 2e1}
(all arcs plain at p), a multiset drawn from {0, e2, 2e2} (all arcs notched at p), or it has 
exactly one P -cluster variable of weight e1, one of weight e2, and all others of weight 
zero at p.

4. Weyl group action at punctures

For any puncture p, Goncharov and Shen identified a birational action of the Weyl 
group of G on the space of decorated G-local systems by changing the affine flag at 
p. They proved, in most cases, that the resulting Weyl group action on A (SLk, S) is 
by cluster automorphisms. These Weyl group symmetries play an important role in the 
cluster combinatorics of A (M). We review the construction and show that the action is 
cluster in some new cases.

4.1. Weyl group action on affine flags

Definition 4.1. Let u be a unipotent matrix and F be an affine flag stabilized by u. 
Choose a vector v with the property that F(i+1) = Fi ∧ v. Define an affine flag si · F
whose ith step is given by the formula (si · F )(i) := F(i−1) ∧ (u(v) − v) and whose other 
steps agree with F .

This recipe only yields an affine flag when u(v) − v /∈ spanF(i−1), in which case it 
is independent of the chosen v. The resulting affine flag is again stabilized by u. The 
operations si are involutions satisfying the relations (1), thus they determine a (rational) 
W -action on the set of affine flags stabilized by u.

Remark 4.2. Representing F by vectors v1, . . . , vk satisfying F(a) = v1 ∧ · · · ∧ va, the flag 
si · F can be represented by vectors

v1, . . . , vi−1,Wivi,
1
Wi

vi+1, vi+2, . . . , vk where Wi :=
F(i−1) ∧ (u(vi+1) − vi+1)

F(i)
∈ C.

(8)
Thus, applying si changes the vector representatives in two positions i and i + 1 even 
though it only changes the affine flag in step i. Expressing the linear transformation u
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in the ordered basis v1, . . . , vk, the quantity Wi is the subdiagonal matrix entry in row 
i and column i + 1. Fixing v1, . . . , vk and letting u vary, the quantity Wi is logarithmic 
in u: multiplication of matrices u corresponds to addition of the quantity Wi.

The following lemma follows from the definition and is used later in the paper.

Lemma 4.3. Let F be an affine flag with a choice of u ∈ stab(F ). Then the tensor 
(w · F )(a) ∈

∧a(V ) obtained by Weyl group action along w depends only on the first a
symbols of w, i.e. on w|[a].

Now, following Goncharov and Shen, we relate the Weyl group action on affine flags 
with the cluster algebra A (M) for one of the moduli spaces M considered in this paper. 
We denote by Bir(M) the group of birational automorphisms of the moduli space M.

Fix p ∈ M◦. A choice of point in M determines an affine flag Fp at p, stabilized by 
the monodromy up of the local system around p. Applying Definition 4.1 when u is taken 
to be this up, we have a map

ψi,p ∈ Bir(M) sending Fp 
→ si · Fp, (9)

changing the decoration at the puncture p while changing neither the underlying local 
system nor the decorations at M \ {p}.

The actions at various punctures commute, yielding a group homomorphism ψ :
WM◦ → Bir(M). This action is compatible with the W -action on the weight lattice: 
for homogeneous f ,

wt(f ◦ ψ(w)) = w · wt(f) ∈ P⊕M◦ , for w ∈ WM◦ . (10)

In particular the homomorphism ψ is injective.

Theorem 4.4 ([14, Theorem 1.2]). Let M = ASLk,S where S is neither an Sg,1 (for any 
k) when k = 2. Then ψ(WM◦) ⊂ Bir(M) acts by cluster automorphisms of the cluster 
algebra A (M).

For an extension of this theorem to other Lie types see [19].
In the remainder of this section we extend Theorem 4.4 to two new settings, namely 

to A′
SLk,S

and also the cases (k, Sg,1) when k > 2. The statement is false for Sg,1 and for 
S0,3 when k = 2.

The Weyl group action at punctures is a crucial ingredient to the cluster combinatorics 
of A (M), so we felt it was important to treat these cases here. Our proof is a modification 
of the ideas already present in Goncharov and Shen’s proof of the above theorem. The 
reader who is not interested in these two special cases can safely skip to Section 5.
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4.2. Reminders on the proof of Theorem 4.4

We fix a puncture p ∈ M◦ and a regular triangulation Δ of S with the property that 
no arc in Δ is a loop based at p. (The existence of such triangulations when S �= Sg,1
is asserted in [14].) In the special case that S = Sg,1, every arc is a loop based at the 
puncture, which is why this case is excluded from Theorem 4.4.

For an initial cluster variable x ∈ xk(Δ), we will compute ψ∗
i,p(x) as a Laurent poly-

nomial in the initial cluster variables xk(Δ). Then we show that we can reach this set of 
Laurent polynomials {ψ∗

i,p(x) : x ∈ xk(Δ)} by mutations, proving in this way that ψ∗
i,p

sends clusters to clusters.
Consider a triangle δ ∈ Δ with p as one of its vertices. Identify p with the “top 

vertex” (k, 0, 0) ∈ Ĥk(δ) and recall that the initial cluster variable xδ(a, b, c) has 
wtp(xδ(a, b, c)) = ωa ∈ P . From this and the definition (9), we get a formula for the 
Weyl group action:

ψ∗
i,p(xδ(a, b, c)) = xδ(a, b, c) if a �= i, and ψ∗

i,p(xδ(i, b, c)) = Wixδ(i, b, c), (11)

where Wi is the quantity (8) in the case that u = up is the monodromy around p. That 
is, ψ∗

i,p only affects the variables in row i around p and it rescales these variables by the 
factor Wi.

An edge e = (i, b, c) − (i, b + 1, c − 1) in a triangle δ with p as one of its vertices 
determines a rhombus monomial RM(e) = xδ(i+1,b,c)xδ(i−1,b+1,c)

xδ(i,b,c)xδ(i,b+1,c) . Goncharov and Shen 
show that the quantity Wi is a Laurent polynomial in initial cluster variables:

Wi =
∑

e in row i of δ, δ incident to p

RM(e). (12)

Combining formulas (11) and (12) gives us a Laurent polynomial formula for the action 
of ψ∗

i,p.
It remains to show that this formula amounts to a sequence of mutations. As a pre-

liminary step, consider a quiver which is an oriented m-cycle on the vertex set [m] with 
arrows j → j + 1 mod m. Add to this quiver 2m frozen vertices j± as well as arrows 
j + 1 → j± → j. We denote the mutable initial cluster variable at vertex j by xj and 
the frozen variables at j± by x±

j . Note that the mutable edge j → j + 1 is part of two 
three-cycles j → j+1 → j+ → j and j → j+1 → j− → j together forming a “rhombus.”

Consider the permutation-mutation sequence

μ1 ◦ μ2 ◦ · · ·μm−1 ◦ (m− 1,m) ◦ μm−1 ◦ μm−2 ◦ · · ·μ1 (13)

where the middle term is a transposition written in cycle notation and μi denotes mu-
tation at vertex i. It is known that this permutation-mutation sequence determines an 
involutive automorphism of the cluster algebra which is independent of the choice of 
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which vertex is called 1. The automorphism rescales initial mutable variables by the 
Laurent polynomial

∑
j∈[m]

x+
j x

−
j

xjxj+1
, (14)

cf. [20, Theorem 3.1] or [14, Theorem 7.7].
Returning to the setting of Theorem 4.4, note that when we restrict the quiver Qk(Δ)

to the vertices which are in rows i in the triangles surrounding p, we get an oriented m-
cycle for some m. The subquiver in rows i −1, i, i +1 is a specialization of the quiver from 
(14): the frozen variables x±

j from (14) should be specialized to the variables xδ(i +1, b, c)
and xδ(i − 1, b + 1, c) from (12). After such specialization, the Laurent polynomials (14)
and (12) coincide, completing the proof.

Finally, for the purposes of our generalization below, let us recall how the formula (12)
is proved. By a well-known recipe a generic pair (F, G), with F an affine flag and G a 
complete flag, determines an ordered basis in V . (Intersecting spanFi with spanGk−i+1

determines an ordered basis up to rescaling each of the basis vectors; the scalars are fixed 
using the extra information provided by the affine flag F .)

Let δ be a triangle with a puncture p as its top vertex and with p2 and p3 its bottom 
left and bottom right vertices. A choice of point in the moduli space M determines 
affine flags Fp, Fp2 , and Fp3 . The preceding paragraph gives ordered bases associated 
to the pairs (Fp, Fp2) and also to (Fp, Fp3), i.e. to the left and right sides of δ. There 
is a unique matrix u(δ) which sends the left ordered basis to the right ordered basis, 
and this matrix stabilizes Fp. By [15, Section 3.1], the quantity Wi (8) when calculated 
on the matrix u(δ) is the Laurent polynomial 

∑
e in row i of δ RM(e). If δ1, . . . , δs are the 

triangles surrounding p in cyclic order, it follows that up =
∏s

i=1 u(δi). The formula (12)
follows because the quantity Wi is logarithmic in the matrix u.

4.3. The action on A′
G,S is cluster

Now we give the analogue of Theorem 4.4 in the case that boundary points carry 
vector decorations.

Lemma 4.5. The WM◦-action on A ′(SLk, S) is by cluster automorphisms.

Proof. We can assume that S has boundary because otherwise we are dealing with 
the Fock-Goncharov version of the moduli space. Fix a puncture p and consider a taut 
triangulation Δ which has the property that no arc is a loop based at p. (To construct 
such, start with any regular triangulation with no loops and mutate at boundary arches 
in last in first out fashion as in the proof of Lemma 3.6.) It still makes sense to consider 
vertices which are in row i around p. These will reside in Qk(δ) or in Q1

k(δ) according to 
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whether or not δ has a boundary side and these again have weight ωi at p so that the 
formula (11) holds.

We can mimic the argument from [15, Section 3.1] factoring the matrix up into ma-
trices u(δ) indexed by triangles δ surrounding p and get the corresponding formula (12). 
When δ has a boundary side, there is only one rhombus which contributes to the sum 
(12) because there are fewer steps required to move the ordered basis associated to the 
left side of δ to that for the right side of δ.

The induced subquiver on the vertices in row i around p is again an oriented m-cycle 
for some m, and each edge in this cycle is part of a “rhombus.” The formula (14) again 
specializes to the rhombus Laurent monomial (12), proving the assertion. �
4.4. The action on A (SLk, Sg,1) is cluster

When k = 2, the Weyl group action at punctures is the tag-changing transformation 
and is not cluster in the special case that S = Sg,1 for some g ≥ 1. See Example 8.17
for a detailed comparison between the s1 action at punctures and plain versus notched 
tagging of arcs.

Goncharov and Shen do not discuss whether or not the W -action on A (SLk, Sg,1) is 
cluster when k > 2. We resolve this affirmatively:

Proposition 4.6. When k > 2, the W -action on A (SLk, Sg,1) is by cluster automor-
phisms.

As an ingredient of our proof, we recall that the cluster algebra ASLk,S admits a 
cluster automorphism ∗, the duality map, which implements the outer automorphism of 
i 
→ k − i of the type Ak−1 Dynkin diagram [14, Section 9]. In particular, we have

∗ ◦ ψi,p ◦ ∗ = ψk−i,p, (15)

where ψi,p ∈ Bir(M) denotes Weyl group action at p.
In terms of points in the moduli space M, the automorphism ∗ amounts to replacing 

the vector space V and its volume form with their duals. Importantly for us, Goncharov 
and Shen show that ∗ is a cluster automorphism even for M = ASLk,Sg,1 .

Proof. We denote by p the puncture and abbreviate ψi,p = ψi. We will explain that ψi

is a cluster automorphism when i ≥ k
2 . This implies the statement for all i ∈ [k−1] since 

∗ is a cluster automorphism, via (15).
Consider a regular triangulation Δ of Sg,1 (cf. Fig. 2 for the case g = 1). All three 

vertices of any triangle δ ∈ Δ are the puncture p. The cluster variable x(a, b, c) having 
coordinates (a, b, c) ∈ Hk in this triangle has weight ωa +ωb +ωc at p, regardless of how 
we identify the three corners of δ with the vertices (k, 0, 0), (0, k, 0) and (0, 0, k) in Ĥk.

It still makes sense to consider the vertices in row i, except that these vertices will now 
be a union of three line segments parallel to the three sides of the triangle δ. Each of the 
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three segments is contractible to one of the three corners of δ. The union of these three 
segments, taken over all of the various triangles δ, is therefore a closed curve contractible 
to p. If we temporarily view one of the three corners as the top vertex of a triangle, it 
makes sense to move the “left side” of δ to the “right side” as in the proof of Theorem 4.4. 
Doing this for each of the three corners, we again factorize the monodromy up around p
into monodromies associated to each of the corners of the various triangles δ. Thus the 
rhombus monomial formula (12) still holds.

When i > k
2 the three segments are disjoint and the aforementioned closed curve 

has no selfintersections. For an example see the blue cycle in Fig. 2. In this case, the 
cluster variable x(i, b, c) has weight ωi +ωb +ωc with ωb, ωc �= ωi, hence (11) holds. The 
restriction of the quiver Qk(Δ) to the vertices which are in row i (with respect to any 
corner of any triangle) is an oriented m-cycle for some m. We can apply the mutation 
sequence (13) and the formula (14) still holds. This completes the proof when i > k

2 .
What remains is to argue the case i = k

2 when k is even and k > 2. In this case the 
three segments in row i intersect each other at the points (i, i, 0), (i, 0, i) and (0, i, i) in 
each triangle. See the red segments in Fig. 2. We call the corresponding vertices of Qk(Δ)
the midpoint vertices and call the remaining vertices in row i the nonmidpoint vertices. 
The midpoint vertices have weight 2ωi, so that the correct version of (11) rescales the 
cluster variable x(i, i, 0) by W2

i . On the other hand, (11) holds for the nonmidpoint 
vertices.

Provided k > 2, there are no edges between the various midpoint vertices. The muta-
tion μmidpoint at all the midpoint vertices (in any order) is well-defined. We use primes 
x′(i, i, 0) to denote the result of such mutation. Note that each midpoint vertex has degree 
4 with 2 incoming and two outgoing neighbors. Each neighbor has weight ωi+ωi−1 +ω1, 
so that wtp(x′(i, i, 0)) = 2(ω1 + ωi−1). In particular, ψ∗

i,p fixes x′(i, i, 0).
The induced subquiver of μmidpoint(Qk(Δ)) on the nonmidpoint vertices is an ori-

ented m-cycle for some m. We claim that performing the sequence (13) to the seed 
μmidpoint(Σk(Δ)) is the Weyl group automorphism ψ∗

i .
The action of ψ∗

i,p on μmidpoint(Σk(Δ)) is to rescale each nonmidpoint cluster variable 
by the quantity Wi (fixing all other cluster variables). The expression (12) for Wi as a 
Laurent polynomial in the initial cluster variables is still valid. What needs to be checked 
is that when we rewrite the quantity (12) in terms of the variables in μmidpoint(Σk(Δ)), 
it matches the formula (14) for the mutation sequence (13) applied to the cycle on the 
nonmidpoint variables. This is a straightforward check which we illustrate in Exam-
ple 4.7. �
Example 4.7. We illustrate the ideas in the proof of Proposition 4.6 in the case that 
G = SL4 and S = S1,1. The initial quiver is in Fig. 2 with rows 3 and 2 drawn in blue 
and red. The induced subquiver on the red vertices is not an oriented cycle. To rectify 
this, one should mutate at vertices 2, 4 and 10 to obtain the quiver on the right. In this 
quiver, the red form an oriented 6-cycle. The formula (12) takes the form



28 C. Fraser, P. Pylyavskyy / Advances in Mathematics 412 (2023) 108796
Fig. 2. From the proof of Proposition 4.6. The gray dashed lines describe a triangulation of the once-
punctured torus S1,1 (with top/bottom and left/right sides identified). The left picture is the initial quiver 
when G = SL4. The blue vertices comprise row 3; the induced subquiver on these vertices is an oriented 
6-cycle contractible to the puncture p. The red vertices comprise row 2. Mutation at the midpoint vertices 
2, 4, and 10 yields the quiver on the right. The nonmidpoint vertices (drawn red in the right figure) form an 
oriented 6-cycle contractible to the puncture. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

x0x6

x2x3
+ x1x7

x3x4
+ x1x13

x4x12
+ x9x14

x10x12
+ x7x9

x6x10
+ x3x5

x2x6
+ x5x14

x2x13
+ x8x12

x4x13

+ x3x8

x4x7
+ x6x11

x7x10
+ x11x12

x10x14
+ x0x13

x2x14

= x′
4x1

x3x12
+ x′

2x0

x3x14
+ x′

10x11

x7x14
+ x′

4x8

x7x13
+ x′

2x5

x6x13
+ x′

10x9

x6x12
.

In passing from the first to the second line, we e.g. grouped the terms x1
x4

(x7
x3

+ x13
x12

) and 
then used the mutation formula x′

4 = x7x12+x3x13
x4

. The result is the formula (14) applied 
to the red oriented 6-cycle on the right of Fig. 2 with the frozen variables appropriately 
specialized.

Remark 4.8. In [14], Goncharov and Shen give a formula for the DT-transformation of 
A (SLk, S). It is a composition of several commuting maps, one of which is the action 
of the longest element w0 ∈ W at each puncture. We expect that this formula works 
for Sg,1’s, so that our Theorem 4.4 shows that the DT transformation of ASLk,Sg,1 is 
cluster once k > 2. We believe this would follow from Section 8.2 in [14] provided one 
checks the analogue of Theorem 4.4 on the X -space. When k = 3, we have checked that 
the candidate map is indeed the DT transformation and that the standard sequence of 
mutations which realizes this map is a maximal green sequence.
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5. Compatibility of weight vectors

With the above preliminaries established, the next several sections investigate prop-
erties of P -clusters in the cluster algebras A (M). The present section introduces a 
compatibility notion for elements of the weight lattice which we expect models compati-
bility of cluster variables. We use freely here the Coxeter-theoretic terminology of roots, 
weights, ordered set partitions, etc. from Section 2.4.

The maximal faces of the Coxeter complex are indexed by permutations. The closure 
Cw of the facet Cw indexed by the permutation w consists of weight vectors λ whose 
coordinates satisfy λw(1) ≥ · · · ≥ λw(k).

Definition 5.1. A pair of weight vectors λ, μ ∈ P is w-sortable if both these vectors lie in 
Cw. The pair is W -sortable if it is w-sortable for some w ∈ W .

The pair is root-conjugate if the difference λ −μ lies in the root system Φ and moreover, 
the vectors λ and μ are conjugate by reflection in this root vector.

The pair is compatible if it is either W -sortable or root-conjugate.

A compatible pair of vectors is either W -sortable or root-conjugate, never both.
Whenever weight vectors λ and μ are conjugate by reflection in the root ea−eb, one has 

λ −μ ∈ spanZ(ea − eb). Root-conjugacy requires more strongly that λ −μ = ±(ea − eb). 
This condition is equivalent to requiring that there exists a weight vector ν ∈ P whose 
coordinates satisfy νa = νb, and a choice of sign ε ∈ {±1}, such that λ = ν + εea and 
μ = ν + εeb. In fact, one readily sees that if this property holds for ε, then it also holds 
for −ε, so the choice of sign is immaterial. This sign ambiguity disappears once we have 
three vectors which are pairwise root-conjugate, see Lemma 5.3 below.

Example 5.2. The vectors (7, 3, 2) and (3, 7, 2) are s1-conjugate but not root-conjugate. 
The vectors (7, 3, 2) and (6, 4, 2) differ by the root e1−e2 but they are not root-conjugate. 
The vectors (7, 3, 2) and (7, 2, 3) are root-conjugate in the direction of the root e2 − e3. 
Applying the previous paragraph to this pair, we could take either ν = (7, 3, 3) and 
ε = −1 or take ν = (7, 2, 2) and ε = +1.

