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Many activities in daily life require locating a specific 
object in the world, such as searching for a spoon to add 
sugar to coffee or searching for a soccer ball in a park.  
A central question for research is how people successfully 
search for specific visual targets throughout the day, a task 
known as visual search. Understanding visual search also 
provides insights into how humans perform in high-​stakes 
searches beyond the everyday, such as when looking for 
tumours on medical images1, weapons on security X-​ray 
machines2 or military vehicles on satellite imagery.

Visual search provides a window into fundamental 
cognitive operations. For instance, perceiving and locat-
ing a specific target object such as a blue soccer ball in a 
park (Fig. 1) requires multiple processes. One must per-
ceive the object as a set of features (circle, pentagons, 
blue, white) co-​occurring at the same location, and rep-
resent this object (the ball) as an entity distinct from the 
background (the grass). In addition, visual search often 
requires one to search for an object without its imme-
diate presence. Doing so relies on a target template, 
or internal representation of the target object. When 
searching for the blue soccer ball, the template could be 
a mental image of the ball or a list of the ball’s features 
(colour, shape and size). This internal representation 
biases how spatial attention is deployed and how one 
moves one’s eyes during search. Spatial attention refers 
to the mechanism that allows one to preferentially pro-
cess the visual information at one location over others. 
While searching for the soccer ball, the target template 

would guide one’s eyes and attention towards regions in 
the park that contain features similar to the target, such 
as the yellow ball with a similar size and shape, the blue 
chairs with a similar colour or the blue ball itself.

In the laboratory, visual search is most often studied 
under simplified conditions to isolate a subset of the 
mechanisms involved. For instance, backgrounds are often 
uniform so that all objects are equally easy to segregate  
from the background, the visual display is small enough to 
fit on a computer monitor, and the target and non-​target 
(distractor) objects are simplified and defined by a small 
set of features (for example, one colour and one shape).

In this Review, we first describe the properties of 
peripheral vision. We then review three foundational 
visual search phenomena that highlight how an under-
standing of peripheral vision can lead to a better 
understanding of visual search. We then categorize influ-
ential theories of visual search on the basis of how they 
incorporate peripheral vision into the mechanisms that 
underlie visual search. Next, we present empirical work 
that uses various processing characteristics of peripheral 
vision to accurately predict search performance. We end 
with considerations for future theory development and 
empirical study in the field.

Fundamentals of visual search
At the most basic level, visual search is constrained by 
where the eyes are focused (the fixation point) during 
initial visual analysis. Visual analysis depends on where 
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information is projected onto the retina because the 
distribution of photoreceptors on the retina varies as 
a function of eccentricity, or distance from the fixation 
point. The distribution of photoreceptors determines the 
fidelity with which visual information striking the retina 
is initially encoded by the visual system. Distance and 
extent of objects in the visual field are measured using 
degrees of visual angle. For reference, when viewed at 
arm’s length, one’s thumbnail subtends about 1.5 degrees 
of visual angle.

The fovea is the central part of the retina, which 
processes information from a region 1.7 degrees wide 
around the fixation point3 (end of red line in Fig. 1). 
Fixating an object and thereby pointing the fovea 
directly at it allows access to fine visual details because 
the fovea is entirely populated by cones4, retinal photo
receptor cells that support colour processing5–10 and 
high-​resolution vision11–16. The fovea also has higher 
visual acuity than other areas of the retina because more 
neurons in the brain’s visual cortex are devoted to pro-
cessing foveal than peripheral information — a property 
referred to as cortical magnification17–19.

The visual periphery is the area that surrounds the 
fovea and extends approximately 214 degrees hori-
zontally, 70 degrees above and 80 degrees below the 
fovea20–22. The visual periphery contains a much smaller 
concentration of cones and is mostly populated by a 
different type of photoreceptor — rods4,23. Successful 
everyday visual search is quite remarkable considering 
that the fovea covers only about 0.01% of the visual field, 
with the visual periphery covering the remaining 99.99%.

Both foveal and peripheral visual processing contrib-
ute to visual search. The fovea can be used to scan the 
visual world to evaluate individual objects until the target 
is found. This serial processing often involves sequential 
eye movements directed to specific objects (or regions 
of the world) at a time. It can also occur covertly when 
spatial attention focuses on individual objects with-
out moving the eyes. When inspecting objects serially, 

reaction time is linearly related to the number of objects 
present in the display. The corresponding search slope 
characterizes the processing rate of items during search 
with respect to the set size of items present, measured in 
milliseconds per item. On average, if more objects are 
present, it takes observers a set time longer per object 
to locate the target.

When the target is sufficiently different from the 
distractor objects in the display, visual search becomes 
easier. In these easier searches, the visual system can rely 
on peripheral vision to simultaneously evaluate many 
objects. In this way, peripheral vision directly informs 
the deployment of spatial attention and eye movements 
towards the target. This form of simultaneous evaluation 
of information is referred to as parallel processing. When 
inspecting multiple objects in parallel, reaction time is 
logarithmically related to the number of objects present 
in the display (Box 1). This means that as the number of 
objects increases, the increases in reaction time become 
smaller and smaller.

In sum, visual search is a dynamic process that 
involves an interplay between parallel processing of 
large swaths of the visual environment and more detailed 
inspection of individual regions of interest.

Visual processing in the periphery
Given that peripheral vision processes the vast majority 
of visual information, an understanding of peripheral 
vision is required to understand visual search. Properties 
of the retina and processing in early visual brain regions 
determine the capabilities and limitations of peripheral 
vision.

The low concentration of cones in the visual 
periphery (relative to the fovea) has led to common 
misconceptions in psychology that colour vision and 
visual acuity are severely impaired in peripheral vision. 
Although there is certainly some loss of information 
during initial encoding by peripheral vision, this loss 
does not entirely compromise vision. For example, col-
our vision is possible in the periphery, despite low cone 
density. Although colour sensitivity is not as high as 
in the fovea (Fig. 2a), colour perception remains robust 
even at eccentricities as large as 50 degrees with suffi-
ciently large stimuli (8 degrees across)6,24. Colour vision 
at up to 20 degrees of eccentricity is as good as in the 
fovea (for stimuli 5 degrees across)5. Furthermore, even 
though it is degraded relative to foveal acuity, visual 
acuity in the periphery is sufficient for object and scene 
recognition (Fig. 2b). Observers can recognize the type 
of scene (for instance, a garden or a beach scene) and 
recognize peripheral objects even from low-​resolution 
images, especially when colour is present25–30 (for a 
review see10). Similarly, when controlling for cortical 
magnification, motion perception and the ability to 
distinguish between movement of different speeds are 
comparable in the periphery and in the fovea31–33.

The limitation of peripheral vision comes from how 
information is processed by the visual system beyond 
initial encoding by the retina (for a review see34), which 
is not yet fully understood. However, some general 
properties seem clear. For instance, the information 
processing rate appears to slow down with eccentricity. 

