Department of Psychology,
University of lllinois at
Urbana-Champaign, Urbana,
IL, USA.

Me-mail: alejandrolleras@
gmail.com; buetti@
illinois.edu
https://doi.org/10.1038
$44159-022-00097-1

M) Check for updates

Incorporating the properties of
peripheral vision into theories

of visual search

Alejandro Lleras® ™, Simona Buetti

™ and Zoe Jing Xu

Abstract | People often look for objects in their immediate environment, a behaviour known as
visual search. Most of the visual signals used during search come from peripheral vision, outside
the direct focus of the eyes. In this Review, we present evidence that peripheral vision is both
more capable and more complex than commonly believed. We then use three benchmark
findings from the visual search literature to illustrate how considering peripheral vision can
improve understanding of the basic mechanisms of search. Next, we discuss theories of visual
search on the basis of their treatment of peripheral processing constraints and present findings in
support of theories that integrate the characteristics of peripheral vision. These findings describe
the span over which peripheral vision can extract useful information, the type of information

peripheral vision encodes, and how peripheral vision identifies locations that are likely to contain
a search target. We end by discussing considerations for future theoretical development and

recommendations for future empirical research.

Many activities in daily life require locating a specific
object in the world, such as searching for a spoon to add
sugar to coffee or searching for a soccer ball in a park.
A central question for research is how people successfully
search for specific visual targets throughout the day, a task
known as visual search. Understanding visual search also
provides insights into how humans perform in high-stakes
searches beyond the everyday, such as when looking for
tumours on medical images', weapons on security X-ray
machines’ or military vehicles on satellite imagery.
Visual search provides a window into fundamental
cognitive operations. For instance, perceiving and locat-
ing a specific target object such as a blue soccer ball in a
park (FIC. 1) requires multiple processes. One must per-
ceive the object as a set of features (circle, pentagons,
blue, white) co-occurring at the same location, and rep-
resent this object (the ball) as an entity distinct from the
background (the grass). In addition, visual search often
requires one to search for an object without its imme-
diate presence. Doing so relies on a target template,
or internal representation of the target object. When
searching for the blue soccer ball, the template could be
a mental image of the ball or a list of the ball’s features
(colour, shape and size). This internal representation
biases how spatial attention is deployed and how one
moves one’s eyes during search. Spatial attention refers
to the mechanism that allows one to preferentially pro-
cess the visual information at one location over others.
While searching for the soccer ball, the target template

would guide one’s eyes and attention towards regions in
the park that contain features similar to the target, such
as the yellow ball with a similar size and shape, the blue
chairs with a similar colour or the blue ball itself.

In the laboratory, visual search is most often studied
under simplified conditions to isolate a subset of the
mechanisms involved. For instance, backgrounds are often
uniform so that all objects are equally easy to segregate
from the background, the visual display is small enough to
fit on a computer monitor, and the target and non-target
(distractor) objects are simplified and defined by a small
set of features (for example, one colour and one shape).

In this Review, we first describe the properties of
peripheral vision. We then review three foundational
visual search phenomena that highlight how an under-
standing of peripheral vision can lead to a better
understanding of visual search. We then categorize influ-
ential theories of visual search on the basis of how they
incorporate peripheral vision into the mechanisms that
underlie visual search. Next, we present empirical work
that uses various processing characteristics of peripheral
vision to accurately predict search performance. We end
with considerations for future theory development and
empirical study in the field.

Fundamentals of visual search

At the most basic level, visual search is constrained by
where the eyes are focused (the fixation point) during
initial visual analysis. Visual analysis depends on where
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Visual field

The extent that can be seen
with the eyes at a given fixation
point, including fovea and
periphery.

Fovea

The area of the retina that
processes directly fixated
information, with a width
defined between 1.7 and
5 degrees of visual angle.

Fig. 1| Real life visual search. Imagine thisimage as the
view you experience when looking for a blue soccer ball

in a park. First, an internal representation (target template)
of the target object is activated. This object is associated
with a set of known features, such as circular, blue, white
and pentagon. Visual search depends on peripheral
processing to help the observer find the target among
non-target (distractor) objects. The region of fixation is
indicated by the end of the red line, with the rest of the
image processed by peripheral vision.

information is projected onto the retina because the
distribution of photoreceptors on the retina varies as
a function of eccentricity, or distance from the fixation
point. The distribution of photoreceptors determines the
fidelity with which visual information striking the retina
is initially encoded by the visual system. Distance and
extent of objects in the visual field are measured using
degrees of visual angle. For reference, when viewed at
arm’s length, one’s thumbnail subtends about 1.5 degrees
of visual angle.

The fovea is the central part of the retina, which
processes information from a region 1.7 degrees wide
around the fixation point® (end of red line in FIG. 1).
Fixating an object and thereby pointing the fovea
directly at it allows access to fine visual details because
the fovea is entirely populated by cones®, retinal photo-
receptor cells that support colour processing’'’ and
high-resolution vision''~'. The fovea also has higher
visual acuity than other areas of the retina because more
neurons in the brain’s visual cortex are devoted to pro-
cessing foveal than peripheral information — a property
referred to as cortical magnification'’"’.

The visual periphery is the area that surrounds the
fovea and extends approximately 214 degrees hori-
zontally, 70 degrees above and 80 degrees below the
fovea®*%. The visual periphery contains a much smaller
concentration of cones and is mostly populated by a
different type of photoreceptor — rods**. Successful
everyday visual search is quite remarkable considering
that the fovea covers only about 0.01% of the visual field,
with the visual periphery covering the remaining 99.99%.

Both foveal and peripheral visual processing contrib-
ute to visual search. The fovea can be used to scan the
visual world to evaluate individual objects until the target
is found. This serial processing often involves sequential
eye movements directed to specific objects (or regions
of the world) at a time. It can also occur covertly when
spatial attention focuses on individual objects with-
out moving the eyes. When inspecting objects serially,

reaction time is linearly related to the number of objects
present in the display. The corresponding search slope
characterizes the processing rate of items during search
with respect to the set size of items present, measured in
milliseconds per item. On average, if more objects are
present, it takes observers a set time longer per object
to locate the target.

When the target is sufficiently different from the
distractor objects in the display, visual search becomes
easier. In these easier searches, the visual system can rely
on peripheral vision to simultaneously evaluate many
objects. In this way, peripheral vision directly informs
the deployment of spatial attention and eye movements
towards the target. This form of simultaneous evaluation
of information is referred to as parallel processing. When
inspecting multiple objects in parallel, reaction time is
logarithmically related to the number of objects present
in the display (BOX 1). This means that as the number of
objects increases, the increases in reaction time become
smaller and smaller.

