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Bosons carrying a conserved charge can form stable bound states if their Lagrangian contains attractive

self-interactions. Bound-state configurations with a large charge Q can be described classically and are

denoted as Q-balls, their properties encoded in a nonlinear differential equation. Here, we study Q-balls in

arbitrary polynomial single-scalar-field potentials both numerically and via various analytical approx-

imations. We highlight some surprising universal features ofQ-balls that barely depend on the details of the

potential. The polynomial potentials studied here can be realized in renormalizable models involving

additional heavy or light scalars, as we illustrate with several examples.
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I. INTRODUCTION

Q-balls are interesting examples of large bound states,

in the simplest scenario consisting of Q ≫ 1 complex

scalars ϕ with conserved global charge QðϕÞ ¼ 1.

Assuming an attractive force between these scalars,

Q-balls form the lowest-energy configuration for a fixed

charge Q and are hence stable [1]. Due to the large

amount of scalars residing in the Q-ball, it can be

described classically as a spherically symmetric solution

to the nonlinear Lagrange equations, also known as a

nontopological soliton [2]. As emphasized already by

Coleman in his seminal paper on these objects [1], a

renormalizable quantum field theory for ϕ by itself does

not provide the required attractive interactions, but it is

possible to construct multifield models that lead to the

required terms in the scalar potential [1–6].

Even in effective single-field potentials it is typically

impossible to analytically solve the underlying nonlinear

differential equations, save for some special and often

unphysical examples [7–12]. In general, we have to satisfy

ourselves with numerical solutions or analytical approx-

imations, which include Coleman’s thin-wall approxima-

tion [1] (valid for very large Q-balls with thin surface

region) and Kusenko’s thick-wall approximation [13] (valid

for small but dilute Q-balls). These approximations allow

for an improved understanding ofQ-balls that is difficult to

obtain from numerical scans and in particular cover the

regions of parameter space that are challenging to inves-

tigate numerically [14,15].

The simplest consistent realization of Coleman’s large

Q-balls [1] requires a scalar potential for ϕ with a mass

term m2

ϕjϕj2, an attractive interaction term ∝ −jϕjp, and a

term that stabilizes the potential at large field values

∝ þjϕjq, with 2 < p < q. We will study Q-balls in such

potentials as a function of p and q, mostly restricted to

integer exponents. We provide analytical approximations,

including the thin- and thick-wall limits, and compare them

to numerical solutions. In the thin-wall, or large Q, regime,

we find remarkably simple analytical solutions for arbitrary

p and q. Our model and notation is set up in Sec. II.

Section III generalizes the thin-wall approximation of

Ref. [15] to arbitrary p and q, including the particularly

easy-to-solve cases of equidistant exponents. Section IV

collects thick-wall results in our notation, restricted to the

case p ¼ 3, as is this the only integer value for p that gives

stable Q-balls in the thick-wall regime. In Sec. V we

introduce a novel Q-ball approximation that is valid for p,
q ≫ 2 irrespective of the wall thickness. In Sec. VI we

study some simple renormalizable multifield models and

discuss when and how they can be described by our

effective polynomial potentials. We discuss our results

and conclude in Sec. VII. Appendix gives an alternative

derivation of some results of Sec. VI.

II. MODEL

Using the mostly minus Minkowski metric, we study

single-field Q-balls [1] with a Lagrangian

L ¼ j∂μϕj2 −UðjϕjÞ ð1Þ

for the complex scalar ϕ that is invariant under a global

Uð1Þ symmetry ϕ → eiαϕ, with constant α ∈ R, leading via
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Noether’s theorem to a conserved charge Q, normalized

here to QðϕÞ ¼ 1. Q therefore counts the number of ϕ

particles in a given field configuration. The Euler–

Lagrange equation takes the form

∂μ∂
μϕþ ∂U

∂ϕ� ¼ 0; ð2Þ

for which we will discuss a particular set of solutions. If

the potential U contains attractive interactions, a bound-

state solution with charge Q is possible that has the lowest

energy among all configurations with the same charge, and

is hence stable [1]. The potential needs to fulfill

dU

djϕj

�
�
�
�
ϕ¼0

¼ 0;
d2U

dϕdϕ�

�
�
�
�
ϕ¼0

≡m2

ϕ > 0; ð3Þ

so that the vacuum ϕ ¼ 0 is stable and the Uð1Þ unbroken,
and UðjϕjÞ=jϕj2 has to have a minimum at jϕj≡ ϕ0=

ffiffiffi

2
p

such that

0 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Uðϕ0=
ffiffiffi

2
p

Þ
ϕ2

0

s

≡ ω0 < mϕ ð4Þ

for an attractive force to exist that leads to largeQ-balls [1].

Under these conditions, spherically symmetric localized

solutions to the classical equations of motion of the form

ϕðx; tÞ ¼ fðjxjÞeiωtϕ0=
ffiffiffi

2
p

exist if

ω0 < ω < mϕ; ð5Þ

which describe Q-balls [1].

The attractive-force requirement from Eq. (4) cannot

be satisfied for a renormalizable bounded-from-below

single-field potential [1]. Instead, it is necessary to consider

multifield potentials [3] or higher-dimensional operators

obtained by integrating out heavier fields [2]. Neglecting

quantum corrections, the latter procedure generates poly-

nomial potentials in jϕj. Here, we restrict ourselves to

polynomials involving three terms,

UðjϕjÞ ¼ m2

ϕjϕj2 − βjϕjp þ ξjϕjq; ð6Þ

as this is the minimal form that satisfies the requirements

for large Q-balls, also studied in Ref. [16]. The above form

for U should cover a large part of physically motivated

potentials, at least approximately. While p and q should be

even integers for potentials obtained within effective field

theory (see Sec. VI), most of our mathematical analysis

holds for arbitrary integer or even real exponents satis-

fying 2 < p < q. We will show in Sec. VI that multifield

scenarios involving additional light fields can lead to odd

and even fractional p and q.

For the above potential, we can calculate the parameters

relevant for Eq. (4) as

ϕ0 ¼
ffiffiffi

2

p �ðp − 2Þβ
ðq − 2Þξ

�
1

q−p

;

ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ −
q − p

q − 2

�
p − 2

q − 2

�p−2
q−p

�
βq−2

ξp−2

� 1

q−p

s

; ð7Þ

allowing us to replace the (generally dimensionful) cou-

plings β and ξ with the physically relevant ϕ0 and ω0.

For 2 < p < q, β and ξ both need to be positive. The β

coupling provides the attractive force that enables the

bound state and the ξ term keeps the potential bounded

from below. The case p ¼ 4, q ¼ 6 has been discussed

extensively in the literature, especially in Ref. [15].