Fig. 1 | Real life visual search. Imagine this image as the 
view you experience when looking for a blue soccer ball  
in a park. First, an internal representation (target template) 
of the target object is activated. This object is associated 
with a set of known features, such as circular, blue, white 
and pentagon. Visual search depends on peripheral 
processing to help the observer find the target among 
non-target (distractor) objects. The region of fixation is 
indicated by the end of the red line, with the rest of the 
image processed by peripheral vision.

Visual field
The extent that can be seen 
with the eyes at a given fixation 
point, including fovea and 
periphery.

Fovea
The area of the retina that 
processes directly fixated 
information, with a width 
defined between 1.7 and 
5 degrees of visual angle.
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Consequently, objects that are farther in the periphery 
take longer to find35–39. More importantly, information 
in the periphery appears to be combined or pooled over 
larger regions as a function of eccentricity, with the size 
increasing in a linear fashion40,41. Pooling regions rep-
resent visual characteristics in the most efficient and 
compact manner with the fewest possible neurons42–44. 
These regions overlap with each other and tile the entire 
visual field, defining the areas over which image features 
are computed.

A crucial consequence of pooling-​region-​mediated 
processing is that when multiple objects fall within 
the same pooling region, their properties will not be 
coded independently. The functional consequence 
is an inability to separately represent objects with all 
their features. Consequently, observers will not be able 
to clearly discriminate and recognize multiple nearby 
(cluttered) objects in the periphery, a phenomenon 
referred to as visual crowding12,41,45,46 (for a review see47). 
If a single object is presented at a peripheral location, 
observers can perceive it (Fig. 2c, top row). It is only 
the presence of clutter that results in a failure of object 
recognition at that same location10 (Fig. 2c, middle row).

Visual peripheral crowding is a common occur-
rence in everyday vision48. However, there are many 
conditions that can minimize or break crowding (for 
reviews see21,49,50). When objects are spaced sufficiently 
far apart from one another, crowding dissipates40 (Fig. 2c, 
bottom row), likely because the objects are processed by 
different pooling regions. Furthermore, the magnitude of  
crowding is determined by the degree of similarity 
between the target and nearby objects. Crowding is 
reduced when the target and distractor objects differ  
in colour51–54, shape and size54,55, orientation56–58, motion59 
or darkness relative to the background54,60. Because objects 

have multiple features, crowding will be maximal when 
nearby objects are similar in all their features and 
mitigated in situations in which objects differ in one or 
more features61.

In sum, peripheral vision can often provide useful 
information about target location. Although crowding 
represents the most serious limitation in peripheral 
visual analysis, there are many situations in which 
peripheral vision can still extract sufficiently useful 
information to guide vision and attention towards 
the target62–65. By contrast, in some extreme situations the 
environment is so cluttered that peripheral analysis is 
unable to provide any useful guidance (as in ‘Where’s 
Waldo?’ images). In such cases, observers are forced to 
engage in a serial visual search using foveal vision.

Benchmarks of visual search
Three benchmark findings illustrate how a modern 
characterization of peripheral processing improves 
understanding of the basic mechanisms of visual search. 
We discuss findings from three types of search that vary 
in complexity: search for a target defined by a unique 
visual feature (feature search); search for a target defined 
by two features (conjunction search); and search for a 
real-​world object embedded in a real-​world scene (scene 
guidance effect).

Feature search. Feature search refers to search conditions 
in which the target differs from the distractors along a 
categorical feature value66 (such as colour, Fig. 3a). Thus, 
search can occur in parallel, relying on simultaneous 
analysis of the entire visual display by peripheral vision. 
Feature searches are characterized by response times that 
are modestly (though reliably) affected by the number 
of items in the display and generally result in highly 
accurate performance. They can also be completed by 
relying solely on peripheral vision, without executing 
any eye movements67–69. In fact, allowing observers to 
move their eyes can actually slow down feature search 
performance69–71.

Even within the simplicity of feature search, the 
conditions that break peripheral visual crowding deter-
mine the conditions in which parallel search can occur. 
For instance, finding a red letter among green letters 
will happen in parallel across the visual field, irrespec-
tive of whether the items are cluttered and crowd each 
other along other feature dimensions, such as shape 
(Fig. 3b, left). This phenomenon occurs because the 
red–green colour difference breaks through the crowd-
ing created by the letters. If the same display contained 
only black letters (Fig. 3b, middle), crowding persists and 
finding a specific letter is difficult. Similarly, if the colour 
difference between the letters is small, such as a red tar-
get and red–orange distractors (Fig. 3b, right), crowding 
would also occur for colour and search would not be able 
to unfold in parallel. Instead, eye movements and serial 
processing would be required61,72,73 (Fig. 3c, red line).

The search slope in feature search was initially por-
trayed as flat, with search times independent of the 
number of items in the display. However, later work 
demonstrated that feature search times increase logarith-
mically with set size37,74–76 (Box 1). Thus, during parallel 

Box 1 | logarithmic reaction times in feature search

Parallel peripheral search is characterized by a logarithmic relationship between set 
size and reaction time74. Target–distractor similarity affects the slope of the search 
function (the more similar target and distractors are, the steeper the function), as well 
as a number of other factors, including crowding, eccentricity, cortical magnification 
and distractor heterogeneity37,75,76,157–159.

Parallel peripheral search is associated with stochastic, unlimited-​capacity parallel 
processing, which determines the logarithmic shape of search slopes. Unlimited- 
capacity parallel processing means that peripheral vision will simultaneously process 
information at all locations where items are present, irrespective of the number of 
locations. When searching for a target, if all items take the same amount of time to  
be processed, processing ought to end at the same time for all items. However, visual 
processing is inherently stochastic: random processing fluctuations cause processing  
of some items to finish earlier than others. Thus, there is an additional cost to overall 
reaction time (RT) that comes from adding an additional item to the display.

Imagine it takes RT(n) to process a display with n distractors. If one more item is added 
to the display, RT(n + 1) will be larger than RT(n) if and only if the additional item (n + 1) is  
the last item to finish processing. Because processing is stochastic, all items are equally 
likely to be the last item to finish processing, and the probability that item (n + 1) will be 
the last one to finish is 1/(n + 1). The mathematical function that increases at the rate  
of 1/n is the natural logarithm, hence this function describes the search function for n 
distractors with stochastic processing.

The logarithmic relationship between reaction time and set size is found only when 
distractors are sufficiently different from the target that peripheral vision can confidently 
discriminate them from the target (as in feature search) and when observers have a fixed 
target template. A logarithmic relationship is not observed when the target switches 
from trial to trial such as in oddball search tasks74.