In sum, visual search is a dynamic process that
involves an interplay between parallel processing of
large swaths of the visual environment and more detailed
inspection of individual regions of interest.

Visual processing in the periphery

Given that peripheral vision processes the vast majority
of visual information, an understanding of peripheral
vision is required to understand visual search. Properties
of the retina and processing in early visual brain regions
determine the capabilities and limitations of peripheral
vision.

The low concentration of cones in the visual
periphery (relative to the fovea) has led to common
misconceptions in psychology that colour vision and
visual acuity are severely impaired in peripheral vision.
Although there is certainly some loss of information
during initial encoding by peripheral vision, this loss
does not entirely compromise vision. For example, col-
our vision is possible in the periphery, despite low cone
density. Although colour sensitivity is not as high as
in the fovea (FIC. 2a), colour perception remains robust
even at eccentricities as large as 50 degrees with suffi-
ciently large stimuli (8 degrees across)®*'. Colour vision
at up to 20 degrees of eccentricity is as good as in the
fovea (for stimuli 5 degrees across)’. Furthermore, even
though it is degraded relative to foveal acuity, visual
acuity in the periphery is sufficient for object and scene
recognition (FIG. 2b). Observers can recognize the type
of scene (for instance, a garden or a beach scene) and
recognize peripheral objects even from low-resolution
images, especially when colour is present (for a
review see'’). Similarly, when controlling for cortical
magnification, motion perception and the ability to
distinguish between movement of different speeds are
comparable in the periphery and in the fovea® .

The limitation of peripheral vision comes from how
information is processed by the visual system beyond
initial encoding by the retina (for a review see*), which
is not yet fully understood. However, some general
properties seem clear. For instance, the information
processing rate appears to slow down with eccentricity.
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Consequently, objects that are farther in the periphery
take longer to find**~*. More importantly, information
in the periphery appears to be combined or pooled over
larger regions as a function of eccentricity, with the size
increasing in a linear fashion*>*'. Pooling regions rep-
resent visual characteristics in the most efficient and
compact manner with the fewest possible neurons**.
These regions overlap with each other and tile the entire
visual field, defining the areas over which image features
are computed.

A crucial consequence of pooling-region-mediated
processing is that when multiple objects fall within
the same pooling region, their properties will not be
coded independently. The functional consequence
is an inability to separately represent objects with all
their features. Consequently, observers will not be able
to clearly discriminate and recognize multiple nearby
(cluttered) objects in the periphery, a phenomenon
referred to as visual crowding'>*"*>* (for a review see”’).
If a single object is presented at a peripheral location,
observers can perceive it (FIG. 2c, top row). It is only
the presence of clutter that results in a failure of object
recognition at that same location'’ (FIC. 2¢, middle row).

Visual peripheral crowding is a common occur-
rence in everyday vision’. However, there are many
conditions that can minimize or break crowding (for
reviews see’"*>*"). When objects are spaced sufficiently
far apart from one another, crowding dissipates™ (FIG. 2c,
bottom row), likely because the objects are processed by
different pooling regions. Furthermore, the magnitude of
crowding is determined by the degree of similarity
between the target and nearby objects. Crowding is
reduced when the target and distractor objects differ
in colour®~**, shape and size***, orientation®*-**, motion*
or darkness relative to the background***’. Because objects

Box 1 | Logarithmic reaction times in feature search

Parallel peripheral search is characterized by a logarithmic relationship between set
size and reaction time’*. Target—distractor similarity affects the slope of the search
function (the more similar target and distractors are, the steeper the function), as well
as a number of other factors, including crowding, eccentricity, cortical magnification
and distractor heterogeneity®’/>76:17-15%,

Parallel peripheral search is associated with stochastic, unlimited-capacity parallel
processing, which determines the logarithmic shape of search slopes. Unlimited-
capacity parallel processing means that peripheral vision will simultaneously process
information at all locations where items are present, irrespective of the number of
locations. When searching for a target, if all items take the same amount of time to
be processed, processing ought to end at the same time for all items. However, visual
processing is inherently stochastic: random processing fluctuations cause processing
of some items to finish earlier than others. Thus, there is an additional cost to overall
reaction time (RT) that comes from adding an additional item to the display.

Imagine it takes RT , to process a display with n distractors. If one more item is added
to the display, RT ., will be larger than RT, if and only if the additional item (n+1) is
the last item to finish processing. Because processing is stochastic, all items are equally
likely to be the last item to finish processing, and the probability that item (n+ 1) will be
the last one to finish is 1/(n+ 1). The mathematical function that increases at the rate
of 1/n is the natural logarithm, hence this function describes the search function for n
distractors with stochastic processing.

The logarithmic relationship between reaction time and set size is found only when
distractors are sufficiently different from the target that peripheral vision can confidently
discriminate them from the target (as in feature search) and when observers have a fixed
target template. A logarithmic relationship is not observed when the target switches
from trial to trial such as in oddball search tasks’*.

have multiple features, crowding will be maximal when
nearby objects are similar in all their features and
mitigated in situations in which objects differ in one or
more features®’.

In sum, peripheral vision can often provide useful
information about target location. Although crowding
represents the most serious limitation in peripheral
visual analysis, there are many situations in which
peripheral vision can still extract sufficiently useful
information to guide vision and attention towards
the target® . By contrast, in some extreme situations the
environment is so cluttered that peripheral analysis is
unable to provide any useful guidance (as in ‘Where’s
Waldo?” images). In such cases, observers are forced to
engage in a serial visual search using foveal vision.

Benchmarks of visual search

Three benchmark findings illustrate how a modern
characterization of peripheral processing improves
understanding of the basic mechanisms of visual search.
We discuss findings from three types of search that vary
in complexity: search for a target defined by a unique
visual feature (feature search); search for a target defined
by two features (conjunction search); and search for a
real-world object embedded in a real-world scene (scene
guidance effect).

Feature search. Feature search refers to search conditions
in which the target differs from the distractors along a
categorical feature value® (such as colour, FIC. 3a). Thus,
search can occur in parallel, relying on simultaneous
analysis of the entire visual display by peripheral vision.
Feature searches are characterized by response times that
are modestly (though reliably) affected by the number
of items in the display and generally result in highly
accurate performance. They can also be completed by
relying solely on peripheral vision, without executing
any eye movements® . In fact, allowing observers to
move their eyes can actually slow down feature search
performance®"".