Using the ansatz ϕðx; tÞ ¼ fðjxjÞeiωtϕ0=
ffiffiffi

2
p

and rescal-

ing x → x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ − ω2

0

q

in Eq. (2) leads to the equation of

motion for the dimensionless function fðρÞ,

f00ðρÞ þ 2

ρ
f0ðρÞ þ d

df
VðfÞ ¼ 0; ð8Þ

ρ being the dimensionless radial coordinate, with effective

potential

VðfÞ ¼ ðp − qÞðκ2 − 1Þf2 − ðq − 2Þfp þ ðp − 2Þfq
2ðp − qÞ ð9Þ

and boundary conditions f0ð0Þ ¼ 0 and fðρ → ∞Þ ¼ 0.

We will restrict our analysis to solutions of Eq. (8) with

monotonically decreasing non-negative f, as these describe
the Q-ball ground state configurations [3,17–19]. Due to

the rescaling, the differential equation (8) only depends on

p, q, and the parameter

κ2 ≡
ω2 − ω2

0

m2

ϕ − ω2

0

; ð10Þ

which is restricted to 0 < κ < 1 from Eq. (5) and ultimately

determines the Q-ball radius R [15]. The macroscopic

Q-ball properties of most interest to us, charge Q and

energy E, are given by [15]

Q ¼ 4πϕ2

0
ω

ðm2

ϕ − ω2

0
Þ3=2

Z
∞

0

dρ ρ2f2; ð11Þ

E ¼ ωQþ 4πϕ2

0

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ − ω2

0

q

Z
∞

0

dρ ρ2f02; ð12Þ

and thus require knowledge of two dimensionless integrals

that are functions of p, q, and κ (or the radius).
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Equation (8) can be interpreted as a one-dimensional

mechanics problem of a particle with position f moving in

the potential V, the radial coordinate ρ playing the role of

time [1]. In this interpretation, the f0=ρ term corresponds

to time-dependent friction. The potential V is illustrated in

Fig. 1 for several values of p and q. For 0 < κ < 1, the

potential has three extrema in the region f ≥ 0: one local

maximum at f ¼ 0, one local minimum at f ¼ f− > 0, and

a global maximum at f ¼ fþ > f−. The particle starts at

rest at a value f ∈ ðf−; fþÞ and then rolls toward f ¼ 0,

which it reaches after an infinite amount of time, i.e., for

ρ → ∞. For small κ, fþ ≃ 1, and VðfþÞ ≃ κ2=2, not much

larger than Vð0Þ ¼ 0; the particle therefore needs to start

very close to fþ and wait until the friction term is

sufficiently suppressed to roll, almost frictionless, to

f ¼ 0. This small κ limit is called the thin-wall limit,

where f resembles a step function [1] and the Q-ball radius

is large. This leading order approximation was investigated

in Ref. [16] as a function of p and q. Following Ref. [15],

we will provide improved approximations for this regime.

III. THIN-WALL LIMIT

Neglecting friction in the small-κ regime simplifies the

equation of motion (8) to

f00ðρÞ þ d

df
VðfÞ

�
�
�
�
κ¼0

¼ 0; ð13Þ

which is equivalent to the first-order differential equation

1

2
f02 þ VðfÞ

�
�
�
�
κ¼0

¼ 0 ð14Þ

upon using energy conservation in the classical-mechanics

analogy [15]. The profile fðρÞ is then determined via direct

integration as [2]

Z

df
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞ
p

�
�
�
�
κ¼0

¼ −

Z

dρ: ð15Þ

Following Ref. [15], we denote this solution as the

transition profile, which is strictly speaking only expected

to be valid for small κ and around ρ ¼ R, but practically
provides an excellent approximation for all ρ and even for

large κ, to be specified below. We define theQ-ball radius R

via fðRÞ ¼ 2

3
fð0Þ, with fð0Þ ≃ fþ ≃ 1 in the thin-wall

regime. This proves a more convenient radius definition

than that of Ref. [15] as it turns Eq. (15) into a definite

integral that can be calculated numerically with ease to

obtain ρðfÞ [2]:

ρðfÞ ¼ R −

Z
f

2=3

df̃
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Vðf̃Þ
q

�
�
�
�
�
�
κ¼0

: ð16Þ

To estimate the radius R of aQ-ball in the small-κ regime

we return to the mechanical analogy discussed above. The

particle starts at f ≃ fþ ≃ 1 with potential energy VðfþÞ ≃
κ2=2 and ends at f ¼ 0 with potential energy Vð0Þ ¼ 0.

The difference in energies, κ2=2, must equal the energy lost

through friction [18], i.e.,

κ2

2
¼ −

Z
0

1

df
2

ρ
f0ðρÞ: ð17Þ

Since f0 is only nonzero around ρ ¼ R, we can approxi-

mate 1=ρ ≃ 1=R in the integrand; f0 can then be replaced by
the potential using Eq. (14), giving the relation

κ2

2
≃ −

2

R

Z
0

1

df
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞ
p

�
�
�
�
κ¼0

: ð18Þ

For small κ, the Q-ball radius is hence of the form

R ≃
η

κ2
≡

4
R
1

0
df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞ
p

jκ¼0

κ2
: ð19Þ

As expected from the mechanics analogy, the Q-ball

radius becomes larger for decreasing κ. The prefactor η is

determined by a simple integral over the potential, which

is an Oð1Þ number with small p and q dependence.

Using Eq. (9) we can see that the integrand of the

Eq. (19) becomes larger with increasing p and q. The
smallest allowed integers are p ¼ 3 and q ¼ 4, which

lead to the lower bound ηmin ¼ 2=3. To determine the

upper bound of η, let us take q to infinity first, which

leaves us with

lim
q→∞

η ¼ 4

Z
1

0

df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − fp
q

ð20Þ

¼
ffiffiffi
π

p
Γð p

p−2
Þ

Γð3
2
þ 2

p−2
Þ ð21Þ

p =3, q = 6

p =3, q = 8

p =5, q = 6

p =5, q = 8

p =20, q = 22

p =150, q = 160

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
–0.3

–0.2

–0.1

0.0

0.1

f

V
(f
)

FIG. 1. Plot of the effective potential VðfÞ from Eq. (9) for

κ ¼ 0.4 and various integer p and q.
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¼ 2 −
2.45

p
þOðp−2Þ; ð22Þ

with the Gamma function ΓðxÞ. From Eq. (22) it follows

that the upper bound is ηmax ¼ 2. We conclude that for

integer exponents 2

3
≤ η < 2.

Since the potential (9) is symmetric under p ↔ q,
subsequent equations should also be symmetric; this leads

us to a better approximation for η:

η ≃

ffiffiffi
π

p
Γð p

p−2
Þ

Γð3
2
þ 2

p−2
Þ þ

ffiffiffi
π

p
Γð q

q−2
Þ

Γð3
2
þ 2

q−2
Þ − 2; ð23Þ

valid for large p and q. This deviates from the numerical

integral of Eq. (19) by less than 8% for integer p > 3 and

q > 6 and is therefore a useful approximation for most

exponents.