If C is a set of pairwise root-conjugate vectors, then every difference of two vectors in 
C takes the form ea − eb for appropriate indices a, b ∈ [k]. Define the ground set of such 
a C as

{a ∈ [k] : there exists λ, μ ∈ C and b ∈ [k] such that λ− μ = ea − eb}. (16)

As an example, the collection C = {(6, 7, 6, 7), (7, 6, 6, 7), (7, 7, 6, 6)} has ground set 
{1, 2, 4}.

Lemma 5.3. Let C ⊂ P be a collection of weight vectors with |C| > 2.
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If the elements of C are pairwise W -sortable, then there is a unique osp Π such that 
C ⊂ CΠ and CΠ is minimal by inclusion with this property.

If instead the elements of C are pairwise root-conjugate, let B ⊂ [k] be their cor-
responding ground set (16). Then there exists a unique weight vector ν with constant 
B-coordinates (i.e., νa = νb when a, b ∈ B), and a unique sign ε ∈ {±1}, such that 
C = {ν + εea : a ∈ B}.

The ordered set partition Π alluded to in the first part of this lemma is the least 
upper bound of the ordered set partitions Π(λ) : λ ∈ C. To illustrate the second part of 
the lemma, we would have uniquely that ν = (7, 7, 6, 7) and ε = −1 for the collection C
introduced just before the lemma statement.

Proof. The first statement is an instance of the classical statement that the Coxeter 
complex is a flag complex. Given λ, the corresponding closed face CΠ(λ) of the Coxeter 
complex is a simplex on certain vertices vi(λ). If μ ∈ C, then the w-sortability hypothesis 
says that CΠ(λ) ∪ CΠ(μ) ⊂ CΠ(w). Thus, any pair of vi(λ) and vj(μ) form a 2-simplex in 
the Coxeter complex, hence the union of the vi(λ)’s and vj(μ)’s determines a simplex 
in the Coxeter complex (because the latter is a flag complex). Continuing in this way, 
the minimal simplex which contains all of the vectors λ ∈ C is the one spanned by the 
various vertices vi(λ). This minimal by inclusion simplex is the desired CΠ.

For the second statement, let λ, λ′, and λ′′ be three elements of C. Observe that if 
a ∈ [k] and λ, μ are root-conjugate, then λa−μa ∈ {0, ±1}. Suppose that λ −λ′ = ea−eb. 
From the definition of root-conjugacy we can write λa = λ′

b = x +1 and λb = λ′
a = x for 

some x ∈ Z.
From the observation two sentences previous, we have λ′′

a ∈ {x, x + 1} and λ′′
b ∈

{x, x + 1}.
In the first case, we have λ′′

a = x. Then λ − λ′′ = ea − ec for some c �= b. It follows 
that λ′

b = λb = x and also follows that λ′′
c = x + 1 and λc = x. Letting ν = λ − ea, we 

see that λ, λ′, and λ′′ take the form ν + ea, ν + eb, and ν + ec where νa = νb = νc = x. 
It is clear that the vector ν ∈ P is unique and the sign ε = +1 is determined.

The second case is that λ′′
a = x + 1. Then we have λ′′

b − λ′
b = ea − ec for some c �= b. 

It follows that λ′′
b = x + 1 and that λ′

c = λc = x + 1. Letting ν = λ + eb, we can write 
our three vectors as ν − eb, ν − ea, and ν − ec. As above, everything (including the sign 
ε = −1) is determined.

To complete the proof we suppose there is a fourth vector λ′′′ and repeat the argument 
with λ, λ′, and λ′′′. If we were in the first case with λ, λ′, and λ′′, one can check that 
must also be in the first case with λ′′′

a and so on. So the argument persists and the claims 
about the existence and uniqueness of ν and ε follow. �

Let C ⊂ P be a multiset of pairwise compatible weight vectors. We call λ ∈ C a 
root-conjugate vector in C if it is root-conjugate to some μ ∈ C. Otherwise we say that λ
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is a W -sortable vector in C. We call the collection C basic if every root-conjugate vector 
in C appears with multiplicity one in the multiset.

The following is our main conjecture concerning weights of cluster variables in the 
cluster algebra A (M).

Conjecture 5.4. Let C ⊂ PM◦ be a P -cluster for A (M) and p ∈ M◦ be a puncture. Then 
the projection πp(C) ⊂ P is a basic multiset of pairwise compatible vectors.

This conjecture is purely about P -clusters at p, so one might be able to prove it by a 
careful analysis of P -seeds and their mutations.

We denote by E = E(M) the exchange graph of the cluster algebra A (M).

Definition 5.5. We denote by Egood ⊂ E the maximal connected subgraph of the exchange 
graph containing the initial seed and consisting of seeds whose P -cluster at any puncture 
p is a basic multiset of pairwise compatible vectors. We call Egood the good part of the 
exchange graph.

Thus, a cluster is in the good part of the exchange graph if it is connected to the initial 
seed by mutations which only pass through clusters whose underlying P -cluster satisfy 
Conjecture 5.4. Conjecture 5.4 is the assertion that Egood = E. Since we do not have a 
proof of this conjecture, our results in the next two sections address clusters which are 
in Egood.

Our first result along these lines is as follows. We say that vertices v and v′ are 
symmetrical in a quiver Q if the vertex transposition (vv′) induces an isomorphism of Q.

Proposition 5.6. Let C = (Q, wt(v)v∈V (Q)) be a P -seed in the good part of the exchange 
graph. Let v, v′ be vertices of its underlying quiver Q whose weights πp(wt(v)) and 
πp(wt(v′)) are root-conjugate at some puncture p. Then v and v′ are symmetrical vertices 
in Q. Moreover, πp′(wt(v)) = πp′(wt(v′)) for punctures p′ �= p.

Proof. Put λ = πp(wt(v)) and λ′ = πp(wt(v′)). By assumption we have λ = ν + ea and 
λ′ = ν + eb where νa = νb. By the goodness of the P -cluster, all other vertices u �= v, v′

in Q have the property that πp(wt(u))a = πp(wt(u))b.
Consider a vertex u ∈ Q. Let μ ∈ P be the result of applying πp to the weight 

vector (2) encoding the weight of the right hand side of the exchange relation at u. By 
considering the left and right hand sides of (2) in turn and using the observations from 
the previous paragraph, we see that

μa − μb =
∑
u→v

1 −
∑
u→v′

1

=
∑
v→u

1 −
∑
v′→u

1.
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On the other hand, only one of the cases u → v or v → u is possible and likewise for 
u → v′ and v′ → u. If, for example, the case u → v occurs, we conclude that the number 
of arrows u → v must equal the number of arrows u → v′ and also conclude that there 
are no arrows v → u or v′ → u. That is, the vertices v and v′ are symmetrical in the 
quiver.

For the second claim about weights at punctures p′ �= p, note by weight considerations 
that the automorphism ψ(a,b),p must send wt(v) to wt(v′), and it follows that these two 
weight vectors coincide away from p. �
Example 5.7. The cluster algebra A ′(SL3, D2,1) has finite cluster type D4. We indicate 
the initial mutable P -seed indicated below (drawn inside the digon with puncture p). 
There are finitely many P -clusters which we computed exhaustively on a computer (code 
available at the first author’s web site). The first column in the table below lists a set of 
representatives for the W -equivalence classes of P -clusters:

p

ω1

ω2

ω2

ω1

•

•

P -cluster class sums dosp
e1 × 2, e1 + e2 × 2 e1, e1 + e2 1|2|3
e1, e2, e1 + e2 × 2 e1 + e2 12|3
e1 × 2, e1 + e2, e1 + e3 e1 1|23
e1, e2, e1 + e2, 0 0, e1 + e2 12|3
e1, e1 + e2, e1 + e3, 0 0, e1 1|23
e1, e2, e3, 0 0 123+

e1 + e2, e1 + e3, e2 + e3, 0 0 123−
(17)

We write e1 +e2×2 to indicate that the vector e1 +e2 appears twice in the multiset, and 
so on. The initial cluster occupies the first row of the table. The second and third columns 
of the table are discussed in the next section. We give similar tables for A ′(SL3, D3,1)
and A ′(SL4, D2,1), each of which also has only finitely many P -clusters, in (56) and (58)
as part of our study of finite mutation types. By inspecting these tables, one can see 
that Conjecture 5.4 holds in all three of these examples.

6. From compatible collections to dosps

We explain a way of associating a certain combinatorial object (a “dosp” at every 
puncture) to P -clusters in the good part of the exchange graph. We identify the operation 
on these objects which is induced by mutations in the cluster algebra.

6.1. An osp at every puncture

Let C ⊂ P be a basic multiset of pairwise compatible weight vectors. We get an 
equivalence relation on the ground set C by declaring two vectors λ �= μ ∈ C to be 



C. Fraser, P. Pylyavskyy / Advances in Mathematics 412 (2023) 108796 33
equivalent when they are root-conjugate. This relation is transitive by Lemma 5.3. Each 
W -sortable vector in C lies in its own equivalence class.

Each equivalence class O ⊂ C gives rise to a class sum, defined as sumO :=
∑

λ∈O λ ∈
P . This construction is indicated in the passage from the first to second column in 
(17). For example, the fifth row has an equivalence class O = {e1 + e2, e1 + e3} with 
sumO = 2e1 + e2 + e3 = e1 ∈ P .

Lemma 6.1. If C is a basic multiset of pairwise compatible weight vectors, then its collec-
tion of class sums consists of pairwise W -sortable vectors.

We have listed the P -clusters up to W -action in (17) in such a way that the class 
sums in each row of the table are sortable by the identity permutation.

Proof. If C is a pairwise W -sortable collection then the claim is clear. Otherwise let O
be a class of size at least two. We will show that the collection O′ := (C \ O) ∪ {sumO}
is again a basic multiset of pairwise compatible weight vectors and that sumO is a 
W -sortable vector in O′. Repeating this process proves the claim.

Let B ⊂ [k] be the ground set of the class O (16). By Lemma 5.3, there is a vector 
ν ∈ P with constant B-coordinates and a sign ε such that O = {ν + εea : a ∈ B}. Thus 
sumO = |B|ν + ειB has constant B-coordinates where ιB is the indicator vector of B. 
If μ ∈ C \ O, then since μ is not root-conjugate to the vectors in O, the definition of 
compatibility requires that μ is W -sortable with each element of O. In particular, μ must 
have constant B-coordinates. It follows that μ is pairwise W -sortable with sumO. �

By this lemma and Lemma 5.3, any basic multiset C of pairwise compatible weight 
vectors gives rise to an ordered set partition Π(C) via

Π(C) :=
s∨

i=1
Π(sumOi), (18)

where we recall that 
∨

denotes the least upper bound operation on osp’s. This osp 
records the global coordinate equalities and strict inequalities which hold for all class 
sums in C.

This construction is illustrated in the passage from the first column to the third 
column in (17) provided the reader ignores for the moment the +, − signs appearing as 
exponents in the third column. (These signs are the extra information of a decorated osp 
and will be explained shortly.) For the collection C appearing in the fifth row of (17), we 
have class sums e1 and 0, with corresponding osp’s Π(e1) = 1|23 and Π(0) = |123| so 
that Π(C) = 1|23.

In this example, note that {2, 3} is a ground set of the root conjugacy class {e1 +
e2, e1 + e3} ∈ C and appears as a block of Π(C) = 1|23. This is in fact always the case:
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Lemma 6.2. Continuing the setup of the previous lemma, let Bj be the ground set of an 
equivalence class Oj ⊂ C. Then Bj is a block of Π(C).

Proof. Let O1, . . . , Os be a listing of the classes in C. Let us focus on a particular Bj . 
It is easy to see that Bj is a subset of a block of Π(C), i.e. that each of the vectors in 
the set S := {sumOi : i ∈ [s]} has constant Bj-coordinates. We need to argue that no 
other coordinate is globally equal to these coordinates on this set S. As in the proof of 
the previous lemma, we have sum(Oj) = |Bj |ν + ειBj

. We see that the ath coordinate 
sum(Oj)a = 0 mod |Bj | when a /∈ Bj while sum(Oj)a = 1 mod |Bj | when a ∈ Bj , 
hence these coordinates are not equal. �

So far the discussion has focused on a particular copy of the weight lattice P . If we 
are instead given a P -cluster C ⊂ P⊕M◦ appearing in the good part of the exchange 
graph, we use the projection πp : P⊕M◦ → P to assign to this P -cluster an ordered set 
partition at each puncture:

Πp(C) := Π(πp(C)). (19)

We have the following relationship between this recipe and the mutation rule (2) for 
P -cluster variables. Given a P -seed and mutable vertex v in the underlying quiver, we 
denote by κ(v) :=

∑
u→v wt(u) ∈ PM◦ the weight of the right hand side of the exchange 

relation describing mutation in direction v out of the current seed.

Proposition 6.3. Let C be the P -cluster of a P -seed in the good part of the exchange graph 
determining an osp Πp(C) at each puncture p. Then each of the weight vectors πp(κ(v)), 
as v varies of the vertices of the P -seed, lies in the closed Weyl region CΠp(C).

That is, while the coordinate equalities described by Πp(C) need not hold for the P -
cluster variables at p, they do hold for the weights of each exchange relation out of this P -
cluster. In particular, the exchange relations for each P -cluster have pairwise W -sortable 
weights. This is a nontrivial assertion which might possibly be proved inductively by a 
careful analysis of the mutation rule (2) and might be easier to prove than Conjecture 5.4
itself.

Proof. By Proposition 5.6, vertices in each equivalence class Oi ⊂ πp(C) are symmetrical 
in the corresponding quiver, so their contribution to (2) is symmetrical. So the weight 
vector πp(κ) is a nonnegative linear combination of the vectors sumOi as i ranges over 
the root-conjugacy classes in πp(C). Each vector sumOi lies in the closure CΠp(C) by 
Lemma 6.1 (this was the definition of Πp(C)), hence so does πp(κ) since the closed Weyl 
region is a cone. �
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6.2. A dosp at every puncture

The previous section associated an osp at each puncture to a P -cluster in the good 
part of the exchange graph. We now give a more refined version of this construction in 
which we associate a choice of sign to certain blocks of such an osp.

Our starting point is the following lemma which says informally that the P -cluster at 
a puncture p cannot be “too small.”

A choice of weight vector λ ∈ P determines a Laurent monomial map T → C∗ sending 
t 
→ tλ. If C ⊂ P is a multiset of weight vectors of cardinality N , then it determines in 
this way a map of algebraic tori T → (C∗)C ∼= (C∗)N . Our next lemma addresses what 
happens when we remove a vector λ ∈ C, getting a map from T to a torus of rank N −1.

Lemma 6.4. Let C be a P -cluster, λ ∈ C one of its P -cluster variables, and p a puncture. 
Then T → (C∗)πp(C)\πp(λ) is injective.

That is, we can recover t ∈ T from the monomials tπp(λ) : λ ∈ C, and more strongly 
we can recover t from any N − 1 of these monomials. Note that here N is the number 
of mutable variables in the cluster algebra A (M), which is much larger than the rank 
k − 1 of the algebraic torus T , so the lemma is not so surprising.

Proof. In an initial seed, there are least two vectors of weight ωi at p for i = 1, . . . , k− 1
(because the quiver fragments Qk(δ) and Q1

k(δ) have at least two variables in each row.) 
In particular, regardless of which cluster variable we remove, we still have at least one 
copy of the monomial tωi for i = 1, . . . , k−1, and these monomials are enough to recover t.

To complete the proof, we should check that the claimed injectivity propagates under 
mutation. That is, we assume the injectivity statement for a P -cluster C and consider 
a mutation λ 
→ λ′ resulting in a new P -cluster C′. The monomial map indexed by the 
vectors in C′ \ λ′ is clearly injective since it coincides with the map indexed by C \ λ. If 
μ ∈ C′ \ λ′, we need to argue that the monomial map indexed by C′ \μ is injective. Note 
that μ appears in at most one of the two monomials appearing in the exchange relation 
(2) between λ and λ′. Suppose that t ∈ ker(T → (C∗)C′\μ). By considering the monomial 
in the exchange relation that does not involve μ, we see that tπp(λ+λ′) = 1. And on the 
other hand tπp(λ′) = 1 since λ′ ∈ C′ \ μ. Thus tπp(λ) = 1 and t ∈ ker(T → (C∗)πp(C\μ)). 
Thus t = 1 ∈ T using the injectivity statement for the P -cluster C. �
Corollary 6.5. Let C be a P -cluster which is in the good part of the exchange graph 
and p be a puncture. For any coordinates a �= b ∈ [k], there is either a pair of vectors 
λ, μ ∈ πp(C) which are root-conjugate in the direction ea − eb, or one of the following 
global directions of inequality holds:

• for all λ ∈ πp(C) one has λa ≥ λb with strict inequality attained at least twice, or
• the same as above but with the direction of inequality reversed.
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As an illustration of this corollary, we could not possibly see the P -cluster multiset 
{e1×3, e1+e2} in table (17) because the global coordinate inequality between coordinates 
2 and 3 is attained only once, not twice.

Proof. The argument only involves weights at p so we can abbreviate C = πp(C). 
For a �= b ∈ [k] denote by Tab ⊂ T the rank one subtorus of matrices of the form 
(1, . . . , z, . . . , z−1, . . . , 1) for z ∈ C∗, with the z’s in positions a and b.

Consider a pair of coordinates a �= b ∈ [k]. Suppose C does not contain vectors which 
are root-conjugate by the root ea−eb. By the definition of pairwise compatibility, there is 
a global inequality λa ≥ λb or λa ≤ λb holding for all vectors λ. By considering the action 
of the torus Tab and using Lemma 6.4, we see that the strict version of this inequality 
must be strict for at least two vectors λ ∈ C. �
Definition 6.6. A decorated ordered set partition (a dosp for short) is a pair (Π, ε) consist-
ing of an osp Π together with a choice of sign ε(B) for each block B of Π of cardinality 
at least three.

Recall the construction (19) assigning an osp at each puncture to any P -cluster C in 
the good part of the exchange graph.

Lemma 6.7. Let C be a P -cluster in the good part of the exchange graph, p be a puncture, 
and B be a non-singleton block of Πp(C). Then B is the ground set of a root-conjugacy 
class in πp(C).

That is, every non-singleton block of Πp(C) “comes from” a root-conjugacy class in 
πp(C).

Proof. Suppose that a, b reside in a block of Πp(C) and are not in part of a ground 
set. By the corollary, there is a vector λ ∈ Πp(C) satisfying a strict inequality λa > λb

(or the opposite strict inequality, but this will not change the argument). On the other 
hand, passing from the collection Πp(C) to the collection of class sums, we only turn 
a strict inequality between coordinates into an equality of coordinates when the two 
coordinates are in the ground set of a root-conjugacy class. This contradicts the fact 
that the coordinates a and b are supposed to be equal on class sums. �

Using Lemma 6.7, we upgrade the recipe (19) to a “P -cluster to dosp” map

C 
→ ((Πp(C), εp(C))p∈M◦ , (20)

defined for any cluster in the exchange graph whose P -cluster satisfies Conjecture 5.4. 
Namely, we can define the sign ε(B) for any block of cardinality at least three to be the 
sign associated to its underlying root-conjugacy class by the construction in Lemma 5.3.
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6.3. Dosp mutations

By the previous section, we can assign to any vertex of the good part of the exchange 
graph a tuple of dosps indexed by punctures. In this section, we show that every mutation 
of P -clusters changes these dosps in a predictable way.

Definition 6.8. A mutation of dosps is the following local move on decorated blocks:

(L ∪ {a})+ |R− ↔ L+ | ({a} ∪R)−, (21)

where L, R ⊂ [k] are adjacent blocks, possibly the empty block.