Even within the simplicity of feature search, the
conditions that break peripheral visual crowding deter-
mine the conditions in which parallel search can occur.
For instance, finding a red letter among green letters
will happen in parallel across the visual field, irrespec-
tive of whether the items are cluttered and crowd each
other along other feature dimensions, such as shape
(FIC. 3D, left). This phenomenon occurs because the
red-green colour difference breaks through the crowd-
ing created by the letters. If the same display contained
only black letters (FIG. b, middle), crowding persists and
finding a specific letter is difficult. Similarly, if the colour
difference between the letters is small, such as a red tar-
get and red-orange distractors (FIC. 3b, right), crowding
would also occur for colour and search would not be able
to unfold in parallel. Instead, eye movements and serial
processing would be required®~’>” (FIG. 3¢, red line).

The search slope in feature search was initially por-
trayed as flat, with search times independent of the
number of items in the display. However, later work
demonstrated that feature search times increase logarith-
mically with set size’””*”7¢ (BOX 1). Thus, during parallel
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Fig. 2 | The effect of eccentricity on visual processing. a| The minimal colour difference
that can be perceived in foveal viewing (left), at 5 degrees in the periphery (centre) and at
50 degrees in the periphery (right)°. Note that the circles are not scaled for eccentricity.
b|The highest spatial frequency grating, at maximum contrast, that can be barely perceived
in foveal viewing (left), 5 degrees in the periphery (centre) and 20 degrees in the periphery
(right). ¢ | While fixating the cross in the top row, one can perceive the letter V to the right.
By contrast, when fixating the cross in the middle row, the letter V is crowded by adjacent
letters. When fixating the cross in the bottom row, crowding is minimized owing to the
spacing of the surrounding letters.

search, adding distractors to the search display results
in a measurable cost to search time. This cost occurs
even when the target is quite different from the distrac-
tors in features such as colour. In addition, this cost is
determined by the similarity between the target and dis-
tractors. For instance, when searching for a red target,
the logarithmic function is steeper when the distractors
are orange than when they are blue (FIC. 3¢, orange and
blue lines).

In sum, a modern characterization of peripheral
processing demonstrates that feature search is more
complex than initially thought. It does not rely on a categ-
orical difference between the target and distractor fea-
tures. Rather, it is a graded phenomenon sensitive to the
magnitude of the target-distractor featural difference,
which also determines the degree to which peripheral
vision is capable of detecting the target among crowded
distractors.

Conjunction search. In conjunction search, the target is
defined by two feature values and shares one of these
two feature values with every distractor stimulus in the
display. For example, a target can be red and rectangular,
whereas distractors are red triangles (same colour, dif-
ferent shape) or green rectangles (different colour, same
shape) (FIG. 3d). Performance in conjunction search tends
to be slower and more error prone than feature search
(with some exceptions’”’"*”) and tends to require eye
movements. Thus, response times tend to significantly

and linearly increase as a function of set size (FIC. 3¢, red
line), which is often considered an indication of serial
processing (but see®).

It was originally thought that the higher difficulty in
conjunction search was caused by an inability to repre-
sent objects defined by multiple features in peripheral
vision®. This argument was based on two findings. First,
the receptive fields (area of the visual field that a visual
neuron responds to) in object-recognition brain regions
such as the inferior temporal gyrus are quite large
(on the order of 40 degrees of visual angle). As a con-
sequence, precise feature location information is lost at
this level of processing. Second, different visual features
are processed by specialized neural feature detectors and
therefore do not necessarily co-exist in a common rep-
resentational space. Thus, it was proposed that the only
way to find the target in conjunction search would be to
inspect objects individually, directing spatial attention
to an object’s location to bind the features at that location
into a single representation of the object®**%. Because
spatial attention is a capacity-limited mechanism, it can-
not be deployed at all object locations simultaneously,
necessitating serial processing.

However, two processing characteristics of peripheral
vision point to flaws in the traditional account of con-
junction search. First, peripheral vision can bind feature
information into coherent object representations under
uncrowded conditions**. Thus, the size of the receptive
fields is not necessarily a limitation to combining feature
information. Second, pooling-mediated processing
in peripheral vision can explain the inability to match
features to their objects. One is not required to invoke
the capacity limitations of spatial attention to explain
this difficulty. Under crowded conditions, target and
distractor features are processed within pooling regions
that encompass multiple objects at a time®’. Because
location information is partially lost within the same
pooling region, it becomes difficult to perceive whether
the two features that define the target come from the
same object (the target) or from two different distractor
objects. Thus, the speed of conjunction search is directly
determined by the ability to differentiate pooling regions
that contain the target from those that do not.

Search in scenes. A third benchmark finding in visual
search is the scene guidance advantage. Scenes are
complex real-world visual environments that consist of
surfaces, objects and backgrounds organized in a specific
manner. For instance, a view of a park, a beach, a city
skyline, or a kitchen can be considered a visual scene.
Scenes have meaning®® and structure” that constrain
where objects tend to be located’"*. For instance, coffee
mugs are typically found on horizontal surfaces such as
kitchen counters, whereas paintings appear on vertical
surfaces such as walls®. The scene guidance advantage is
the phenomenon that when observers search for objects
in scenes, attention” and eye movements® are guided
towards locations that are likely to contain the target,
while ignoring those that are unlikely to contain it™.
Observers can categorize the type of scene they are
looking at (such as forest, desert, or lake) extremely
quickly™-*, at a rate of up to 10 scenes per second””.
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They can determine basic scene properties (such as nav-
igability, naturalness, and openness) even more quickly
than that”. General summary statistics about objects
in the scene such as their average size, orientation or
expression (for faces) can also be extracted quickly
and in parallel by peripheral vision, within 50 ms'"-'%.
Recent theories of visual search have proposed a
so-called non-selective'” or global®'* pathway of
visual information processing'® to help direct attention
in scenes towards likely target locations. This pathway
relies on various types of fast peripheral processing that
extract meaning, structure and other summary statistics
from the scene to inform search®’"1%5-1%%,

Overall, peripheral vision can actively query a visual
display for information regarding where target-like
objects might be located. The success of this query is
limited by visual crowding, which can be alleviated by
changing where the eyes are fixated. But the quantity of

information picked up by peripheral vision is nonethe-
less remarkable. With peripheral vision, multiple objects
can be processed simultaneously and scene meaning and
basic structure can be extracted to constrain the set of
likely target locations.