In the thin-wall limit, κ ≪ 1, the Q-ball radius is hence

obtained from Eq. (19) and the profile fðρÞ—or rather

ρðfÞ—from Eq. (16), which can then be used to obtain

Q-ball charge and energy from Eqs. (11) and (12) using the

integrals

Z∞

0

dρρ2f2 ≃

Zρð1−εÞ

0

dρ̄ρ̄2 þ
Z1−ε

0

df
ρðfÞ2f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞjκ¼0

p ; ð24Þ

Z∞

0

dρρ2f02 ≃

Z1

0

dfρðfÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞjκ¼0

p

; ð25Þ

where the f2 integral is split to avoid the singularity in the

second term for ε → 0. Any ε ≪ 1 gives a good approxi-

mation here. This procedure is trivial to perform numeri-

cally for any p and q and is far simpler than solving the

original differential equation, especially since the latter

becomes numerically difficult for minuscule κ. For some

cases of p and q, all integrals can even be performed

analytically, leading to particularly simple descriptions of

thin-wall Q-balls, as shown below.

To compare our analytic approximations with the exact

solutions, we solve the differential equation (8) numerically

via the shooting method [1], which is straightforward at

least for small p, q and κ not too close to 0 or 1. Since the

differential equation including boundary conditions is

identical to the bounce equation of vacuum decay in three

dimensions [20–22], we can borrow codes dedicated to that

problem to find Q-ball profiles. In addition to our own

implementation of the shooting method, we also use

AnyBubble [23] in our analysis.

A. Equidistant exponents: p= 2 +n, q = 2 + 2n

Analytic approximations of the thin-wall Q-ball equa-

tion are easiest to obtain when the exponents in the

potential are equidistant, i.e., p − 2 ¼ q − p≡ n, where
n is positive and typically an even integer. Special cases

include n ¼ 2, discussed in Ref. [15], and n ¼ 1, discussed

in Ref. [13]. In this case, the potential V reaches its global

maximum at

fþ ¼
�
2þ nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 4κ2 þ 4nκ2
p

2þ 2n

�1

n

ð26Þ

¼ 1þ κ2

n2
−
ð1þ 3nÞκ4

2n4
þOðκ6Þ: ð27Þ

The magnitude of the potential at this point is

VðfþÞ ¼
κ2

2

�

1þ κ2

n2
−
κ4

n3
þOðκ6Þ

�

: ð28Þ

The radius integral (19) can be performed analytically to

give the radius at small κ:

R ≃
2n

ð2þ nÞκ2 ; η ≃
2n

2þ n
: ð29Þ

Restricting ourselves to integer n, the coefficient η ranges

from 2=3 (n ¼ 1) to η ¼ 2 (n → ∞), increasing monoton-

ically. This happens to coincide with the η range for

arbitrary p and q, as shown above. In Fig. 2, we compare

the prediction from Eq. (29) with numerical results
1
for

several n and find excellent agreement even for κ as large as

0.8. The only exception is the n ¼ 1 case, which is special

in many ways and will be discussed in more detail below.

FIG. 2. RðκÞ dependence for various equidistant exponents,

p ¼ 2þ n, q ¼ 2þ 2n. Dots correspond to numerical values and

solid lines to the R ∝ 1=κ2 thin-wall prediction of Eq. (29). The

dashed line represents the n ¼ 1 thick-wall prediction of Sec. IV

and the black line the n → ∞ limit from Sec. V.

1
Numerical data are supplied as ancillary files on the

arXiv [24].
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The analytical transition function of Eq. (16) takes the

simple form

fðρÞ ¼
�

1þ
��

3

2

�
n

− 1

�

enðρ−RÞ
�
−1

n

: ð30Þ

(For the radius definition of Ref. [15], f00ðRÞ ¼ 0, we

would instead have fðρÞ ¼ ð1þ n exp½nðρ − RÞ�Þ−1=n.)
Rather than using this transition profile fðρÞ directly,

we modify it slightly to take into account that the particle

does not start at f ¼ 1 but rather fþ ≃ 1þ κ2=n2 and

define

FðρÞ≡
�

1þ κ2

n2

��

1þ
��

3

2

�
n

− 1

�

enðρ−RÞ
�
−1

n

: ð31Þ

This ansatz FðρÞ is equally valid as fðρÞ but leads to a

slightly better agreement with numerical results for larger

κ. In Fig. 3 we can see how well this approximation

describes the exact profiles. The transition profiles

become better for smaller κ, as expected, as well as

for larger n. The latter can be understood by noting that

our thin-wall approximations fþ ≃ 1 and VðfþÞ ≃ κ2=2
become increasingly better for larger n, as can be seen in

Eqs. (27) and (28).

With radius and transition profiles at our disposal it is

straightforward to calculate Q-ball charge and energy, as

determined by the two integrals
R
F2ρ2dρ and

R
F02ρ2dρ.

Expanding in small κ or large radius, we find

Z

½FðρÞ�2ρ2dρ ≃ R3

3

�

1þ 1

nðnþ 2ÞR

�

−3ðnþ 2Þ log
��

3

2

�
n

− 1

�

− 3ðnþ 2Þ
�

ψ ð0Þ
�
2

n

�

þ γ

�

þ 4

�

þ 1

2n2R2

�

π2 þ 6γ

�

γ −
4

nþ 2

�

þ 12

�

log

��
3

2

�
n

− 1

�

þ γ −
2

nþ 2

�

ψ ð0Þ
�
2

n

�

þ 6 log ðð3
2
Þn − 1Þð2γðnþ 2Þ þ ðnþ 2Þ log ðð3

2
Þn − 1Þ − 4Þ

nþ 2
þ 8

ðnþ 2Þ2 þ 6ψ ð0Þ
�
2

n

�
2

þ 6ψ ð1Þ
�
2

n

�	�

;

ð32Þ
Z

½F0ðρÞ�2ρ2dρ ≃ nR2

2nþ 4

�

1þ 4 − 2ðnþ 2Þðlogðð3
2
Þn − 1Þ þ ψ ð0Þð2

n
Þ þ γ − 1Þ

nðnþ 2ÞR

þ 1

6n2ðnþ 2Þ2R2

�

48ðnþ 2Þ
�

log

��
3

2

�
n

− 1

�

þ ψ ð0Þ
�
2

n

�

þ γ − 1

�

þ 24þ ðnþ 2Þ2
�

6ψ ð1Þ
�
2

n

�

þ π2 þ 6ðγ − 2Þγ þ 6 log

��
3

2

�
n

− 1

��

log

��
3

2

�
n

− 1

�

þ 2γ − 2

�

þ 6ψ ð0Þ
�
2

n

��

2

�

log

��
3

2

�
n

− 1

�

þ γ − 1

�

þ ψ ð0Þ
�
2

n

���	�

; ð33Þ

where γ ≃ 0.577 is the Euler–Mascheroni constant and

ψ ð1ÞðxÞ is the first derivative of the Digamma function

ψ ð0ÞðxÞ≡ Γ
0ðxÞ=ΓðxÞ.

In Fig. 4 we compare these integrals to the numerical

solutions for various n. Clearly our analytical approx-

imations are excellent even outside the thin-wall limit.