NATURe RevIeWS | Psychology

R e v i e w s



0123456789();: 

search, adding distractors to the search display results 
in a measurable cost to search time. This cost occurs 
even when the target is quite different from the distrac-
tors in features such as colour. In addition, this cost is 
determined by the similarity between the target and dis-
tractors. For instance, when searching for a red target, 
the logarithmic function is steeper when the distractors 
are orange than when they are blue (Fig. 3c, orange and 
blue lines).

In sum, a modern characterization of peripheral  
processing demonstrates that feature search is more 
complex than initially thought. It does not rely on a categ
orical difference between the target and distractor fea-
tures. Rather, it is a graded phenomenon sensitive to the 
magnitude of the target–distractor featural difference, 
which also determines the degree to which peripheral 
vision is capable of detecting the target among crowded 
distractors.

Conjunction search. In conjunction search, the target is 
defined by two feature values and shares one of these 
two feature values with every distractor stimulus in the 
display. For example, a target can be red and rectangular, 
whereas distractors are red triangles (same colour, dif-
ferent shape) or green rectangles (different colour, same 
shape) (Fig. 3d). Performance in conjunction search tends 
to be slower and more error prone than feature search 
(with some exceptions77–82) and tends to require eye 
movements. Thus, response times tend to significantly 

and linearly increase as a function of set size (Fig. 3c, red 
line), which is often considered an indication of serial 
processing (but see83).

It was originally thought that the higher difficulty in 
conjunction search was caused by an inability to repre-
sent objects defined by multiple features in peripheral 
vision66. This argument was based on two findings. First, 
the receptive fields (area of the visual field that a visual 
neuron responds to) in object-​recognition brain regions 
such as the inferior temporal gyrus are quite large 
(on the order of 40 degrees of visual angle). As a con-
sequence, precise feature location information is lost at 
this level of processing. Second, different visual features 
are processed by specialized neural feature detectors and 
therefore do not necessarily co-​exist in a common rep-
resentational space. Thus, it was proposed that the only 
way to find the target in conjunction search would be to 
inspect objects individually, directing spatial attention 
to an object’s location to bind the features at that location 
into a single representation of the object66,84,85. Because 
spatial attention is a capacity-​limited mechanism, it can-
not be deployed at all object locations simultaneously, 
necessitating serial processing.

However, two processing characteristics of peripheral 
vision point to flaws in the traditional account of con-
junction search. First, peripheral vision can bind feature 
information into coherent object representations under 
uncrowded conditions86,87. Thus, the size of the receptive 
fields is not necessarily a limitation to combining feature 
information. Second, pooling-​mediated processing 
in peripheral vision can explain the inability to match 
features to their objects. One is not required to invoke 
the capacity limitations of spatial attention to explain 
this difficulty. Under crowded conditions, target and 
distractor features are processed within pooling regions 
that encompass multiple objects at a time62. Because 
location information is partially lost within the same 
pooling region, it becomes difficult to perceive whether 
the two features that define the target come from the 
same object (the target) or from two different distractor 
objects. Thus, the speed of conjunction search is directly 
determined by the ability to differentiate pooling regions 
that contain the target from those that do not.

Search in scenes. A third benchmark finding in visual 
search is the scene guidance advantage. Scenes are 
complex real-​world visual environments that consist of 
surfaces, objects and backgrounds organized in a specific 
manner. For instance, a view of a park, a beach, a city 
skyline, or a kitchen can be considered a visual scene. 
Scenes have meaning88,89 and structure90 that constrain 
where objects tend to be located91,92. For instance, coffee 
mugs are typically found on horizontal surfaces such as 
kitchen counters, whereas paintings appear on vertical 
surfaces such as walls89. The scene guidance advantage is 
the phenomenon that when observers search for objects 
in scenes, attention90 and eye movements89 are guided 
towards locations that are likely to contain the target, 
while ignoring those that are unlikely to contain it92.

Observers can categorize the type of scene they are 
looking at (such as forest, desert, or lake) extremely 
quickly93–98, at a rate of up to 10 scenes per second97,99. 

a In foveal vision 5 degrees 50 degrees
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Fig. 2 | The effect of eccentricity on visual processing. a | The minimal colour difference 
that can be perceived in foveal viewing (left), at 5 degrees in the periphery (centre) and at 
50 degrees in the periphery (right)6. Note that the circles are not scaled for eccentricity.  
b | The highest spatial frequency grating, at maximum contrast, that can be barely perceived 
in foveal viewing (left), 5 degrees in the periphery (centre) and 20 degrees in the periphery 
(right). c | While fixating the cross in the top row, one can perceive the letter V to the right. 
By contrast, when fixating the cross in the middle row, the letter V is crowded by adjacent 
letters. When fixating the cross in the bottom row, crowding is minimized owing to the 
spacing of the surrounding letters.
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They can determine basic scene properties (such as nav-
igability, naturalness, and openness) even more quickly 
than that99. General summary statistics about objects 
in the scene such as their average size, orientation or 
expression (for faces) can also be extracted quickly 
and in parallel by peripheral vision, within 50 ms100–104. 
Recent theories of visual search have proposed a 
so-​called non-​selective105 or global89,106 pathway of 
visual information processing105 to help direct attention 
in scenes towards likely target locations. This pathway 
relies on various types of fast peripheral processing that 
extract meaning, structure and other summary statistics 
from the scene to inform search89,91,105–109.

Overall, peripheral vision can actively query a visual 
display for information regarding where target-​like 
objects might be located. The success of this query is 
limited by visual crowding, which can be alleviated by 
changing where the eyes are fixated. But the quantity of 

information picked up by peripheral vision is nonethe-
less remarkable. With peripheral vision, multiple objects 
can be processed simultaneously and scene meaning and 
basic structure can be extracted to constrain the set of 
likely target locations.

Theoretical accounts of visual search
Theories of visual search aim to describe how observers 
use known information about a specific target to find it 
among multiple distractors in a visual display. Here, we 
review the most influential of these theories, organizing 
them into three categories that partially parallel the his-
torical evolution of the field. For each category, we first 
describe how much the theories incorporate the distinc-
tion in encoding between foveal and peripheral vision. 
Whereas some theories are indifferent to this distinction 
(known as lossless theories), others include peripheral 
processing constraints (altered-​encoding theories) or 
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Fig. 3 | search conditions and search slopes. a | Search displays with a red target among either blue, orange or dark-​red 
distractors. b | While fixating the dot and therefore using peripheral vision only, it is easy to find the red Z among green 
letters (colour breaks the crowding) but impossible to find the black Z among black letters. Likewise, while fixating the 
square, it is hard to find the red Z among orange letters because of the high target–distractor similarity. c | Logarithmic 
search slopes (blue and orange lines) are observed when search is easy and unfolds in parallel, as when asked to find the 
red circle among blue or orange circles in panel a. Linear search slopes (red line) are observed when search unfolds serially, 
as when finding the red circle among dark-​red circles in panel a. d | Conjunction search display with red rectangle target. 
Distractors share one feature with the target: red triangles and green rectangles.
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more direct forms of periphery-​limited processing. 
There are multiple ways in which theories can incorpo-
rate peripheral processing, such as by blurring objects 
farther in the periphery (to mimic low acuity), reduc-
ing the number of neurons encoding farther objects, or 
introducing qualitative differences between foveal and 
peripheral representations. Second, we discuss how vari-
ous theories incorporate the search time costs associated 
with parallel processing.