Theoretical accounts of visual search

Theories of visual search aim to describe how observers
use known information about a specific target to find it
among multiple distractors in a visual display. Here, we
review the most influential of these theories, organizing
them into three categories that partially parallel the his-
torical evolution of the field. For each category, we first
describe how much the theories incorporate the distinc-
tion in encoding between foveal and peripheral vision.
Whereas some theories are indifferent to this distinction
(known as lossless theories), others include peripheral
processing constraints (altered-encoding theories) or
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Fig. 3 | Search conditions and search slopes. a | Search displays with a red target among either blue, orange or dark-red
distractors. b | While fixating the dot and therefore using peripheral vision only, it is easy to find the red Z among green
letters (colour breaks the crowding) but impossible to find the black Z among black letters. Likewise, while fixating the
square, it is hard to find the red Z among orange letters because of the high target—distractor similarity. ¢ | Logarithmic
search slopes (blue and orange lines) are observed when search is easy and unfolds in parallel, as when asked to find the
red circle among blue or orange circles in panel a. Linear search slopes (red line) are observed when search unfolds serially,
as when finding the red circle among dark-red circles in panel a. d | Conjunction search display with red rectangle target.
Distractors share one feature with the target: red triangles and green rectangles.
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more direct forms of periphery-limited processing.
There are multiple ways in which theories can incorpo-
rate peripheral processing, such as by blurring objects
farther in the periphery (to mimic low acuity), reduc-
ing the number of neurons encoding farther objects, or
introducing qualitative differences between foveal and
peripheral representations. Second, we discuss how vari-
ous theories incorporate the search time costs associated
with parallel processing.

We focus on a few key theories from each category,
although many more exist (TABLE 1). Notably, theo-
ries also differ in their assumptions regarding how
bottom-up (relative impact of local contrast on guid-
ance) and top-down factors (such as similarity-based
guidance, or feature boosting, whereby the representa-
tion of target features in the image are amplified to
attract attention), influence search behaviour (BOX 2),
which we do not discuss here.

Lossless encoding theories. Early lossless encoding theo-
ries were developed to determine what guides the eyes
or spatial attention, and in what order objects will be
prioritized for careful visual examination. These theo-
ries were inspired by mind-as-a-computer metaphors of
information processing, and generally assume that the
visual system conducts a parallel analysis of the visual
display, perfectly encoding all visual features present
at all eccentricities without degradation in acuity or
processing. According to these accounts, visual feature
dimensions are each processed in specialized brain areas
(for instance, a form area and a colour area), each pro-
ducing an output that registers the presence of a specific
feature value (such as horizontal or red). The visual input
is discussed in abstract terms, with no consideration for
differences in encoding between foveal and peripheral
Vision66,85,89,1 10-1 37.

Theories in this class also do not discuss the time
taken fOl‘ parallel processingSS,S‘),l 10,118-122,124,125,128,131-133,135,137
or they assume that parallel processing times are iden-
tical under all circumstances®®!!»126:12712%130.134 Instead,
they characterize parallel processing as a sort of passive
encoding of features that always takes the same amount
of time (but see''”'*>'%). Although some theories posit
that some input degradation might occur as a func-
tion of eccentricity (such as an eccentricity-dependent
loss of acuity), these considerations are not directly
incorporated into the search mechanisms®'**'%’.

These theories focus on the processes that occur
after initial parallel analysis of the scene is completed.
For instance, after analysing the features at all locations,
locations are rank ordered in terms of their likelihood to
contain the target. Visual search then proceeds: attention
inspects each location in priority order until the target
is found. Each location’s priority score is independent
of eye fixation, therefore the analysis and search of the
scene is linked to positions within the display itself, not
retinocentric positions in the visual field.

Altered-encoding theories. A second generation of
theories, which we refer to as altered-encoding theo-
ries, acknowledge some differential encoding between
foveal and peripheral vision. According to these theories,

stimuli are blurred when processed peripherally**’”!#-147,

This blurring only affects the information in high spa-
tial frequency channels (fine details in the image).
Other aspects, such as colour and low spatial frequency
information, are not affected. Importantly, periph-
eral blurring increases as a function of eccentricity
(eccentricity-dependent acuity loss), and is imposed
before the initial analysis of the scene, before basic visual
features are extracted from the image'**'*’.

In some theories, peripheral-dependent encoding is
also incorporated through cortical magnification, such
that more eccentric locations are represented by fewer
neurons (and therefore have a lower attentional weight)
compared with less eccentric locations'*. Eccentricity-
dependent encoding is key to theories such as the target
acquisition model'”” and the model of attention in the
superior colliculus'*, which aim to predict eye move-
ments during visual search. By contrast with the static
priority maps of lossless theories'**'*>"**, these theories
propose that attentional maps are dynamic, with feature
representations that change with every eye fixation.

A further class of theories inspired by signal detection
theory re-envisioned visual search as a signal-in-noise
problem?*%13%140:142-146 "The core idea is that neuronal
processing, including the encoding of display features,
is inherently noisy. Thus, visual search requires one to
locate a noisy target signal among noisy distractor sig-
nals. Whereas lossless encoding theories code target and
distractor features abstractly with unique values, signal
detection theories represent target and distractor sig-
nals with a range of possible values that are normally
distributed and characterized by a mean and a stand-
ard deviation. In general, the signal detection theory
approach tends to study visual search at a fixed eccen-
tricity, to control for eccentricity-mediated encoding
differences. However, this framework opened the door
to the idea of a representational distinction between
peripheral and foveal vision. Some theories include
eccentricity-dependent information loss, sometimes
vaguely defined®. The ideal searcher model'*' operation-
alized eccentricity-related informational loss as a visi-
bility map, in which the detectability of a visual feature
degrades as a function of eccentricity. This degradation
occurs because of both eccentricity-dependent neuronal
noise and acuity loss.

In general, most altered-encoding theories focus on
predicting performance measures such as accuracy or
where the eyes will fixate in the scene, rather than search
times. As a result, some of these theories do not discuss
the time taken for parallel processing'**'*"'*” or assume
that it is constant”. That said, signal detection theories
acknowledge the possibility of an eccentricity-dependent
prOCeSSlng Cost38,1]9,1'Hi,]"lzflr'l(w'

Overall, in altered-encoding theories the location
of objects in the visual periphery has functional con-
sequences in terms of how information is represented
internally, which affects the likelihood of attention
being directed to a location. Visual analysis in these
theories is retinocentric and dynamic, changing as the
eyes move. However, altered-encoding theories do not
incorporate peripheral pooling regions and ignore the
representational limitations associated with crowding.
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Table 1| Visual search theories

Category  Theory
Lossless Two-stage model
encoding of visual search'#
theories
Feature
integration
theory®

Visual routines’

Sagi & Julesz'?***°

Theory of visual
attention''’

Theeuwes'*”'#*

Contingent
involuntary
orienting

hypothesis

118

Search via
recursive

rejection'”?

Guided search 2.0
[REPM]

Model of
stimulus-driven
attentional
capture!'*t'®

Saliency-based
search'#*#

Coherence
theory of
attention®

Optimal feature
gain modulation
theory'”®

Contextual
guidance of eye
movements®’

Relational
tuning'"’

Signal
suppression
hypothesi5119,110,131

Andersen &
Miiller'®

Dimensional
weighting
account'?®'?’