When one of L or R is the empty block, the mutation move amounts to merging 
a singleton block with a neighboring block or the inverse of this move. If a block has 
cardinality one or two, then for the purposes of mutation one can regard the block as 
both signs + and − in (21). See the below example for further clarification.

Example 6.9. The following is a complete list of dosps which can be obtained from the 
dosp 12|345+|6 by a dosp mutation, with terms grouped if they are related by W -action: 
i) 12|3456+, ii) 1|2|345+|6 or 2|1|345+|6, iii) 12|34|56 or 12|35|46 or 12|45|36, and finally 
iv) 12|34|5|6 or 12|35|4|6 or 12|45|3|6.

We now justify our use of the word mutation.

Lemma 6.10. Let C and C′ be mutation-adjacent P -clusters in the good part of the 
exchange graph and consider a puncture p ∈ M◦. Then the corresponding dosps 
(Πp(C), ε(C)) and (Πp(C′), ε(C′)) either coincide or are related by a dosp mutation.

Proof. The argument is local in the puncture p so we abbreviate C = πp(C), Π = Πp, 
λ = πp(λ) etc.

Using Corollary 6.5, a given pair of coordinates a, b either satisfies a global inequality 
on C with strictness attained at least twice, or these coordinates are part of a ground 
set of a root-conjugacy class (in which case there is a strict inequality between these 
coordinates in both directions, attained exactly once). Using the data of the direction 
of these inequalities, and how many times they are attained, we clearly can recover the 
dosp.

Fixing a and b, let us analyze how the direction of inequality can change when we 
perform a P -cluster mutation removing λ and inserting some λ′. We use primes to denote 
the result of mutation, e.g. denoting the new P -cluster by C′.

First we suppose there is no global inequality between coordinates a and b in C. That 
is, these two coordinates reside in the same block B � a, b of Π1, or equivalently, in the 
ground set of a root-conjugacy class in C. We can write the vectors in this root-conjugacy 
class as ν+ε(B)es as s varies over the block B, where ν has constant B-coordinates. The 
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inequality between a and b will only change if λ is either ν + ε(B)ea or ν + ε(B)eb, and 
up to symmetry we can assume λ = ν + ε(B)ea. Removing λ removes a from the block 
B. The coordinates a and b must reside in different blocks of Π′, i.e. there is a global 
inequality between these coordinates which holds on C′ and is attained at least twice. 
Let μ := (ab)λ; this vector lies in C hence also in C′. When the block B has cardinality at 
least three, the sign ε(B) determines the inequality between the coordinates μa and μb, 
hence determines the direction of inequality between coordinates a and b in Π′. (When 
ε(B) = +1, a must reside to the right of the coordinate b; when ε(B) = −1, a must 
reside to the left of the coordinate b.)

If there is a global inequality between coordinates a and b in C, then because the strict 
inequality is attained at least twice, C′ either has the same global inequality, or a and b
are in the same block of C′ and we are in the case of the previous paragraph.

After possibly interchanging λ and λ′, then, we can assume that the removed vector 
λ = ν+ε(B)ea is a root-conjugate vector residing in a root-conjugacy class O with ground 
set B, where ν has constant B-coordinates. Removing λ only changes the coordinate 
inequalities involving a. (All other coordinate inequalities are unchanged since they are 
witnessed by the vectors in O\λ.) If ε(B) = +1 (resp. = −1), we know that the coordinate 
a moves right (resp. left), and since no other coordinate inequalities are affected, a must 
move to the block immediately right of the block B \ {a} in Π′. (If {a} is a singleton 
block, then this block will be immediately right of B \ {a}.) To summarize: only the a-
coordinate “moves” in passing from Π to Π′; we know the direction that this coordinate 
must move provided the block B has cardinality at least three, and we know that it must 
move into an immediately adjacent block. We get the dosp mutation rule (21). �

Our next lemma is a continuation of the previous one, but now considering all punc-
tures at once.

Lemma 6.11. Let C and C′ be mutation-adjacent P -clusters in the good part of the ex-
change graph. Then the dosps (Πp(C), εp(C)) and (Πp(C′), εp(C′)) disagree at at most one 
puncture.

Our proof relies in part on the assertion that the quiver for our moduli space has no 
isolated vertices if we exclude the special case of a once-punctured digon and G = SL2. 
This special case presents no counterexample to our lemma so we can ignore it. The 
assertion itself can be argued by a painful case analysis.

Proof. By Lemma 6.10, the dosps at each puncture either coincide or are related by a 
dosp mutation. We suppose that the mutation removes a vector λ and inserts a vector 
λ′. Our reasoning below relies on the observation at the construction of a dosp from a 
collection C depends only on C as a set, not as a multiset.

Suppose that a dosp mutation occurs at a puncture p. We will show it does not happen 
at punctures q ∈ M◦ with q �= p. As in the last paragraph of the previous proof, we can 
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assume (after possibly interchanging roles) that πp(λ) ∈ πp(C) is a root-conjugate vector, 
root-conjugate to some μ ∈ C at p. Using Proposition 5.6, we know that the vectors λ
and μ coincide at q. Thus, in removing λ and inserting λ′, we are removing a vector 
which is present at least twice in the multiset πq(C) and perhaps adding a new vector. 
In particular, πq(λ) ∈ πq(C) is not a root-conjugate vector. By the same reasoning, if 
πp(λ′) ∈ πp(C′) is also a root-conjugate vector, then we have πq(C) = πq(C′) as sets (not 
as multisets). So in this case, the dosp at q does not change.

Suppose seeking contradiction that adding the vector λ′ changes the dosp at q. Then 
πq(λ′) must be a root-conjugate vector in πq(C′). (We argued in the previous proof that 
when a dosp mutation occurs, one of the two vectors involved in the mutation is a 
root-conjugate vector, and we know that πq(λ) is not a root-conjugate vector.) By the 
reasoning in the previous proof, there is a strict inequality between a pair of coordinates, 
say νc ≥ νd, which holds on πq(C) and which is strictly attained exactly twice in the 
multiset πq(C). Moreover, πq(λ) must be one of the two vectors which attains this strict 
inequality because removing λ and inserting λ′ changes the global inequality between 
c and d into a root-conjugacy. And since λ and μ coincide at q, the vector πq(μ) is 
the other vector in πq(C) attaining the strict inequality. Finally, by Proposition 5.6, the 
P -cluster variables λ and μ are symmetrical in the quiver Q underlying the P -seed of 
C. Let v be a vertex of the P -seed which is adjacent to the vertices λ and μ in Q; such 
vertex exists because Q has no isolated vertices. For simplicity assume that the arrows 
point from λ, μ to v in Q, so that λ and μ contribute to the first term in (2) describing 
mutation at vertex v in the P -seed. By our assumptions, πq applied to this first sum 
(
∑

u→v in Q wt(u)) has c-coordinate strictly greater than its d-coordinate because λ and 
μ both appear in this sum and all other summands have equal c and d coordinates. 
On the other hand, πq applied to the second sum (

∑
v→u in Q wt(u)) has equal c and d

coordinates for the same reasons. But by the balancing condition for P -seeds, these two 
sums must equal one another, yielding the desired contradiction. �
7. Realizing dosp mutations via cluster mutations

We explore in this section the relation between the exchange graph of the cluster 
algebra A (M) and a simpler finite graph.

First we make some standard graph theoretical definitions. Let G = (V, E) and G′ =
(V ′, E′) be simple undirected graphs without isolated vertices. A map f : V → V ′ on 
their vertex sets is simplicial if for each edge (u, v) ∈ E, one either has f(u) = f(v) or has 
(f(u), f(v)) ∈ E′. A simplicial map is an edge contraction map if every e′ ∈ E′ takes the 
form f(e) for some e ∈ E. (This implies that f is surjective on vertices.) Viewing graphs 
as 1-dimensional CW complexes, an edge contraction map determines a homotopy from 
G to G′ while a simplicial map induces a homotopy onto a subgraph of G′.

Definition 7.1. The dosp mutation graph Hdosp = Hdosp(k) is the graph with vertex set 
consisting of the dosps on [k] and with edges the dosp mutations.
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When we have fixed in our minds a marked surface S, we associate the graph 
�M◦Hdosp, the Cartesian product of copies of Hdosp indexed by the punctures in S.

Thus, a vertex of �M◦Hdosp corresponds to a choice of at each puncture, and an edge 
corresponds to a dosp mutation at one of the punctures.

Example 7.2. When k = 2, the dosp mutation graph is the path graph on three vertices

Hdosp(2) = 1|2 —— |12| —— 2|1. (22)

The left and right vertices correspond to tagged triangulations which are plain versus 
notched at a puncture p. The middle vertex corresponds to tagged triangulations contain-
ing one plain and one notched arc at p. When |M◦| = 2, the Cartesian square �M◦Hdosp
of this graph is the 3 × 3 grid graph.

The graph Hdosp(3) is the right graph drawn in Fig. 3. Its relationship with the left 
graph in the figure, i.e. the exchange graph of a type D4 cluster algebra, is explained in 
Section 10.

The graph Hdosp(4) has 84 vertices and seems unwieldy to draw. We draw instead its 
quotient by the W -action:

Hdosp(4)/W =
1|2|3|4

12|3|4

1|23|4

1|2|34

12|34

123−|4 1|234+

123+|4 1|234−

1234+ 1234−

(23)

We now identify a relationship between the good part of the exchange graph and the 
graph �M◦Hdosp.

Consider a P -cluster in the good part of the exchange graph. By the recipe (20), it 
determines a dosp at each puncture, i.e. a vertex of �M◦Hdosp. By Lemmas 6.10 and 6.11, 
the map Egood → �M◦Hdosp is a simplicial map of graphs. Our next theorem addresses 
the image of this simplicial map. That is, we ask which dosps and which dosp mutations 
are “witnessed” by clusters and their mutations.

We call a dosp oneblock if its underlying osp has only one block. When k > 2 there 
are two oneblock dosps. We call a vertex of �M◦Hdosp everywhere oneblock if its dosp at 
each puncture is oneblock; there are 2|M◦| many such vertices when k > 2.

Theorem 7.3. Suppose that S �= D1,h for some h ≥ 1. Then the simplicial map (20) has 
the following properties:
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Fig. 3. The exchange graph for a D4 cluster algebra and its edge contraction on to the dosp mutation graph, 
illustrating Theorem 7.3 when M = GrSL3,D2,1 . The green (resp. red, resp. blue) colors indicate the fibers 
of the edge contraction map.

(1) If S has boundary, then Egood → �M◦Hdosp is an edge contraction map.
(2) If S has no boundary (hence when S = Sg,h), then the map Egood → �M◦Hdosp

misses the everywhere oneblock vertices.

Conjecture 7.4. When S = Sg,h and (k, S) �= (2, S0,3), the map (20) is an edge contraction 
onto the induced subgraph on the vertices which are not everywhere oneblock.

Let H ′ be the result of deleting the everywhere oneblock vertices from the graph 
�M◦Hdosp. We will prove momentarily that the image of (20) is contained in this smaller 
graph H ′ when S has no boundary. A verification of the above conjecture would involve 
showing that every edge in H ′ has a preimage under the map P -cluster to dosp map 
(20). This is a tractable explicit question which we do not address in this paper.

Remark 7.5. We expect that (1) from the above theorem holds for punctured monogons 
D1,h once h ≥ 2, but there is a technical difficulty with the proof we present. We have 
excluded once-punctured monogons in this paper, but if one considers them, then the 
statement is false when k = 2, 3. It most likely holds when k > 3.

Remark 7.6. We illustrate (2) from Theorem 7.3 when k = 2. A tagged triangulation T
is oneblock at p if there exists tagged arcs γ, γ�� ∈ T with γ plain and γ�� its notching 
at p. The other endpoint of γ is at a puncture q since there are no boundary points. The 
tagged arcs γ and γ�� must be tagged the same way at q, hence T is not oneblock at q. 
That is, it is not possible to be oneblock at every puncture when S has no boundary.

By an explicit argument (constructing appropriate tagged triangulations and flips 
between them), one can check that Conjecture 7.4 holds in this case. That is, every 
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vertex which is not oneblock at every puncture has a preimage under (20), as does any 
edge between two such vertices.

We now prove part (2) of Theorem 7.3 based on the ideas of the preceding remark:

Proof of (2) from Theorem 7.3. For a weight vector λ = (λ1, . . . , λk) ∈ P , sumλ :=∑
i λi mod k is well defined. By induction on mutations, every P -cluster variable λ has 

the property that 
∑

p sum πp(λ) = 0 mod k. There are only two options for a collection 
C ⊂ P to have a oneblock dosp: either C consists of the vectors e1, . . . , ek and multiple 
copies of the zero vector, or it consists of −e1, . . . , −ek and multiple copies of the zero 
vector. By Proposition 5.6, if a P -cluster variable λ is a root-conjugate vector at p then it 
is not root-conjugate at any other puncture. If the P -cluster containing λ has everywhere 
oneblock dosps, then λ has zero weight at every puncture q �= p. But then sumλ = ±1
mod k which is a contradiction. �

Our proof of (1) from Theorem 7.3 is more involved. First, we prove the statement for 
the special cases of A ′(SLk, D2,1) and then A ′(SLk, D2,1) by providing explicit muta-
tions. Then we reduce the assertion for an arbitrary version of the moduli space to this 
case by simple “cutting and gluing” type arguments.

The reader should consult the following example, which contains the heart of the 
whole argument, before reading the proof of Lemma 7.8.

Example 7.7. The cluster A ′(SL7, D2,1) has a canonical initial seed since the once-
punctured digon has a unique taut triangulation. Its P -cluster (with weight vectors 
written in multiplicative notation) is below:

a a

ab ab

abc abc

abcd abcd

abcde abcde

abcdef abcdef

initial P -seed

1413

1 2

3 4

5 6

7 8

9 10

11 12
vertex numbering (24)

The two frozen vertices are boxed and have weight zero, hence can be deleted. The 
dosp associated to this P -seed is 1|2|3|4|5|6|7. We now describe a sequence of P -seed 
mutations in the good part of the exchange graph which, after applying the “P -cluster 
to dosp map” (20), witnesses the sequence of dosp mutations
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Fig. 4. A sequence of P -seeds appearing as intermediate steps of the mutation sequence from Example 7.7
and the proof of Theorem 7.3. Each P -seed is written above the dosp that its P -cluster exhausts. Red 
vertices indicate merging of several symmetrical vertices of the P -seed (thereby reducing the number of 
edges in the picture), e.g. ab, ac is obtained by gluing a vertex of weight ab with one of weight ac, creating 
a vertex of weight a2bc.

1|2|3|4|5|6|7 
→ 1|23|4|5|6|7 
→ 1|234+|5|6|7 
→ 1|2345+|6|7 
→ 1|23456+|7.

In the first step, perform mutation μ4. The result is the leftmost P -seed in Fig. 4, 
drawn with vertices 3 and 4 merged and highlighted in red. The dosp of this P -seed is 
1|23|4|5|6|7. In the second step, mutate μ5 ◦μ6 to obtain the next P -seed in Fig. 4, with 
vertices 3,4,5 merged and in red. The dosp is 1|234+|5|6|7. Third, perform μ6 ◦μ7 ◦μ8 to 
obtain the next P -seed, with vertices 3,4,5,6 merged and with dosp 1|2345+|6|7. Finally 
mutate μ7 ◦ μ8 ◦ μ9 ◦ μ10 to obtain the fourth seed, with dosp 1|23456+|7.

We can simulate the dosp mutations

1|23456+|7 
→ 1|2345+|6|7 
→ 1|234+|56|7 
→ 1|23|456−|7 
→ 1|2|3456−|7 
→ 1|23456−|7

by mutating at the red vertices in the rightmost P -seed one by one. That is, performing 
the mutation μ7 we get af 
→ a3bcde which witnesses the first of these dosp mutations. 
Performing μ6 we get ae 
→ a3bcdf and the resulting P -cluster exhausts 1|234+|56|7.

Lemma 7.8. Theorem 7.3 holds for A ′(SLk, D2,1).

Proof. There is only puncture in this case. What we need to show is that every dosp is 
reachable inside the good part of the exchange graph by a sequence of mutations from 
the initial P -seed, and that every dosp mutation comes from a mutation of P -clusters 
inside the good part of the exchange graph.

The initial P -cluster when G = SLk is the ladder quiver as in (24), but with k − 1
rows. We number its vertices from left to right and top to bottom as in (24). Mutation at 
both vertices in the ith row is the Weyl group action si. Precompose with such mutations 
as needed, we can prove the desired surjectivity up to W -action.

The proof is based on the mutation sequences given in Example 7.7. If one wants 
to simulate a dosp mutation (L ∪ {a})+|R− 
→ (L)+|(R ∪ {a})−, one should create the 
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positively decorated block (L ∪ R)+ using the first sequence of mutations given in that 
example. (Mutating down the rows of the ladder quiver, starting either in the right 
column or the left column depending on parity.) One can then “peel off” the coordinates 
in R by mutating at the corresponding merged “red” vertices, arriving at the dosp 
(L ∪ {a})+|R−. Mutating at one more of these vertices implements the desired dosp 
mutation.

The mutation sequences involved are “local” in the coordinates L ∪R. That is, we can 
create “the rest of” the dosp on the coordinates [k] \ (L ∪ R) using the same mutation 
sequences, because the mutations in distinct blocks commute. To illustrate, in Exam-
ple 7.7, we create the decorated block 23456+ by mutating at rows 2, 3, 4, 5 only. We 
would be able to merge 7 into a block (of any sign we like) by performing the needed 
mutations starting in row 7. �

For the next step in the proof of Theorem 7.3, we will show that various P -seeds are 
mutation-equivalent to each other provided we ignore vertices of weight zero. We will 
use the notation Σ1 � Σ2 to indicate that we can reach the P -seed Σ2 from Σ1 by a 
sequence of mutations which do not violate Conjecture 5.4 and deletion of weight zero 
vertices.

The once-punctured m-gon Dm,1 has a unique taut triangulation Δ = Δm. It gives 
rise to initial P -seeds Σk(Δm) and Σ′

k(Δm) for A (SLk, Dm,1) and A ′(SLk, Dm,1) re-
spectively.

We upgrade the intermediate quiver Qs
k defined in Section 3.3 to a P -seed Σs

k by 
assigning to the vertex indexed by the triple (a1, a2, a3) ∈ Hk the weight ωa1 ∈ P . 
We denote by Σs

k

∐
∼

Σt
k the result of gluing two such P -seeds along their left and right 

boundary sides. Thus Σk−1
k

∐
∼

Σk−1
k = Σk(Δ2) and Σ1

k

∐
∼

Σ1
k = Σ′

k(Δ2).

Lemma 7.9. We have the following �-relationship between P -seeds:

Σk(Δ2) � Σ′
k(Δk) (25)

Σs
k

∐
∼

Σ1
k � Σs−1

k

∐
∼

Σ1
k for s ∈ [2, k − 1] for any k. (26)

Proof. For the first statement (25), the frozen variables play no role since they have 
weight zero at the puncture. We claim that the mutable parts of the P -seeds Σk(Δ2) and 
Σ′

k(Δk) are mutation-equivalent, establishing (25). This is a particular instance of the 
conjectured quasi cluster isomorphism asserted in Remark 3.5. We argue the statement 
we need in this case as follows.