We focus on a few key theories from each category, 
although many more exist (Table 1). Notably, theo-
ries also differ in their assumptions regarding how 
bottom-​up (relative impact of local contrast on guid-
ance) and top-​down factors (such as similarity-​based 
guidance, or feature boosting, whereby the representa-
tion of target features in the image are amplified to 
attract attention), influence search behaviour (Box 2), 
which we do not discuss here.

Lossless encoding theories. Early lossless encoding theo
ries were developed to determine what guides the eyes 
or spatial attention, and in what order objects will be 
prioritized for careful visual examination. These theo-
ries were inspired by mind-​as-​a-​computer metaphors of 
information processing, and generally assume that the 
visual system conducts a parallel analysis of the visual 
display, perfectly encoding all visual features present 
at all eccentricities without degradation in acuity or 
processing. According to these accounts, visual feature 
dimensions are each processed in specialized brain areas 
(for instance, a form area and a colour area), each pro-
ducing an output that registers the presence of a specific 
feature value (such as horizontal or red). The visual input 
is discussed in abstract terms, with no consideration for 
differences in encoding between foveal and peripheral 
vision66,85,89,110–137.

Theories in this class also do not discuss the time 
taken for parallel processing85,89,110,118–122,124,125,128,131–133,135,137  
or they assume that parallel processing times are iden-
tical under all circumstances66,112,126,127,129,130,134. Instead, 
they characterize parallel processing as a sort of passive 
encoding of features that always takes the same amount 
of time (but see117,123,136). Although some theories posit 
that some input degradation might occur as a func-
tion of eccentricity (such as an eccentricity-​dependent 
loss of acuity), these considerations are not directly 
incorporated into the search mechanisms66,134,137.

These theories focus on the processes that occur 
after initial parallel analysis of the scene is completed. 
For instance, after analysing the features at all locations, 
locations are rank ordered in terms of their likelihood to 
contain the target. Visual search then proceeds: attention 
inspects each location in priority order until the target 
is found. Each location’s priority score is independent 
of eye fixation, therefore the analysis and search of the 
scene is linked to positions within the display itself, not 
retinocentric positions in the visual field.

Altered-​encoding theories. A second generation of 
theories, which we refer to as altered-​encoding theo-
ries, acknowledge some differential encoding between 
foveal and peripheral vision. According to these theories, 

stimuli are blurred when processed peripherally38,77,138–147. 
This blurring only affects the information in high spa-
tial frequency channels (fine details in the image). 
Other aspects, such as colour and low spatial frequency 
information, are not affected. Importantly, periph-
eral blurring increases as a function of eccentricity 
(eccentricity-​dependent acuity loss), and is imposed 
before the initial analysis of the scene, before basic visual 
features are extracted from the image138,147.

In some theories, peripheral-​dependent encoding is 
also incorporated through cortical magnification, such 
that more eccentric locations are represented by fewer 
neurons (and therefore have a lower attentional weight) 
compared with less eccentric locations138. Eccentricity- 
dependent encoding is key to theories such as the target 
acquisition model147 and the model of attention in the 
superior colliculus138, which aim to predict eye move-
ments during visual search. By contrast with the static 
priority maps of lossless theories124,125,134, these theories 
propose that attentional maps are dynamic, with feature 
representations that change with every eye fixation.

A further class of theories inspired by signal detection 
theory re-​envisioned visual search as a signal-​in-​noise 
problem38,139,140,142–146. The core idea is that neuronal 
processing, including the encoding of display features, 
is inherently noisy. Thus, visual search requires one to 
locate a noisy target signal among noisy distractor sig-
nals. Whereas lossless encoding theories code target and 
distractor features abstractly with unique values, signal 
detection theories represent target and distractor sig-
nals with a range of possible values that are normally 
distributed and characterized by a mean and a stand-
ard deviation. In general, the signal detection theory 
approach tends to study visual search at a fixed eccen-
tricity, to control for eccentricity-​mediated encoding 
differences. However, this framework opened the door 
to the idea of a representational distinction between 
peripheral and foveal vision. Some theories include 
eccentricity-​dependent information loss, sometimes 
vaguely defined38. The ideal searcher model141 operation-
alized eccentricity-​related informational loss as a visi-
bility map, in which the detectability of a visual feature 
degrades as a function of eccentricity. This degradation 
occurs because of both eccentricity-​dependent neuronal 
noise and acuity loss.

In general, most altered-​encoding theories focus on 
predicting performance measures such as accuracy or 
where the eyes will fixate in the scene, rather than search 
times. As a result, some of these theories do not discuss 
the time taken for parallel processing138,141,147 or assume 
that it is constant77. That said, signal detection theories 
acknowledge the possibility of an eccentricity-​dependent 
processing cost38,139,140,142–146.

Overall, in altered-​encoding theories the location 
of objects in the visual periphery has functional con-
sequences in terms of how information is represented 
internally, which affects the likelihood of attention 
being directed to a location. Visual analysis in these 
theories is retinocentric and dynamic, changing as the 
eyes move. However, altered-​encoding theories do not 
incorporate peripheral pooling regions and ignore the 
representational limitations associated with crowding.
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Table 1 | Visual search theories

category Theory Peripheral 
versus foveal 
encoding

Temporal cost 
associated 
with parallel 
processing

Bottom-up 
factors

Top-down 
factors

Key contributions

Lossless 
encoding 
theories

Two-stage model 
of visual search122

No differential 
encoding

None None Similarity to 
target template

Initial parallel analysis produces 
similarity rankings that guide serial 
inspection

Feature 
integration 
theory66

No differential 
encoding

Constant None None Spatial attention binds features into 
objects; a unique feature can attract 
attention

Visual routines137 No differential 
encoding

None Contrast-based 
guidance

None Objects are represented before spatial 
attention; spatial attention is attracted 
towards salient objects

Sagi & Julesz129,130 No differential 
encoding

Constant Contrast-based 
guidance

None Detection of feature discontinuities 
happens in parallel but object 
recognition does not