Template shifting
and asymmetrical
sharpening'*

Peripheral
versus foveal
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

No differential
encoding

Temporal cost
associated
with parallel
processing

None

Constant

None

Constant

Attentional
None

None

Set-size
dependent

Constant

None

None

None

None

None

Constant

None

None

Constant

Set-size
dependent

Bottom-up
factors

None

None

Contrast-based
guidance

Contrast-based
guidance

None
Contrast-based

guidance

None

None

Contrast-based
guidance

Contrast-based
guidance

Contrast-based
guidance

None

Contrast-based
guidance

Contrast-based
guidance

Contrast-based
guidance
Contrast-based

guidance

None

Contrast-based
guidance

None

Top-down
factors

Similarity to
target template

None

None

None

Feature
boosting

None

Feature
boosting

Similarity to
target and
distractor
templates

Feature
boosting

Similarity to
target template

None

None

Optimal feature
boosting

Spatial context
guidance

Feature
relationships

Feature
down-weighting

Feature
boosting and
down-weighting

Feature
dimensions

are boosted or
down-weighted

Feature
boosting

Key contributions

Initial parallel analysis produces
similarity rankings that guide serial
inspection

Spatial attention binds features into
objects; a unique feature can attract
attention

Objects are represented before spatial
attention; spatial attention is attracted
towards salient objects

Detection of feature discontinuities
happens in parallel but object
recognition does not

Similarity-based categorization and
prioritization of objects

Unique objects capture attention

Only unique objects that match the
target features capture attention

Simultaneous matching to both target
and distractor templates; emphasis on
rejection of grouped distractors

Top-down signal boosts representations
of one or two specific features; spatial
attention inspects locations in
decreasing order of priority

New objects and objects similar to the
target are prioritized to guide serial
search

‘Saliency map’ represents only local
feature contrasts to predict movements
of spatial attention

Spatial attention binds features into
stable representation of objects

Attended feature maximizes the
difference in activation between target
and distractors

Guidance towards locations where
targets frequently occur

Feature relations (not values) guide
attention

Salient irrelevant distractors are
suppressed to avoid attentional capture

Visual selective attention first enhances
target features then suppresses
irrelevant distractor features

Feature dimensions (not specific
feature values) can be up-weighted or
down-weighted

Target template can be shifted and
sharpened to increase target—distractor
discriminability
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Table 1 (cont.) | Visual search theories

Category  Theory Peripheral Temporal cost Bottom-up
versus foveal associated factors
encoding with parallel

processing

Altered- Attentional Eccentricity- Constant None

encoding engagement dependent

theories theory’’ encoding loss

Signal detection  Eccentricity- Eccentricity None
theory?#2911014271%  dependent dependent

encoding loss
Target acquisition  Eccentricity- None None
model'*’ dependent

encoding loss
Ideal searcher*'  Eccentricity- None None

dependent

encoding loss
Model of Eccentricity- None Contrast-
attention in dependent based
the superior encoding guidance
colliculus™® loss; cortical

magpnification

Periphery-  Texture tiling Eccentricity- Constant Pooling-

constrained model®” dependent mediated

theories encoding loss; representations
differential
encoding
Buettietal.”” Eccentricity- Set-size None
dependent dependent
encoding loss;
differential
encoding
Hulleman & Eccentricity- Constant None
Olivers'* dependent
encoding loss;
functional
viewing field
Target contrast Eccentricity- Set-size None
signal theory” dependent dependent
encoding
loss; cortical
magnification;
differential
encoding
Guided search 6.0 Eccentricity- Constant Contrast-
(REEESS] dependent based
encoding loss; guidance
functional

viewing field

Top-down
factors

Similarity to
target template

Target—
distractor signal
discriminability

Similarity to
target template

Target—
distractor signal
discriminability
Feature
boosting

Similarity to
target template

Similarity to
target template

Similarity to
target template

Dissimilarity to
target template

Feature
boosting

Key contributions

The combination of target-distractor
and distractor—distractor similarity
determines search efficiency

Target and distractor objects have noisy
representations

Predicts sequence of search fixations;
similarity to the target template is
dynamically re-computed after each
fixation

Fixations are planned to optimally
sample information from the scene

Priority maps are projected into superior
colliculus maps to predict fixations

Representations of summary statistics
determine search performance; spatial
attention is not needed for binding
features

Similarity to target template affects

the time to reject unlikely targets in
parallel; serial inspection of likely targets
independently of similarity

Only objects falling within a functional
viewing field can be recognized; field
size inversely related to target—distractor
similarity

Featural contrast between distractors
and target template determines speed
of parallel rejection; serial inspection of
likely targets independent of similarity

Three different types of functional
viewing field; scene properties can
constrain deployments of attention

Prominent theories of visual search, categorized by their peripheral processing constraints and noting the contributions of bottom-up and top-down factors (BOX 2).

Periphery-constrained theories. A third set of theories
focus on the conditions in which peripheral vision
guides attention in a scene. For instance, one theory
directly incorporates some limitations of peripheral
vision as core assumptions'*’. This theory is based on the
premise that only information inside a functional view-
ing field is analysed and can guide attention during each
fixation. The functional viewing field (also known as the
visual conspicuity, visual span, or useful field of view)
is defined as the area beyond the foveal region where
peripheral analysis is sufficient to discriminate targets
from distractors without moving the eyes'* (FIC. 4a).
Importantly, the radius of the functional viewing field

around fixation is dependent on target-distractor sim-
ilarity because the discriminability of the target feature
among the distractor features decreases with eccentricity.
When target-distractor similarity is low (FIC. 4a, left),
peripheral vision can differentiate between the two types
of stimulus, even at large eccentricities. In this case,
few or zero eye movements might be needed to find
the target. When target—distractor similarity is high, the
eccentricity at which peripheral vision can discriminate
between stimuli is much smaller, fewer items are pro-
cessed within each functional viewing field (FIC. 4a, mid-
dle and right) and more eye movements are required to
eventually capture the region of the scene that contains
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the target. This theory proposes that what matters most
for search is the number of items that can be processed
within a single fixation, which in turn determines the
number of times the eyes must move to find the target.