There is a well known recipe that associates to a quiver to any reduced word for 
w0 ∈ W . One can upgrade this quiver to a P -seed by assigning vertices in row i the weight 
ωi. The seed Σk−1

k corresponds to the reduced word 1, . . . , k − 1, 1, . . . , k − 2, . . . , 1, 2, 1
and the seed Σk(Δ2) is the gluing of two such seeds (corresponding to the two triangles in 
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Fig. 5. From the proof of Lemma 7.9. The bottom quiver is that of Σ5(Δ2). The vertices 1, 3, 7, 13 resp. 
2, 5, 10, 17 sit on the two internal edges of the triangulation. The upper left quiver is mutation-equivalent 
to the bottom quiver. It is obtained by gluing the quiver for the reduced word 1324132413 with that for 
2413241324 along the edges of the triangulation. Rearranging the vertices of this quiver we get the upper 
right quiver, which is Σ′

5(Δ5). The colors indicate weights of P -cluster variables.

the triangulation of the once-punctured digon) along their shared edges. One knows that 
we can modify our reduced word (in either triangle) and obtain a mutation-equivalent 
seed. Let o =

∏
i odd si and e =

∏
i even si be the product of odd (resp. even) Coxeter 

generators. Then oeoe · · · is reduced word for w0 and so is eoee · · · (with k terms in 
either product). Depending on parity of k, one can either glue oeoe · · · to itself, or glue 
oeoe · · · with eoeo · · · , so that the letters alternate as we read the two triangles in cyclic 
order.

Deleting the frozen variables, which have weight 0, gives the P -seed Σ′
k(Δk). We 

illustrate this argument when k = 5 in Fig. 5. The mutation needed to create the upper 
left quiver from the bottom quiver is μ19,12,11,6 (which creates the word oeoeo in the right 
triangle) followed by μ14,16,9,4,8,9 (which creates eoeo in the left triangle). Rearranging 
the vertices, we recognize that this P -seed is in fact that of Σ′

k(Δk), proving (25).
The proof of the second statement (26) is illustrated in Fig. 6 when k = 8. The topmost 

figure is Σ7
8
∐
∼

Σ1
8; moving rightwards and downwards across the page we see Σ6

8
∐
∼

Σ1
8 then 

Σ5
8
∐
∼

Σ1
8 etc. Each row of Σs

k has at most s many variables. To pass from Σs
8
∐
∼

Σ1
8 to 

Σs−1
8

∐
∼

Σ1
8, one should locate the highest row that has s variables in it. There will be 

a variable x that has no arrows to higher rows; one should mutate down the column 
containing x, starting in the row containing x. When a variable in row i is mutated, its 
weight changes ωi 
→ ωi−1 and one should drag it down a row. One deletes a variable 
when it has weight zero. After mutating down a column, move one column right and 
mutate down this column starting one row lower than in the previous column. �

Lemma 7.10. Theorem 7.3 holds when M = ASLk,Dm,1 for any m ≥ 2.
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Fig. 6. From the proof of Lemma 7.9. The mutations and vertex deletions proving that Σs
8
∐
∼

Σ1
8 � Σs−1

8
∐
∼

Σ1
8

for s ∈ [2, 7].

Proof. Cyclically number the arcs in the taut triangulation Δm of Dm,1 as 1, . . . , m. 
Flipping at arc 1 yields a new arc which is a boundary arch contractible to two boundary 
intervals. After performing this flip, we see a copy of Δm−1 surrounding the puncture 
plus an extra “exterior triangle” not incident to the puncture. We will argue momentarily 
that we can simulate this flip of triangulations at the level of P -seeds in such a way that 
the P -cluster variables in the exterior triangle have zero weight and can be ignored. 
Deleting these variables of zero weight, the resulting P -seed is an m − 1-cycle consisting 
of m − 2 copies of Q1

k followed by one copy of Q2
k (corresponding to the triangle which 

has the flipped arc 1), with consecutive fragments glued along shared edges.
We next mutate at arc 2 to get m −2 triangles surrounding the puncture, with the new 

arc a boundary arch contractible to three boundary intervals. The corresponding P -seed 
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Fig. 7. From the proof of Lemma 7.10. Vertices 1, . . . , 11 in the left figure form a copy of Q2
5. We glue a 

copy of Q1
5 to this quiver on the left with vertices 1, 2, 3, 4 the glued vertices. Mutating at 1, 2, 3, 4, 6, 7, 8

and deleting vertices 4, 8 (which have zero weight) yields the right quiver, which is Q3
5.

(after deleting vertices of zero weight) is an m − 2-cycle consisting of m − 3 copies of Q1
k

followed by one copy of Q3
k. We continue flipping in this way, flipping arc 3, . . . , m − 2, 

until the punctures sit in a once-punctured digon. One of the triangles surrounding the 
puncture has an exposed side (corresponding to the seed fragment Σ1

k) and the other 
has a side which is contractible to m − 1 boundary intervals (corresponding to the seed 
fragment Σmin(m−1,k−1)

k ). In any case, the seed fragment is Σs
k

∐
∼

Σ1
k for some s. Since 

Σs
k

∐
∼

Σ1
k � Σ1

k

∐
∼

Σ1
k, the claim follows from Lemma 7.8.

What remains is to explain the mutations of P -cluster variables which realize the flips. 
We start with two adjacent Q1

k’s and claim that this � Q2
k. Then we glue a copy of Q1

k to 
this Q2

k (simulating adding the next triangle), and claim that this � Q3
k. The argument 

is indicated in Fig. 7 in the case of Q1
5 glued to Q2

5. In general, one should mutate down 
all of the “interior” diagonals from top to bottom, starting with the leftmost interior 
diagonal and ending with the rightmost diagonal. One should slide a variable one unit 
down its diagonal once it is mutated, and delete vertices of weight zero. The result in 
the above example is Q3

5, as in the figure. �
Proof of part (1) of Theorem 7.3. By Lemmas 6.10 and 6.11, the map (20) is an edge 
contraction onto some subgraph of �M◦Hdosp. We need to argue the surjectivity on edges 
(hence on vertices). Since we are arguing part (1) of the theorem, S has boundary.

If there are at least two boundary components, then it is possible to choose a regular 
triangulation of S in which every puncture p ∈ M◦ sits inside a once-punctured digon, 
with the two endpoints of the digon residing on different boundary components of S. In 
particular, the two sides of such digon are not boundary arches, so that the seed near p
is that of Σk(Δ2) (in either version of the moduli space). Since Σk(Δ2) � Σ′

k(Δk), the 
claim follows from Lemma 7.10.

The final case to consider is that there is only one boundary component but more 
than one puncture. As in the theorem statement, we also assume that the boundary 
carries at least two boundary points. Then we can enclose all of the punctures inside 
once-punctured digons as before (this fails if there is only one boundary point, which 
is why we exclude it from Theorem 7.3). For the Fock-Goncharov case, the preceding 
argument works. For the Grassmannian case, the leftmost and rightmost punctures will 
be enclosed in digons which have an exposed triangle. The corresponding seed will be 
Σk−1

k

∐
Σ1

k/ ∼ and the claim follows from Lemma 7.9 and the digon case Lemma 7.8. �
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8. Tensor diagrams

We provide background on tensor diagrams on a surface, skein relations, and arboriza-
tion moves following [3,8,7]. Then we introduce tagged and pseudotagged diagrams and 
state our cluster combinatorics conjectures.

8.1. Plain tensor diagrams

Let M be one of the moduli spaces considered in this paper, i.e. either M = ASLk,S

or M = A′
SLk,S

.

Definition 8.1. An M-tensor diagram is an immersed edge-labeled acyclic directed graph 
T = (V (T ), E(T )) ⊂ S satisfying the following:

• Every marked point is a vertex of T and is a source vertex of T . The remaining 
vertices reside in intS \M◦, and each of these either has a unique outgoing or unique 
incoming edge.

• Edges have their endpoints at vertices but otherwise do not intersect M nor ∂S. Any 
self-crossings in T consist of two edges crossing transversely and there are finitely 
many of these.

• Every edge e ∈ E(T ) carries an integer label wt(e) ∈ [k]. When M = A′
SLk,S

we 
require that edges e incident to boundary points satisfy wt(e) = 1.

• The local picture surrounding any vertex which is not a marked point is one of the 
following four pictures, each of which depicts such a vertex and the oriented and 
labeled half-edges incident to it:

. (27)

We consider such tensor diagrams T up to S-isotopy fixing the marked points.

We use the adjectives plain or underlying to refer to the diagrams just defined when 
contrasting them with the tagged and pseudotagged diagrams to be defined below. The 
extra words wedge product, etc, appearing in (27) are explained in the next section.

We use the notations s(e) and t(e) for the source and target of an oriented edge e
in a tensor diagram. We color vertices white or black according to whether they have a 
unique outgoing or incoming edge. Every coevaluation leaf has an outgoing edge whose 
endpoint is a black vertex and every evaluation leaf has an incoming edge whose source 
is a white vertex. We will depict marked points as black vertices (and as a black-white 
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vertex pair when k = 3); these vertices have no incoming edges and may have any 
number of outgoing edges. We refer to the first two types of vertices in (27) merely as 
interior vertices, using always the special word “leaf” for the third and fourth types 
of vertices. At interior vertices, the sum of incoming labels equals the sum of outgoing 
labels, but this property fails at leaves. This latter failure is a combinatorial encoding of 
the identification 

∧k(V ) ∼= C determined by the chosen volume form ξ, as we explain in 
more detail in the next section.

In examples, we omit the integer label for edges e satisfying wt(e) = 1. We depict eval-
uation leaves and coevaluation leaves, with their incident edge, as tiny “hairs” emanating 
from an interior vertex. See (33) for an example of a hair which is drawn as a standin for 
an evaluation leaf. These hairs are called tags in [3] but we avoid this technology as it 
clashes with the meaning of tagging arcs in the sense of Fomin, Shapiro, and Thurston.

In our tensor diagrammatical formulas below (e.g. in (34)), edges labeled by 0 should 
be deleted and any tensor diagram with at least one label in Z \ [0, k] should be discarded 
or treated as zero in our formulas. An edge of weight k can be chopped in thirds with 
the middle third discarded, creating an evaluation leaf at the source of the edge and a 
coevaluation leaf at the target of the edge.

Definition 8.2. The legs of a tensor diagram T are its edges incident to punctures. We 
denote these by Legs(T ) and denote by Legsp(T ) those legs incident to a given puncture p. 
We define

wtp(T ) :=
∑

e∈Legsp(T )

ωwt(e) ∈ P, (28)

and define similarly wt(T ) ∈ PM◦ .

We give no special name to edges emanating from boundary points.
The weight vector λ := wtp(T ) always has weakly decreasing coordinates. We can 

translate it in the (1, . . . , 1) direction until λk = 0. Once this is done, we have the 
following useful translation between legs at p and the weight of [T ] at p:

(number of legs of weight a of T at p) = λa − λa+1. (29)

Example 8.3. An arc γ : [0, 1] → S with endpoints p, q ∈ M determines an SL2 tensor 
diagram T (γ) described as follows. The diagram has an oriented edge γ(0) → γ(1

2 ) and 
an edge γ(1) → γ(1

2 ), both traveling along γ. These edges meet up at a white vertex 
at which has an outgoing edge of weight 2 ending at an evaluation leaf. There are two 
directions in which this outgoing edge can point, but these only change our recipes below 
by a sign. We suppress this sign throughout.

In a similar way, any simple closed curve α gives rise to a tensor diagram T (α)
consisting of a coevaluation leaf edge whose target is a black vertex at α(0). This black 
vertex has two outgoing edges, one oriented along α from time 0 to time 1 and the other 
2
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from time 1 to time 1
2 . These two oriented edges meet at a white vertex at α(1

2 ) whose 
outgoing edge is an evaluation leaf edge.

8.2. Plain tensor diagrams as functions

The four types of interior vertices in tensor diagrams – namely white and black inte-
rior vertices and the two types of leaves – encode certain SL(V )-equivariant morphisms 
between tensor products of exterior powers of V . Tensor diagrams are a graphical way 
of encoding compositions of these maps.

We elaborate on this point now. White interior vertices encode the exterior product 
morphism ∧ :

⊗m
j=1

∧aj V →
∧∑

j aj V . An evaluation leaf encodes the isomorphism ∧k Ck
∼=→ C and a coevaluation leaf encodes its inverse C

∼=→
∧k Ck. Black vertices 

encode the dual exterior product morphism

∑
j aj∧

V →
a1∧

V ⊗ · · · ⊗
am∧

V (30)

x1 ∧ · · · ∧ xb 
→
∑

±(xi1 ∧ xi2 ∧ · · · ∧ xiam
) ⊗ · · · ⊗ (xib−a1+1 ∧ xib−a1+2 ∧ · · · ∧ xib)

(31)

where the summation is over permutations (i1, i2, . . . , ib) of b := a1 + · · ·+ am which are 
increasing in each block, i.e. which satisfy i1 < · · · < ia1 , ia1+1 < · · · < ia1+a2 , etc. The 
sign ± is the sign of the permutation (i1, i2, . . . , ib), multiplied by the “global sign” of the 
permutation (b − a1 + 1, . . . , b, . . . , 1, . . . , am). Thus, there is “no sign” associated with 
shuffling the first am vectors to the last tensor factor, shuffling the next am−1 vectors to 
the penultimate factor, and so on.

Given a tensor diagram T , we have sets of source and sink edges

→
E(T ) = {e : s(e) ∈ M or is a coevaluation leaf} and
←
E(T ) = {e : t(e) is an evaluation leaf}.

They determine spaces

→
W (T ) := ⊗

e∈
→
E(T )

wt(e)∧
Vs(e) and

←
W (T ) := ⊗

e∈
←
E(T )

wt(e)∧
Vt(e).

The second of these spaces has a canonical isomorphism with C given by the tensor 
product of the evaluation maps.

A choice of decorated local system z ∈ M provides us with a tensor ve(z) ∈∧wt(e)
Vs(e) for each e ∈

→
E(T ): one should take the volume form χ at each coevalua-

tion leaf and take the decoration (either the vector assigned to boundary points or the 
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wt(e)th step of the chosen affine flag) which the chosen z assigns at marked points. These 

give rise to a tensor vinitial(z) := ⊗
e∈

→
E(T )

ve(z) ∈
→
W (T ).

The local system also provides us with parallel transport isomorphisms Ξe : Vs(e) →
Vt(e), hence an isomorphism 

∧wt(e)
Vs(e) →

∧wt(e)
Vt(e). Combining these isomorphisms 

with the exterior product, dual exterior product maps, and evaluation maps, the chosen 

z determines a map 
→
W (T ) → C.

Definition 8.4. The invariant [T ] encoded by an M-tensor diagram T is the function on 

M whose value on a point z ∈ M is the image of the vector vinitial(z) ∈
→
W (T ) under 

the morphism 
→
W (T ) → C encoded by z.

It can be seen that any invariant [T ] is a regular function on M. The word invariant is 
used because regular functions on the moduli space are the G-invariant regular functions 
on the space of decorated local systems.

The weight of a tensor diagram, defined combinatorially in (28), matches the weight 
of its corresponding invariant [T ] with respect to the right T -action at punctures (3). In 
particular, if we know the weight of the invariant [T ] then we can recover how many legs 
of each weight the tensor diagram T has at each puncture using the translation (29).

In our algebraic calculations in Section 9, we typically forego the dual exterior product 
symbol and work with a related algebraic construct. Namely, combining the dual exterior 
product map with an evaluation map, we have a map 

∧k−a
V ⊗

∧k−b
V →

∧k−a−b
V ⊗∧b

V ⊗
∧k−b

V →
∧k−a−b

V ⊗
∧k

V ∼=
∧k−a−b

V . We denote this composition by

∩ :
k−a∧

V ⊗
k−b∧

V →
k−a−b∧

V. (32)

One computes ∩ by shuffling b vectors from the first tensor factor over to the second 
factor (for a total of b plus k − b vectors), taking the determinant of the k vectors in 
the second factor after such shuffle, and using it to rescale the k− a − b leftover vectors 
in the first factor. The value of ∩ is the signed sum of such terms. The operation ∩
is associative and is commutative up to a predictable sign; see [33, Section 3.3] for an 
exposition.

Remark 8.5. One can make Definition 8.4 more explicit: the value of [T ] on z ∈ M can 
be computed as a signed sum of complex numbers. Each term in this sum corresponds 
to a process of “flowing” the decorations along edges using the parallel transport iso-
morphisms, applying the exterior product map at white vertices and splitting up the 
incoming tensor at black vertices using the right hand side of (30). The terms in this 
sum correspond to a choice of term from the right hand side of (30) at each black vertex. 
The sign of a term is its product of signs from the various terms at the black vertices, 
and the complex number associated with a term is the product of the evaluation maps 
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at the evaluation leaves. For more details on this perspective when k = 3 see [8, Section 
4].

Example 8.6. As a simplest example of the invariant by a tensor diagram, consider the 
case that S = Dn,0 is an n-gon with boundary points p1, . . . , pn labeled in counterclock-
wise order. Consider the moduli space M = A′

SLk,S
. Any two paths joining a pair of 

points in p, q ∈ S are isotopic, so the fibers Vp, Vq of the local system are canonically 
identified by the transport isomorphisms. A choice of z ∈ M determines a vector vi ∈ P

at the boundary point pi and the vector vinitial is the tensor product of these vectors. 
Consider the invariant [T ] of the following diagram:

T =

pik

pik−1

pik−2

· · ·

pi2

pi1 ◦
k − 1

(33)

Applying the parallel transport isomorphisms we get a copy of vi1 ∧ · · · ∧ vik−1 exiting 
the white vertex, and we get vi1 ∧ · · · ∧ vik−1 ⊗ vik entering the “hair” (which is a visual 
shortcut for an evaluation leaf, see above). When we exit the hair, we get the tensor 
vi1 ∧ · · · ∧ vik . Applying the evaluation map, we get the number det(vi1 ∧ · · · ∧ vik) ∈ C.

When a similar tensor diagram is drawn on a surface, one transports the tensors to 
the evaluation leaf using the parallel transport isomorphisms and then takes a similar 
determinant.

Definition 8.7. A web is an embedded (i.e. planar) tensor diagram. A forest diagram is a 
tensor diagram whose underlying undirected graph has no cycles on interior vertices. A 
tree diagram is a forest diagram which is not a superposition of two forest diagrams.

A function on the moduli space M is a diagram invariant if it can be expressed as 
[T ] for some tensor diagram T . One has similarly web invariants, forest invariants, and 
tree invariants.

The product of diagram invariants [T ] · [T ′] is again a diagram invariant encoded by 
the superposition of diagrams T ∪ T ′.

Definition 8.8. The skein algebra Sk(M) is the algebra generated by M-tensor diagram 
invariants, thought of as a subalgebra of the algebra of regular functions on M.

We stress that we do not define the skein algebra as the algebra generated by cer-
tain diagrams and modulo certain linear relations, which is the typical usage of this 
terminology. We discuss partial steps towards such a definition in the next section.
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Remark 8.9. We expect that in many cases, the skein algebra Sk(M) coincides with the 
algebra of regular functions on M, but we do not have a sense of precisely when this 
holds.

Example 8.10. Recall the tensor diagram T (γ) associated to an arc γ as in Example 8.3. 
As in Example 8.6, the invariant [T (γ)] ∈ Sk(SL2, S) evaluates on a point in the moduli 
space by first transporting the chosen vectors at the endpoints of γ to the midpoint 
of γ and then taking their determinant. The two possible signs for such a determinant 
correspond to the two possible directions in which the evaluation edge can point. As we 
have said, we gloss over this sign in what follows.

The invariant [T (α)] ∈ Sk(SL2, S) encoded by a simple closed curve α is the trace of 
the monodromy matrix Mα assigned to α. Indeed, the volume form ξ = e1 ∧ e2 at the 
coevaluation stub is sent to e1 ⊗ e2 − e2 ⊗ e1 by the coevaluation map. The two ways 
of proceeding from the coevaluation leaf to the evaluation leaf differ by Mα, so that the 
parallel transport of the above tensor is e1⊗Mα(e2) −e2⊗Mα(e1). Applying the exterior 
product map we get

[T (α)] = e1 ∧Mα(e2) − e2 ∧Mα(e1) = tr(Mα) ∈ C.

