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Abstract
Representational transformation diagrams are used to compare and contrast stand-
ard textbook presentations of vector line integrals in undergraduate courses in 
both mathematics and physics. These presentations are taken as the lower anchor 
in a learning trajectory. Two principal approaches in the lower division are identi-
fied, roughly but not entirely correlated with these two disciplines. These textbook 
approaches are compared to existing characterizations for (single-variable) integra-
tion in the theory literature, notably adding up pieces (or multiplicatively-based 
summation), which is generalized here to chop, multiply, add; accumulation from 
rate; quantitatively-based summation; and a new characterization, parametric inte-
grals. A review of upper-division textbooks establishes key features of an upper 
anchor in the learning trajectory. In conclusion, a hypothetical learning trajectory is 
presented, designed to scaffold student acquisition of rich concept images for vector 
line integrals.

Introduction and Research Context

Calculus is a gateway to physics and physics is a gateway to engineering. It is well 
known that students struggle to apply mathematics to science (e.g. Hammer et al., 
2005). Building robust but basic understanding in early mathematics classes opens 
the gateway for poorly prepared but bright/hard-working students who are initially 
struggling in their mathematics classes, but only if students are able to effectively 
transfer their knowledge to applied disciplines. Recognizing the need to align 
undergraduate mathematics programs with the needs of the partner disciplines, 
the Mathematical Association of America sponsored the Curriculum Foundations 
project  (MAA, 2004), whose reports include both general and discipline-specific 
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recommendations, which a successor project is currently attempting to imple-
ment (SUMMIT-P, 2018).

We are a curriculum development team with over 30 years experience (each) 
teaching vector calculus (first author; TD) and upper-division physics (second 
author; CAM). We are developing a learning trajectory for integration that extends 
from lower-division mathematics and physics all the way through vector line (and 
eventually flux) integrals in physics.

Single-variable calculus is typically covered in the first year of university stud-
ies, with multivariable and vector calculus being covered in the second year. The 
introductory, calculus-based physics sequence often begins after the first semester 
of calculus has been completed, but often introduces concepts from second-year 
calculus in parallel with, or even slightly earlier than, they are covered in a calcu-
lus class. A good example of such a topic is line integrals, especially those involv-
ing vector fields. Such line integrals are then used extensively in middle-division 
physics courses covering classical mechanics and electromagnetism. This pattern of 
requiring physics students to generalize their formal mathematics knowledge at an 
extremely rapid pace is typical of the transition of physics majors from the lower 
to the upper division. The need to begin preparing physics majors in lower-division 
mathematics and physics courses for the advanced topics of the upper division is 
analogous to (and, we acknowledge, in tension with) the need to prepare mathemat-
ics majors in lower-division mathematics courses for upper-division, proof-based 
courses.

Theoretical Perspective

Both mathematicians and physicists would recognize the expression ∫
C
��⃗F ⋅ dr⃗ as a 

generic vector line integral, expressing the work done by a force ��⃗F along a path C. 
This expression is sometimes derived in the form of the line integral ∫

C
��⃗F ⋅ T̂ ds . 

The choice of which of these expressions to treat as fundamental during instruction 
naturally affects student understanding of line integrals. This paper delineates how 
textbooks in lower-division mathematics, lower-division physics, and upper-division 
physics implement this choice and then discusses the consequences of these choices 
for student learning, both in the moment and in future coursework.

In our previous studies of derivatives, we have been strongly influenced by 
Zandieh’s “concept image” of derivatives (Zandieh, 2000a). Tall and Vinner (1981) 
(see also Vinner, 1983; Zandieh, 2000b; Thompson, 2013), define a concept image 
as the set of properties associated with a concept together with mental pictures of 
the concept. To us, concept images have also come to include information such as 
physical context, relevant physical laws, dimensions, understanding of how to inter-
pret equations geometrically and physically, understanding of special cases, and 
more. Our work (Roundy et al., 2015; Emigh & Manogue, 2022a, b) has generalized 
and extended Zandieh’s concept image for ordinary derivatives to multivariable and 
vector calculus examples in physics contexts.

Faculty have rich concept images, which students must accumulate gradu-
ally. This work forms part of a long-term project to identify an idealized concept 
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image for integrals and use it to construct a learning trajectory to inform the work 
of curriculum developers, textbook authors, and teachers. Our learning trajectory 
and concept map for partial derivatives can be found online (Roundy, 2018, under 
development).

A learning trajectory (LT) in mathematics, known as a learning progression 
in physics, is a possible sequence of increasingly sophisticated understandings of 
a topic. Key features of learning progressions described by the National Research 
Council (Duschl et al., 2007) and the National Assessment Governing Board (Lemke 
& Gonzales, 2006) include:

•	 Learning progressions are hypotheses about learning in a given domain;
•	 Learning progressions include upper and lower anchors, with the upper anchor 

grounded in societal goals for learning core knowledge and practices in science, 
and the lower anchor grounded in the ideas that students bring to the classroom; 
and

•	 Learning progressions describe ways students may develop more sophisticated 
ways of thinking in a domain, often with support of specific instructional strate-
gies.

A major goal of developing learning progressions is to deepen the focus of science 
and mathematics education on central concepts rather than on inconsequential top-
ics (Plummer, 2012).

Overview

This paper describes our early empirical efforts to flesh out the broad lower and 
upper anchors of part of the learning trajectory; to incorporate, and contribute to, 
the theoretical education research discussion on integration; and to suggest the out-
line of a learning trajectory for vector line integrals based on both the empirical and 
theoretical work.

The research question that underpins the empirical part of this investigation is:

•	 What does an analysis of textbook treatments of vector line integrals reveal about 
the learning objectives and (abbreviated) learning trajectories of the associated 
courses?

The question that underpins the theoretical part of this investigation is:

•	 How do the revealed learning objectives and learning trajectories harmonize 
across courses? Where are there possible disconnects and tensions that may trip 
up students?

If the upper anchor of a learning trajectory is intended to be “grounded in societal 
goals for learning core knowledge” and the lower anchor “grounded in the ideas stu-
dents bring to the classroom,” then how, in practice, can we identify these anchors? 
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In “Methods”, we introduce our empirical analysis method, Representational Trans-
formation Diagrams, and the language we will use to describe the features of the 
anchors. We then use this analysis strategy in “The Lower Anchor in Mathematics 
and Physics” to establish the lower anchor as instantiated in the treatment of vector 
line integrals in lower-division mathematics and physics texts. Of course, this lower 
anchor will need to be tested empirically in a later phase of the investigation to iden-
tify how much of this lower anchor students actually access. We follow this empiri-
cal work with a theoretical discussion in “Theoretical Discussion” of the existing 
literature on student understanding of integration. In this section we also introduce 
new concepts into the theoretical discussion, motivated both by our earlier empirical 
analysis and by our own experiences in an applied field. In “The Upper Anchor”, we 
introduce our choice of upper anchor as empirically instantiated in middle-division 
physics textbooks. In “Discussion”, we first propose a (hypothetical) learning tra-
jectory for vector line integrals that suggests ways teaching approaches might be 
improved, including some comments from the viewpoint of applied disciplines.