A second periphery-constrained model, guided
search 6.0, further elaborated the notion of a functional
viewing field by introducing three different types'*’.
Specifically, if an observer is oriented towards an object
and can identify it without moving their eyes, then
the object falls within the visual resolution functional
viewing field. Objects can be the target of a subsequent
eye movement only if they are inside the exploratory
functional viewing field. Finally, objects can be cov-
ertly attended (without moving the eyes) during the
current fixation only if they are inside the attentional
functional visual field. Thus, the existence of functional
viewing fields is central to understanding search behav-
iour because they determine which (and how many)
objects in the display can be identified, as well as the
locations to which the eyes can move. Furthermore,
attentional prioritization (which items are attended
first) also occurs within the functional viewing field.
Finally, a non-selective pathway is in charge of process-
ing general scene information (gist of the scene, global
organization of elements, summary statistics) through
peripheral analysis, which can also impact how attention
is deployed when search objects are embedded inside
meaningful real-world scenes.

Both of these functional viewing field-focused
models assume a constant time cost associated with

Box 2 | Bottom-up and top-down factors in visual search

We characterize theories in this Review with respect to peripheral processing constraints.
However, most of these theories were conceived with different theoretical goals in

mind and differ from one another along other key fundamental properties (TABLE 1).

In particular, theories differ in their assumptions of how bottom-up and top-down factors
impact search behaviour.

Bottom-up factors that influence how attention is allocated include stimulus
characteristics and how stimuli are encoded by early visual brain areas. For example,

a stimulus that is very different from its surroundings is more likely to capture attention
(a key observation of contrast-based guidance!'%!1%-121124-135.137.138.150) Byt capture will
also depend on where the stimulus falls in the visual field and how it is encoded and
represented by early visual areas®’. Some theories do not discuss the contribution

of bottom-up factors to the allocation of attention?®6:747>.7785,110.117,122,123,136.135-148 o
minimize this contribution*é.

Top-down factors represent observers’ goals or information used to direct attention
towards stimuli that are likely to be targets. One family of theories proposes that
top-down information alters the representations of stimuli by modulating the activation
associated with certain target features (or feature dimensions). For instance, when looking
for a red scarf, the internal representation of all red items in the scene would be enhanced
to increase their attentional priority. The specifics of these modulations is variously
feature boosting!!%117:118:134136.138.150 ' down-weighting of distractor features!®!*%20.131)
optimal boosting of the features that maximize the difference between target and
distractor signals'”®, spatial guidance towards target-frequent locations®, or modulation of
the importance of an entire feature dimension (such as colour)*?*'?”. One theory'*? proposes
that attention can be tuned to feature relationships (attention moves towards the reddest
stimulus) rather than to specific feature values (such as red). Other theories emphasize
quantifying the similarity of each stimulus to the target template®”/*77121-123.135.147.148
such that more target-similar stimuli are more likely to be attended, whereas others
emphasize the discriminability of target and distractor signals®*****='*. Finally, one theory’
proposes that target dissimilarity has an asymmetrical role in guidance: high levels of
dissimilarity to the target template allow for the efficient rejection of unlikely targets but
high levels of similarity are not used to prioritize attentional selection towards target-likely
stimuli®*’.

peripheral processing. In the first theory, search times
are simply determined by the number of eye movements
(of constant duration) required to capture the target
within the functional viewing field"**. In guided search
6.0, the only meaningful processing times are those asso-
ciated with the inspection of attended items inside the
functional viewing field'*".

A third set of formal theoretical accounts explains
how peripheral analysis of the scene unfolds in situations
in which crowding has only a minimal effect on peri-
pheral perception’””. The core idea of the target contrast
signal theory” is that the main function of peripheral
vision is to reduce the set of locations that are likely to
contain the target. When searching for a specific target,
all regions in the scene that can be confidently ruled out
as not containing the target are rejected in parallel so
that spatial attention and eye movements have a smaller
subset of objects to inspect. Objects that peripheral
vision is unable to confidently categorize as distractors
will be inspected in random order by spatial attention
and eye movements'”, resulting in a linear search func-
tion. Notably, it is not strictly necessary for the parallel
rejection and serial inspection of individual locations to
proceed sequentially’>.

The parallel rejection of distractors across the visual
field is modelled as a noisy evidence accumulation
process that is sensitive to factors such as eccentricity,
size, and target—distractor contrast. Target—distractor
contrast is defined as the distance in feature space
between the target feature and the distractor feature.
For instance, when looking for a red target amongst
either blue or orange distractor objects (FIG. 3a, left
and middle), because the red-blue colour difference
(contrast) is larger than the red-orange contrast, evi-
dence for rejection will accumulate more quickly for blue
than for orange distractors (FIG. 4b). Consequently, when
searching for a red target, reaction times will be shorter
and the logarithmic slope will be smaller in displays that
contain blue items than in displays that contain orange
items. Overall, the magnitude of the search slope is pro-
posed to be inversely related to the target-distractor
contrast (FIC. 4¢). In terms of search speed (the inverse
of search slope), when search conditions become easier
(when target-distractor contrast is large), search speed is
high, indicating that more objects per unit time are being
processed. When search conditions become harder
(when target-distractor contrast is small), search speed
is low, indicating that fewer objects per unit time are
being processed. Working in reverse, analysing search
times provides an indirect measure of target-distractor
contrast. In sum, according to the target contrast signal
theory, distractor rejection is a process that takes time,
even though it unfolds in parallel for some distractors.

Finally, the texture tiling model®»'** attempts to
incorporate the unique processing characteristics
of peripheral vision, including crowding, into a theory of
visual search. This theory proposes that objects that are
processed within the same peripheral pooling region
cannot be represented independently. Instead, the visual
system must rely on the average summary statistics
that together describe all of the objects in that region.
Through pooling and summary statistics processing,
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Fig. 4 | Elements of periphery-constrained theories. a | The functional viewing field'** limits the range of usable
information during visual search. The functional viewing field shrinks as a function of search difficulty from easiest (left)

to hardest (right). b | Evidence accumulation for search displays in FIG. 32, following the target contrast signal theory”.

At every time step, evidence is increased by a constant amount (the evidence accumulation rate), plus or minus some
normally distributed noise (the stochastic component). The evidence accumulation rate is proportional to the target—
distractor contrast. On average, blue accumulators (lines) will reach the rejection threshold (solid horizontal line) before
orange accumulators (lines) given that the red-blue distance in colour space is larger than the red-orange distance.

The dark-red and red accumulators (lines) fail to reach the rejection threshold owing to lack of contrast and correspond to
objects that require serial inspection. ¢ | According to the target contrast signal theory, the magnitude of the logarithmic
search slope is inversely proportional to the target—distractor contrast’® (blue dots) and the search speed is linearly related

to it (red dots). AU. arbitrary units.

some information about each object is lost: the specific
location of each feature in the pooled area and which fea-
tures belong to which object. Thus, for any given periph-
eral pooling region, the representation of the visual input
does not consist of a list of veridical features present at
the crowded location. Despite this loss of information,
pooling-region-mediated summary statistics are suf-
ficient to guide behaviour in visual search®. The tex-
ture tiling model is the only theory that specifies how
peripheral vision changes the representation of features.