8.3. Skein relations between diagram invariants

There are interesting linear relations between diagram invariants known as skein rela-
tions. Each skein relation 

∑
ai[Ti] = 0 is local in the sense that one can choose an open 

neighborhood U ⊂ intS such that the involved diagrams Ti coincide on S \ U .
As an example, whenever a tensor diagram T has a crossing, one can apply the 

following crossing removal relation [3, Corollary 6.2.3]:

aa b

=

a

b

a− c

b

a

b + c

c

b + c − a∑
c

, (34)

expressing a diagram invariant which has a crossing as a sum of diagram invariants in 
which this crossing has been removed. It follows that web invariants span the algebra 
Sk(M). The Ptolemy relations familiar in the theory of cluster algebras from surfaces 
are the k = 2 instance of this relation.

Although web invariants span Sk(M), they are not linearly independent. The most 
mysterious linear relation between them is the square switch relation [3, (2.10)]:
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a

a + d − c

a− c

b

b + c − d

b + c

c

d

=

∑
e

(
a+d−b−c

e

)
a

a + d − c

a + d − e

b

b + c − d

b − d + e

d − e

c − e

. (35)

Besides this square switch relation, there are additional skein relations which reflect 
“obvious” properties of the underlying exterior algebra gadgets. Among these are the leaf 
migration relations [3, (2.3), (2.7),(2.8)] and also the associativity relation [3, (2.6)]. The 
former relations capture signs associated with permuting vectors in an exterior product 
and the latter relation expresses associativity of exterior product. The composition of 
a black vertex (splitting up a tensor into several factors) with a white vertex (wedging 
these vectors back together) is a scalar multiple of the identity map and this is encoded 
by another skein relation [3, (2.4)]. There are also the duals of all of these relations.

The above named linear relations are the only relations between diagram invariants 
provided we make two simplifying assumptions [3]. First, we should work only with the 
n -gon S = Dn,0 and second, we should only consider tensor diagrams with at most 
one edge at each marked point. In our setting, marked points can have arbitrary degree 
and further diagrammatic relations are needed. For example, any diagram with a 2-cycle 
based at a marked point will define the zero invariant. As a separate issue, we do not 
think that it has been proved that the relations in [3] are the only linear relations between 
diagrams when S is not an n-gon.

8.4. Tagged and pseudotagged diagrams

We now modify the calculus of tensor diagram invariants in the presence of punctures, 
generalizing the tagged arc calculus valid when k = 2.

Recall that a leg is an edge of a tensor diagram which is incident to a puncture. Denote 
by 2k the power set of [k].

Definition 8.11. A pseudotagged tensor diagram is a pair (T, ϕ) consisting of a tensor 
diagram T and a tagging function

ϕ : Legs(T ) → 2[k] subject to |ϕ(e)| = wt(e) for all e ∈ Legs(T ). (36)

A tagged tensor diagram is a pseudotagged tensor diagram (T, ϕ) which satisfies the 
following additional condition: for any puncture p and any pair of legs e, e′ ∈ Legsp(T ), 
one has a containment of subsets either ϕ(e) ⊆ ϕ(e′) or ϕ(e′) ⊆ ϕ(e).

We depict a pseudotagged tensor diagram by labeling each leg of T by the subset ϕ(e)
rather than by its integer label wt(e) ∈ [k]. Edges which are not legs continue to carry 
their integer labels.
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The construction of invariants for pseudotagged tensor diagrams is obtained by mod-
ifying Definition 8.4 only in the choice of vector ve(z) associated to edges e whose source 
is a puncture. For such a leg e ∈ Legsp(T ) choose an arbitrary permutation we satisfying 
we([wt(e)]) = ϕ(e). Acting by we on the affine flag Fp decoration which z assigns to p, 
we get a tensor (we · Fp)(wt(e)). Then vinitial(ϕ, z) is the tensor product of these vectors 
over all e ∈ Legs(T ), together with the vectors assigned to edges at boundary points 
and those assigned to coevaluation leafs. The choice of permutation we in this recipe is 
immaterial thanks to Lemma 4.3.

Definition 8.12. The invariant [(T, ϕ)] encoded by a tagged tensor diagram (T, ϕ) is the 
rational function whose value on a point z ∈ M is the image of the vector vinitial(ϕ, z) ∈
→
W (T ) under the morphism 

→
W (T ) → C encoded by z.

The weight of a pseudotagged diagram invariant is given by wtp([(T, ϕ)]) =∑
e∈Legsp(T ) ιϕ(e), a sum of indicator vectors.
We use pseudotagged and tagged as adjectives modifying the nouns diagram invariant, 

web invariant, etc. For example, a tagged web invariant is a function on M which can 
be encoded as [(T, ϕ)] with T a planar tensor diagram and ϕ a tagging (not merely a 
pseudotagging) of T .

Definition 8.13. We denote by Sk��(SLk, S) the algebra generated by pseudotagged in-
variants, thought of as a subalgebra of the field of rational functions on M.

Since the superposition of pseudotagged diagrams is again pseudotagged, this algebra 
is spanned by pseudotagged diagram invariants.

Remark 8.14. Tagged tensor diagram invariants are exactly the pullbacks of diagram 
invariants along the Weyl group action at punctures. Indeed, if (T, ϕ) is a tagged tensor 
diagram, then the containment condition ensures that one can choose a permutation wp ∈
W for each puncture (as opposed to a permutation we for each leg e) with the property 
that ϕ(e) = wp([wt(e)]) for all legs e at p. One has then that [(T, ϕ)] =

∏
p ψ(wp)∗([T ]). 

And conversely, the pullback of any diagram invariant [T ] along 
∏

p ψ(wp) is the invariant 
of a tagged diagram (T, ϕ) whose tagging function is ϕ(e) := wp([wt(e)]) whenever e is 
a leg at p.

By the preceding remark, we have the equality of algebras Sk��(SLk, S) = WM◦ ·
Sk(SLk, S), i.e. the former algebra is the orbit of the skein algebra under the birational 
Weyl group action at punctures.

Remark 8.15. If a rational function f is the invariant of a tagged diagram (T, ϕ), then 
using the translation (29) we can deduce how many legs (T, ϕ) has at each puncture and 
how each of these is tagged. Such a deduction is not possible in general within the class 
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of pseudotagged diagram invariants. For example, we cannot deduce from the knowledge 
wtp(f) = e1 + e2 whether we have two legs tagged by the subsets {1} and {2} or one leg 
tagged by {1, 2}. In a tagged diagram, only the second of these is possible.

Remark 8.16. Let v1, . . . , vk be a tuple of vectors representing an affine flag Fp assigned 
to a puncture p by a decorated local system z ∈ M. We stress that, for example, a 
leg e ∈ Legsp(T ) appearing in a pseudotagged diagram (T, ϕ) and with tagging ϕ(e) =
{2} does not represent the “second vector” v2, but rather the vector up(v2) − v2. In 
a similar vein, one should not confuse the following two pseudotagged tensor diagram 
fragments:

p
•

{1, 2}

p
•

◦
{1} {2}

2

(37)

The left fragment represents v1 ∧ v2 while the right one represents v1 ∧ (u(v2) − v2) = 0. 
Any (T, ϕ) containing the right fragment has [(T, ϕ)] = 0.

Example 8.17. We explain in detail that when k = 2, the choice of tagging a leg by the 
subset {1} or {2} is exactly the choice of plain versus notched tagging of e.

We use the notation of [10, Figure 14] for arcs in a once-punctured digon with bound-
ary points p′, q and with puncture p. We consider an arc γ connecting p to p′ in this 
digon and denote by γ�� the result of notching the end of γ at p. We denote by α and 
β be the arcs forming the two sides of the digon, by θ the arc connecting q to p in the 
digon, and by η the loop based p′ and enclosing p as a once-punctured monogon. Each 
of the plain arcs γ, α, β, and η determines an element of the skein algebra which we 
denote by [T (γ)] etc. as in Example 8.10.

We denote by x(γ��) the cluster variable indexed by γ��. It is defined by the exchange 
relation [T (θ)]x(γ��) = [T (α)] + [T (β)]. On the other hand, we have a skein relation 
[T (θ)][T (η)] = [T (γ)] ([T (α)] + [T (β)]) ∈ Sk(SL2, S). It follows that

x(γ��) = [T (η)]
[T (γ)] . (38)

We need to reconcile this expression for x(γ��) with the result of pulling back along s1
action at p. We have vector decorations vp at p and vp′ at p′ respectively. In the notation 
of Example 8.10, ψ∗

s1,p([T (γ)]) is the function det (vp′ up(w) − w ), where up is the 
monodromy around p and w is any choice of vector with the property that det(vpw) = 1. 
Generically, we can take w = vp′

det(vpvp′ )
. Thus

ψ∗
s ,p([T (γ)]) = det

(
vp′ 1

det(vpv ′ ) (up(vp′) − vp′)
)

1 p
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= det (vp′ up(vp′))
det (vp vp′ ) = [T (η)]

[T (γ)] = x(γ��)

as claimed.

8.5. Cluster compatibility conjectures

Let M be one of the two versions of moduli space considered in this paper. We now 
state our two main conjectures phrasing cluster compatibility for A (M) in terms of 
tagged tensor diagram calculus.

Our first conjecture extends the philosophy of Fomin and the second author [8,7] in 
two directions: to the case of surfaces S with punctures, and also to the setting k > 3.

Conjecture 8.18. Every cluster monomial f ∈ A (M) is a tagged web invariant and also 
a tagged forest invariant. Every cluster variable f is moreover a tagged tree invariant.

Remark 8.19. It would be desirable to formulate a move on tagged diagrams which does 
not change the tagged invariant and with the property that a planar diagram represents a 
cluster variable if and only if it can be turned into a tree diagram by repeated applications 
of this move. This would be a higher rank analogue of the arborization move introduced 
when k = 3 in [7]. We found generalizations of this arborization move in higher rank, 
but we were not confident that the generalization we found has the desired properties. 
Certainly, this deserves further study.

Our second conjecture extends the k = 2 philosophy of Fomin, Shapiro, and Thurston 
to the k > 2 setting:

Conjecture 8.20. Let T1, . . . , Ts be tensor diagrams with each [Ti] ∈ A (M) a cluster 
variable. Let ϕi be a tagging of Ti with corresponding invariant fi = [(Ti, ϕi)]. Assume 
for simplicity that all the fi’s are distinct. Then

∏
i fi ∈ A (M) is a cluster monomial if 

and only if the following three conditions hold.
First, the underlying plain monomial 

∏
i[Ti] = [∪iTi] ∈ A (M) is a cluster monomial. 

Second, if [Ti] �= [Tj ], then (Ti, ϕi) ∪ (Tj , ϕj) is a tagged tensor diagram. And third, 
if [Ti] = [Tj ], then the weight vectors wt(fi) and wt(fj) are root-conjugate at some 
puncture p and coincide at all other punctures p′.

Note that Conjecture 8.18 is only a necessary condition on cluster monomials, while 
Conjecture 8.20 claims to be both necessary and sufficient.

Translating from the language of weight vectors to the combinatorics of legs as in 
(29), we can restate Conjecture 8.20 in a way that is more obviously consonant with 
[9]. Recall that we depict a tagged tensor diagram (T, ϕ) as a plain diagram each of 
whose legs e is decorated by a subset ϕ(e). Then the second condition in Conjecture 8.20
says that if [Ti] �= [Tj ], then either ϕi(e) ⊂ ϕj(e′) or ϕj(e′) ⊂ ϕi(e) for any pair of legs 
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e, e′ ∈ Legsp(T ) and any puncture p, which generalizes the requirement that distinct arcs 
must be tagged the same way at punctures. The third condition says that if [Ti] = [Tj ], 
then the taggings ϕi and ϕj disagree in exactly one leg just as in the k = 2 case.

Lemma 8.21. If a cluster {fi} satisfies the three conditions in Conjecture 8.20, then its 
underlying P -cluster {πp(wtfi)} ⊂ P at any puncture p is a basic multiset of pairwise 
compatible weight vectors.

Thus, if the conditions stated in Conjecture 8.20 are indeed necessary conditions, and 
if every cluster variable is indeed a tagged invariant, then every cluster is in the good 
part of the exchange graph, and the dosp mutation results of Section 7 apply to the 
exchange graph itself.

Proof. The second and third conditions in Conjecture 8.20 together imply that the P -
cluster at any puncture consists of pairwise compatible vectors. We must also show that 
the P -cluster at each puncture is basic. Suppose that fi and fj have root-conjugate 
weights by the transposition t = (ab) at some puncture p. Then from the definition of 
evaluation of tagged tensor diagrams, the corresponding functions are related by bira-
tional Weyl group action: fj = ψ(t)∗fi with t acting at the puncture p. Since we can 
compute fi uniquely from fj , it follows that fj must be the unique cluster variable with 
this weight vector. �
Remark 8.22. Suppose in Conjecture 8.20 that the collection {fi} has the property that 
the vectors wtp(fi) and wtp(fj) are W -sortable for every puncture p and every pair i, j. 
(That is, the second condition in Conjecture 8.20 holds.) Then the third condition plays 
no role, and the first condition is clearly both necessary and sufficient for 

∏
fi to be 

a cluster monomial: the monomials 
∏

i fi and 
∏

i[Ti] are related by pullback along the 
WM◦ action, so the two products are cluster monomials simultaneously. To emphasize: 
the “interesting” behavior in Conjecture 8.20 arises when at least one pair of weights at 
some puncture p are root-conjugate, provided we believe Conjecture 5.4 holds. We did 
not see how to prove either the necessity or sufficiency of the third condition in this case.

9. The flattening and spiral theorems

We state and prove the flattening theorem and the spiral theorem. Both theorems 
concern the relationship between pseudotagged diagram invariants and tagged diagram 
invariants. The flattening theorem says that every pseudotagged invariant is a linear 
combination of tagged invariants. The flattening relation which underlies the proof is a 
useful algebraic tool for computations in the cluster algebra A (M). For example, certain 
exchange relations in A (M) are instances of the flattening theorem. The spiral theorem 
establishes a setting in which certain specific pseudotagged invariants are in fact tagged 
invariants as predicted by our cluster compatibility conjectures. We also discuss more 
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Fig. 8. Expressing a pseudotagged invariant as a Q-linear combination of tagged invariants using Lemma 9.4
with a = 1 and b = c = 2. The two legs in the leftmost diagram violate the containment condition from 
Definition 8.11. The tensors η, ζ ∈

∧k−3 V schematically indicate “the rest” of the diagram. The numerators 
on the right hand side form the fourth row of Pascal’s triangle. The denominator counts SYTs of b ×c = 2 ×2
shape.

refined statements, e.g. whether or not the pseudotagged invariant has a tagged forest 
form.

9.1. The flattening theorem

Theorem 9.1. Any pseudotagged diagram invariant is a linear combination of tagged 
diagram invariants.

That is, Sk��(M) is spanned by tagged diagram invariants. Fig. 8 illustrates Theo-
rem 9.1, flattening a pair of legs tagged by the subsets {1, 2, 3} and {1, 4, 5} as a linear 
combination of five tagged diagrams, each which with one leg tagged by [5] and the other 
by {1}.

See [29, Section 8.4] for a discussion of similar flattening relations when k = 2.

Remark 9.2. We expect, but are not sure how to prove, that Sk��(M) is the (upper) 
cluster algebra A up(M). For a similar statement for the “X -space” see [32]. We have 
not investigated the relationship between ordinary and upper cluster algebras for A (M). 
This has been thoroughly explored when k = 2, see e.g. [27, Section 3.2] and references 
therein.

9.2. Proof of the flattening theorem

For the next several paragraphs we fix the following data. First, a choice of vectors 
v1, . . . , vk determining an affine flag with steps F(a) := v1 ∧ · · · ∧ va. Second, we choose 
a matrix u ∈ stab(F ) in the stabilizer of this flag.
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Recall that a subset S ∈
([k]
a

)
determines a Grassmannian permutation wS ∈ W and 

a Young diagram λ(S) whose number of standard Young tableaux is denoted fλ(S).
We partially order 

([k]
a

)
via the termwise order : an m-subset T is less than or equal 

to another such S provided, when we list T = {t1 < t2 < · · · < ta} and S = {s1 < s2 <

· · · < sa}, we have ti ≤ si for all i. This partial order is graded by the length function 
�(S) = �(wS).

The above data provides us with a tensor

vS :=
∧
s∈S

vs ∈
a∧
V, (39)

with the exterior product taken in increasing order from left to right. We also get a 
complex number WS defined by

(ws · F )(a) = WSF(a) ∈
a∧
V, (40)

where F 
→ ws · F denotes Weyl group action using the permutation wS and the chosen 
matrix u.

We let C〈G〉 be the group algebra of G. We view 
∧m(V ) as a C〈G〉-module via the 

natural action G � V . For M ∈ G and a complex number c, we distinguish between 
the group algebra element c ·M ∈ C〈G〉 and the matrix cM in which each entry of M
is rescaled by c. This is important because, e.g., (c · M)(x ∧ y) = cMx ∧ My whereas 
(cM) ·x ∧ y = c2Mx ∧My inside 

∧2(V ). Our next lemma concerns elements of the form 
(u−1 − IdV )m ∈ C〈G〉 for m ∈ N.

Lemma 9.3. For any S and any T ≤ S, we have

(u− 1)�(S)vT =
{
fλ(S)WSF(a) if T = S

0 if T < S
∈

a∧
V. (41)

Proof. Define numbers zji ∈ C for 1 ≤ j ≤ i ≤ k by u(vi) =
∑

j zjivj .
For any T ∈

([k]
a

)
it is easy to see that (u − 1)vT is a linear combination of tensors vT ′

satisfying T ′ < T in termwise order. (The coefficients of such a linear combination are 
polynomial functions in the zji’s.) Thus, (u − 1)�(S) annihilates the tensor vT whenever 
T < S as claimed.

It remains to compute (u − 1)�(S)vS . We use � to denote cover relations with respect 
to the order <. We expand (u − 1)vS as a linear combination of tensors vT with T < S. 
By the same reasoning as in the previous paragraph, if T does not satisfy T �S then vT is 
annihilated by (u −1)�(S)−1, so we can ignore such terms for the rest of the computation. 
In a cover relation T � S, we have T = S \ {j + 1} ∪ {j} for some j + 1 ∈ S, and the 
coefficient of vT in (u − 1)vS is the number zj,j+1.
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Consider the set of saturated chains

E(S) = {[a] =: S0 � S1 � · · · � S�(S) := S}

ending at S in termwise order. The tensor vSi
appears in the tensor (u − 1)vSi+1 with 

coefficient zji,ji+1 where Si+1 = Si \ (ji + 1) ∪ ji. Note also that vS0 = F(a). It follows 
that

(u− 1)�(S)vS =

⎛
⎝ ∑

S0�S1�···�S�(S)

�(s)∏
i=1

zji,ji+1

⎞
⎠F(a) (42)

where ji are as defined above.
We view the parenthesized scalar on the right hand side as a weighted generating 

function for elements of E(S), with the weight of such an element defined as the monomial 
in zji ’s coming from the steps of the chain. To complete the proof, we will show that this 
weight function is constant on E(S), and moreover is equal to the number WS defined 
in (40). The right hand side of (42) then becomes fλ(S)WSF(a), completing the proof.