Methods

To represent and analyze the rich concept images, as enacted in the textual part of 
the textbooks, we turned to an analysis strategy developed by Bajracharya et  al. 
(2019) called a representational transformation diagram (RTD). These diagrams are 
a type of flowchart introduced to document the transformations from one representa-
tion to another made by students while solving problems.

Bajracharya et  al. (2019) identified three common transformation phenomena, 
which they called translation, consolidation, and dissociation depending on whether 
a box labeling a representation had no more than one incoming and/or outgoing 
arrow, more than one incoming arrow, or more than one outgoing arrow, respec-
tively. Further, they found that their student interview participants had most trouble 
with consolidation, and then with dissociation, rather than with translation. We use 
the length of the RTD together with the presence or absence of consolidation and 
dissociation as a proxy for cognitive load.

How are we to understand the content of such a diagram, when using it to ana-
lyze the concept image of a vector line integral? We chose to look for three things: 
an iconic expression or equation, how the iconic expression is unpacked, and what 
expression is provided to students as the starting point for calculation. We introduce 
the phrase iconic expression to describe the symbolic representation of a fundamen-
tal concept in its simplest, most compact form. Such expressions should be geo-
metric, that is, independent of origin, coordinate system, and parameterization, and 
should also be easy to remember. If one understands the symbols, an iconic expres-
sion should contain instructions for unpacking the expression in cases with different  
origins, coordinate systems, and parameterizations. Elements of an “unpacked”  
representation can be inferred from “consolidation” where the several arrows enter-
ing the box describe how the origin, coordinate system, and parameterization are 
identified or calculated. The process of “unpacking” in problem solving can be 
inferred from “dissociation,” the set of lines emerging from an iconic equation.
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In his review of two supplemental books on calculus, McCallum (2001) points 
out that calculus textbooks are written for two distinct audiences, students and 
instructors, with conflicting needs. Students read the book “backward from the 
homework problems,” then look at worked examples, but read the text itself only as 
a “last resort.” Instructors instead read textbooks “forward,” starting with the table 
of contents, checking that the desired topics are covered, with the right level of rigor, 
and that there are enough problems. In short, these two “zones” barely overlap. In 
our textbook analysis, we make special note of the representations that students are 
expected to use in examples and homework problems, which we call the starting 
point for calculation.

Notation and Language

Mathematics and physics are two disciplines separated by a common language. 
Although superficially speaking the same language, experts attempting to commu-
nicate across this disciplinary boundary can easily be misunderstood due to subtle 
– and some not-so-subtle – usage differences. We have previously pointed out some 
of these differences (Dray & Manogue, 1999, 2002, 2003, 2004, 2005; Dray et al., 
2008; Dray, 2016), mostly in the context of differentiation. Here, we describe the 
notational differences relevant to vector line integrals that appear in this paper.

Mathematicians typically write vectors as n-tuples, for instance writing 
r⃗ = ⟨x, y, z⟩ , whereas physicists almost always insert explicit basis vectors, writing 
r⃗ = x x̂ + y ŷ + z ẑ. 1 The physics use of hats rather than arrows is a useful mnemonic 
to denote unit vectors. Both disciplines will often omit the arrows in print in favor 
of a bold-faced font. But the usage �⃗a = aâ , with the assumptions that a = | �⃗a| and 
â = �⃗a∕a , is unique to physics.

The use of explicit basis vectors encourages a more geometric understanding 
of vectors, emphasizing that they are coordinate independent arrows in space, not 
merely three separate objects in a preferred (rectangular) basis and coordinate sys-
tem. This more geometric interpretation of vectors occasionally shows up in math-
ematics in the notation ����⃗OA , denoting the vector from point O to point A, a represen-
tation that is common in high school mathematics but not used in physics. However, 
physicists often denote points in three dimensions using vector notation such as �⃗b , as 
special instances of the position vector r⃗.

The examples above involve different notations for the same underlying concept. 
There are also instances of the same notation being used for different concepts. 
Foremost among these is the physics usage of subscripts to denote components, as 
in ��⃗F = Fx x̂ + Fy ŷ + Fz ẑ , rather than the mathematics usage to denote partial dif-
ferentiation, as in fx =

�f

�x
 . The physics notation again has a mnemonic affordance, it 

is easy to keep track of which components come from which vectors. Interestingly, 
general relativity, with practitioners from both mathematics and physics, combines 

1  The modern trend in physics to use {x̂, ŷ, ẑ} rather than the (quaternionic!) names {�̂, �̂, k̂} is a minor 
perturbation of this notation.
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the notations as in Fx,y , where the subscript before the comma indicates a component 
and the subscript after the comma denotes partial differentiation.

In the RTDs in this paper, algebraic representations of the vector line integral are 
shown in bold boxes. Representations for other mathematical objects (typically parts 
of the integral) are in unbold boxes. We are careful in each RTD below to use the 
same notation as the textbook being analyzed. However, in the text of this article, we 
have chosen for clarity to use a consistent notation throughout, translating implicitly 
when necessary.

We feel there are strong pedagogical reasons at the lower- and middle-division 
levels for always putting arrows and hats on vectors. Physics texts are about equally 
divided whether they denote the vector differential as d��⃗� or dr⃗ ; we prefer dr⃗.

The Lower Anchor in Mathematics and Physics

We analyzed a wide range of textbooks in both disciplines, covering an equally wide 
range of viewpoints. Because of space limitations, we deliberately chose to discuss 
here only two representative textbooks, one each in mathematics  (Briggs et  al., 
2019) and physics (Giancoli, 2009), that are both widely used and generally viewed 
as traditional. We acknowledge that these criteria led us to textbooks that are as dif-
ferent as possible from each other. Our goal is to understand and demonstrate the 
full spectrum of possibilities, not to claim that all mathematics textbooks take the 
approaches of Briggs et  al. nor that all physics textbooks take the approaches of 
Giancoli .

Traditional Vector Calculus Textbooks

We have chosen to discuss Briggs et al. (2019) in detail as a representative example 
of a traditional calculus textbook, as well as having the most detailed concept image 
among the textbooks we examined.