Considering the three theory classes, many of the
lossless and altered-encoding theories include mecha-
nisms that aim to explain phenomena in visual search
that are out of the scope of periphery-constrained the-
ories (such as selection history effects and attentional
capture). Thus, there is room for periphery-constrained
theories to broaden their explanatory power by includ-
ing some of these mechanisms. In the following section,
we evaluate these theories for their ability to account for
empirical data in visual search.

Evaluating peripheral search theories

In this section, we review the most important findings
in support of the periphery-constrained theories of
visual search presented above. We focus on findings
regarding functional viewing fields, summary statistics
and target—distractor contrast. These findings demon-
strate the progress that has been made in empirical and

theoretical development and help outline where the field
can move next.

Functional viewing field limits search. The proposal of
a limited functional viewing field in which objects can
be discriminated from each other'** and information
can be extracted to guide attention" is a substantial
step towards integrating the characteristics of periph-
eral processing into working theories of attention and
visual search. Evidence for the functional viewing field
comes from simulations of visual search performance
under three different levels of search difficulty: easy
(feature search, FIG. 4a, left), medium (serial search using
Ts and Ls, FIC. 4a, middle) and hard (serial search using
square-within-square stimuli, FIC. 4a, right). These lev-
els of difficulty differ in the similarity between target
and distractors. Human search performance in these
tasks fits well to simulated search performance from
the functional viewing field theory'*, which includes a
limit to the number of stimuli that can be simultane-
ously inspected. This limit mirrors the number of items
within a hypothetical functional viewing field, the size of
which is dictated by target-distractor similarity. Further
evidence comes from gaze-contingent experiments in
which only the items falling inside a specific area around
fixation were displayed to participants'™. In this para-
digm, search performance was degraded only in the easy
search conditions, suggesting that items outside of the
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functional field of view do not impact search behaviour
in more difficult search tasks.

A similarity-dependent functional viewing field
is also consistent with the texture tiling account
because the likelihood that two objects crowd each
other increases with their similarity®®. Pooling
regions increase in size with eccentricity, therefore, at a
given level of target—distractor similarity, targets and dis-
tractors can be independently coded and differentiated
at small eccentricities (FIG. 5a, small ellipse), yet crowd
each other at farther eccentricities (FIG. 53, large ellipse).
As a consequence, there is an area around fixation where
processing can unfold in parallel — the functional
viewing field.

The target contrast signal theory” provides a frame-
work to understand the emergence of functional viewing
field-like restrictions of peripheral processing — even
in simple feature search — that have been observed in
human data®. For instance, although observers can
search for a red target among blue or orange distractors

without executing eye movements®’, when eye move-
ments are allowed, observers tend to move their eyes
when the distractors are orange but keep them still when
they are blue. Yet, when target-distractor similarity is
higher and peripheral analysis unfolds more slowly, the
same observers are more likely to make an eye move-
ment before a full examination of the most peripheral
items is complete™. This pattern indicates a preference
to execute eye movements when target-distractor
similarity is increased, even when search is easy.

The functional viewing field might represent the
transition point between uncrowded vision around fix-
ation and crowded perception in the periphery, mark-
ing the boundary where pooling-mediated processing
begins to replace an object-based understanding of the
scene, or it might represent the area of the display where
useful information was extracted from before observers
move their eyes. The crucial idea is that there is a func-
tional limit to the information that observers process on
each eye fixation. Further, as proposed by guided search
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Fig. 5 | Peripherally informed visual search. a | Conjunction search with pooling regions. The largest ellipse visualizes a
pooling region (corresponding to the left fixation dot) that contains the target. Peripheral vision will represent this region
with a set of summary statistics that combines features from both types of distractor. The smaller ellipse visualizes an
equivalent pooling region for the right fixation dot. At this eccentricity, pooling regions can represent information
associated with a single item. The target cannot be perceived when fixating the left dot, but can be perceived when
fixating the right dot. b | Search for a cube that is white on top (left) and corresponding mongrel images, which visualize
the peripheral representation of target-present (centre) and target-absent (right) regions of the display. ¢ | Target—distractor
contrast for colour and shape feature combination search. Target—distractor contrast in the colour dimension (left) can be
added linearly to the target—distractor contrast in the shape dimension (centre) to predict the overall target—distractor
contrast when a target differs from distractors in both colour and shape (right)*’. d | Local distractor—distractor similarity
effects. Two types of distractor are present, either spatially segregated (left) or intermixed (right). e | Reaction times in the
segregated display (grey circles) can be predicted using target-distractor contrasts measured in homogeneous conditions
(as in panel c), but performance in the intermixed condition is multiplicatively slower (black circles) than in the segregated
condition®’. Panel b reprinted with permission from REF.*, Journal of Vision.
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6.0, different forms of processing might be limited to
different extents, something that future theories should
further explore.

Summary statistics predict search. A novel paradigm
reveals the influence of summary statistics on search per-
formance by comparing performance on two tasks®>%.
First, participants conduct visual search with a range of
stimuli associated with a wide spectrum of search diffi-
culty. For instance, in a hard-difficulty task, participants
are asked to find the cube with the white top (FIG. 5b,
left). Second, in a separate task, participants search for
a target in a display that contains the same summary
statistics as the displays used in the search tasks, but
with the features scrambled across the objects to create
‘mongrel’ images (FIG. 5b, middle and right). Participants
are asked to discriminate whether the target is present
or absent, given unlimited time, with the display pre-
sented at fixation. This task is considered an indirect
index of peripheral discriminability, based on summary
statistics of crowded stimuli. Participants’ ability to
discriminate between target-present and target-absent
mongrel images should mimic their ability to differen-
tiate between target-present and target-absent regions
of the display when they are processed by peripheral
vision during search. The search slopes from the first
task are highly predictive of the performance (discrimi-
nability, ') on the second task®>*°. This finding provides
strong evidence that in difficult search — when displays
are crowded and search slopes are linear — peripheral
summary statistics determine search performance.

This evidence supports the use of summary statis-
tics in the texture tiling model, which can make useful
and subtle predictions regarding how small stimulus
manipulations impact crowded search performance'®.
These manipulations influence the summary statistic
representations that drive behaviour during search, by
increasing or decreasing the confusability of regions that
do or do not contain the target. Importantly, these mod-
ulations in performance cannot readily be explained by
lossless encoding theories because the stimulus features
themselves have not been fundamentally altered.