To argue that 
∏�(s)

i=1 zji,ji+1 = WS is independent of the chain, begin by observing 
that if Si � Si+1 is a cover relation in such a chain, then the permutations wSi

and 
wSi+1 are related by left action of a simple transposition swapping the values (ji, ji +1). 
Multiplying these simple transpositions (sj�(S) , . . . , sj1) from right to left, we get the 
sequence of permutations wS1 , wS2 , . . . , wS�(S) = wS . In particular, (sj�(S) , . . . , sj1) is 
a reduced word for w−1

S (since reduced words are multiplied from left to right). This 
determines a bijection between saturated chains ending at S and reduced words for w−1

S . 
The indices (j�(s), . . . , j1) appearing in the reduced word are what is needed to compute 

the weight 
∏�(s)

i=1 zji,ji+1 in (42). So we can view the parenthesized scalar factor in (42)
as a weight-generating function for reduced words of w−1

S , or equivalently of wS .
The set of reduced words for wS is connected by commutation moves. Clearly, com-

mutation moves do not change the weight appearing in (42), so that the weight is in 
fact independent of the reduced word (or equivalently, of the chain S0 � · · · � S�(S)) as 
claimed.

Finally we prove that the weight of a certain reduced word is WS, completing the 
proof. We write S = {x1 < · · · < xa}. We have the following reduced word for wS

a∏
j=1

sj · · · sxj−1 (43)

(the product is taken from left to right).
This word transforms the identity permutation to wS by the following sequence of 

swaps in adjacent positions. First consider the smallest element xj such that xj > j. We 
can swap the number xj leftwards (past the numbers j, j + 1, . . . , xj − 1) until it is in 
position j. Then we swap the number xj+1 leftwards until it is in position j + 1, etc.
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We can compute the tensor wS(F ), hence the number WS using the formula (9). The 
effect of swapping the number xj leftwards into position j is to take the jth vector vj
of the affine flag and replace it with the vector (u − 1)xj−jvxj

. (The vectors in positions 
j + 1, . . . , xj are also rescaled, but this will not affect the rest of the calculation.)

It is easy to see that

F(j−1) ∧ (u− 1)xj−jvxj
= zj,j+1zj+1,j+2 · · · zxj−1,xj

F(j).

In the next step, we swap the number xj+1 leftwards to position j+1, which corresponds 
to replacing the j + 1st step of the affine flag by (u − 1)xj+1−j−1vxj+1 . Again, we have

F(j) ∧ (u− 1)xj+1−j−1vxj+1 = zj+1,j+2 · · · zxj+1−1,xj+1F(j+1).

Continuing in this way, we arrive at

WS =
a∏

j=1
zj,j+1 · · · zxj−1,xj

(44)

which is the weight (42) we would associate to the reduced word (43). �
Our next lemma uses the operation ∩ defined in (32).

Lemma 9.4. Consider tensors η ∈
∧k−a−b(V ) and ζ ∈

∧k−a−c(V ) where a, b, c ∈ N

satisfy a + b + c ≤ k. Let S = [a] ∪ [a + b + 1, a + b + c]. We have the following equality 
of complex numbers in 

∧k(V ) ∼= C:

(F(a+b) ∧ η)((wS · F )(a+c) ∧ ζ) = 1
fλ(S)

(
F(a+b+c) ∩ F(a)η ∩ (u−1 − 1)�(S)(ζ)

)
. (45)

Fig. 8 illustrate this lemma in the language of tensor diagrams. The quantity on the 
left hand side is the product of two elements of 

∧k(V ), each of which is identified with a 
complex number using the volume form. The parenthesized term on the right hand side 
can be similarly interpreted.

Proof. We compute the right hand side by shuffling b vectors from the tensor F(a+b+c) =
v1 ∧ · · · ∧ va+b+c to the second factor and shuffling the complementary a + c vectors to 
the third factor, summing over all such shuffles with an appropriate sign. If we shuffle 
any of the vectors v1, . . . , va into the first factor then the resulting term vanishes since 
vi∧F(a) = 0. Thus, the terms that are shuffled into the third factor correspond to subsets 
T ∈

([a+b+c]
a+c

)
satisfying [a] ⊂ T . The given subset S = [a] ∪ [a +b +1, a +b +c] is maximal 

among these in the termwise partial order. For such a T , we have

vT ∧ (u−1 − 1)�(S)(ζ) =
∑

(−1)i
(
�(S)
i

)
vT ∧ u−i(ζ)
i
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=
∑
i

(−1)i
(
�(S)
i

)
uivT ∧ ζ

= (u− 1)�(S)vT ∧ ζ

= δS,T f
λ(S)WSF(a+c) ∧ ζ

= δS,T f
λ(S)wS(F )(a+c) ∧ ζ.

The first and third equalities are the binomial theorem. In the second, we move u from 
ζ to vT using detu = 1. The fourth equality is (41) where δ denotes Kronecker delta and 
the last equality is the definition of WS (39). By this calculation, the unique T which 
can be shuffled to the third factor when computing the right hand side of (45) is T = S, 
leaving [a + 1, b] to be shuffled to the second factor (with a sign of +1). We get the two 
determinants appearing on the left hand side after canceling the fλ(S). �

Recall the indicator vector ιS =
∑

s∈S es ∈ Zk of a subset S ⊂ [k − 1].

Lemma 9.5. Let S be a multiset of indicator vectors ιS with the property that 
∑

v∈S v

lies in the dominant Weyl chamber closure Cid. By a rewriting move, we will mean the 
transformation

{ιS , ιT } 
→ {ιS∩T , ιS∪T }

removing indicator vectors of sets S and T and replacing them with that of their inter-
section and union. Then by a finite sequence of such rewriting moves, we can transform 
the multiset S to a new multiset S ′ consisting entirely of fundamental weights.

Proof. Pick an enumeration ιS1 , ιS2 , . . . , ιSm
of the vectors in the initial multiset. We 

claim for 2 ≤ i ≤ m that by a sequence of rewrites one can transform the multiset 
ιS1 , . . . , ιSi

into the multiset of indicator vectors for the subsets

∪
T∈([i]

j ) ∩t∈T St for j = 1, . . . , i. (46)

The base case (i = 2) is a single rewriting

{ιS1 , ιS2} 
→ {ιS1∪S2 , ιS1∩S2}, (47)

with the first term the j = 1 term and the second the j = 2 term.
Assuming we can rewrite the first i indicator vectors as in (46), we perform several 

rewrites to obtain the i + 1 version of (46). First we rewrite the pair consisting of the 
j = i term ∪

T∈([i]
i ) ∩t∈T St = S1 ∩ · · · ∩ Si and the new term Si+1. The result of this 

rewriting is to obtain S1 ∩ · · · ∩Si+1, which is a desired term in the i +1 version of (46), 
and (S1 ∩ · · · ∩ Si) ∪ Si+1, which is not. Then we rewrite the undesired term from the 
previous step with the i − 1 term in (46). One of the resulting terms is
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(∪
T∈( [i]

i−1) ∩t∈T St) ∩ ((S1 ∩ · · · ∩ Si) ∪ Si+1) = ∪
T∈([i+1]

i ) ∩t∈T St,

a desired term in the i + 1 version of (46), and the other term is not. The rest of the 
proof of the inductive step proceeds similarly using the identity

(∪
T∈( [i]

j−1) ∩t∈T St) ∩ ((∪
T∈([i]

j ) ∩t∈T St) ∪ Si+1) = ∪
T∈([i+1]

j ) ∩t∈T St,

in each step. The first term of these terms appears in (46) and the second of these is 
the undesired term created in the previous step using the identity (∪

T∈( [i]
j+1) ∩t∈T St) ∪

(∪
T∈([i]

j ) ∩t∈T ST ) = ∪
T∈([i]

j ) ∩t∈T ST .
Let η be the sum ιS1 + · · ·+ ιSm

of the indicator vectors of our initial multiset. Since 
the rewriting rules do not affect the sum of the indicator vectors in the collection, we 
can evaluate η by summing the indicator vectors in (46) in the case i = m. It is clear 
that the jth term in (46) contains the j + 1st term, for j = 1, . . . , m − 1. Thus, the 
largest coordinates of η are supported on the j = m term in (46), i.e. on the intersection 
S1 ∩S2 ∩ · · ·Sm. Since η lies in the dominant Weyl chamber by assumption, we conclude 
that S1 ∩ S2 ∩ · · ·Sm is an initial interval [a]. Continuing in this way, we conclude that 
each term in (46) is an initial interval, completing the proof. �

Now we can prove Theorem 9.1.

Proof. Let (T, ϕ) be a pseudotagged tensor diagram and p a puncture. The weight of 
the function [(T, ϕ)] at p is the sum of indicator vectors ιϕ([wt(e)]). Composing with the 
birational Weyl group action, we may assume that wtp([T ]) lies in the dominant Weyl 
chamber closure for all punctures p. We want to show that [(T, ϕ)] is a linear combination 
of diagram invariants.

For any pair of legs e, e′ incident to the same puncture, Lemma 9.4 says that we can 
replace the tagged tensor diagram T by a linear combination of tensor diagrams in which 
the legs e, e′ are replaced by a pair of legs whose weights are indicator vectors ιϕ(e)∩ϕ(e′)
and ιϕ(e)∪ϕ(e′). Moreover, each of the tensor diagrams in this linear combination agrees 
with T outside of a small neighborhood of the puncture p.

This transformation on legs is exactly the rewriting rule from Lemma 9.5. Thus, after 
sufficiently many applications of Lemma 9.4 we will be able to express [(T, ϕ)] as a 
linear combination of tagged tensor diagrams T ′ whose legs are tagged by initial subsets 
ϕ(e) = [wt(e)]. That is, each of the tensor diagrams T ′ is plainly tagged at p. As this 
recipe only changes the tensor diagrams nearby p, we can continue this reduction process 
until we are plainly tagged at every puncture. �
9.3. The spiral theorem

Consider an r-tuple of tagged tensor diagrams (T, ϕi) for i = 1, . . . , r, different tag-
gings of the same underlying tensor diagram T . Suppose that the weights of the invariants 
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fi := [(T, ϕi)] are pairwise root-conjugate at some puncture p and coincide at all other 
punctures p′ �= p. Thus, there is a unique leg e ∈ Legsp(T ) such that ϕi(e′) = ϕj(e′)
for all i, j ∈ [r] and all e′ ∈ Legs(T ) \ e. The taggings ϕi(e) and ϕj(e) do not coin-
cide.

Next, suppose that the underlying plain diagram invariant [T ] is a cluster variable. 
Then Conjecture 8.20 predicts that the product 

∏
i fi is a cluster monomial. We have ∏

i fi = [∪i(T, ϕi)] but the diagram on the right hand side is pseudotagged rather than 
tagged. Conjecture 8.18 predicts that this monomial should be a tagged invariant, more-
over a tagged forest and tagged planar invariant. The spiral theorem partially confirms 
this.

Theorem 9.6. Let fi = [(T, ϕi)], for i = 1, . . . , r, be taggings which are root-conjugate 
at exactly one puncture as above and let e ∈ T be the unique leg at which these tagged 
diagrams disagree. Suppose that T is a tree diagram. Then the following statements hold:

• The monomial 
∏r

i=1 fi is a tagged tree invariant.
• The monomial 

∏r
i=1 fi can be computed by a tagged diagram which is the result of 

gluing r many copies of the tensor diagram T \ e to a tagged and planar diagram 
fragment.

We elaborate on the second part of this theorem, which is slightly technical. We view 
the superposition diagram ∪r

i=1(T, ϕi) as r many root-conjugate tagged legs plugged into 
several copies of the fragment η := T \e. The second part of this theorem asserts that we 
can replace these root-conjugate legs by a more complicated tagged tensor diagram frag-
ment which is planar. We think of this result as saying that the corresponding monomial 
is given by a diagram which is tagged and “planar near p,” although this is of course 
silly since any diagram is planar in a very small neighborhood of a puncture.

Remark 9.7. We would be happiest if we could strengthen the second part of this theorem 
to conclude that 

∏
i fi is a tagged planar invariant by adding an appropriate planariza-

tion hypothesis on the underlying plain diagram T . There are two issues here: first, 
the diagram T \ e might have legs at p, and these legs will cross the planar fragment 
near p appearing in the second part of the theorem statement. Second, the union of 
several copies of T \ e will typically have many self-crossings, and we need to argue 
that these self-crossing can be planarized. The first of these issues is not hard to han-
dle: a straightforward generalization of the arborization move from [8] is sufficient to 
planarize all crossings between the copies of T \ e and the planar fragment introduced 
below. The second of these issues is a bit more subtle; we remove it in the case k = 3 in 
Proposition 9.11.

We illustrate Theorem 9.6 in Fig. 9, which schematically depicts three diagrams 
Dsuper, Dmaelstorm, and Dsnail appearing in the upper left, upper right, and bottom 
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Fig. 9. The superposition, maelstrom, and snail shell fragmentsdiagrams from the proof of the spiral theorem. 
All three diagrams determine the same invariant when plugged into several copies of the tensor diagram 
fragment η := T \ e.

of the figure. Several copies of the tensor diagram fragment T \ e enter from the 
top of each of these pictures. The first diagram Dsuper is pseudotagged and depicts 
the union ∪i(T, ϕi). The latter two diagrams are tagged. We will prove below that 
[Dpseudo] = [Dmaelstrom] = [Dsnail].
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9.4. Proof of Theorem 9.6

Fix an affine flag F and a matrix u ∈ stab(F ). The following algebraic identity 
underlies the passage from Dsuper to Dmaelstrom in Fig. 9.

Lemma 9.8. Let a, r ∈ N with a + r ≤ k and let η ∈
∧k−a−1

V . Then

a+r−1∏
j=a

((sa+1sa+2 · · · sj · F )(a+1) ∧ η)

= F(a+r) ∩ (F(a) ∧ η) ∩ (F(a) ∧ u−1η) ∩ · · · ∩ (F(a) ∧ u2−rη) ∩ u1−rη. (48)

And dually, when η ∈
∧k−a−r+1(V ), one has

a+r∏
j=a+1

((sr−1 · · · sj+1sj · F )(a+r−1) ∧ η)

= F(a) ∧ (F(a+r) ∩ η) ∧ (F(a+r) ∩ u−1η) ∧ · · · ∧ (F(a+r) ∩ u2−rη) ∧ u1−rη. (49)

The left hand side of these equalities represents an r-tuple of root-conjugate legs in 
a pseudotagged superposition of tagged diagrams ∪i(Ti, ϕ). The ground set of the root-
conjugacy class is [a + 1, . . . , a + r]. The two versions of the equality correspond to the 
two choices of sign ε = ±1 of the root-conjugacy class.

The right hand side of either equality, when interpreted in terms of tensor diagrams, is 
computed by a tensor diagram fragment whose legs satisfy the containment condition for 
tagged diagrams. Thus, these equalities allow us to replace an r-tuple of root-conjugate 
legs at a puncture with an r-tuple of legs satisfying the containment condition, provided 
each of these legs is connected to the same tensor diagram fragment T \ e.

The application of the first equality in this lemma is illustrated in the passage from 
the upper left to the upper right diagram in Fig. 9, in the case a = 1 and r = 4.

Proof. We prove (48) by induction on r ≥ 1; the proof of (49) is very similar. For the 
base case, the right hand side should be interpreted as F(a+1) ∩ ur−1η = F(a+1) ∧ u0η, 
so the identity is trivial. We abbreviate

ζr = (F(a) ∧ η) ∩ (F(a) ∧ u−1η) ∩ · · · ∩ (F(a) ∧ u2−rη) ∈
k−r+1∧

(V )

so that the right hand side of (48) takes the form F(a+r) ∧ (ζr ∩ u1−rη). It is easy to 
argue that F(a) ∧ (ζr ∩ u1−rη) = ζr+1.

Assuming the formula for a given r ≥ 1, we have

a+r∏
(sa+1 · · · sj · F )(a+1) ∧ η =

(
F(a+r) ∧ (ζr ∩ u1−rη)

) (
(sa+1 · · · sa+r · F )(a+1) ∧ η

)

j=a
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= F(a+r+1) ∩ (F(a) ∧ (ζr ∩ u1−rη)) ∩ (u−1 − 1)rη

= F(a+r+1) ∩ ζr+1 ∩ (u−1 − 1)rη

= F(a+r+1) ∩ ζr+1 ∩ u−rη

establishing the inductive claim. The first of these equalities is the inductive hypothesis, 
the second is Lemma 9.4 when S = [a] ∪ {r + 1}, the third is the relation between ζr
and ζr+1 we noted above, and the fourth can be argued as follows. We claim that if 
i < r, then ζr+1 ∩u−iη = 0. Indeed, by reordering terms in the definition of ζr+1 we can 
compute this quantity by first performing F(a)u

−iη∩u−iη (since the first of these factors 
appears in ζr+1). To compute F(a)u

−iη ∩ u−iη we need to shuffle a + 1 vectors from the 
first factor over to the second factor, hence we must shuffle at least one vector from u−iη

over, hence F(a)u
−iη ∩ u−iη = 0. This completes the proof of the fourth equality. �

Next we state a lemma which underlies the passage from the Dmaelstrom to Dsnail in 
Fig. 9.

A type +1 maelstrom fragment is a fragment of a plain tensor diagram which gener-
alizes the upper right diagram in the figure and computes the right hand side of (48). It 
has a leg e0 of weight a + r and legs e1, . . . , er of weight a at the puncture p. It has edges 
e0 → t(ei) for i ∈ [r], and dangling edges e′i of weight a +1, with e′i emanating from t(ei)
and swirling around the puncture i −1 many times. Each of these dangling edges is then 
paired with a copy of the fragment T \ e to create a tensor diagram whose invariant we 
call the maelstrom invariant. There is a similar type −1 maelstrom fragment computing 
the right hand side of (49).

The maelstrom fragment has two types of crossings: crossing between legs ei and 
ej and crossings between the dangling edges e′i and e′j swirling around the puncture. 
The former type of crossings can be planarized using the crossing removal relation; all 
but one of the terms on the right hand side of such a crossing relation vanish. A snail 
shell fragment is the result of removing these crossings and also replacing each crossing 
between edges e′i and e′j by a square fragment as indicated by example in the passage 
from the right diagram to the bottom diagram in the figure. As above, we pair the 
dangling edges of the snail shell fragment with several copies of the fragment T \ e to 
get a tensor diagram and corresponding snail shell invariant.

Lemma 9.9. The snail shell invariant coincides with its corresponding maelstrom invari-
ant.

That is, the snail shell invariant also computes the right hand side of (48) or (49).

Proof. We first argue that one can replace each of the crossings between dangling edges 
e′i and e′j by a square. One can subsequently planarize the crossings between legs using 
the inverse arborization moves, as we have claimed.
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Let z ∈ M determine an affine flag F = Fp and monodromy u = up. Since u fixes 
F(a), when we evaluate the maelstrom diagram on z, the tensors flowing in to any of the 
spiraling crossings are of the form v∧F(a) and w∧F(a) for appropriate vectors v, w ∈ V . 
In such an instance, the right hand side of the crossing removal relation (34) only has 
two terms because the other terms define the zero invariant:

a + 1

v ∧ F(a)

a + 1

w ∧ F(a)

= a + 1

v ∧ F(a)

a + 1

w ∧ F(a)

+
a + 1

a + 1

a

a + 1

a + 1

a + 2

1

1

v ∧ F(a) w ∧ F(a) . (50)

In the rightmost diagram in this equation, the only nonzero contributions occur when 
the tensor F(a) flows to the edge of weight a and the vector v flows rightward along the 
edge of weight 1. That is, there are no choices on where the tensor F(a) must flow, and 
we can reduce to the case that a = 0. Once we set a = 0, the crossing removal relation 
becomes

1

v

1

w

= 1

v

1

w

+
1

1

1

1

2

v w . (51)

We refer to the three terms appearing in this relation as the crossing term, the resolve 
term, and the bridge term. The maelstrom versus snail shell diagrams amount to choosing 
either the crossing term or the bridge term at every crossing. We can express the snail 
shell invariant as a linear combination of tensor diagrams in which we either take the 
crossing term or the resolve term. Regardless of how we make these binary choices, the 
resulting tensor diagram will have b edges which emanate from the leg of weight [r] and 
spiral the puncture some number of times before meeting up with a copy of T \ e. The 
total number of times these edges spiral, namely 0 + 1 + · · · + r − 1, is conserved.