The treatment of line integrals presented in Briggs et al. (2019) is given by the 
representational transformation diagram in Fig. 1. This diagram is very rich! In this 
concept image, we identify

as the iconic expression for vector line integrals. This iconic equation is then care-
fully unpacked into the expression ∫

C
��⃗F ⋅ r⃗ �(t) dt . (Note the consolidation evident 

in the three new incoming arrows.) This latter expression is then rapidly unpacked 
into three equivalent versions, marked by bold-faced boxes at the bottom of Fig. 1. 
The equivalence of these four “unpacked” expressions is in fact presented as a boxed 
theorem, summarizing this book’s treatment of vector line integrals.

Having made it this far, the careful reader of this textbook might be some-
what surprised to discover that very little of this rich concept image is used in the 
examples and problems. None of f, g, h, dr⃗ , dx, dy, dz make a further appearance. 

(1)∫C

��⃗F ⋅ T̂ ds
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Rather, the starting point for computation in all examples is ∫
C
��⃗F ⋅ r⃗ �(t) dt , with 

r⃗(t) either given explicitly as a vector function of t, or chosen from a small col-
lection of elementary examples, such as circles and lines, for which students are 
expected to be able to determine r⃗(t) by themselves. In either case, r⃗(t) must be 
differentiated and then inserted into the dot product. The only part of the rich, 
expert concept image summarized in Fig. 1 that appears to be elevated to a learn-
ing outcome in Briggs et al. (2019) is the ability to evaluate this last integral for a 
given vector field ��⃗F along a given, explicitly parameterized path r⃗(t) , all starting 
from the single expression ∫

C
��⃗F ⋅ r⃗ �(t) dt . Students can be successful in complet-

ing these problems using only algebraic reasoning.
The dichotomy described by McCallum (2001) is apparent in Fig. 1. A careful 

derivation of the expression ∫
C
��⃗F ⋅ r⃗ �(t) dt is given in Briggs et al. (2019), using 

only the top half of the concept image shown in Fig. 1, whereas the examples and 
problems start with this expression, using only the bottom half. Furthermore, the 
final expression, ∫

C
��⃗F ⋅ dr⃗ , is hardly mentioned. The overall length of this RTD 

is a clear signal that if students were to actually try to follow the derivation, the 
cognitive load would be very high.

Fig. 1   The representational transformation diagram for the treatment of line integrals in  Briggs et  al. 
(2019). The dashed line represents a division between information contained in prerequisite sections and 
the section on vector line integrals
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There are two possible interpretations of ∫
C
��⃗F ⋅ r⃗ �(t) dt . One possibility is to put 

implicit parentheses around ��⃗F ⋅ r⃗ ′ , in which case this integral becomes an explicit 
representation of ��⃗F ⋅ T̂ ds in terms of a parameterization, thus reducing vector line 
integrals to the previously-considered case of scalar line integrals. Alternatively, the 
parentheses can be put around r⃗ ′ dt , which then becomes an explicit representation 
of dr⃗ . Unfortunately, the notation dr⃗ never appears in what students are expected to 
do.

Traditional Introductory Physics Textbooks

We have chosen Giancoli (2009) as a representative example of a traditional introduc-
tory physics textbook. We construct a representational transformation diagram for the 
presentation of line integrals in this textbook, which is given in Fig. 2. This concept 
image is also very rich, but differs considerably from the one shown in Fig. 1.

Fig. 2   The representational transformation diagram for the treatment of line integrals in Giancoli (2009). 
The dashed line represents a division between information contained in prerequisite sections and the sec-
tion on vector line integrals
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Here we are able to identify

as the iconic equation, which appears near the bottom of the figure (using d��⃗� rather 
than dr⃗).

Most of the heavy lifting in the chapter on work (see the parts of Fig. 2 above 
the dotted line) comes in the first two sections, which build a physical under-
standing of work in situations where the force is constant, but not necessarily in 
the direction of motion. These sections include the first formal algebraic pres-
entation of the dot product anywhere in the textbook, although the geometric 
process of finding the component of a vector in a particular direction (not neces-
sarily x) is a common feature of the previous four chapters. The only figures in 
these two sections show people pulling blocks or lifting backpacks, including 
vector force diagrams with angles marked.

In the third section of the chapter, the line integral for work is finally intro-
duced (see the parts of Fig. 2 below the dotted line). This section includes three 
figures: for a chopped path with sample arrows for ��⃗F and sample scalar intervals 
d� , for a flat Riemann sum graph, and for an area under a curve (not shown). In 
this part of the RTD, most instances of consolidation consist of an algebraic rep-
resentation and a figure that serves as a geometric/physical elaboration of that 
algebraic expression together consolidated into the next algebraic representation.

It is not until the second to the last line at the very end of the diagram that the 
iconic equation is presented and then immediately unpacked in a flurry of con-
solidation arrows.

What are students asked to do? End-of-chapter problems closely follow the 
order of examples presented in all three sections of the book. Most are word 
problems. Students are expected to interpret diagrams and/or words to find 
��⃗F and �⃗d as vectors and then evaluate the dot product. Most, but not all, prob-
lems are one-dimensional. A few problems stand out, notably one in which 
the one-dimensional force is presented as a piecewise constant graph, clearly 
invoking “area under the curve.” Other problems involve circular motion in 
two-dimensions.

Interestingly, several examples and many end-of-chapter problems deal with 
chopping a path (the word curve is never used) into two or three finite chunks, 
on each of which ��⃗F and �⃗d are constant, so that the integration is trivial on each 
separate chunk. The idea of chopping is scaffolded in this way immediately 
before the formal line integral is introduced.

Because the problems that students are asked to do involve so many different 
representations, we would argue that the starting point for calculation is in fact 
the iconic equation itself! Students’ ability to unpack this equation for them-
selves is a clear learning goal and is being explicitly supported.

(2)W = ∫
b

a

��⃗F ⋅ dr⃗
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Other Texts

Among other widely-used calculus textbooks, Stewart (2003) has a much more 
abbreviated derivation of the several equivalent representations of vector line inte-
grals, but the learning outcomes inferred from the examples and problems are 
essentially the same as those in Briggs et al. (2019), as were those in the OpenStax 
textbook by Strang et al. (2016). On the physics side Halliday et al. (1993) is quite 
similar to Giancoli (2009).

Several other textbooks land somewhere in the middle. The textbook by Hughes 
Hallett and coauthors  (McCallum et  al., 2012) represents the most successful 
“reform” calculus text, emphasizing conceptual reasoning, multiple representa-
tions, and open-ended problems. Geometric reasoning is incorporated throughout, 
resulting in several instances where the presentation is more closely aligned with the 
usage in physics textbooks such as Giancoli (2009) than with mathematics textbooks 
such as Briggs et  al. (2019). The reform textbook by Ostebee and Zorn (1997) is 
also in this category, again emphasizing multiple representations.