Theory of visual 
attention117

No differential 
encoding

Attentional None Feature 
boosting

Similarity-based categorization and 
prioritization of objects

Theeuwes132,133 No differential 
encoding

None Contrast-based 
guidance

None Unique objects capture attention

Contingent 
involuntary 
orienting 
hypothesis118

No differential 
encoding

None None Feature 
boosting

Only unique objects that match the 
target features capture attention

Search via 
recursive 
rejection123

No differential 
encoding

Set-size 
dependent

None Similarity to 
target and 
distractor 
templates

Simultaneous matching to both target 
and distractor templates; emphasis on 
rejection of grouped distractors

Guided search 2.0 
(ref.134)

No differential 
encoding

Constant Contrast-based 
guidance

Feature 
boosting

Top-down signal boosts representations 
of one or two specific features; spatial  
attention inspects locations in 
decreasing order of priority

Model of 
stimulus-driven 
attentional 
capture121,135

No differential 
encoding

None Contrast-based 
guidance

Similarity to 
target template

New objects and objects similar to the 
target are prioritized to guide serial 
search

Saliency-based 
search124,125

No differential 
encoding

None Contrast-based 
guidance

None ‘Saliency map’ represents only local 
feature contrasts to predict movements 
of spatial attention

Coherence 
theory of 
attention85

No differential 
encoding

None None None Spatial attention binds features into 
stable representation of objects

Optimal feature 
gain modulation 
theory128

No differential 
encoding

None Contrast-based 
guidance

Optimal feature 
boosting

Attended feature maximizes the 
difference in activation between target 
and distractors

Contextual 
guidance of eye 
movements89

No differential 
encoding

None Contrast-based 
guidance

Spatial context 
guidance

Guidance towards locations where 
targets frequently occur

Relational 
tuning112

No differential 
encoding

Constant Contrast-based 
guidance

Feature 
relationships

Feature relations (not values) guide 
attention

Signal 
suppression 
hypothesis119,120,131

No differential 
encoding

None Contrast-based 
guidance

Feature 
down-weighting

Salient irrelevant distractors are 
suppressed to avoid attentional capture

Andersen & 
Müller110

No differential 
encoding

None None Feature 
boosting and 
down-weighting

Visual selective attention first enhances 
target features then suppresses 
irrelevant distractor features

Dimensional 
weighting 
account126,127

No differential 
encoding

Constant Contrast-based 
guidance

Feature 
dimensions 
are boosted or 
down-weighted

Feature dimensions (not specific 
feature values) can be up-weighted or 
down-weighted

Template shifting 
and asymmetrical 
sharpening136

No differential 
encoding

Set-size 
dependent

None Feature 
boosting

Target template can be shifted and 
sharpened to increase target–distractor 
discriminability
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Periphery-​constrained theories. A third set of theories 
focus on the conditions in which peripheral vision 
guides attention in a scene. For instance, one theory 
directly incorporates some limitations of peripheral 
vision as core assumptions148. This theory is based on the 
premise that only information inside a functional view-
ing field is analysed and can guide attention during each 
fixation. The functional viewing field (also known as the 
visual conspicuity, visual span, or useful field of view) 
is defined as the area beyond the foveal region where 
peripheral analysis is sufficient to discriminate targets 
from distractors without moving the eyes149 (Fig. 4a). 
Importantly, the radius of the functional viewing field 

around fixation is dependent on target–distractor sim-
ilarity because the discriminability of the target feature 
among the distractor features decreases with eccentricity. 
When target–distractor similarity is low (Fig. 4a, left), 
peripheral vision can differentiate between the two types 
of stimulus, even at large eccentricities. In this case, 
few or zero eye movements might be needed to find 
the target. When target–distractor similarity is high, the 
eccentricity at which peripheral vision can discriminate 
between stimuli is much smaller, fewer items are pro-
cessed within each functional viewing field (Fig. 4a, mid-
dle and right) and more eye movements are required to 
eventually capture the region of the scene that contains 

category Theory Peripheral 
versus foveal 
encoding

Temporal cost 
associated 
with parallel 
processing

Bottom-up 
factors

Top-down 
factors

Key contributions

Altered- 
encoding 
theories

Attentional 
engagement 
theory77

Eccentricity- 
dependent 
encoding loss

Constant None Similarity to 
target template

The combination of target–distractor 
and distractor–distractor similarity 
determines search efficiency

Signal detection 
theory38,139,140,142–146

Eccentricity- 
dependent 
encoding loss

Eccentricity 
dependent

None Target–
distractor signal 
discriminability

Target and distractor objects have noisy 
representations

Target acquisition 
model147

Eccentricity- 
dependent 
encoding loss

None None Similarity to 
target template

Predicts sequence of search fixations; 
similarity to the target template is 
dynamically re-computed after each 
fixation

Ideal searcher141 Eccentricity- 
dependent 
encoding loss

None None Target–
distractor signal 
discriminability

Fixations are planned to optimally 
sample information from the scene

Model of 
attention in 
the superior 
colliculus138

Eccentricity- 
dependent 
encoding 
loss; cortical 
magnification

None Contrast- 
based 
guidance

Feature 
boosting

Priority maps are projected into superior 
colliculus maps to predict fixations

Periphery- 
constrained 
theories

Texture tiling 
model62

Eccentricity- 
dependent 
encoding loss; 
differential 
encoding

Constant Pooling- 
mediated 
representations

Similarity to 
target template

Representations of summary statistics 
determine search performance; spatial 
attention is not needed for binding 
features

Buetti et al.74 Eccentricity- 
dependent 
encoding loss; 
differential 
encoding

Set-size 
dependent

None Similarity to 
target template

Similarity to target template affects 
the time to reject unlikely targets in 
parallel; serial inspection of likely targets 
independently of similarity

Hulleman & 
Olivers148

Eccentricity- 
dependent 
encoding loss; 
functional 
viewing field

Constant None Similarity to 
target template

Only objects falling within a functional 
viewing field can be recognized; field 
size inversely related to target–distractor 
similarity

Target contrast 
signal theory75

Eccentricity- 
dependent 
encoding 
loss; cortical 
magnification; 
differential 
encoding

Set-size 
dependent

None Dissimilarity to 
target template

Featural contrast between distractors 
and target template determines speed 
of parallel rejection; serial inspection of 
likely targets independent of similarity

Guided search 6.0 
(ref.150)

Eccentricity- 
dependent 
encoding loss; 
functional 
viewing field

Constant Contrast- 
based 
guidance

Feature 
boosting

Three different types of functional 
viewing field; scene properties can 
constrain deployments of attention

Prominent theories of visual search, categorized by their peripheral processing constraints and noting the contributions of bottom-up and top-down factors (Box 2).

Table 1 (cont.) | Visual search theories
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the target. This theory proposes that what matters most 
for search is the number of items that can be processed 
within a single fixation, which in turn determines the 
number of times the eyes must move to find the target.