In any of these terms, the resulting invariant is antisymmetric in the r spiraling edges 
since they all emanate from the same black vertex. On the other hand, if any two of 
these edges spiral the same number of times around the puncture, then the corresponding 
invariant is also symmetric in these edges, which are all plugged into the same fragment 
T \ e. Thus, such an invariant is the zero invariant. Since the total amount of spiral 
around the puncture is conserved, one can see that in order for the r legs to spiral a 
distinct number of times, we must take the crossing term (not the resolve term) at every
crossing, i.e. the maelstrom and snail shell diagrams determine the same invariant. �

With these lemmas in hand, we can prove Theorem 9.6.
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Proof. Translating as needed by the birational Weyl group action, we may assume that 
wtp

∏
i fi lies in the closed dominant Weyl chamber at every puncture p. Moreover, if p

is the puncture at which the wtpfi’s are root-conjugate we may assume that the ground 
set (16) of the pairwise root-conjugate vectors wtpfi takes the form [a + 1, a + r], and 
that [a + 1, c] is a block of the ordered set partition Πwtp

∏
i fi

for some c ≥ a + r. Let 
ε be the sign of the root-conjugacy class as in Lemma 5.3. Using the translation (29), 
when ε = +1, one can see that T has a unique leg e of weight a + 1 and all its other 
legs at p either have weight at most a or at least a + r. A similar statement holds when 
ε = −1, but in this case the leg e has weight a + r − 1. Because we have translated to 
the dominant Weyl chamber, our goal is to show that 

∏
i fi is a planar invariant and a 

forest invariant. We will argue this when ε = +1; the other case is similar.
The r-fold superposition ∪r

i=1T has r many copies of the leg e. We can tag these r legs 
by the subsets [a +1], [a] ∪{2}, . . . , [a] ∪{a + r} (tagging all other legs by a fundamental 
weight) to obtain a pseudotagged tensor diagram whose invariant is 

∏r
i=1 fi. We denote 

this pseudotagged diagram by (∪r
i=1T, ϕ). It is the upper left diagram in Fig. 9.

We denote by Tmaelstrom (resp. Tsnail) the plainly tagged diagram which results by 
replacing the r many root-conjugate legs in (∪iT, ϕ) by the maelstrom (resp. snail shell) 
fragment and plugging this fragment into r many copies of the fragment η := T \ e. By 
Lemmas 9.8 and 9.9 we have [(∪iT, ϕ)] = [Tmaelstrom] = [Tsnail].

The diagram Tmaelstrom is not a superposition of smaller diagrams and is without 
interior cycles. Thus, it is a tree diagram which computes the monomial 

∏
i fi. This 

proves the first assertion in the theorem. The snail shell fragment is planar and the 
diagram Tmaelstrom is obtained by gluing this planar fragment to r many copies of T \ e. 
This proves the second assertion in the theorem. �
9.5. Undoing the spiral when k = 3

We conclude this section by strengthening the above results to the case k = 3, thereby 
extending the conjectures from [8,7] to surfaces with punctures. When k = 3, the weight 
of a leg at a puncture is either 1 or 2, and any such leg can be tagged in three possible 
ways.

We refer to [8,7] for a discussion of the arborization algorithm converting a planar 
SL3 web diagram into its arborized form. Conjecturally, this algorithm has the following 
properties when S has no punctures: a non-elliptic web diagram is a cluster variable if 
and only if its arborized form is a tree diagram; it is a cluster monomial if and only if 
its arborized form is a union of tree diagrams corresponding to the irreducible factors of 
the cluster monomial. We now extend these conjectures in the presence of punctures:

Conjecture 9.10. Let [(T, ϕ)] ∈ A (M) be a tagged non-elliptic SL3 web invariant. Then 
[(T, ϕ)] is a cluster variable if and only if the arborized form of T is a tree diagram. 
Moreover, [(T, ϕ)] is a cluster monomial if and only (T, ϕ) can be transformed to a 
superposition of tagged tree diagrams (Ti, ϕi) by a sequence of arborization moves and 
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Fig. 10. Additional diagrammatic moves for tagged tensor diagrams when G = SL3. The black and white 
dots at the puncture p represent the first and second steps of the affine flag at p; the symbol η is a tensor 
diagram fragment.

the four moves in Fig. 10. In this case, the various [(Ti, ϕi)] are the irreducible factors 
appearing in [(T, ϕ)].

The four extra moves in the figure correspond to the passage from the snail shell 
fragment to the superposition of root-conjugate legs (i.e., from the bottom to the upper 
left diagram in Fig. 9). There are four moves corresponding to the four possible dosps 
with a non-singleton block, namely ab|c, a|bc, |123+|, and |123−| from left to right and 
top to bottom.

Proposition 9.11. Continuing the setup of Theorem 9.6 in the special case that k = 3, 
suppose that T is the arborized form of a non-elliptic web invariant. Then 

∏
i fi is a 

tagged web invariant.

Proof. Suppose that T is the arborized form a non-elliptic web diagram W . Denote by 
Wr the r-thickening of W as defined in [7, Definition 10.8]. Then Wr is again a non-
elliptic web invariant. Recall that Tsnail is the result of gluing the r dangling edges of 
the snail shell fragment to ∪iT . We denote by Wsnail the result of instead gluing the r
dangling edges of the snail shell fragment to Wr.

By the “thickening theorem” [7, Theorem 10.9], the r-fold superposition ∪iT pla-
narizes into Wr by a sequence of inverse arborization moves. We recall the proof of this 
theorem now and refer heavily to Figure 61 from [7] which underlies the proof. By as-
sumption, we can planarize the tree diagram T into the planar diagram W by a sequence 
of inverse arborization moves (“planarization moves”). The thickening theorem says that 
we can planarize ∪iT into Wr by “thickening” each of these planarization moves (each 



72 C. Fraser, P. Pylyavskyy / Advances in Mathematics 412 (2023) 108796
step in the sequence converting T into W corresponds to several moves turning ∪iT into 
Wr), working from the “inside out.”

The aforementioned Figure 61 corresponds to the case r = 3. The left part of that 
figure has six identical tensor fragments entering from the bottom, three identical frag-
ments entering from the upper left, three more entering from middle left, three more 
from middle right, and three more from upper right. The six fragments entering the 
bottom are not connected to any of the other fragments. We take the opportunity here 
to point out that, contrary to what is written in the proof of the thickening theorem, 
one can planarize the left figure into the right figure without any square moves. (One 
should planarize the triple of crossings at the top of the figure, then planarize the nine 
crossings in the middle, and finally planarize the right triple of crossings.)

Note that ∪iT coincides with Tsnail outside of a neighborhood of the puncture p and 
likewise Wr coincides with Wsnail away from p. We claim that we can planarize the 
crossings in Tsnail to obtain Wsnail via the same sequence of steps which planarizes the 
crossings in ∪iT to obtain Wr. Indeed, note that the distinguished edge e ∈ Legsp(T )
is the unique leg of its weight at p. Thus, when we carry out the steps outlined in the 
previous two paragraphs, the fragment containing e appears in one of the triples entering 
from the left or right (not from the bottom). Therefore, the planarization moves which 
turn the left diagram in Figure 61 into the right diagram are unaffected if we replace the 
three copies of the edge e by the three dangling edges in the seashell fragment.

Let T ′ ⊂ T be a maximal planar subtree containing the distinguished edge e (start 
with the edge e and grow the tree one edge at a time provided the added edge does 
not cross any previously added edges). When we superimpose r copies of the tree T , 
we create self-crossings between the copies of T ′. One may check that it is possible to 
planarize these self-crossings via arborization moves in which e never appears in the 
bottom of the arborization fragment.

If we first perform the planarization moves from the previous paragraph and sub-
sequently perform those from two paragraphs previous, then we planarize ∪iT into 
Wr without the distinguished edge e ever appearing in the bottom of the arboriza-
tion fragment. Thus, replacing the r distinguished edges e with the snail shell fragment 
and performing the same sequence of planarization moves, we transform Tsnail into 
Wsnail. �
10. Examples of finite mutation type

We study the A (M)’s of finite mutation type. Our first proposition classifies these.

Proposition 10.1. Suppose that S has at least one puncture and k ≥ 3. Then the cluster 
algebra ASLk,S has finite mutation type if and only S is a once-punctured bigon and k = 3. 
Likewise, A ′

SLk,S
has finite mutation type if and only if either S is a once-punctured bigon 

and k = 3, 4 or S is a once-punctured triangle and k = 3.
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Proof. We call a triangle fully interior if it has three distinct sides none of which is a 
boundary arch. When a fully interior triangle appears in a triangulation, it contributes a 
copy of the quiver Qk with all of the vertices considered mutable vertices and with none 
of its vertices identified.

The quiver Q4 is mutation infinite, and every Qk when k ≥ 4 contains this quiver 
as a full subquiver. The quiver Q3 is mutation finite, but if we glue this quiver to that 
for an adjacent triangle (regardless of whether zero, one, or two sides of this adjacent 
triangle are boundary intervals carrying frozen variables), the resulting quiver is mutation 
infinite. Any fully interior triangle appearing in a triangulation will have such an adjacent 
triangle, so we can rule out the k = 3 cases with a fully interior triangle as well.

Recall that S has at least one puncture. One can check that any surface besides a 
once-punctured n-gon has a fully interior triangle, and from the preceding paragraph 
therefore admits a full subquiver of infinite mutation type. So it remains to consider the 
cases S = Dn,1 for some n ≥ 2.

One may check that the result of gluing three copies of Q3, with the right edge of the 
first copy glued to the left edge of the second copy and the right edge of the second copy 
glued to the left edge of the third copy, has infinite mutation type. The same is true 
for gluing three copies of Q1

3, and for gluing two copies of Q4 along a shared edge. One 
can also check that A (SLk, D2,1) has infinite type when k = 4 hence when k ≥ 4. In a 
similar way one checks that A ′(SLk, D3,1) has infinite mutation type when k ≥ 4 and 
A ′(SLk, D2,1) has infinite mutation type when k ≥ 5. �

Remark 10.2. The cluster algebra A (SL2, S) always has finite mutation type. We as-
sumed that S has at least one puncture because that is our focus in the present paper. 
If we relax this assumption, there are additional finite mutation type examples arising 
when k is small and S is an n-gon. For example, A ′(SL3, Dn,0) has finite mutation type 
when n ≤ 9. We are not aware of finite mutation type examples outside of those listed 
in the above proposition and cases when S is an n-gon, but we did not thoroughly rule 
these out.

One may verify that the cluster algebras A ′(SLk, D3,1) and A (SLk, D2,1) are related 
by a quasi cluster isomorphism as predicted in Remark 3.5. This quasi cluster isomor-
phism respects the notions of being an arborizable web invariant in either side, and 
preserves the weight of cluster variables at punctures. Thus, we only need to understand 
the three finite mutation A ′-version examples listed in the above proposition. We study 
these three examples in the remainder of this section.

The cluster algebra A ′(SL3, D2,1) has finite cluster type D4. The other two examples 
both have the same cluster type as A (SL2, S0,4), also known as elliptic D4 type.

Our next proposition summarizes our results in this section:
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Proposition 10.3. Conjectures 5.4, 8.18, and 8.20 hold for the cluster algebras A ′(SL3,

Dn,1) when n = 2, 3. Conjecture 5.4 holds for A ′(SL4, D2,1), and Conjectures 8.18 and 
8.20 can be verified through an explicit finite computation.

Before outlining the proof of this proposition, we need to introduce the following 
ingredient. Both of the elliptic D4 examples have infinitely many clusters. To understand 
them, we introduce an appropriate group of quasi cluster automorphisms of the cluster 
algebra, modulo which there are only finitely many clusters. Provided we also check that 
this group preserves the assertions in our conjectures, this reduces our conjectures to a 
finite verification.

We number the boundary points of the once-punctured n-gon in cyclic order. A choice 
of point in the moduli space M affords us a vector vi at the ith boundary point, as well 
as an affine flag F at the puncture p and a monodromy u around p.

We denote by ρ denote the cyclic shift cluster automorphism induced by rotating 
boundary points i 
→ i + 1 mod n. We let τ denote a fixed reflection in the n-gon, so 
that 〈ρ, τ〉 is a dihedral group.

The cluster algebra has a canonical initial seed since there is a unique taut trian-
gulation of a once-punctured n-gon. We use the notation A, B, C for the initial cluster 
variables associated to the arc connecting the first boundary point to the puncture, so 
that the initial cluster variable A has weight a at the puncture in multiplicative notation, 
the initial cluster variable B has weight ab, and the initial cluster variable C has weight 
abc. Note that C only is present when k = 4. The cluster variables associated to the arc 
connecting the second boundary point to p are cyclic shifts of these, namely ρ∗A, ρ∗B, 
and ρ∗C. And so on.

Definition 10.4. We define a birational automorphism σ ∈ Bir(ASL3,D3,1) as follows. The 
automorphism changes the decorations at boundary points according to

v1 
→ v2 v2 
→ (v1 ∧ v2) ∩ (v3 ∧ u−1v1) v3 
→ v3 (52)

while preserving the local system and the affine flag F .
We have similarly a birational automorphism σ ∈ Bir(ASL4,D2,1) defined via

v1 
→ v2 v2 
→ (v1 ∧ v2) ∩ (u−1v1 ∧ u−1v2 ∧ u−2v1).

Lemma 10.5. The transformation σ is a quasi cluster automorphism of the correspond-
ing cluster algebra. It acts on the cluster algebra while preserving the sets of diagram 
invariants, web invariants, tree invariants, and forest invariants.

Proof. One checks that σ is a quasi cluster automorphism by providing an explicit 
sequence permutation-mutation sequence which matches Definition 10.4. The required 
sequences are



C. Fraser, P. Pylyavskyy / Advances in Mathematics 412 (2023) 108796 75
(B ρ2(A) ρ(A) ρ(B)) ◦ μBμρA for the once-punctured triangle, k = 3 (53)

(Aρ(A) ρ(B)) ◦ (C ρ(C)) ◦ μCμρAμρBμC for the once-punctured bigon, k = 4. (54)

In both cases, we wrote the required permutation of vertices in cycle notation.
If T is a tensor diagram, then one can compute σ∗([T ]) by “plugging in” the boundary 

edges of T to a tensor-diagrammatical gadget which computes the formulas (52). This 
plugging in process does not create any interior cycles on boundary vertices, so σ pre-
serves the sets of forest and tree invariants. The crossings which are created by plugging 
in can be planarized using the crossing removal relation (only one of the terms in the 
crossing removal relation survives), so σ also preserves the set of web invariants. �

Now we sketch the proof of Proposition 10.3 with further details filled in on a case by 
case basis below.

Proof. In all three cases, there are only finitely many P -clusters and the Conjecture 5.4
can be verified by hand and by inspection. We have listed these P -clusters up to W -action 
in (17), (56), and (58).

In the finite type example, we compute below all cluster variables and clusters ex-
plicitly as tagged tensor diagram invariants. One can see the validity of our two cluster 
combinatorics conjectures by inspection.

In the two elliptic D4 examples, consider the group generated by the quasi cluster 
automorphism σ identified above, together with the cyclic shift map ρ, the duality map 
∗, and the Weyl group action at the puncture. This group acts on the cluster algebra 
by (quasi) cluster automorphisms and preserves the sets of tagged web invariants and 
tagged forest invariants.

We argue in both cases elliptic D4 examples that there are only finitely many clusters 
modulo the action of this group. When k = 3 example, we identify explicitly these finitely 
many clusters and argue the following extra steps. First, every cluster monomial in this 
finite list of clusters is a tagged web invariant and a tagged forest invariant. Second, if x, y
are cluster variables in this finite list, and if the weights of x and y at the puncture are 
not W -sortable, then x and y are in fact root-conjugate taggings of the same underlying 
tensor diagram. Third, if x appears in our finite list, then x is cluster compatible with 
any of its root-conjugate taggings. (It is not important that a cluster witnessing this fifth 
assertion appears in our finite list.) The first of these statements proves Conjecture 8.18
while the second and third statements prove Conjecture 8.20. �
Remark 10.6. It would be possible to carry out the same three steps alluded to in the 
last paragraph of the above proof in the case of A ′(SL4, D2,1), thereby verifying our 
cluster combinatorics conjectures for this cluster algebra. The number of clusters which 
needed to be explicitly computed was fairly large so we did not carry this out.
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Fig. 11. The tensor diagrams underlying mutable and frozen variables in A ′(SL3, D2,1), which has finite 
cluster type D4.

10.1. The case of A ′(SL3, D2,1)

This is a type D4 cluster algebra with two frozen variables, 16 cluster variables, and 
50 clusters. We depict the underlying tensor diagrams (up to dihedral and W - action) in 
Fig. 11. The diagrams B and A both can be tagged in three ways and have two dihedral 
images. The diagram x has weight zero at the puncture and has four dihedral images. 
The two dihedral images of the last diagram f are the frozen variables. We have drawn 
x in its tree form but we can obtain its planar form by applying the crossing removal 
relation and noting that one of the two terms vanishes because it has a boundary 2-cycle.

Each of the four variables {A, B, ρ(A), ρ(B)} is compatible with exactly two out of 
the four cluster variables {x, ρ(x), τ(x), τρ(x)} in both senses of compatibility (namely, 
cluster compatibility and also the compatibility notion that two web invariants are com-
patible when their product is again a web invariant). Specifically B is compatible with 
ρ(x) and ρ(τ(x)), ρ(B) is compatible with x and τ(x), A is compatible with x and 
ρ(τ(x)), and ρ(A) is compatible with ρ(x) and τ(x).

Fig. 3 shows all 50 clusters in this cluster algebra, grouped in concentric circle “levels” 
with 6, 12, 24, 8 clusters respectively. Equation (17) lists the P -clusters. Clusters in the 
outermost level have P -cluster in the first row of (17) up to W -action, those in the next 
level have P -cluster in rows two or three of (17) up to W -action, those in the next level 
have P -cluster in rows four or five, and those in the innermost have P -cluster in the last 
two rows.

Mutation from the first to second level is an instance of the flattening relation (45)
with �(S) = 1, e.g. exchanging ρ(B) for s2(B). Mutating from the second to the third 
level is an instance of the skein relations, e.g. exchanging ρ(A) for ρτ(x). There are 
also mutations within the third level which implement the dosp mutation 12|3 ↔ 12|3. 
Mutation from the third to fourth level is an instance of �(S) = 2 flattening relation 
followed by additional skein relation, e.g. exchanging A for s2s1(B). Specifically, the 
flattening relation yields a linear combination [T ] −2[T ′] +[T ′′] after applying the binomial 
theorem to (u−1 − 1)2. One of the invariants [T ′′] is equal to 0. The tensor diagram [T ]
has a self-crossing and can be expressed as [T ] = [T ′′′] +3[T ′] using the crossing removal 
relation and the fact that tr(u) = 3. The right hand side of the flattening relation then 
becomes a sum of two terms [T ′′′] + [T ′] and these two terms match the two terms 
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appearing the exchange relation. Finally, there are mutations within the fourth level 
exchanging two dihedral images of x (these are consequences of the skein relations).

10.2. The case of A ′(SL3, D3,1)

This cluster algebra has the same cluster type as the cluster algebra associated to a 
four-punctured sphere S0,4. The underlying quiver mutation class consists of four quivers. 
There are six combinatorial types of tagged triangulations cf. [1]. We use the nomencla-
ture for these six combinatorial types given in [1] and note that types I and V I have 
the same underlying quiver, as do types II and V. We distinguish between unlabeled and 
labeled triangulations – in the former we consider the arcs in a triangulation as a set 
while in the latter we think of these arcs as an ordered tuple. Any two tagged unlabeled 
triangulations of the same combinatorial type are related by an element of the tagged 
mapping class group MCG��(S0,4).