Alternate treatments on the physics side include the introductory textbook 
by Knight (2008), designed using evidence-based pedagogy. It is an “energy first” 
textbook, and therefore motivates the concept of work as a change in (kinetic) 
energy, leading to a “chain rule” treatment of vector line integrals that is quite differ-
ent from the one in Giancoli (2009). The textbook Matter and Interactions (Chabay 
& Sherwood, 2011) takes a modeling approach, emphasizing student computations 
using vpython to study applications. Again, work is introduced as the transfer of 
energy.

Each of these alternative textbooks, in both mathematics and physics, makes 
significant efforts to cross the divide between the two extremes represented by our 
choice of more traditional textbooks.

Theoretical Discussion

Adding Up Pieces and Definite Integrals

Integration in the context of single-variable calculus has been studied extensively. 
We are interested here in the subset of that literature which characterizes approaches 
to integration; a more complete bibliography can be found in Jones (2020).

The first part of Jones (2020) provides a theoretical characterization of five dif-
ferent “ways of thinking” about definite integrals, based on the research literature, 
which we partially reproduce in Table  1. This characterization is the culmination 
of nearly a decade of work by Jones and others, which we summarize briefly in the 
next two paragraphs.

In earlier work, Jones (2013) studied cognitive resources that students have when 
thinking about integrals, summarizing this description by introducing the symbolic 
forms “adding up pieces,” “perimeter and area,” and “function matching” (antideriv-
atives), as well as a few special cases. In  Jones (2015a), he considers area, anti-
derivatives, and adding up pieces in both pure mathematics and applied science, 
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showing that the latter form is the most helpful; however, in separate work (Jones, 
2015b), he points out the prevalence of the other two forms. Earlier work (Sealey, 
2006) has shown that an overreliance on “area under the curve” can reduce the inte-
gral’s applicability. More recently, several studies expand on the importance of the 
“adding up pieces” concept image. Both Bajracharya et al. (2023) and Kontorovich 
(2023) discuss student difficulties when integrating quantities that are not every-
where positive. Stevens (2019) proposes a hypothetical learning trajectory based 
on adding up pieces and Stevens and Jones (2023) describe a detailed instructional 
sequence intended to foster student development of this concept image across a full 
unit on integration and, in an empirical study, describe how students responded to 
this sequence in a series of four interview questions.

Pina and Loverude (2019) did a coded, quantitative analysis of integration in 
lower-division physics texts using an early version of Jones’s codes. They identified 
an additional category, which they call “procedural,” which they describe as “the 
integral acting as an operator to further a derivation.” We have added this category 
as a separate line in Table 1. Their analysis showed that the “adding up pieces” and 
“procedural” categories were by far the dominant uses of integration in these phys-
ics texts. They also point out that “perimeter and area” is the category least used 
in introductory physics textbooks, and argue that it is also the least productive for 
physics students.

Chop, Multiply, Add

Wagner (2015, 2018) argues that the “Riemann sum-based interpretation” of inte-
gration is the “most valuable” in applied contexts such as physics, emphasizing the 
importance of multiplication of height and width while constructing the summands 
that represent the area of the rectangles under the graph. In a similar vein and at 
about the same time, Jones (2015a, b) renamed his “adding up pieces” category to 
“multiplicatively-based summation.” Simmons and Oehrtman (2019) then express 
concern that the concept of multiplicatively-based summation is not sufficiently gen-
eral. Their analysis of student work, developed more fully in Simmons (2021) and 
Oehrtman and Simmons (2023), shows that the integration measure (dr) is an essen-
tial component of their local model ( dA = 2�r dr for a thin ring), rather than a small 
piece of the domain ( Δr ) in a local Riemann product. Their study demonstrates that 

Table 1   Theoretical ways of thinking about definite integrals from Jones (2020) and Pina and Loverude 
(2019)

Way of thinking The main characteristic is that integrals are interpreted as ...

Space underneath a graph ... the amount of space underneath the graph of the integrand
Antiderivative ... an instruction to compute an antiderivative
Adding up pieces ... the summation of infinitesimal quantities
Accumulation from rate ... the accumulation from a rate function
Averaging ... an averaging out of the integrand across the domain
Procedural ... the integral acting as an operator to further a derivation



	 Int. J. Res. Undergrad. Math. Ed.

1 3

the distinction between integrand and measure commonly taught in calculus courses 
does not capture the reasoning actually used by their student interviewees, which 
they name quantitatively-based summation.2

There is a representation in words of the process of integration which we like to 
describe to students as “chop, multiply, add” (CMA). This representation empha-
sizes three fundamental steps that we believe are common to all uses of definite inte-
gration. First, the region of integration must be chopped into small pieces. Second, 
the integrand (such as mass density) must be multiplied by some small measure of 
the piece (such as its length) in order to obtain the contribution of that piece to the 
total. Finally, the contributions from each piece must be added together.3 This lan-
guage becomes a “pedagogical chant” to guide students through the steps of prob-
lem solving. The CMA language is intended to apply equally well to Simmons and 
Oehrtman’s example where the chopped piece is all of 2�r dr which is multiplied by 
the constant function 1.

To us, a more interesting question than what physical/geometric quantities get 
multiplied together is the question of where the chopping happens conceptually. 
To a mathematician (e.g. TD), it is natural to map the physical situation onto the 
graph of a function and then think about a Riemann sum interpretation of CMA. To 
a physicist (e.g. CAM), it is more natural to chop the physical situation directly and 
to think of the multiplication and addition as taking place floating in space. This dis-
tinction can be hidden by the fact that mathematical physicists (e.g. both of us), like 
all bilingual people, are capable of code-switching and can and do switch languages 
mid-discussion. A good example of this code switching can be seen in Fig. 2 where 
the physicist’s chopping in physical space is clearly shown in the second inserted 
figure, but the third inserted figure code-switches to a mathematics graph of a Rie-
mann sum. To the best of our knowledge, this distinction has not been explored in 
the research literature, although it comes up frequently at our dinner table.4

Accumulation From Rate and Half‑Definite Integrals

The FTC is really about half-definite (or semidefinite) integrals, in which one limit 
is constant, but the other is a variable. Thompson et al. (2013) (see also Thompson 
& Carlson, 2017) have built a calculus course based on the interpretation of such 
integrals as the accumulation of rate-of-change functions, that is, using AR.