For n > 1, they are good up to κ ≃ 0.8 and become

better for increasing n. The case n ¼ 1 is once again

special and will be discussed in more detail below

in Sec. IV.

The two integrals allow us to determine the charge

Q and energy E of Q-balls. To lowest nontrivial order

we have

E ≃ ω0Qþ n

2þ n

�
9πϕ2

0

2ω2

0

�
1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ − ω2

0

q

Q2=3 ð34Þ

FIG. 3. Comparison between profiles generated numerically

(dashed) and analytically (solid) via Eqs. (31) and (29).
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in the thin-wall or large-Q limit ω ≃ ω0, assuming ω0 ≠ 0.
2

We see that the n-dependence of the Q-ball energy for a

fixed charge Q is very mild, merely an Oð1Þ factor in front

of the surface energy. Of particular interest is the ratio

E=ðmϕQÞ, which has to be smaller than unity to ensure

Q-ball stability against decay into Q free particles [25]:

E

mϕQ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 þ
�
ω0

mϕ

�
2

ð1 − κ2Þ
s

þ
1 − ½ω0

mϕ
�2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 þ ½ω0

mϕ
�2ð1 − κ2Þ

q

R
½f0ðρÞ�2ρ2dρ
R
½fðρÞ�2ρ2dρ : ð35Þ

The stability criterion E=ðmϕQÞ < 1 depends on κ, ω0=mϕ,

and the ratio of the two integrals. In the small κ expansion,

the ratio of integrals takes the following form

R
½F0ðρÞ�2ρ2dρ
R
½FðρÞ�2ρ2dρ ≃

3n

2ð2þ nÞR

×

�

1þ 1

R

2þ γ þ ln½ð3
2
Þn − 1� þ ψ ð0Þð2

n
Þ

n
þ 1

3n2R2

×

�

3 ln

��
3

2

�
n

− 1

��

4þ 2γ þ ln

��
3

2

�
n

− 1

��

þ 6ψ ð0Þ
�
2

n

��

2þ γ þ ln

��
3

2

�
n

− 1

�

þ ψ ð0Þð2
n
Þ

2

�

þ 3γð4þ γÞ − π2 − 6ψ ð1Þ
�
2

n

�	�

: ð36Þ

For small κ or large R, the ratio of integrals goes to zero as

3κ2=4 and E → ω0Q < mϕQ for ω0 > 0. Stability against

decay into Q free particles is hence guaranteed in the thin-

wall limit, as shown long ago by Coleman [1]. This holds

for all n.
For larger κ, on the other hand, it is not clear that E

remains below mϕQ; indeed, our analytical thin-wall

results imply E > mϕQ for κ ≳ 0.8 for all integer n.

Unfortunately, this κ region is just at the edge of viability

for our thin-wall results and hence not fully trustworthy, at

least for small n. Instead, we have checked this region

numerically; for n ≥ 2,Q-balls indeed become unstable for

κ ≥ κcritical ∼ 0.8, illustrated in Fig. 5. For n ≥ 3, a regular

pattern emerges where κcritical increases with n. This

eventually converges toward the black n → ∞ line in

Fig. 5, which is derived in Sec. V and does not rely on

the thin-wall approximation. Ultimately, κcritical always lies

between 0.8 and 0.85 for n ≥ 2, showing a rather mild

dependence on n and ω0=mϕ. Since Q ∝
R
dρ ρ2f2 is a

monotonic function of κ for κ < κcritical (see Fig. 4), the

stability criterion is equivalent to a minimal charge Q a

stable Q-ball needs to have.

FIG. 5. Values of κ ¼ κcritical that leads to E ¼ mϕQ for

several n. Dotted curves are generated numerically, the solid

black line represents our theoretical estimation of the n → ∞ case

from Sec. V.

FIG. 4.
R
½F0ðρÞ�2ρ2dρ (top) and

R
½FðρÞ�2ρ2dρ (bottom) as

functions of κ for various n. Dots correspond to the numerical

values, solid lines show our thin-wall approximations from

Eqs. (32) and (33). The dashed line represents the n ¼ 1

thick-wall prediction of Sec. IV and the black line the n → ∞

limit from Sec. V.

2
For ω0 ¼ 0, we have E ≃ 5

2
½n=ð2þ nÞ�3=5ðπ=3Þ1=5 ×

ϕ
2=5
0

m
3=5
ϕ Q4=5.
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For integer n, we are left with the special case n ¼ 1 (or

p ¼ 3, q ¼ 4), which does not have a κcritical, i.e., leads to

Q-balls with E < mϕQ for all κ ∈ ð0; 1Þ, see Fig. 6. The

stability of these Q-balls around κ ∼ 1 was proven already

in Refs. [13,14,16,26] (see Sec. IV for details), here we

show numerically that the Q-balls are also stable in the

intermediate κ regime between the thin- and thick-wall

limits. Analytical approximations are difficult to obtain in

this intermediate regime.

B. General exponents

Equidistant exponents in the potential lead to simple

analytical expressions for thin-wall Q-ball properties, but

clearly only cover part of the possible parameter space. Let

us briefly discuss general p and q exponents. Notice that

even though our original Lagrangian requires p < q, the
rescaled differential equation and effective potential VðfÞ
are symmetric under p ↔ q and thus equally valid for

q > p; even the limit q ¼ p is well defined.

Equation (16) cannot be solved analytically for arbitrary

p and q, but we can try to find an effective equidistance

parameter nðp; qÞ which generates the profile most similar

to the one generated by p and q. To find this n, we note that
both radius and profile shape are determined by integrals of

the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞ
p

jκ¼0, see Eqs. (19) and (16). This

function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞ
p

jκ¼0 is fairly simple: it vanishes at f ¼ 0

and f ¼ 1 and has a ðp; qÞ-dependent maximum at an

f ∈ ð1=2; 1Þ. For any p and q we can try to describe this

function approximately using the equidistant expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2VðfÞ
p

jκ¼0 ¼ fð1 − fnÞ. A numerical fit would lead to

the optimal n, but to obtain an analytic approximation we

simply match the potentials at the radius, i.e., at f ¼ 2=3:

V

�

f ¼ 2

3

�

p¼2þn;q¼2þ2n

¼ V

�

f ¼ 2

3

�

p;q

ð37Þ

which provides the effective nðp; qÞ

nðp; qÞ ¼
log




1 − 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2
3
Þqðp−2Þ
q−p

þ ð2
3
Þpðq−2Þ
p−q

þ 4

9

q �

logð2
3
Þ ; ð38Þ

manifestly symmetric under p ↔ q. This ansatz for nðp; qÞ
can now be used with Eq. (31) to predict the profile fðρÞ for
arbitrary p and q. We stress that the so-obtained fðρÞ will
always be approximate, unlike the equidistant cases that

correspond to actual asymptotic solutions to the differential

equation. Nevertheless, the profile obtained using this

effective nðp; qÞ is a good approximation of the actual

potential Vðf; p; qÞ, especially for p ≃ q. Profiles gener-

ated using this nðp; qÞ prediction and Eq. (31) can be seen

in Fig. 7. The one-parameter set of profiles of Eq. (31) is

FIG. 7. Profile behavior in the vicinity of the surface for

R ¼ 50. Solid lines correspond to the theoretical prediction of

Eq. (31) with effective nðp; qÞ from Eq. (38), while dots come

from numerical computation.