A second periphery-​constrained model, guided 
search 6.0, further elaborated the notion of a functional 
viewing field by introducing three different types150. 
Specifically, if an observer is oriented towards an object 
and can identify it without moving their eyes, then 
the object falls within the visual resolution functional 
viewing field. Objects can be the target of a subsequent 
eye movement only if they are inside the exploratory 
functional viewing field. Finally, objects can be cov-
ertly attended (without moving the eyes) during the 
current fixation only if they are inside the attentional 
functional visual field. Thus, the existence of functional 
viewing fields is central to understanding search behav-
iour because they determine which (and how many) 
objects in the display can be identified, as well as the 
locations to which the eyes can move. Furthermore, 
attentional prioritization (which items are attended 
first) also occurs within the functional viewing field. 
Finally, a non-​selective pathway is in charge of process-
ing general scene information (gist of the scene, global 
organization of elements, summary statistics) through 
peripheral analysis, which can also impact how attention 
is deployed when search objects are embedded inside 
meaningful real-​world scenes.

Both of these functional viewing field-​focused 
models assume a constant time cost associated with 

peripheral processing. In the first theory, search times 
are simply determined by the number of eye movements 
(of constant duration) required to capture the target 
within the functional viewing field148. In guided search 
6.0, the only meaningful processing times are those asso-
ciated with the inspection of attended items inside the 
functional viewing field150.

A third set of formal theoretical accounts explains 
how peripheral analysis of the scene unfolds in situations 
in which crowding has only a minimal effect on peri
pheral perception74,75. The core idea of the target contrast 
signal theory75 is that the main function of peripheral 
vision is to reduce the set of locations that are likely to 
contain the target. When searching for a specific target, 
all regions in the scene that can be confidently ruled out 
as not containing the target are rejected in parallel so 
that spatial attention and eye movements have a smaller 
subset of objects to inspect. Objects that peripheral 
vision is unable to confidently categorize as distractors 
will be inspected in random order by spatial attention 
and eye movements151, resulting in a linear search func-
tion. Notably, it is not strictly necessary for the parallel 
rejection and serial inspection of individual locations to 
proceed sequentially152.

The parallel rejection of distractors across the visual 
field is modelled as a noisy evidence accumulation 
process that is sensitive to factors such as eccentricity, 
size, and target–distractor contrast. Target–distractor  
contrast is defined as the distance in feature space 
between the target feature and the distractor feature. 
For instance, when looking for a red target amongst 
either blue or orange distractor objects (Fig. 3a, left 
and middle), because the red–blue colour difference 
(contrast) is larger than the red–orange contrast, evi-
dence for rejection will accumulate more quickly for blue 
than for orange distractors (Fig. 4b). Consequently, when 
searching for a red target, reaction times will be shorter 
and the logarithmic slope will be smaller in displays that 
contain blue items than in displays that contain orange 
items. Overall, the magnitude of the search slope is pro-
posed to be inversely related to the target–distractor 
contrast (Fig. 4c). In terms of search speed (the inverse 
of search slope), when search conditions become easier 
(when target–distractor contrast is large), search speed is 
high, indicating that more objects per unit time are being 
processed. When search conditions become harder 
(when target–distractor contrast is small), search speed 
is low, indicating that fewer objects per unit time are 
being processed. Working in reverse, analysing search 
times provides an indirect measure of target–distractor 
contrast. In sum, according to the target contrast signal 
theory, distractor rejection is a process that takes time, 
even though it unfolds in parallel for some distractors.

Finally, the texture tiling model62,153 attempts to 
incorporate the unique processing characteristics  
of peripheral vision, including crowding, into a theory of  
visual search. This theory proposes that objects that are 
processed within the same peripheral pooling region 
cannot be represented independently. Instead, the visual 
system must rely on the average summary statistics 
that together describe all of the objects in that region. 
Through pooling and summary statistics processing, 

Box 2 | Bottom-​up and top-​down factors in visual search

We characterize theories in this Review with respect to peripheral processing constraints. 
However, most of these theories were conceived with different theoretical goals in  
mind and differ from one another along other key fundamental properties (Table 1).  
In particular, theories differ in their assumptions of how bottom-​up and top-​down factors 
impact search behaviour.

Bottom-​up factors that influence how attention is allocated include stimulus 
characteristics and how stimuli are encoded by early visual brain areas. For example,  
a stimulus that is very different from its surroundings is more likely to capture attention 
(a key observation of contrast-​based guidance112,119–121,124–135,137,138,150). But capture will 
also depend on where the stimulus falls in the visual field and how it is encoded and 
represented by early visual areas62. Some theories do not discuss the contribution  
of bottom-​up factors to the allocation of attention38,66,74,75,77,85,110,117,122,123,136,139–148 or 
minimize this contribution118.

Top-​down factors represent observers’ goals or information used to direct attention 
towards stimuli that are likely to be targets. One family of theories proposes that 
top-down information alters the representations of stimuli by modulating the activation 
associated with certain target features (or feature dimensions). For instance, when looking 
for a red scarf, the internal representation of all red items in the scene would be enhanced 
to increase their attentional priority. The specifics of these modulations is variously  
feature boosting110,117,118,134,136,138,150, down-​weighting of distractor features110,119,120,131, 
optimal boosting of the features that maximize the difference between target and 
distractor signals128, spatial guidance towards target-​frequent locations89, or modulation of 
the importance of an entire feature dimension (such as colour)126,127. One theory112 proposes 
that attention can be tuned to feature relationships (attention moves towards the reddest 
stimulus) rather than to specific feature values (such as red). Other theories emphasize 
quantifying the similarity of each stimulus to the target template62,74,77,121–123,135,147,148,  
such that more target-​similar stimuli are more likely to be attended, whereas others 
emphasize the discriminability of target and distractor signals38,139–146. Finally, one theory75 
proposes that target dissimilarity has an asymmetrical role in guidance: high levels of 
dissimilarity to the target template allow for the efficient rejection of unlikely targets but 
high levels of similarity are not used to prioritize attentional selection towards target-​likely 
stimuli151.
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some information about each object is lost: the specific 
location of each feature in the pooled area and which fea-
tures belong to which object. Thus, for any given periph-
eral pooling region, the representation of the visual input 
does not consist of a list of veridical features present at 
the crowded location. Despite this loss of information, 
pooling-​region-​mediated summary statistics are suf-
ficient to guide behaviour in visual search62. The tex-
ture tiling model is the only theory that specifies how 
peripheral vision changes the representation of features.

Considering the three theory classes, many of the 
lossless and altered-​encoding theories include mecha-
nisms that aim to explain phenomena in visual search 
that are out of the scope of periphery-​constrained the-
ories (such as selection history effects and attentional 
capture). Thus, there is room for periphery-​constrained 
theories to broaden their explanatory power by includ-
ing some of these mechanisms. In the following section, 
we evaluate these theories for their ability to account for 
empirical data in visual search.