Jones and Ely (2022, 2023) compare the treatment of integration as accumula-
tion from rate (AR), in which half-definite integrals are fundamental, with adding up 
pieces (AUP), which more naturally yields definite integrals. As they point out, AR 
requires all integrals to be viewed as accumulation functions, whereas AUP allows 
more general quantitative relationships. One could argue that this distinction is minor 

2  In a similar vein, Nilsen and Knutsen (2023) document the use of infinitesimal reasoning by some Nor-
wegian calculus students, despite instruction emphasizing the rigorous use of limits.
3  We had been using the phrase “chop and add” to describe integration for more than a decade when 
Wagner’s work, reinforced by Jones’s, persuaded us to add the “multiply” in the middle.
4  The coauthors are a married couple.
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in the context of single-variable integration, where it is relatively straightforward to 
convert in either direction between definite and half-definite integrals, although the 
latter are more closely tied to the Fundamental Theorem of Calculus (FTC). How-
ever, only AUP readily generalizes to higher dimensions – including the vector line 
integrals considered here, contexts in which the FTC plays only a secondary role.5

Furthermore, the interplay of variables, constants, and parameters used in half-
definite integrals is quite challenging for students.6 The need for dummy variables 
such as u in ∫ x

a
f (u) du is not obvious to students, many of whom are still using x 

for every unknown. To further complicate matters, physicists try not to switch letters 
in such expressions because of mnemonic value, writing x′ instead of u, resulting in 
an obvious conflict with the use of prime to denote derivatives that students may be 
more familiar with from their mathematics classes.

Parametric Integrals

As noted above, it is not obvious how to generalize AR to higher dimensions. We 
propose here an alternative characterization that could be viewed as filling the gap.

Physics applications often involve definite integrals with limits that can be con-
sidered parameters. For instance, when computing the electrostatic potential corre-
sponding to the electric field of a point charge, one integrates from a fixed location 
where the potential is defined to be zero (typically infinity!) to the desired radius. 
(See also “The Electric Field (��⃗E)”.) This radius is viewed as a constant while per-
forming the integral, but is actually a parameter; the resulting potential is a func-
tion of r. This interplay between parameters and variables is reminiscent of the 
discussion in “Accumulation From Rate and Half‑Definite Integrals”, although the 
conceptual approach is quite different. In AR, the integral is regarded as fundamen-
tally an accumulation of a rate, rather than as CMA; here, the integral is fundamen-
tally CMA. After integration, the bounds are reinterpreted as parameters, resulting 
in what we call a parametric integral (PI). These two interpretations are of course 
equivalent, thanks to the FTC. But only the latter generalizes naturally to higher 
dimensions. The transition from definite integral to parametric integral is then anal-
ogous to the transition from derivative at a point to derivative at a parametric point, 
that is, as a function.

The Upper Anchor

To understand the physics learning trajectory after the lower division, we examined 
textbooks in classical mechanics (Marion & Thornton, 1995; Taylor, 2005), electro-
magnetism  (Griffiths, 1999; Reitz et  al., 1993), and mathematical methods  (Boas, 

5  Jones and Ely (2023) discuss the use of both AUP and AR to find arclength, which involves a scalar 
line integral, pointing out that the reasoning required to apply AR in this context is quite intricate.
6  The difference between these quantities is sometimes described as depending on whether their names 
occur at the end, beginning, or middle of the alphabet!
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2006; Riley et al., 2006; Arfken & Weber, 1995). These subjects occur in middle-
division physics and are the place where vector line integrals are first used in their 
full geometric glory. For the purposes of this paper, we will let these textbooks 
define the upper anchor of our learning trajectory. We identified three physical con-
texts, described in more detail below – work, electrostatic potential, and Ampère’s 
law – involving quantities represented by a vector line integral. Each takes the same 
iconic form, namely

None of the textbooks we examined used the iconic form

Although each of the three contexts below involves the same iconic expression, 
the three concept images are quite different. There are fundamental differences in 
the mathematical and physical contexts that affect the type of path (arbitrary, closed, 
open) and strategies used to evaluate the integral. In particular, whether or not ��⃗G is 
conservative affects most other considerations. We summarize here the mathemati-
cal features of these three physical contexts and in each case analyze integration 
strategies using the three different descriptions of integration above, namely accu-
mulation from rate  (AR), chop, multiply, add  (CMA), and parametric integration 
(PI). Although we use physics language throughout, we emphasize that it is the 
mathematical differences between these contexts that is relevant to our analysis.

Work (�⃗F) 

Work is the first physical context in which vector line integrals typically arise in 
undergraduate-level physics. The work  W done by a force  ��⃗F as an object moves 
along a path C is given by

This formula is both the iconic equation and the starting point for calculation 
for the physics lower-division anchor described in “Traditional Introductory Phys-
ics Textbooks”. The approach in all of the upper-division texts to evaluating this 
integral is pure CMA, with chopping defined by little pieces of dr⃗ and multiplica-
tion given by the dot product. The relevant mathematical features of work integrals 
are that the force  ��⃗F can be conservative (e.g. gravity) or non-conservative (e.g. fric-
tion), and the path C can be either open or closed. Furthermore, there is not neces-
sarily any underlying symmetry. In this sense, line integrals representing work are 
“generic.”

(3)P = ∫ ��⃗G ⋅ dr⃗.

(4)P = ∫ ��⃗G ⋅ T̂ ds.

(5)W = ∫C

��⃗F ⋅ dr⃗.
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There is one further feature of work: Not all forces are represented by vector fields 
defined in space independently of the path.7 The simplest friction forces depend on 
the trajectory, not merely on an object’s location in space, and are directed oppo-
sitely to the motion. More complicated dissipative forces may depend, for example, 
on the velocity of the object.

The Electric Field (�⃗E)  

The electrostatic field  ��⃗E is always conservative; it is the gradient8 of the scalar 
potential V

In this context, the iconic equation represents a mathematical relationship 
between a vector field and its potential. The fundamental theorem for gradients tells 
us that

where the line integral is evaluated on any path from point  �⃗a to point  �⃗b . Since this 
line integral is independent of path, an important evaluation strategy is to choose 
a path along which the antidifferentiation is easy, such as piecewise curves along 
which the tangential component of ��⃗E is constant or the dot product is zero. The 
conceptual understanding of the integral is CMA, where the chopping step may need 
to be flexible in the sense of Simmons and Oehrtman (2019). Independence of path 
also implies that the line integral (7) around a closed path, that is, with  �⃗b = �⃗a , would 
be zero.