FIG. 6. E=ðmϕQÞ dependence on κ for n ¼ 1 for various

ω2

0
=m2

ϕ. The dots represent numerical data, the lines our thin-

wall results.

FIG. 8. RðκÞ dependence for various p and q using nðp; qÞ
prediction. Dots correspond to the numerical values, solid lines

show R ¼ 2n=ð2þ nÞ=κ2 with nðp; qÞ from Eq. (38). The dashed

line represents the thick-wall prediction for p ¼ 3 derived in

Sec. IV and the black line the n → ∞ limit from Sec. V.
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apparently (and surprisingly) sufficient to capture all

possible profile shapes for general exponents p and q!
This nðp; qÞ prediction naturally allows us to apply every

analytical formula that we have already derived for the

equidistant case in Sec. III A to the general case of arbitrary

ðp; qÞ. For example, with the help of Eqs. (29) and (38) we

can predict radii of Q-balls for arbitrary p and q. In Fig. 8

we can see that we predict radii with high accuracy all the

way up to κ ≃ 0.8, at least for p > 3. The region beyond

κ ≈ 0.86 is unstable anyway in all cases except p ¼ 3, to be

discussed in detail in Sec. IV. It is worth noting that RðκÞ
calculated in this way and using the previous prediction

[Eq. (19)] agree to better than 7% for all integer p and q, the
largest deviation being 6.3% for the p ¼ 5, q → ∞ case.

With radius and profile for arbitrary p and q at our

disposal, we can also calculate the two integrals relevant for

Q-ball energy and charge. The integrals are simply

Eqs. (32) and (33), with the radius replaced by Eq. (29)

and n by the effective nðp; qÞ from Eq. (38). The

comparison to numerical results is shown in Fig. 9 and

is very good for small κ and p > 3. We can see that

R
½FðρÞ�2ρ2dρ (bottom) works extremely well for κ ≲ 0.86.

R
½F0ðρÞ�2ρ2dρ (top) properly fits numerical results only for

κ ≲ 0.75. The p ¼ 3 case is special asQ-balls remain stable

for all κ and also shows the largest deviation with our

prediction. This case is discussed in more details in Sec. IV.

Just like in the case of equidistant exponents, our thin-

wall results predict E > mϕQ for κ ≳ 0.8. For large p and

q, this region is still covered by our thin-wall approxima-

tion and hence qualitatively correct. For small p and q, we
have to rely on numerical data to investigateQ-ball stability

in this region. As shown already in Refs. [14,16,26], only

the cases with p ¼ 3 are stable near κ ¼ 1, and are actually

stable for all κ, as argued below in Sec. IV. All integer cases

with p > 3, on the other hand, become unstable beyond

some κcritical ∼ 0.8. We provide many examples for κcritical in

Fig. 10. Our numerical calculations show that the case of

p ¼ 4 and q ¼ 5 has the largest κcritical compared to other

integer exponents. As we increase both p and q we see that

κcritical decreases. And as we keep increasing p and q, at
some point κcritical starts increasing again. We find that out

of all integer exponents p ¼ 6 and q ¼ 7 case has the

smallest κcritical. Also, in this case and in all the following

cases with larger p, increasing q increases κcritical as well. If

we take a look at larger exponents we can notice that curves

follow more consistent shape and look similar to our

p → ∞ prediction. We derived this prediction using

Eqs. (50) and (35).

IV. THICK-WALL LIMIT AND THE p = 3 CASE

As shown above, solutions to the differential equation (8)

can be well approximated in the small κ regime using

transition functions. For integer p > 3, these approxima-

tions are sufficiently accurate over the entire κ region that

leads to stable Q-balls. Only the cases with p ¼ 3 motivate

us to consider larger κ, as they still allow for stable

Q-balls [13,14,16,26]. Near κ ∼ 1 we can find the profiles

using the thick-wall approximation [13,27], based on the

fact that fð0Þ becomes smaller and smaller as κ → 1, which

is clear from the shape of the potential V. For small f, one

FIG. 9.
R
½F0ðρÞ�2ρ2dρ (top) and

R
½FðρÞ�2ρ2dρ (bottom)

dependence on κ for various p and q using nðp; qÞ prediction.
Dots correspond to the numerical values, when solid lines denote

the predictions from Eqs. (33) and (32). The dashed lines

represent the thick-wall predictions for p ¼ 3 derived in Sec. IV

and the black lines the n → ∞ limit from Sec. V.

FIG. 10. κcritical (where E ¼ mϕQ) for several p and q.
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can then neglect the fq term in the potential, seeing as it is

the most suppressed term in the small-f limit. In the

classical-mechanics analogy, the particle is not starting

near the maximum as in the thin-wall limit, so the fq term
that generates this maximum can be neglected. Notice that

we still have a q-dependence in our potential despite

neglecting the fq term due to our definitions of, e.g.,

ω0. q of course drops out of physical quantities in the thick-

wall limit. Setting p ¼ 3 and omitting fq allows for a

useful rescaling of the differential equation [14]: we write

fðρÞ ¼ 2ðq − 3Þ
3ðq − 2Þ ð1 − κ2Þgð

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p

ρÞ ð39Þ

with a function gðxÞ that is determined by the parameterless

differential equation

g00ðxÞ þ 2

x
g0ðxÞ − gðxÞ þ gðxÞ2 ¼ 0; ð40Þ

easily solved numerically [footnote
1
] and well-

approximated by the function

gðxÞ ≃ ð4.20 − 0.10x − 0.85x2 þ 0.30x3Þe−0.31x2 : ð41Þ

The Q-ball radius in the thick-wall limit then diverges as

R ≃
0.91
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p ⇒ RQ-ball ≃

0.91
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ − ω2

q ð42Þ

and the integrals take the simple form

Z

½f0ðρÞ�2ρ2dρ ¼ ð1 − κ2Þ
Z

½fðρÞ�2ρ2dρ ð43Þ

¼ 4ðq − 3Þ2
9ðq − 2Þ2 ð1 − κ2Þ32

Z

dxx2g2

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

≃10.42

: ð44Þ

These thick-wall predictions are shown in Figs. 2, 4, 8, and

9 and match numerical data very well for κ close to 1,

especially for q ≫ 3. For the stability ratio we then find

E

mϕQ
¼ 1 −

m2

ϕ − ω2

0

3m2

ϕ

ð1 − κ2Þ þO½ð1 − κ2Þ2�; ð45Þ

rendering these p ¼ 3 thick Q-balls stable for κ → 1, albeit

much weaker bound than thin-wall Q-balls. The charge Q
is manifestly q-independent and actually approaches zero

in the thick-wall limit ω → mϕ, despite the diverging

radius:

Q ≃
32πω

9β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ − ω2

q Z
∞

0

dx x2gðxÞ2; ð46Þ

with the β from Eq. (6). p ¼ 3 Q-balls thus become more

and more dilute while carrying less and less charge and

energy as κ → 1, eventually approaching the vacuum

solution ϕ ¼ 0. However, our classical-field description

of these ϕ bound states eventually breaks down at small

Q and needs to be replaced by a quantum-mechanical

picture [13,28,29].