The goal of the texture tiling model was to demon-
strate that a better understanding of crowding can lead to
a better understanding of search behaviour. Converging
evidence comes from a study demonstrating that the
speed at which observers search a display is correlated
with their individual susceptibility to crowding'.
Susceptibility to crowding was evaluated by deter-
mining the width of critical spacing required to avoid
crowding in the periphery: the larger the susceptibility
to crowding, the more slowly the search unfolds.

Overall, these results stress the importance of incor-
porating peripheral crowding as a key determinant of
search behaviour. Summary statistics such as those used
in the texture tiling model could be incorporated into
other models of search as a better way of understanding
the representations at play under crowded conditions.

Contrast determines search speed. Target-distractor
contrast is a stable measure that characterizes the time
needed to reject distractors using peripheral vision

(FIG. 4c) when searching for a specific target. This relation-
ship forms the basis of support and central inspiration for
the target contrast signal theory. The logarithmic search
slope for a specific target-distractor pair can be used to
predict search performance by novel observers and in
novel experimental conditions®>*”'>’-1%, We review two
of these studies below, one testing the mathematical laws
that underlie feature combinations* and the other testing
the effects of intermixing different types of distractor'”".

The first relevant data regarding target-distractor
contrast are from feature combination search. In a scene
containing a target that differs from distractors in both
colour and shape (FIG. 5¢, right), it is possible to predict
search times based on search performance observed under
simpler conditions where the target and distractors differ
only in colour (FIC. 5¢, left) or shape (FIC. 5¢c, middle)®.
Specifically, search speed for a target defined by a col-
our and a shape difference (feature combination search)
is the sum of the search speed for the colour difference
alone and the search speed for the shape difference alone.
A similar investigation revealed that when target and dis-
tractors differ in shape and surface texture (such as dotted
or striped stimuli), search performance can be predicted
by a mathematical combination of the speed in simpler
tasks in which target and distractors differ only in shape
or texture®. Overall, these findings demonstrate that the
target—distractor contrast is a stable measure that
the visual system computes and relies on to search.

The second key piece of evidence regarding target—
distractor contrast relates to distractor-distractor
similarity. It has been known for decades that dis-
tractor—distractor similarity is an important factor in
determining search efficiency, but it was difficult to
measure’”’. However, with the realization that the loga-
rithmic search slope is a stable index of target-distractor
contrast (similarity), one can separately evaluate the dis-
tinct contribution of distractor-distractor similarity’’.
Distractor-distractor similarity affects search per-
formance on various levels, both within and across
neighbouring pooling regions.

Even for displays with the same types of distractor
present overall, their spatial arrangement influences
search time. When nearby distractors are identical
to one another — either in a homogeneous display or
when two types of distractor are presented in a spatially
segregated fashion — they facilitate rejection of each
other. For instance, if all identical distractors are spa-
tially segregated on one side of the display (FIG. 5, left),
reaction times can be perfectly predicted by the slopes
observed in homogeneous displays with only one kind
of distractor'®” (FIG. Se, grey circles). However, if the
same distractors are spatially intermixed on the display
(FIC. 54, right), there is a systematic slow-down across
all conditions relative to the homogeneous display'*’
(FIG. 5e, black circles). When nearby distractors differ
from one another, they are slower to reject, leading to
slower reaction times'”’. These results on heterogeneous
search have been replicated with stimuli of varying com-
plexity, from simple oriented lines'*’, to simple coloured
geometric shapes'”’, to images of real-world objects'**.

In summary, findings using a wide variety of
approaches have started to characterize how visual
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processing unfolds in peripheral vision and how it
affects search performance. Empirical data and simu-
lations suggest that peripheral vision is able to extract
useful information only over restricted regions of the
display, which vary as a function of search difficulty.
Further, this information might or might not be a verid-
ical representation of objects in the world, depending
on the level of crowding. Yet the output of the periph-
eral analysis remains useful in that it determines visual
search behaviour. These findings provide strong support
for periphery-constrained theories of visual search and
open new avenues for further research and theoretical
developments.

Summary and future directions

A contemporary understanding of peripheral processing
challenges long-held assumptions about visual search.
There is relatively preserved colour vision and sufficient
visual acuity to recognize objects and scene properties
far into the periphery. Integrating the characteristics of
peripheral vision into theories of visual search has led to
a better understanding of peripheral processing under
crowded and uncrowded conditions, of the spatial extent
over which peripheral processing can process objects
in parallel, and of the temporal costs associated with
peripheral scene analysis.

The ability of peripheral vision to reduce the spatial
uncertainty in a scene — determining regions where the
target is likely — is perhaps one of its greatest contribu-
tions to visual search behaviour in daily life. Returning
to the example of searching for a soccer ball (FIC. 1),
peripheral vision can accurately code and integrate the
features of uncrowded objects such as the blue ball and
the bench into objects that can be compared in paral-
lel with the target template. Even the crowded pooling
region containing the shrubs and trees carries enough
colour and shape information to quickly determine that
the blue ball is not present there. By contrast, when look-
ing for a specific shrub using peripheral vision, crowding
will obfuscate the individual features of each shrub and

force one to move one’s eyes to sequentially inspect small
regions of the scene.

Future theories should reconsider the proposal
that the visual system ranks objects in a scene in terms
of their similarity to a target template and then prioritizes
their processing accordingly. Under crowded condi-
tions, peripheral vision cannot represent objects inde-
pendently and therefore cannot rank them by similarity.
Similarity-based ranking is further complicated by the fact
that as similarity increases, crowding becomes more pro-
nounced. Thus, spatial prioritization might not be a matter
of attention being attracted towards target-similar objects
or regions. Dissimilarity (or featural contrast) is proba-
bly a more useful concept. Peripheral vision can identify
regions that score high in dissimilarity and reject them
as unlikely to contain the target. This rejection allows for
an efficient reduction in spatial uncertainty, limiting the
number of locations that are likely to contain the target.

Finally, several promising lines of empirical inves-
tigation are emerging. For example, it remains to be
discovered how peripheral vision segments crowded
objects from their background and whether the visual
information of the background is incorporated into the
pooling-mediated representation. More generally, much
remains unknown about visual search under visual con-
ditions closer to the real world. Research thus far has
focused on studying peripheral vision with 2D images,
presented on flat computer displays. Future research
should study how peripheral processing changes when
the scene is three dimensional and objects appear at
varying distances from the observer, and therefore
require different degrees of focal accommodation by the
eyes. Finally, in the real world, visual scenes are neither
fully crowded nor entirely uncrowded. Local properties
of a scene tend to vary by region in terms of how similar
nearby objects are to one another. Future research
should study how humans search in those more varied
and realistic visual environments.
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