If  �⃗a is fixed and V( �⃗a) set equal to zero, the line integral yields (minus) the value of 
the potential at  �⃗b . In the notation of Griffiths (where O denotes the special point �⃗a)

where the clear intent is that the upper limit r⃗ is a variable, i.e. this is an example of 
CMA followed by PI. To interpret this integral using AR, it would be necessary to 
first rewrite the integral in the form (1) and then reinterpret ��⃗E ⋅ T̂ as a rate of change, 
which strikes this physicist (CAM) as a strange interpretation both on dimensional 
grounds and because the word “rate” invokes time dependence in this physical con-
text which is static (i.e. time independent).

(6)��⃗E = −��⃗�V .

(7)−∫
b⃗

a⃗

��⃗E ⋅ dr⃗ = V( �⃗b) − V( �⃗a),

(8)V(r⃗) = −∫
r⃗

O

��⃗E ⋅ dr⃗,

7  Friction forces are an example of a “vector field over a curve”, although that terminology is rarely used 
in physics.
8  The conventional minus sign captures the mismatch between the gradient pointing “uphill”, and physi-
cal forces pointing “downhill.”
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The Magnetic Field ( �⃗B) 

For a magnetostatic field ��⃗B , Ampère’s law states that

where �0 is a constant and Ienc denotes the current enclosed by the closed path C.9 
(The circle added to the integral sign indicates that the path is closed.) Rather than 
expressing a mathematical relationship, as in the previous case, Ampère’s law is the 
expression of an empirically verifiable physical law. In homework problems, stu-
dents are asked to evaluate the two different physical quantities represented by the 
two sides of the equation and show that they are equal. Because the vector line inte-
gral is around a closed loop, the interpretation is CMA without PI.

A common use of Ampère’s law is to determine10 the magnetic field ��⃗B if the cur-
rent density �⃗J is known. In the presence of symmetry – the only situation in which 
this strategy works – an important aspect of the strategy is to choose appropriate 
paths that respect the symmetry of the situation over which to evaluate the line inte-
gral. The simplest, idealized example is the magnetic field ��⃗B = B𝜙 �̂ of an infinite 
straight line of current which has cylindrical symmetry, so students are immediately 
led outside the realm of rectangular coordinates.

Discussion

Suggested Learning Trajectory

We propose in Fig. 3 a partial learning trajectory based on our own teaching that 
provides a framework for discussing both the results of our textbook analysis in 
“The Lower Anchor in Mathematics and Physics”, “Theoretical Discussion”, “The 
Upper Anchor” and some additional aspects of integration from the point of view of 
applied sciences and engineering that may be of benefit to mathematics education 
researchers and/or mathematics teachers.

Concept images are fundamental not only to our theoretical framework for 
research, as discussed in “Introduction and Research Context”, but also to our 
pedagogical commitments. An explicit pedagogical goal of our own teaching is to 
help our students expand and enrich their concept images. One of the key aspects 
of an expert concept image of line integrals, as indeed for many related concepts, 
is the way in which they incorporate multiple representations and the connec-
tions amongst them. For this reason, we have deliberately given each box in our 

(9)∮C

��⃗B ⋅ dr⃗ = 𝜇0Ienc

9  Ienc is the flux of the current density �⃗J through any surface for which C is the boundary. This surface 
independence is a deep consequence of current conservation, described mathematically as the property 
that magnetic fields are divergence free.
10  From inside the integrand!
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learning trajectory a descriptive label in words and/or symbols and a geometric 
image, emphasizing the need to include the use of multiple representations of a 
single concept. In a proper RTD, which Fig.  3 is not, the relationship between 
these representations would also need to be shown.

The overall framing in Fig.  3 reflects our commitment to CMA as part of a 
concept image: the column headings emphasize the CMA characterization intro-
duced in “Chop, Multiply, Add”. Additionally, the first heading (Object) acknowl-
edges that the concept of integration generalizes from functions of one variable to 
objects with different mathematical and physical properties. The first two rows of 
the LT represent the lower anchor, the prerequisite knowledge needed about inte-
gration, with the first row representing the elementary integration of functions, 
and the second the generalization to scalar line integrals, expressed in terms of 
linear densities �.

Scalar vs. Vector Line Integrals at the Lower Anchor

In “Introduction and Research Context”, we noted two expressions for line integrals, 
namely ∫

C
��⃗F ⋅ dr⃗ and ∫

C
��⃗F ⋅ T̂ ds . As shown in Fig.  1, both of these expressions 

indeed occur in mathematics textbooks; we have identified the latter as iconic. In 
physics textbooks, however, only the first of these expressions occurs, albeit in the 
slightly different form (2), which we have also identified as iconic. We do not wish 
to pigeonhole one of these expressions as “mathematics” and the other as “physics.” 
Instead, they represent two different routes to understanding line integrals, each with 
its own affordances. Furthermore, the reform calculus texts McCallum et al. (2012) 
and Ostebee and Zorn (1997) use the first expression above for the iconic equation, 
and the education research-based physics textbook Knight (2008) uses the second, 
exactly reversing any attempt at categorization.

Nonetheless, there is a dramatic shift in emphasis between the two representa-
tional transformation diagrams in Figs.  1 and  2, and thus between the two iconic 
expressions for line integrals. In Fig. 1, the fundamental concept is the scalar line 
integral; the iconic expression  (1) suggests that the curve is being chopped into 
small pieces, on each of which the scalar quantity ��⃗F ⋅ T̂ is evaluated, then multiplied 
by the small distance ds, then finally added up.

In Fig. 2, on the other hand, the fundamental concept is work, and the fundamen-
tal mathematical idea is the dot product. The iconic Eq. (2) suggests that the chop-
ping is into small vector pieces dr⃗ (which is written as d �⃗� in Giancoli (2009)), the 
multiplication is in fact the dot product of ��⃗F with dr⃗ , after which the contributions 
are added up.

As the preceding discussion makes clear, both of these approaches fit naturally 
into the CMA characterization. Although it is straightforward to provide an AUP 
interpretation for scalar line integrals, it is less obvious how to handle “ ��⃗F ⋅ dr⃗ ” in 
this characterization. The infinitesimal vector dr⃗ is a composite object, not only 
combining part of the integrand with the measure (as in ds = r d� ), but also com-
bining vector and scalar aspects (Dray & Manogue, 2009–2022c). CMA allows the 
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geometry to be fundamental, since the chopping can be vectorial, whereas the pieces 
being added in AUP must be scalars.