So far we have only shown that p ¼ 3 Q-balls are

stable for small κ (thin wall) and near κ ¼ 1 (thick wall).

For q > 4 our analytical descriptions are accurate

enough to prove stability, i.e., E < mϕQ, over the entire

κ range. For q ¼ 4 we have checked numerically that

E < mϕQ holds for all κ, as illustrated in Fig. 6. p ¼ 3

Q-balls with any integer q > 3 thus have E < mϕQ for

any κ ∈ ð0; 1Þ.
We have restricted our discussion so far to integer p and

q, for which indeed p ¼ 3 < q is the only case with stable

Q-balls near κ ∼ 1. For noninteger exponents, Refs. [14,16]

have shown thatQ-balls with 2 < p < 10=3 are stable near
κ ∼ 1. Our results suggest that those Q-balls are actually

stable over the entire range 0 < κ < 1.

V. LIMIT OF LARGE EXPONENTS

The case of large exponents, 2 ≪ p < q, allows for a

qualitatively different approximation than the thin-wall

limit above. As can be seen from Fig. 1, large p and q
lead to a very narrow maximum of VðfÞ, positioned at

f ≃ 1, no matter the value of κ. The particle then falls

down the almost vertical cliff, all the while remaining

at f ≃ 1, until it reaches the potential minimum. The

motion from the minimum to f ¼ 0 is subsequently

described by the easy-to-solve differential equation

f00ðρÞ þ 2

ρ
f0ðρÞ − fðρÞð1 − κ2Þ ¼ 0; ð47Þ

where we neglected any fp or fq terms since they are

highly suppressed in the f < 1 region. The large-

exponent profile is then simply

flarge−p ¼
(
1; ρ < R̃;

R̃
ρ
exp ð

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p

ðR̃ − ρÞÞ; ρ ≥ R̃;
ð48Þ

demanding continuity at the point ρ ¼ R̃ (which is

related to the radius by R ≃ R̃þ 1=3 in the stable κ

regime). This ansatz is valid for all κ in the 2 ≪ p < q

limit. To find the remaining R̃ðκÞ relation, we can use

Eq. (17); notice that the left-hand side of Eq. (17),

VðfþÞ, is κ2=2 for p; q → ∞, just like in the small-κ

limit. This gives

R̃ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p

κ2
; ð49Þ
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valid again for all κ in the 2 ≪ p < q limit. The large-p
radius is shown in Figs. 2 and 8. The integrals then take

the simple forms

Z

½f0ðρÞ�2ρ2dρ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p

þ 1Þðκ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p

þ 1Þ
2κ4

;

Z

½fðρÞ�2ρ2dρ ¼ 8 − κ4 − 4κ2 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p

6κ6
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p ; ð50Þ

illustrated in Figs. 4 and 9. Solutions to our differential

equation in the large exponent limit show a simple and

universal behavior. This does not imply that Q-ball energy

and charge become independent of p and q in this limit, as

the ϕ0 and ω0 in Eq. (7) depend on the exponents.

The integrals can also be used in Eq. (35) to find the

stability constraint in the limit of large exponents, shown in

Figs. 5 and 10. This confirms that the critical κ, satisfying

E ¼ mϕQ, lies in the narrow finite range (0.8,0.86) for all

integer p > 3.

VI. UV COMPLETION

So far we have worked with the potential UðjϕjÞ from
Eq. (6), which contains nonrenormalizable terms for even

exponents and charge-breaking terms for odd exponents. In

this section, we will show how these operators can be

obtained in UV-complete models.

We restrict ourselves to the simplest UV completion,

consisting of a Uð1Þ-charged complex scalar ϕ and a real

neutral scalar ψ, which have the Lagrangian

L ¼ ∂μϕ∂
μϕ� þ 1

2
∂μψ∂

μψ −U½ϕ;ψ � ð51Þ

with Uð1Þ-symmetric scalar potential

U½ϕ;ψ � ¼ m2

ϕjϕj2 þ
1

2
m2

ψψ
2 þ bjϕj4 þ cjϕj2ψ

þ djϕj2ψ2 þ eψ3 þ aψ4: ð52Þ

Here, mψ and mϕ are the particle masses and a, b, c, d, and

e are real constants.
3
The Euler–Lagrange equations for the

fields are

∂μ∂
μϕþ ∂U

∂ϕ� ¼ 0; ∂μ∂
μψ þ ∂U

∂ψ
¼ 0: ð53Þ

Once again we are looking for spherically symmetric

localized solutions to these equations, with time depend-

ence ϕðx; tÞ ∝ eiωt for ϕ and a time-independent ψ .

The leading-order thin-wall limit for such a system was

recently analyzed in Ref. [6], where it was shown that the

multi-field generalizations of Eq. (4) are

�
∂Uðjϕj;ψÞ

∂jϕj − 2
Uðjϕj;ψÞ

jϕj

��
�
�
�
jϕj¼ϕ0ffiffi

2
p ;ψ¼ψ0

¼ 0;

∂Uðjϕj;ψÞ
∂ψ

�
�
�
�
jϕj¼ϕ0ffiffi

2
p ;ψ¼ψ0

¼ 0; ð54Þ

which give the Q-ball energy

E ≃ ω0Q; with ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uðϕ0=
ffiffiffi
2

p
;ψ0Þ

ðϕ0=
ffiffiffi

2
p

Þ2

s

ð55Þ

to leading order in large Q. The Q-ball properties beyond

this thin-wall approximation have to be obtained numeri-

cally by solving the coupled nonlinear differential equa-

tions. Below, we show that for some special cases of the

potential U½ϕ;ψ � the two-field system can be mapped

onto a one-field system of the form discussed in the

previous sections, severely simplifying if not even solving

the problem.

Just like in the one-field case explored in the main part of

this article, it proves convenient to rescale the fields ϕ and

ψ by their thin-wall values ϕ0 and ψ0 as determined by

Eq. (54):

ϕðx; tÞ ¼ eiωt
ϕ0
ffiffiffi

2
p fðjxjÞ; ψðx; tÞ ¼ ψ0hðjxjÞ; ð56Þ

where fðjxjÞ and hðjxjÞ are dimensionless functions that are

≤ Oð1Þ for all x. We furthermore perform the same

coordinate transformation as before, x → x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ − ω2

0

q

,

with ω0 from Eq. (55). ω is replaced by κ as in

Eq. (10). All of this ensures that the equation of motion

for fðρÞ resembles that of our one-field scenario as closely

as possible, except, of course, for the presence of hðρÞ.
Since the rescaling is difficult for the general potential

U½ϕ;ψ � we will only show the resulting differential

equations for f and h for some special examples below.