Evaluating peripheral search theories
In this section, we review the most important findings 
in support of the periphery-​constrained theories of 
visual search presented above. We focus on findings 
regarding functional viewing fields, summary statistics 
and target–distractor contrast. These findings demon-
strate the progress that has been made in empirical and 

theoretical development and help outline where the field 
can move next.

Functional viewing field limits search. The proposal of 
a limited functional viewing field in which objects can 
be discriminated from each other148 and information 
can be extracted to guide attention150 is a substantial 
step towards integrating the characteristics of periph-
eral processing into working theories of attention and 
visual search. Evidence for the functional viewing field 
comes from simulations of visual search performance 
under three different levels of search difficulty: easy 
(feature search, Fig. 4a, left), medium (serial search using 
Ts and Ls, Fig. 4a, middle) and hard (serial search using 
square-​within-​square stimuli, Fig. 4a, right). These lev-
els of difficulty differ in the similarity between target 
and distractors. Human search performance in these 
tasks fits well to simulated search performance from 
the functional viewing field theory148, which includes a 
limit to the number of stimuli that can be simultane-
ously inspected. This limit mirrors the number of items 
within a hypothetical functional viewing field, the size of 
which is dictated by target–distractor similarity. Further 
evidence comes from gaze-​contingent experiments in 
which only the items falling inside a specific area around 
fixation were displayed to participants154. In this para-
digm, search performance was degraded only in the easy 
search conditions, suggesting that items outside of the 
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Fig. 4 | Elements of periphery-constrained theories. a | The functional viewing field148 limits the range of usable 
information during visual search. The functional viewing field shrinks as a function of search difficulty from easiest (left)  
to hardest (right). b | Evidence accumulation for search displays in Fig. 3a, following the target contrast signal theory75.  
At every time step, evidence is increased by a constant amount (the evidence accumulation rate), plus or minus some 
normally distributed noise (the stochastic component). The evidence accumulation rate is proportional to the target–
distractor contrast. On average, blue accumulators (lines) will reach the rejection threshold (solid horizontal line) before 
orange accumulators (lines) given that the red–blue distance in colour space is larger than the red–orange distance.  
The dark-​red and red accumulators (lines) fail to reach the rejection threshold owing to lack of contrast and correspond to 
objects that require serial inspection. c | According to the target contrast signal theory, the magnitude of the logarithmic 
search slope is inversely proportional to the target–distractor contrast75 (blue dots) and the search speed is linearly related 
to it (red dots). AU. arbitrary units.
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functional field of view do not impact search behaviour 
in more difficult search tasks.

A similarity-​dependent functional viewing field 
is also consistent with the texture tiling account 
because the likelihood that two objects crowd each 
other increases with their similarity62,65. Pooling 
regions increase in size with eccentricity, therefore, at a 
given level of target–distractor similarity, targets and dis-
tractors can be independently coded and differentiated 
at small eccentricities (Fig. 5a, small ellipse), yet crowd 
each other at farther eccentricities (Fig. 5a, large ellipse).  
As a consequence, there is an area around fixation where 
processing can unfold in parallel — the functional 
viewing field.

The target contrast signal theory75 provides a frame-
work to understand the emergence of functional viewing 
field-​like restrictions of peripheral processing — even 
in simple feature search — that have been observed in  
human data69. For instance, although observers can 
search for a red target among blue or orange distractors 

without executing eye movements69, when eye move-
ments are allowed, observers tend to move their eyes 
when the distractors are orange but keep them still when 
they are blue. Yet, when target–distractor similarity is 
higher and peripheral analysis unfolds more slowly, the 
same observers are more likely to make an eye move-
ment before a full examination of the most peripheral 
items is complete75. This pattern indicates a preference 
to execute eye movements when target–distractor 
similarity is increased, even when search is easy.

The functional viewing field might represent the 
transition point between uncrowded vision around fix-
ation and crowded perception in the periphery, mark-
ing the boundary where pooling-​mediated processing 
begins to replace an object-​based understanding of the 
scene, or it might represent the area of the display where 
useful information was extracted from before observers 
move their eyes. The crucial idea is that there is a func-
tional limit to the information that observers process on 
each eye fixation. Further, as proposed by guided search 
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the peripheral representation of target-​present (centre) and target-​absent (right) regions of the display. c | Target–distractor 
contrast for colour and shape feature combination search. Target–distractor contrast in the colour dimension (left) can be 
added linearly to the target–distractor contrast in the shape dimension (centre) to predict the overall target–distractor 
contrast when a target differs from distractors in both colour and shape (right)86. d | Local distractor–distractor similarity 
effects. Two types of distractor are present, either spatially segregated (left) or intermixed (right). e | Reaction times in the 
segregated display (grey circles) can be predicted using target–distractor contrasts measured in homogeneous conditions 
(as in panel c), but performance in the intermixed condition is multiplicatively slower (black circles) than in the segregated 
condition157. Panel b reprinted with permission from ref.65, Journal of Vision.
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6.0, different forms of processing might be limited to 
different extents, something that future theories should 
further explore.

Summary statistics predict search. A novel paradigm 
reveals the influence of summary statistics on search per-
formance by comparing performance on two tasks62,65. 
First, participants conduct visual search with a range of 
stimuli associated with a wide spectrum of search diffi-
culty. For instance, in a hard-​difficulty task, participants 
are asked to find the cube with the white top (Fig. 5b, 
left). Second, in a separate task, participants search for 
a target in a display that contains the same summary 
statistics as the displays used in the search tasks, but 
with the features scrambled across the objects to create 
‘mongrel’ images (Fig. 5b, middle and right). Participants 
are asked to discriminate whether the target is present 
or absent, given unlimited time, with the display pre-
sented at fixation. This task is considered an indirect 
index of peripheral discriminability, based on summary 
statistics of crowded stimuli. Participants’ ability to 
discriminate between target-​present and target-​absent 
mongrel images should mimic their ability to differen-
tiate between target-​present and target-​absent regions 
of the display when they are processed by peripheral 
vision during search. The search slopes from the first 
task are highly predictive of the performance (discrimi-
nability, d′) on the second task62,65. This finding provides 
strong evidence that in difficult search — when displays 
are crowded and search slopes are linear — peripheral 
summary statistics determine search performance.

This evidence supports the use of summary statis-
tics in the texture tiling model, which can make useful 
and subtle predictions regarding how small stimulus 
manipulations impact crowded search performance155. 
These manipulations influence the summary statistic 
representations that drive behaviour during search, by 
increasing or decreasing the confusability of regions that 
do or do not contain the target. Importantly, these mod-
ulations in performance cannot readily be explained by 
lossless encoding theories because the stimulus features 
themselves have not been fundamentally altered.