As Fig. 1 makes clear, mathematicians discuss scalar integrals first, then reduce 
vector line integrals to the scalar case. Figure 2 suggests, however, that this order 
may not represent the best pedagogical strategy in physics. We note here two further 
advantages of making dr⃗ fundamental, rather than T̂ ds . First, it is far easier compu-
tationally to go from dr⃗ to ds = |dr⃗| than it is to go from T̂ ds , with its two compet-
ing square roots, to dr⃗ . Second, using the relationship ds = |dr⃗| naturally shows that  
vector line integrals depend on the direction in which the path is traversed, whereas  

Fig. 3   A suggested partial learning trajectory for an introduction to line integrals. Prerequisite content 
from single-variable integration appears above the dotted line, representing the lower anchor; the upper 
anchor is indicated by the dashed arrows at the bottom
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the absolute value in ds ensures that scalar line integrals do not (Dray & Manogue,  
2009–2022d).

The second part of Jones (2020) reports on an interview-based study with ten stu-
dents. One of the interview prompts is:

What does ∫
C
��⃗V ⋅ dr⃗ mean, where ��⃗V represents a vector field and C represents 

a curve?

Student responses were coded according to Jones’s five ways of thinking. All of the 
students were able to make sense of the vector ��⃗V , either as literal arrows ( N = 5 ), 
physical phenomena ( N = 4 ), and/or an algebraic function ( N = 3 ). But the most 
striking result was the large variety of struggles students had trying to make sense 
of dr⃗ . One student, in particular, went through seven different interpretations while 
trying to choose one they were satisfied with. These interpretations of dr⃗ included 
“infinitesimal vector,” “arc length of an infinitesimal piece” of the curve, and “dis-
tance from the origin” to a point on the curve.

Perhaps the trouble students have making sense of dr⃗ can be attributed to the 
lack of a strong pedagogical connection between dr⃗ and r⃗ ′ dt in a learning trajectory 
such as the one in Fig. 1.

Returning to our proposed LT, the transition from ordinary integration to vector  
line integrals goes through scalar line integrals, to honor the mathematicians’ learn-
ing objective, but with an added emphasis on physical interpretation, to honor the 
physicists’ learning objective. Although the first two rows of Fig. 3 are formally iden-
tical in terms of symbol manipulation, both their mathematical and physical content  
differ. Expressing scalar line integrals in terms of densities builds on the concept 
of mass density, which, in our experience, most students can understand regardless 
of their background in science. The LT also emphasizes the need to chop up the 
domain, multiply by the density, and add up the pieces. Finally, the use of densities 
provides a natural place to discuss physical dimensions and the fact that the dimen-
sions of the final integral must be those of the integrand � multiplied by those of the 
measure d�.

Unpacking

Our examination of middle-division physics books showed that the iconic expres-
sion ∫ ��⃗F ⋅ dr⃗ is universally fundamental, with an interpretation either as CMA or 
as CMA followed by PI, depending on the context. What is also clear from the mid-
dle-division texts, although the data is too spread out for us to cite briefly, is that 
theoretical parts of the textbooks use the coordinate-independent iconic expression 
∫ ��⃗F ⋅ dr⃗ in derivations, but applied parts of the texts expect students to unpack these 
vector line integrals in many contexts including using curvilinear coordinates, i.e. 
along (parts of) circles, cylinders, and spheres. Which coordinate system is best to 
use can be dictated either by the path or the given form of the vector field or both.

The introduction of vector line integrals can be set up both to facilitate the tran-
sition to the coordinate-independent iconic expression and to begin to develop 
skills that would allow its unpacking in these curvilinear contexts. We signal this 
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pedagogical commitment by “ending” our LT with the iconic expression ∫ ��⃗F ⋅ dr⃗ 
as a starting point for calculation. The upper anchor is represented in Fig. 3 by the 
three boxes at the bottom of the figure, representing the three applications discussed 
in “The Upper Anchor”. Our intent is that an instructor would choose classroom 
examples and homework problems that would help students develop a toolbox of 
flexible evaluation strategies to “unpack” the iconic equation, appropriate for the 
content of the course and the time available. For us, this is a key learning goal and 
pedagogical commitment. Our work outside the scope of this paper includes design-
ing and testing a variety of suitable examples (Paradigms Team at Oregon State Uni-
versity, 2019–2022b).

The trickiest part of unpacking the iconic expression ∫ ��⃗F ⋅ dr⃗ involves the notion 
of curves (mathematics) or paths (physics). Both disciplines describe curves and 
paths using parameterization, although physicists often describe paths with words 
and figures and expect students to do the rest. In an effort to capture the many ways 
of arriving at a parameterization for a given curve, we introduced a strategy we call 
“use what you know”  (Dray & Manogue, 2003). This flexible strategy encourages 
students to use geometric reasoning when available, saving formal parameterization 
for a last resort. For example, the line segment from (1, 0) to (0, 1) has slope −1 , and 
lies along the line y = −x + 1 . Therefore, dy = −dx , which can be plugged directly 
into dr⃗ = dx x̂ + dy ŷ , yielding dr⃗ = dx(x̂ − ŷ) (or dr⃗ = dy(−x̂ + ŷ) ). Depending on 
the integrand, no further substitution may be necessary; the curve has effectively 
been parameterized with respect to either x or y, depending on which way the substi-
tution was done.11

The “use what you know” strategy generalizes directly to vector surface (flux) 
integrals, which are even more common than vector line integrals in physics applica-
tions. These integrals involve finding the component of a vector field perpendicu-
lar to a surface. But how are we to chop up a surface? As for vector line integrals, 
we regard dr⃗ as key. A small, directed piece of the surface d��⃗A is the cross prod-
uct of two small, directed sides; d��⃗A = d r⃗1 × d r⃗2 . Scalar surface integrals can now 
be evaluated by taking the magnitude dA = |d��⃗A| . This approach, which naturally 
extends “chop, multiply, add” to higher dimensions, is further described in Dray and 
Manogue (2003, 2009–2022a), This additional application of dr⃗ helps to justify the 
class time necessary to give the vector differential a comprehensive treatment.

The Dot Product

The dot product plays an essential role in vector line integrals, namely to pick out 
the component ( F∥ ) of a vector field ( ��⃗F ) in the direction ( ̂T ) along a curve (C).

In the introductory physics textbooks, the dot product is often introduced 
in the context of work; the geometry of projections comes first, with algebraic 

11  Some students, accustomed to determining ds =
√
2 dx geometrically in scalar line integrals, fail to 

realize that this geometric factor is contained in these expressions for dr⃗ , and attempt to insert an extra 
factor of 

√
2 before integrating (Dray & Manogue, 2009–2022d).
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computation following. In calculus, the dot product is usually introduced immedi-
ately after vectors themselves, with the algebraic expression getting at least equal 
footing, and often coming first.12 Teachers should be aware of the high cognitive 
load of combining a first formal treatment of the dot product with the transition 
from single-variable integration to vector line integrals, as we saw in the physics 
RTD in “Traditional Introductory Physics Textbooks”. If students have an initial 
concept image of the dot product primarily as an algebraic calculation rather than a 
projection, then the cognitive load is even higher.