The Q-ball charge Q is determined entirely by the

charged field ϕ and is again given by our Eq. (11) upon

using the definitions we set forth. TheQ-ball energy, on the

other hand, contains a contribution from the neutral field ψ :

E¼
Z

d3x

�
ϕ2

0
ðf0Þ2
2

þψ2

0
ðh0Þ2
2

þω2ϕ2

0
f2

2
þU½ϕ;ψ �

�

¼ωQþ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ−ω2

0

q

Z

dρρ2½ϕ2

0
ðf0Þ2þψ2

0
ðh0Þ2�; ð57Þ

where in the second line we used the virial theorem, e.g.,

Refs. [3,33].

3
The Wick–Cutkosky [30–32] and Friedberg–Lee–Sirlin [3]

models are notable special cases of this Lagrangian that are not
covered by our analysis below because they do not have a thin-
wall limit in the sense of Coleman—despite allowing for Q-ball-
like solutions.
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A. Massive ψ

Assuming mψ ≫ mϕ we can neglect the kinetic term in

the Euler–Lagrangian equation associated with the field ψ .

Thus we end up with ∂U½ϕ;ψ �=∂ψ ¼ 0. We can solve the

latter order-by-order in large mψ with the following ansatz

ψ ¼ x1

m2
ψ

þ x2

m4
ψ

þ x3

m6
ψ

þ… ð58Þ

with coefficients xj that depend on jϕj2 and the coefficients
in the two-field potential. The ψ field is hence suppressed

compared to the ϕ field in this expansion, which suppresses

ψ’s contribution to the Q-ball energy. After solving ψ’s

equation of motion and plugging the resulting ψ back into

the potential we get the potential for ϕ:

U½ϕ� ¼ m2

ϕjϕj2 þ
�

b −
c2

2m2
ψ

�

jϕj4 þ
�
c2d

m4
ψ

−
c3e

m6
ψ

�

jϕj6

þ
�
c4aþ 6c3de

m8
ψ

−
2c2d2

m6
ψ

�

jϕj8 þ 4c2d3

m8
ψ

jϕj10

þO

�
1

m10
ψ

�

: ð59Þ

As expected for an effective field theory at tree level, we

find higher-dimensional operators in jϕj2 suppressed by

powers of m2
ψ . Below we show some examples that can be

approximately described by our one-field potential from

Eq. (6). An alternative derivation of the same cases that

highlights the proper expansion parameter is deferred to

Appendix for the curious reader.

1. Large mψ , a = e = 0

Setting a ¼ e ¼ 0 and only keeping the terms up to

Oð1=m4
ψÞ, we find

U½ϕ� ≃m2

ϕjϕj2 þ
�

b −
c2

2m2
ψ

�

jϕj4 þ c2d

m4
ψ

jϕj6: ð60Þ

This corresponds to the p ¼ 4, q ¼ 6 case of Eq. (6) with

coefficients β ¼ −bþ c2

2m2
ψ
and ξ ¼ c2d

m4
ψ
. Since β is required

to be positive, we have to assume that b is of order

Oð1=m2
ψÞ. Both β and ξ are hence suppressed in this

expansion, with ξ being of order β2. Equation (7) shows

that m2

ϕ − ω2

0
¼ β2=ð4ξÞ is of order Oðm0

ψÞ so ω0 can

naturally take any value between 0 and mϕ.

2. Large mψ , e = d = 0

Setting d ¼ e ¼ 0 and keeping terms up toOð1=m8
ψÞwe

find the potential

U½ϕ� ≃m2

ϕjϕj2 þ
�

b −
c2

2m2
ψ

�

jϕj4 þ c4a

m8
ψ

jϕj8; ð61Þ

which corresponds to Eq. (6) with p ¼ 4 & q ¼ 8 and

β ¼ −bþ c2

2m2
ψ
and ξ ¼ c4a

m8
ψ
. Once again both b and β are

Oð1=m2
ψÞ in the heavy-ψ expansion. In this case, we find

that m2

ϕ − ω2

0
∝ β3=2=

ffiffiffi
ξ

p
is of order Oðmψ Þ and hence

large. Generically we then expect Q-balls with ω0 ≪ mϕ.

3. Large mψ , d = 0, b = c
2=ð2mϕÞ

Setting d ¼ 0 and b ¼ c2=2m2
ψ yields

U½ϕ� ≃m2

ϕjϕj2 −
c3e

m6
ψ

jϕj6 þ c4a

m8
ψ

jϕj8; ð62Þ

up to Oð1=m8
ψ Þ terms. This gives p ¼ 6, q ¼ 8 with

parameters β ¼ c3e
m6

ψ
and ξ ¼ c4a

m8
ψ
. Here, m2

ϕ − ω2

0
∝ β3=ξ2

is of order Oð1=m2
ψÞ and hence small, so ω0 should be of

order mϕ.

B. Massless ψ

The heavy-ψ framework from above unsurprisingly

generates even exponents p and q. Considering instead a

massless ψ can give odd or even rational exponents as we

will show below. For these scenarios we work with the

equations of motion from Eq. (53) rather than the potential.

We go through two simple cases below.

1. mψ = d = e = 0

Performing the above-mentioned rescaling for the case

mψ ¼ d ¼ e ¼ 0 yields the following simple equations of

motion for fðρÞ and hðρÞ

h00ðρÞþ 2h0ðρÞ
ρ

þ 2

ffiffiffi
a

b

r

½fðρÞ2−hðρÞ3� ¼ 0;

f00ðρÞþ 2f0ðρÞ
ρ

þ fðρÞðκ2 − 1þ 2hðρÞÞ−fðρÞ3 ¼ 0; ð63Þ

which depend only on two parameters: κ and a=b. If we
choose a ≫ b we can neglect the derivatives in the h
equation and solve the equation of motion algebraically to

hðρÞ ¼ fðρÞ2=3. Plugging this into the second equation we

recover for fðρÞ exactly the single-field equation (8) with

p ¼ 8=3 and q ¼ 4.

The relation hðρÞ ¼ fðρÞ2=3 holds for all κ, allowing us

to solve the two-field system by simply solving the single-

field equation (8). Of course, for small or large κ we can

even approximate fðρÞ and hence hðρÞ using our analytical
results from above. As illustrated in Fig. 11, the two

profiles (and radii) are indeed very well described by our

transition profile from Eq. (30) using nð8=3; 4Þ ≃ 0.8 from

Q-BALLS IN POLYNOMIAL POTENTIALS PHYS. REV. D 107, 016006 (2023)

016006-11



Eq. (38), at least for small κ and large a=b. This also allows
us to obtain analytic approximations for Q-ball energy and

charge. Notice that ψ0=ϕ0 ∝ ðb=aÞ1=4 here, so ψ ’s con-

tribution to theQ-ball energy (57) is suppressed in the limit

of interest.
4
Since these Q-balls are then approximately

single-fieldQ-balls with p ¼ 8=3 < 10=3, they have stable
thin- and thick-wall limits [14,16] and are hence stable

for all κ, allowing for arbitrarily large or small charge Q.