The goal of the texture tiling model was to demon-
strate that a better understanding of crowding can lead to 
a better understanding of search behaviour. Converging 
evidence comes from a study demonstrating that the 
speed at which observers search a display is correlated 
with their individual susceptibility to crowding156. 
Susceptibility to crowding was evaluated by deter-
mining the width of critical spacing required to avoid 
crowding in the periphery: the larger the susceptibility 
to crowding, the more slowly the search unfolds.

Overall, these results stress the importance of incor-
porating peripheral crowding as a key determinant of 
search behaviour. Summary statistics such as those used 
in the texture tiling model could be incorporated into 
other models of search as a better way of understanding 
the representations at play under crowded conditions.

Contrast determines search speed. Target–distractor 
contrast is a stable measure that characterizes the time 
needed to reject distractors using peripheral vision 

(Fig. 4c) when searching for a specific target. This relation-
ship forms the basis of support and central inspiration for 
the target contrast signal theory. The logarithmic search 
slope for a specific target–distractor pair can be used to 
predict search performance by novel observers and in 
novel experimental conditions86,87,157–159. We review two 
of these studies below, one testing the mathematical laws 
that underlie feature combinations86 and the other testing 
the effects of intermixing different types of distractor157.

The first relevant data regarding target–distractor 
contrast are from feature combination search. In a scene 
containing a target that differs from distractors in both 
colour and shape (Fig. 5c, right), it is possible to predict 
search times based on search performance observed under 
simpler conditions where the target and distractors differ 
only in colour (Fig. 5c, left) or shape (Fig. 5c, middle)86. 
Specifically, search speed for a target defined by a col-
our and a shape difference (feature combination search) 
is the sum of the search speed for the colour difference 
alone and the search speed for the shape difference alone.  
A similar investigation revealed that when target and dis-
tractors differ in shape and surface texture (such as dotted 
or striped stimuli), search performance can be predicted 
by a mathematical combination of the speed in simpler 
tasks in which target and distractors differ only in shape 
or texture87. Overall, these findings demonstrate that the  
target–distractor contrast is a stable measure that  
the visual system computes and relies on to search.

The second key piece of evidence regarding target–
distractor contrast relates to distractor–distractor 
similarity. It has been known for decades that dis-
tractor–distractor similarity is an important factor in 
determining search efficiency, but it was difficult to 
measure77. However, with the realization that the loga-
rithmic search slope is a stable index of target–distractor 
contrast (similarity), one can separately evaluate the dis-
tinct contribution of distractor–distractor similarity157. 
Distractor–distractor similarity affects search per-
formance on various levels, both within and across 
neighbouring pooling regions.

Even for displays with the same types of distractor 
present overall, their spatial arrangement influences 
search time. When nearby distractors are identical 
to one another — either in a homogeneous display or 
when two types of distractor are presented in a spatially 
segregated fashion — they facilitate rejection of each 
other. For instance, if all identical distractors are spa-
tially segregated on one side of the display (Fig. 5d, left), 
reaction times can be perfectly predicted by the slopes 
observed in homogeneous displays with only one kind 
of distractor157 (Fig. 5e, grey circles). However, if the 
same distractors are spatially intermixed on the display 
(Fig. 5d, right), there is a systematic slow-​down across 
all conditions relative to the homogeneous display157 
(Fig. 5e, black circles). When nearby distractors differ 
from one another, they are slower to reject, leading to 
slower reaction times157. These results on heterogeneous 
search have been replicated with stimuli of varying com-
plexity, from simple oriented lines159, to simple coloured 
geometric shapes157, to images of real-​world objects158.

In summary, findings using a wide variety of 
approaches have started to characterize how visual 
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processing unfolds in peripheral vision and how it 
affects search performance. Empirical data and simu-
lations suggest that peripheral vision is able to extract 
useful information only over restricted regions of the 
display, which vary as a function of search difficulty. 
Further, this information might or might not be a verid-
ical representation of objects in the world, depending 
on the level of crowding. Yet the output of the periph-
eral analysis remains useful in that it determines visual 
search behaviour. These findings provide strong support 
for periphery-​constrained theories of visual search and 
open new avenues for further research and theoretical 
developments.

Summary and future directions
A contemporary understanding of peripheral processing 
challenges long-​held assumptions about visual search. 
There is relatively preserved colour vision and sufficient 
visual acuity to recognize objects and scene properties 
far into the periphery. Integrating the characteristics of 
peripheral vision into theories of visual search has led to 
a better understanding of peripheral processing under 
crowded and uncrowded conditions, of the spatial extent 
over which peripheral processing can process objects 
in parallel, and of the temporal costs associated with 
peripheral scene analysis.

The ability of peripheral vision to reduce the spatial 
uncertainty in a scene — determining regions where the 
target is likely — is perhaps one of its greatest contribu-
tions to visual search behaviour in daily life. Returning 
to the example of searching for a soccer ball (Fig. 1), 
peripheral vision can accurately code and integrate the 
features of uncrowded objects such as the blue ball and 
the bench into objects that can be compared in paral-
lel with the target template. Even the crowded pooling 
region containing the shrubs and trees carries enough 
colour and shape information to quickly determine that 
the blue ball is not present there. By contrast, when look-
ing for a specific shrub using peripheral vision, crowding 
will obfuscate the individual features of each shrub and 

force one to move one’s eyes to sequentially inspect small 
regions of the scene.

Future theories should reconsider the proposal 
that the visual system ranks objects in a scene in terms 
of their similarity to a target template and then prioritizes 
their processing accordingly. Under crowded condi-
tions, peripheral vision cannot represent objects inde-
pendently and therefore cannot rank them by similarity. 
Similarity-​based ranking is further complicated by the fact 
that as similarity increases, crowding becomes more pro-
nounced. Thus, spatial prioritization might not be a matter 
of attention being attracted towards target-​similar objects 
or regions. Dissimilarity (or featural contrast) is proba-
bly a more useful concept. Peripheral vision can identify 
regions that score high in dissimilarity and reject them 
as unlikely to contain the target. This rejection allows for 
an efficient reduction in spatial uncertainty, limiting the 
number of locations that are likely to contain the target.

Finally, several promising lines of empirical inves-
tigation are emerging. For example, it remains to be 
discovered how peripheral vision segments crowded 
objects from their background and whether the visual 
information of the background is incorporated into the 
pooling-​mediated representation. More generally, much 
remains unknown about visual search under visual con-
ditions closer to the real world. Research thus far has 
focused on studying peripheral vision with 2D images, 
presented on flat computer displays. Future research 
should study how peripheral processing changes when 
the scene is three dimensional and objects appear at 
varying distances from the observer, and therefore 
require different degrees of focal accommodation by the 
eyes. Finally, in the real world, visual scenes are neither 
fully crowded nor entirely uncrowded. Local properties 
of a scene tend to vary by region in terms of how similar 
nearby objects are to one another. Future research 
should study how humans search in those more varied 
and realistic visual environments.
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