In an attempt to ease this cognitive load, both mathematics and physics lower-
division textbooks introduce a starting point for calculation in which the dot prod-
uct is evaluated algebraically in rectangular coordinates. Calculus textbooks write 
this expression in the form ∫ Pdx + ... , and physics textbooks write this expression 
as ∫ Fx dx + ... , illustrating physicists’ desire to avoid switching letters, and result-
ing in an obvious notational conflict, in this case with the use of “ Fx ” in mathemat-
ics to denote differentiation. However, there is a price to be paid for this attempt at 
simplification. Reducing the integrand to an expression involving dx, dy, and dz may 
encourage students to evaluate these three integrals separately – and may prevent 
students from realizing that they are still line integrals, requiring parameterization.

The heart of the learning trajectory in Fig.  3 lies below the dashed line. New 
inputs appear here for vectors and dot products, both of which are challenging for 
students, as evidenced by their emphasis in the physics RTD in Fig. 2. We further 
separate the concepts of position vectors (anchored at the origin) from vector fields 
(anchored at points in some domain), which are quite different mathematical objects, 
but often conflated (Dray & Manogue, 2009–2022b).

Antidifferentiation and Limits

A major success of real analysis was the formalization by Riemann (in his 1854 
Habilitationsschift) of the domain-chopping process we now know as the Riemann 
sum, leading to a rigorous definition of the definite integral as a formal limit of such 
sums. If the limit exists, the function is (Riemann) integrable, and the limiting value 
is, by definition, the result of evaluating the integral.

However, for physical scientists, the details of the limit process just don’t matter, 
and for a very fundamental reason: It is impossible to measure a physical quantity at a 
0-dimensional point in space. Any measuring device, be it a physical probe, a beam of 
particles in a particle accelerator, or even a beam of laser light has a fundamental length 
associated with it. So, there is no way to know if the underlying physics is continuous. 
Furthermore, we do know that, for example, a table top is not smooth at the molecular 
level. Physical scientists model physical situations as continuous when they are confi-
dent that this model gives a reasonable approximation to the quantity they are trying to 
calculate. For these reasons, we have minimized the mechanics of Riemann sums and 
limits and confined this part of the concept image to the right-hand column of Fig. 3. 

12  It is much easier to derive the algebraic formula for the dot product from the geometric definition than 
vice versa (Dray & Manogue, 2006).
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These concepts can and should be reinforced, in terms of what it means to “Add” in 
CMA, but these concepts are not new for students at this stage and, we believe, not 
where the main cognitive difficulties lie when learning about line integrals.

Similarly, the evaluation of these definite integrals, involving antidifferentiation and 
inserting the given limits into the result, is also minimized and confined to the right-
hand column. Of course, students must be able to antidifferentiate quickly and accu-
rately, but, again, this step is not where the cognitive difficulties lie.

Furthermore, in practice, very few integrals can be evaluated analytically in closed 
form to obtain a primitive. Physical scientists often choose to look at models and limit-
ing cases for which the necessary integrals can be evaluated, knowing that the actual 
situation is only being approximated. This art of choosing illustrative idealizations is 
a strategy that students must learn to implement for themselves. When more accuracy 
is needed, physicists compute definite integrals numerically, a process that requires its 
own strategies for limiting error.

Finally, we point out that many complex physical systems cannot be described by 
known/named functions at all. The only information known about them comes from 
measurements of discrete data. In this case, integration must be numerical and is inher-
ently CMA.

Components and Bases

Remarkable by its absence from Fig. 3 is the use of vector components. We regard the 
use of vector components as part of the process of “using what you know” to unpack 
the iconic equation of a line integral, which sometimes – but not always – will involve 
expressing the components of the given vectors with respect to some basis. We expect 
to have more to say about this issue when we add detail to the suggested LT.

Furthermore, as noted in “Unpacking”, physics applications often involve high sym-
metry, leading not only to the use of curvilinear coordinates, but also to the correspond-
ing basis vectors. Even though such vectors are rarely used in lower-division mathemat-
ics courses, writing the (rectangular) basis vectors explicitly, rather than as n-tuples of 
components, allows students to make the transition between disciplines more easily. 
Deciding which basis to use is, of course, also part of “using what you know.”

Many professional mathematicians also use explicit basis elements and care deeply 
about changes of basis. We suggest to mathematics educators and mathematics educa-
tion researchers that it would be helpful in these subfields of mathematics as well as in 
client disciplines for lower-division courses to set the groundwork by making the basis 
explicit. It is difficult to talk about, let alone algebraically manipulate, a mathematical 
structure for which one does not have an algebraic symbol.

Conclusion

Many mathematics departments offer only a single semester course in multivari-
able calculus, with a week or two at the end devoted to vector calculus concepts. In  
these settings, the mathematics RTD in Fig. 3 can be a reasonable choice, treating both 
the position vector and the vector field from the integrand as triples of numbers, and 
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giving a simplified purely algebraic formula for the integrand in rectangular coordi-
nates (such as f (t)x�(t) dt + ... ). After all, this is the context in which this RTD has 
been developed.

We acknowledge that it takes time to develop a solid understanding of dr⃗ , or the 
ability to move fluidly between multiple representations. Nor are these concepts 
easy to convey through traditional lectures or homework assignments. In our own  
teaching of both second-year courses in vector calculus and third-year courses in 
electromagnetism, we spend considerable time modeling the use of dr⃗ , which we 
regard as the single concept that unifies vector calculus  (Dray & Manogue, 2003, 
2009–2021). An effective way of teaching these crucial skills is through the use of in-
class activities that can be supported by the teaching team; see Kustusch et al. (2020) 
for a description of how to choose when to do activities vs. lecture vs. home-
work. Whether the rewards (increased understanding of the geometry of both line  
and surface integrals) as represented by our suggested LT in “Suggested Learning 
Trajectory” is worth this extra time commitment is a matter for individual programs 
to decide. Whether students can develop richer concept images as suggested by this 
LT should be the subject of lots of future curriculum development and research.

Since the topic of vector line integrals crosses disciplinary boundaries between 
mathematics and physics, a shared commitment between departments to a chosen 
learning trajectory is important. Such a shared commitment is not always easy to 
achieve; one successful example is the Paradigms in Physics project  (Paradigms 
Team at Oregon State University, 2019–2022a) at our own institution; see van Zee 
and Manogue (2018) for a history.
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