This case therefore provides one of the simplest renorma-

lizable realizations of a Q-ball that can grow naturally via

accumulation of particles without requiring a minimal

threshold charge. Of course, for small Q our classical

analysis needs to be replaced by a quantum one.

2. mψ = d = a = 0

Next, let us consider mψ ¼ d ¼ a ¼ 0. This gives the

system of equations

h00ðρÞ þ 2h0ðρÞ
ρ

þ 9e

c
½fðρÞ2 − hðρÞ2� ¼ 0;

f00ðρÞ þ 2f0ðρÞ
ρ

þ fðρÞð−2fðρÞ2 þ κ2 þ 3hðρÞ − 1Þ ¼ 0:

ð64Þ

Now, by choosing e ≫ c we see from the first equation that

the two profiles will approximately coincide: hðρÞ ¼ fðρÞ.
After plugging this into the second equation we recover

Kusenko’s single-field case with p ¼ 3 and q ¼ 4 for

fðρÞ [13]. The field ratio ψ0=ϕ0 ∝
ffiffiffiffiffiffiffiffiffiffi

jc=ej
p

is again sup-

pressed in the limit of interest. Just like in the previous case,

we hence find a simple renormalizable realization of a

stable Q-ball with arbitrary charge.

VII. DISCUSSION AND CONCLUSION

Q-balls are simple examples of bound states consisting

of scalars ϕ. Assuming an attractive self-interaction in the

scalar potential, these objects can contain a large number of

particles, allowing for a classical description. Q-balls have

been conceived many decades ago, but their description

outside of the simplest of limits has proven challenging,

owing to the nonlinear nature of their underlying field

equation. In this article, we performed an exhaustive study

of Q-balls generated by three-term potentials of the form

UðjϕjÞ ¼ m2

ϕjϕj2 − βjϕjp þ ξjϕjq:

For 2 < p < q and positive β and ξ, these are the simplest

potentials that can give large Q-balls à la Coleman. We

have provided analytical approximations that describe

stable Q-balls for all exponents p and q, in part by

generalizing the procedure of Ref. [15].

We find a surprisingly universal Q-ball behavior that

depends only weakly on the integers p and q: (i) The

instability threshold where E ¼ mϕQ falls in the narrow

range κ ∈ ð0.80; 0.86Þ for all p > 3. (ii) The volume

energy does not depend on p and q, and even the surface

energy shows only a mild dependence. (iii) Radii of stable

Q-balls with p > 3 scale with 1=κ2 up to anOð1Þ prefactor
that depends on p and q. Furthermore, all stable Q-balls

have radii R > 1, or, in terms of the actual dimensionful

Q-ball radius,

RQ-ball > 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ϕ − ω2

0

q

: ð65Þ

In particular, RQ-ball > 1=mϕ, in perfect agreement with the

bound state conjecture of Ref. [34] for the radius of any

stable bound state.

The discussion of single-field Q-balls is unavoidable

an effective one, as there are no values for p and q that

lead to a renormalizable charge-conserving potential that

is bounded from below. To highlight that our analysis is

nevertheless useful, we studied a simple renormalizable

two-field model that can be effectively described by our

one-field scenario with several p and q, including—quite

surprisingly—odd and fractional exponents. Repeating this

analysis for models with more fields would undoubtedly

allow us to generate potentials with an even wider range of

exponents.

Finally, our results for the ground-state profiles of global

Q-balls can be generalized to excited states [19] as well as

gauged and Proca Q-balls via the mapping relations of

Refs. [35,36].

FIG. 11. Profiles for fðρÞ and hðρÞ solving Eq. (63) numeri-

cally for κ ¼ 0.05 and 2
ffiffiffiffiffiffiffiffi

a=b
p

¼ 1000. The dashed black lines

show our thin-wall predictions, i.e., fðρÞ from Eq. (30) with

nð8=3; 4Þ ≃ 0.8 and hðρÞ ¼ fðρÞ2=3.

4
Although it is not difficult to keep the contribution; in

the thin-wall limit, the relevant integral for hðρÞ ¼ fðρÞk isR
dρρ2ðh0Þ2 ≃ nkR2=ð2nþ 4kÞ.
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APPENDIX: ALTERNATIVE DERIVATION

OF THE HEAVY ψ CASES

If the expansion in large mψ in Sec. VI A did not seem

convincing, we will provide an alternative derivation here

that follows the procedure of Sec. VI B by first rescaling the

two fields.

We start with the case a ¼ e ¼ 0. It proves convenient to

replace c ¼
ffiffiffi

2
p

mψ

ffiffiffiffiffiffiffiffiffiffiffi
bþ β

p
, with β defined just as below

Eq. (60). All the rescaling can be performed exactly, but

since the limit of interest will be small β we only show the

equations in that limit here. Eq. (54) can be solved to give

ϕ0 ≃
mψ
ffiffiffi

2
p ffiffiffiffiffiffi

bd
p

ffiffiffi

β
p

; ψ0 ≃
mψ

2
ffiffiffiffiffiffi

2b
p

d
β: ðA1Þ

In particular, ψ is suppressed compared to ϕ by
ffiffiffiffiffiffiffiffi

β=d
p

, so

ψ’s contribution to the Q-ball energy will be small. To

leading order in small β, the equation of motion for hðρÞ
takes the form

h00ðρÞ þ 2h0ðρÞ
ρ

þ 8bd

β2
½hðρÞ − fðρÞ2� ¼ 0 ðA2Þ

and thus fixes hðρÞ ¼ fðρÞ2 as long as β2 ≪ bd. The

equation of motion for f with hðρÞ ¼ fðρÞ2 then matches

the single-field Eq. (8) with p ¼ 4 and p ¼ 6, plus terms

that are suppressed by β=b. This matches the conclusion of

Sec. VI A 1 but highlights that the expansion parameter is

not really large mψ but rather small β. Of course, we

have identified β as being of order m−2
ψ above, so this is

consistent.

The discussion of the case d ¼ e ¼ 0 is analogous. We

again replace c by β and go to the small β limit, which gives

ψ0=ϕ0 ∝ ðβ=aÞ1=4, so ψ is again suppressed compared

to ϕ. For small β, the equation of motion for ψ gives

hðρÞ ¼ fðρÞ2. The differential equation for fðρÞ matches

our single-field equation with p ¼ 4, q ¼ 8 up to terms

suppressed by β=b.

Finally, the case with b ¼ c2=ð2m2
ψ Þ, d ¼ 0 is slightly

more laborious but analogous. We expand in small e, which

is equivalent to small β. The field ratio ψ0=ϕ0 ∝
ffiffiffiffiffiffiffiffiffiffi

ec=a
p

=mψ is suppressed again, and again we find hðρÞ ¼
fðρÞ2 for small e. The differential equation for fðρÞ
matches the p ¼ 6, q ¼ 8 case plus terms suppressed

by e2=ðam2
ψÞ.
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