We denote by T0 the following labeled triangulation of S0,4, where we use p1, . . . , p4
to denote the four punctures and think of the sphere as R2 ∪ {∞}.

T0 = p4

p1

p2p3

6

2

4 3

5
1

1 : A

3 : ρA

5 : ρ2A

2 : B

4 : ρB

6 : ρ2B

(55)

To the right, we have identified the 6 initial cluster arcs for S0,4 with the 6 initial cluster 
variables for A ′(SL3, D3,1) in such a way that the mutable parts of the quivers are 
identified. We denote by T1 the result of notching all arcs in T0 at the puncture p1.

Fixing the above matching of initial seeds, we obtain a bijection between cluster vari-
ables (resp. clusters) for A ′(SL3, D3,1) and tagged arcs (resp. tagged triangulations) in 
S0,4. If Σ is a seed for A ′(SL3, D3,1) we denote by T (Σ) its corresponding tagged trian-
gulation. In particular, every cluster for A ′(SL3, D3,1) has one of the six aforementioned 
combinatorial types.

Figs. 12 and 13 together illustrate this bijection between cluster variables in specific 
instances. The bijection is equivariant with respect to the group of dihedral symmetries 
of D3,1, where in the case of S0,4 we view the punctures p1, p2, p3 as the vertices of a 
triangle whose puncture is p4. We have broken the two figures up so that the SL3 tensor 
diagrams appearing in Fig. 12 have nonzero weight at the puncture (hence, W acts on 
them), while those in Fig. 13 have zero weight. We computed the tensor diagrams in this 
table by performing mutations using skein relations and the flattening relation. We omit 
the details.

Altogether, there are six plain SL3 tensor diagrams appearing in these figures versus 
4 plain SL2 arcs. Each plain arc has three dihedral images and can be tagged in four 
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Fig. 12. The top row shows plain SL3 tensor diagrams A, B, A′, B′ in the once-punctured triangle, each of 
which has three images under SL3-Weyl group action at the puncture. In the bottom row, we depict the 
three tagged arcs in S0,4 which correspond to each of these W -orbits.

��

•

•
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��

•

•

••

◦
•◦

•

••

•
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Fig. 13. The first and second SL3 tensor diagrams in the once-punctured triangle correspond respectively to 
the third and fourth tagged arcs in S0,4. Each of these has six dihedral images.

ways, for a total of 48 tagged arcs appearing in the two figures. The SL3 diagrams in the 
first figure have 3 dihedral images and can be tagged in 3 ways, while those in the second 
figure have six dihedral images and cannot be tagged, again for a total of 48 diagrams.

Each quasi cluster automorphism of A ′(SL3, D3,1) induces an element of the cluster 
modular group for S0,4. We list some instances of this correspondence in the table below:

Aut(A′) MCG��(S0,4) Sequence
ρ 120◦ rotation about p4 (135)(246)
σ half-twist

p2
�
p1

(2534)μ23

s1 tag-change at p4 (35)μ1351
s2 N/A (46)μ2462
w0 ∗ ρ tag-change at all punctures

The third column shows the permutation-mutation sequence out of the initial seed which 
induces the corresponding automorphism. The notation μ23 means to mutate at vertex 2 
and then at vertex 3. The quasi automorphism in the last row is the Donaldson-Thomas 
transformation, whose mutation sequence we have omitted due to its length. The quasi 
automorphism in the fourth row does not correspond to a tagged mapping class, but 
rather an “exotic” element of the cluster modular group for S0,4 matching up a type I 
triangulation with a type VI triangulation.
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We now carry out the three additional steps from Proposition 10.3, thereby verifying 
all of our conjectures for A ′(SL3, D3,1).

Proof. We begin by explaining that there are only finitely many clusters modulo H ′

action, where H ′ is the group defined in the proof of the above proposition. Then we 
carry out the three extra steps from the proof of the proposition. There is a group 
homomorphism B3 → MCG(S0,4) from the braid group on three strands to the map-
ping class group of a four-punctured sphere. The image of this homomorphism is the 
subgroup of mapping classes which fix the fourth puncture, see [5, Section 9.2]. This 
subgroup has index four inside MCG(S0,4) with cosets distinguished by which punc-
ture is brought to p4. Looking at the above table, the elements σ and ρσρ−1 are the 
images of the Artin generators under this homomorphism, thus the group H := 〈σ, ρ〉
has index four in MCG(S0,4). There are clearly only finitely many clusters modulo the 
action of this group. There will be even fewer clusters modulo the action of the larger 
group H ′.

To carry out the three extra steps from the proof of the proposition, we explicitly 
identify a finite list of clusters which exhaust all clusters modulo H ′-action.

One can check that the MCG(S0,4)-orbit of the unlabeled triangulation T0 coincides 
with its H-orbit. (The mutations needed to bring a given pi, i = 1, 2, 3 to the North pole 
are the same mutations needed to perform a half-twist. The two mapping classes differ 
only by a permutation of variables.)

One can also check that there are six ways to mutate from a type I triangulation to 
a type II triangulation, four ways to mutate from a type II to a type IV, one way to 
mutate from a type IV to a type V, two ways to mutate from a type V to a type VI, 
and one way to mutate from a type V to a type III. All other mutations move weakly 
“backwards” to an earlier combinatorial type. Altogether, given a particular type I tri-
angulation T , we get 6 · 4 · 1 · 2 + 6 · 4 · 1 = 72 mutation sequences which efficiently 
pass from a given type I triangulation to a triangulation of any other type. Note that 
some steps in these mutation sequences commute so these 72 mutations sequences do 
not yield 72 distinct clusters. We refer to the clusters reachable from T by one of these 
72 mutations sequences as the club of T .

We claim that every tagged triangulation of S0,4 is in the club of either T0 or T1
modulo H ′-action. Indeed, suppose that T has type I and let T ′ be it underlying plain 
triangulation. By two paragraphs previous, there exists an element h1 ∈ H such that 
h1(T ′) is a relabeling of T0. We can choose h2 ∈ 〈DT, s1〉 (i.e., in the group generated 
by tag-changing at p4 or at all the pi’s) such that h2h1(T ) ∈ {T0, T1} as unlabeled 
tagged triangulations. Thus, if T has type I, then we can move it using H ′ to either 
T0 or T1. If we consider a tagged triangulation T ′ of some other type, then T ′ is in 
the club of some type I triangulation T . Choosing h1 and h2 as in the previous sen-
tences so that h2h1(T ) ∈ {T0, T1}, then h2h1(T ′) is in the club of either T0 or T1 as 
claimed.

The clubs of T0 and T1 serves as our list of finitely many clusters modulo H ′-action.
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Now we carry out the first extra step, i.e. we check that every cluster monomial drawn 
from the clubs of T0 and T1 is a tagged web invariant and a tagged forest invariant. This 
is a straightforward but lengthy check using Figs. 12 and 13. Every tagged triangulation 
in these two clubs is built out of the 48 tagged arcs dihedrally related to these two figures. 
One must verify that when a collection of such tagged arcs are pairwise compatible then 
so are their corresponding tensor diagrams, where the notion of compatibility for SL3

tensor diagrams is that their product is a tagged web invariant. The proof of the second 
extra step is illustrated in Fig. 12: in the clubs of T0 and T1, the cluster variables which 
have nonzero weight are listed in the top of the figure, and each of these is compatible 
with its three taggings (because the three tagged arcs below each diagram are compatible 
tagged arcs).

The proof of the third extra step is another straightforward check using Fig. 12. For 
example, the tensor diagram A has weight ω1 at the puncture, so it is not W -sortable with 
tensor diagrams of weight e2, e3, or e2+e3. Looking right in the figure, the diagrams that 
have this weight and which are not root-conjugate to A are s1s2(A′), s1(A′), s2s1(B′), 
and s2s1(B). We can see that the tagged arc corresponding to A is not compatible with 
any of the four tagged arcs which correspond to these cluster variables. �

The P -clusters in A ′(SL3, D3,1) are listed below up to W -action:

P -cluster dosp
e1 × 3, e1 + e2 × 3 1|2|3
e1 × 2, e1 + e2 × 4
e1 × 4, e1 + e2 × 2
e1 × 2, e1 + e2 × 3, 0
e1 × 3, e1 + e2 × 2, 0
e1 × 2, e1 + e2 × 2, 0 × 2
e1, e2, e1 + e2 × 4 12|3
e1, e2, e1 + e2 × 3, 0
e1, e2, e1 + e2 × 2, 0 × 2
e1, e2, e1 + e2, 1 × 3

P -cluster dosp
e1 × 4, e1 + e2, e1 + e3 1|23
e1 × 3, e1 + e2, e1 + e3, 1
e1 × 2, e1 + e2, e1 + e3, 0 × 2
e1 × 1, e1 + e2, e1 + e3, 0 × 3
e1, e2, e3, 0 × 3 123+

e1 + e2, e1 + e3, e2 + e3, 0 × 3 123−

(56)

Remark 10.7. Using the above argument, it is not hard to see that every cluster variable 
in A ′(SL3, D3,1) is a tagged tree invariant, and that every cluster monomial factors as 
a product of these using arborization moves and the four extra moves from Fig. 10, 
as predicted in Conjecture 9.10. We do not know how to prove the converse directions 
of these statements, e.g. that a web diagram which arborizes to a tree diagram indeed 
determines a cluster variable.
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10.3. The case of A ′(SL4, D2,1)

This cluster algebra also has the same cluster type as a four-punctured sphere. We 
follow the style of argument from the previous section making the needed modifications. 
We take our initial triangulation T0 to be the following labeled tagged triangulation of 
S0,4, which is a type V triangulation:

T0 =

p1

p2

p3p4 25

4
1

3
6	
 	
 1 : A

3 : C

5 : ρB

2 : B

4 : ρC

6 : ρA

(57)

We identify the initial tagged arcs with initial cluster variables for A′
SL4,D2,1

as indicated 
to the right. This induces the following correspondence between quasi cluster automor-
phisms of A′

SL4,D2,1
and elements of the cluster modular group of A (S0,4):

Aut(A′) MCG��(S0,4) Sequence
ρ lift of (34) (16)(34)(25)
σ ◦ ρ Dehn twist about p1, p4 (152)μ4214
ρ ◦ σ Dehn twist about p1, p3 (625)μ3563
s1 ◦ s3 lift of (12)(34)
s2 tag change at p2 (25)μ25
∗ tag change at both p3, p4 (14)(36)

tag-change at all punctures

There is a group homomorphism from MCG(S0,4) to the symmetric group on four sym-
bols keeping track of how the punctures are permuted. In the middle column above, 
“lift of (34)” indicates a mapping class whose image under this homomorphism is the 
transposition (34), etc. The two Dehn twists in this table are pure mapping classes, i.e. 
their image is the identity permutation.

We now explain that there are only finitely many clusters modulo the action of the 
group defined in the proof of Proposition 10.3.

Proof. The two compositions ρ ◦ σ and σ ◦ ρ correspond to Dehn twists about simple 
closed curves with geometric intersection number two. Any two such mapping classes 
generate the pure mapping class group of S0,4, see [5, Section 4.2.4]. There are clearly 
finitely many tagged triangulations of S0,4 modulo the pure mapping class group. �

We note that we can reduce the size of the finite check needed to verify our conjec-
tures by precomposing with ρ, s1 ◦ s3, s2, and ∗, as these quasi cluster transformations 
correspond to certain non-pure mapping classes and tag-changing transformations.
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The P -clusters for A ′(SL4, D2,1) are listed below up to W action, this time in multi-
plicative notation for space-saving purposes:

P -cluster dosp
a× 2, ab× 2, abc× 2 1|2|3|4
a, b, ab× 2, abc× 2 12|3|4
a, b, ab, abc× 3
a, b, ab, abc× 2, 1
a× 2, ab× 2, abc, abd 1|2|34
a× 3, ab, abc, abd
a× 2, ab, abc, abd, 1
a× 2, ab, ac, abc× 2 1|23|4
a, ab, ac, abc× 3
a× 3, ab, ac, abc
a, ab, ac, abc× 2, 1
a× 2, ab, ac, abc, 1
a, b, ab, ab, abc, abd 12|34
a, b, ab, abc, abd, 1
a, b, abc, abd, 1 × 2

P -cluster dosp
a, b, c, abc, abc, 1 123+|4
a, b, c, abc, 1 × 2
a, b, c, abc× 3
ab, ac, bc, abc× 3 123−|4
ab, ac, bc, abc× 2, 1
a× 3, ab, ac, ad 1|234+

a× 2, ab, ac, ad, 1
a× 2, abc, abd, acd, 1 1|234−
a, abc, abd, acd, 1 × 2
a× 3, abc, abd, acd
abc, abd, acd, bcd, 1 × 2 1234−

a, b, c, d, 1 × 2 1234+

(58)

References

[1] E. Barnard, E. Meehan, N. Reading, S. Viel, Universal geometric coefficients for the four-punctured 
sphere, Ann. Comb. 22 (1) (2018) 1–44.

[2] S.C. Billey, W. Jockusch, R.P. Stanley, Some combinatorial properties of Schubert polynomials, 
J. Algebraic Comb. 2 (4) (1993) 345–374.

[3] S. Cautis, J. Kamnitzer, S. Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (1–2) 
(2014) 351–390.

[4] D. Douglas, Z. Sun, Tropical Fock-Goncharov coordinates for SL3-webs on surfaces I: construction, 
arXiv :2011 .01768, 2021.

[5] B. Farb, D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49, 
Princeton University Press, Princeton, NJ, 2012.

[6] V.V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. 
Math. Inst. Hautes Études Sci. 103 (2006) 1–211.

[7] S. Fomin, P. Pylyavskyy, Tensor diagrams and cluster algebras, Adv. Math. (2016) 717–787.
[8] S. Fomin, P. Pylyavskyy, Webs on surfaces, rings of invariants, and cluster algebras, Proc. Natl. 

Acad. Sci. USA 111 (27) (2014) 9680–9687.
[9] S. Fomin, M. Shapiro, D. Thurston, Cluster algebras and triangulated surfaces. Part I: cluster 

complexes, Acta Math. 201 (1) (2008) 83–146.
[10] S. Fomin, D. Thurston, Cluster algebras and triangulated surfaces. Part II: lambda lengths, Mem. 

Am. Math. Soc. 255 (1223) (2018), v+97 pp.
[11] C. Fraser, Braid group symmetries of Grassmannian cluster algebras, Sel. Math. New Ser. 26 (2) 

(2020) 17.
[12] C. Fraser, Quasi-homomorphisms of cluster algebras, Adv. Appl. Math. 81 (2016) 40–77.
[13] C. Frohman, A. Sikora, SU(3)-skein algebras and webs on surfaces, Math. Z. 300 (2022) 33–56, 

arXiv :2002 .08151.



C. Fraser, P. Pylyavskyy / Advances in Mathematics 412 (2023) 108796 83
[14] A. Goncharov, L. Shen, Donaldson-Thomas transformations for moduli spaces of G-local systems, 
Adv. Math. 327 (2018) 225–348.

[15] A. Goncharov, L. Shen, Geometry of canonical bases and mirror symmetry, Invent. Math. 202 (2) 
(2015) 487–633.

[16] A. Goncharov, L. Shen, Quantum geometry of moduli spaces of local systems and representation 
theory, arXiv :1904 .10491, 2020.

[17] J.E. Grabowski, Graded cluster algebras, J. Algebraic Comb. 42 (4) (2015) 1111–1134.
[18] H.K. Kim, SL3-laminations as bases for PGL3 cluster varieties for surfaces, Memoirs of the AMS, 

in press, arXiv :2011 .14765, 2021.
[19] R. Inoue, T. Ishibashi, H. Oya, Cluster realizations of Weyl groups and higher Teichmüller theory, 

Sel. Math. 27 (37) (2021), arXiv :1902 .02716.
[20] R. Inoue, T. Lam, P. Pylyavskyy, On the cluster nature and quantization of geometric R-matrices, 

Publ. Res. Inst. Math. Sci. 55 (1) (2019) 25–78.
[21] T. Ishibashi, W. Yuasa, Skein and cluster algebras of marked surfaces without punctures for sl3, 

arXiv :2101 .00643, 2021.
[22] R. Kedem, Q-systems as cluster algebras, J. Phys. A 41 (19) (2008).
[23] G. Kuperberg, Spiders for rank 2 Lie algebras, Commun. Math. Phys. 180 (1) (1996) 109–151.
[24] I. Le, Cluster structures on higher Teichmüller spaces for classical groups, Forum Math. Sigma 7 

(2019) e13.
[25] I. Le, C. Fraser, Tropicalization of positive Grassmannians, Sel. Math. New Ser. 25 (5) (2019) 75.
[26] T. Magee, Littlewood-Richardson coefficients via mirror symmetry for cluster varieties, Proc. Lond. 

Math. Soc. (3) 121 (3) (2020) 463–512.
[27] M.R. Mills, On the relationship between green-to-red sequences, local-acyclicity, and upper cluster 

algebras, arXiv :1804 .00479, 2018.
[28] G. Muller, Skein and cluster algebras of marked surfaces, Quantum Topol. 7 (3) (2016) 435–503.
[29] G. Musiker, R. Schiffler, L. Williams, Bases for cluster algebras from surfaces, Compos. Math. 

149 (2) (2013) 217–263.
[30] P. Pylyavskyy, Zamolodchikov integrability via rings of invariants, J. Integrable Syst. 1 (1) (January 

2016), xyw010.
[31] G. Schrader, A. Shapiro, A cluster realization of Uq(sln) from quantum character varieties, Invent. 

Math. 216 (3) (2019) 799–846.
[32] L. Shen, Duals of semisimple Poisson-Lie groups and cluster theory of moduli spaces of G-local 

systems, Int. Math. Res. Not. (2021), in press, arXiv :2003 .07901.
[33] B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, 1993.


	Tensor diagrams and cluster combinatorics at punctures
	1 Introduction
	2 Background
	2.1 Cluster algebras
	2.2 Marked surfaces and triangulations
	2.3 Cluster algebras from surfaces
	2.4 Type A combinatorics
	2.5 P-clusters

	3 Cluster nature of the moduli spaces
	3.1 Fock-Goncharov version of the moduli space
	3.2 Grassmannian version of the moduli space
	3.3 A family of quivers
	3.4 Initial seeds for AG,S
	3.5 Initial seeds for A′G,S
	3.6 Weights of cluster variables

	4 Weyl group action at punctures
	4.1 Weyl group action on affine flags
	4.2 Reminders on the proof of Theorem 4.4
	4.3 The action on A′G,S is cluster
	4.4 The action on A(SLk,Sg,1) is cluster

	5 Compatibility of weight vectors
	6 From compatible collections to dosps
	6.1 An osp at every puncture
	6.2 A dosp at every puncture
	6.3 Dosp mutations

	7 Realizing dosp mutations via cluster mutations
	8 Tensor diagrams
	8.1 Plain tensor diagrams
	8.2 Plain tensor diagrams as functions
	8.3 Skein relations between diagram invariants
	8.4 Tagged and pseudotagged diagrams
	8.5 Cluster compatibility conjectures

	9 The flattening and spiral theorems
	9.1 The flattening theorem
	9.2 Proof of the flattening theorem
	9.3 The spiral theorem
	9.4 Proof of Theorem 9.6
	9.5 Undoing the spiral when k=3

	10 Examples of finite mutation type
	10.1 The case of A′(SL3,D2,1)
	10.2 The case of A′(SL3,D3,1)
	10.3 The case of A′(SL4,D2,1)

	References


