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Q-balls in polynomial potentials
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Bosons carrying a conserved charge can form stable bound states if their Lagrangian contains attractive
self-interactions. Bound-state configurations with a large charge Q can be described classically and are
denoted as Q-balls, their properties encoded in a nonlinear differential equation. Here, we study Q-balls in
arbitrary polynomial single-scalar-field potentials both numerically and via various analytical approx-
imations. We highlight some surprising universal features of Q-balls that barely depend on the details of the
potential. The polynomial potentials studied here can be realized in renormalizable models involving
additional heavy or light scalars, as we illustrate with several examples.
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I. INTRODUCTION

Q-balls are interesting examples of large bound states,
in the simplest scenario consisting of Q > 1 complex
scalars ¢ with conserved global charge Q(¢) = 1.
Assuming an attractive force between these scalars,
Q-balls form the lowest-energy configuration for a fixed
charge Q and are hence stable [1]. Due to the large
amount of scalars residing in the (-ball, it can be
described classically as a spherically symmetric solution
to the nonlinear Lagrange equations, also known as a
nontopological soliton [2]. As emphasized already by
Coleman in his seminal paper on these objects [1], a
renormalizable quantum field theory for ¢ by itself does
not provide the required attractive interactions, but it is
possible to construct multifield models that lead to the
required terms in the scalar potential [1-6].

Even in effective single-field potentials it is typically
impossible to analytically solve the underlying nonlinear
differential equations, save for some special and often
unphysical examples [7—12]. In general, we have to satisfy
ourselves with numerical solutions or analytical approx-
imations, which include Coleman’s thin-wall approxima-
tion [1] (valid for very large Q-balls with thin surface
region) and Kusenko’s thick-wall approximation [13] (valid
for small but dilute Q-balls). These approximations allow
for an improved understanding of Q-balls that is difficult to
obtain from numerical scans and in particular cover the
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regions of parameter space that are challenging to inves-
tigate numerically [14,15].

The simplest consistent realization of Coleman’s large
Q-balls [1] requires a scalar potential for ¢p with a mass
term m;|¢ 2, an attractive interaction term o —|¢|”, and a

term that stabilizes the potential at large field values
x +|¢|, with 2 < p < g. We will study Q-balls in such
potentials as a function of p and ¢, mostly restricted to
integer exponents. We provide analytical approximations,
including the thin- and thick-wall limits, and compare them
to numerical solutions. In the thin-wall, or large Q, regime,
we find remarkably simple analytical solutions for arbitrary
p and g. Our model and notation is set up in Sec. IL
Section III generalizes the thin-wall approximation of
Ref. [15] to arbitrary p and ¢, including the particularly
easy-to-solve cases of equidistant exponents. Section IV
collects thick-wall results in our notation, restricted to the
case p = 3, as is this the only integer value for p that gives
stable Q-balls in the thick-wall regime. In Sec. V we
introduce a novel Q-ball approximation that is valid for p,
q > 2 irrespective of the wall thickness. In Sec. VI we
study some simple renormalizable multifield models and
discuss when and how they can be described by our
effective polynomial potentials. We discuss our results
and conclude in Sec. VII. Appendix gives an alternative
derivation of some results of Sec. VI.

II. MODEL

Using the mostly minus Minkowski metric, we study
single-field Q-balls [1] with a Lagrangian

L= 19,4 = U(|$]) (1)

for the complex scalar ¢ that is invariant under a global
U(1) symmetry ¢ — e'*¢, with constant a« € R, leading via
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Noether’s theorem to a conserved charge O, normalized
here to Q(¢) = 1. Q therefore counts the number of ¢
particles in a given field configuration. The Euler—
Lagrange equation takes the form

oU

0,0/ + — =

0, (2)

for which we will discuss a particular set of solutions. If
the potential U contains attractive interactions, a bound-
state solution with charge Q is possible that has the lowest
energy among all configurations with the same charge, and
is hence stable [1]. The potential needs to fulfill

a| U
P

mg > 0, (3)
$=0

so that the vacuum ¢ = 0 is stable and the U(1) unbroken,

and U(|¢|)/|¢p|* has to have a minimum at |¢| = /2
such that

2U 2
0< M =w) < my 4)
&5
for an attractive force to exist that leads to large Q-balls [1].
Under these conditions, spherically symmetric localized
solutions to the classical equations of motion of the form

Bx.1) = F(e]) g/ V3 exist it
wy < @ < my, (5)

which describe Q-balls [1].

The attractive-force requirement from Eq. (4) cannot
be satisfied for a renormalizable bounded-from-below
single-field potential [1]. Instead, it is necessary to consider
multifield potentials [3] or higher-dimensional operators
obtained by integrating out heavier fields [2]. Neglecting
quantum corrections, the latter procedure generates poly-
nomial potentials in |¢|. Here, we restrict ourselves to
polynomials involving three terms,

U(|pl) = mgldl* = BlpI? + Elgl. (6)

as this is the minimal form that satisfies the requirements
for large Q-balls, also studied in Ref. [16]. The above form
for U should cover a large part of physically motivated
potentials, at least approximately. While p and ¢ should be
even integers for potentials obtained within effective field
theory (see Sec. VI), most of our mathematical analysis
holds for arbitrary integer or even real exponents satis-
fying 2 < p < g. We will show in Sec. VI that multifield
scenarios involving additional light fields can lead to odd
and even fractional p and gq.

For the above potential, we can calculate the parameters
relevant for Eq. (4) as

- — 2\ (pI2\ 7
T (= L=

allowing us to replace the (generally dimensionful) cou-
plings f and & with the physically relevant ¢, and w.
For 2 < p < g, f and & both need to be positive. The f
coupling provides the attractive force that enables the
bound state and the & term keeps the potential bounded
from below. The case p =4, g = 6 has been discussed
extensively in the literature, especially in Ref. [15].

Using the ansatz ¢(x, 1) = f(|x|)e” ¢po/+/2 and rescal-

ing x — x/mj — @f in Eq. (2) leads to the equation of

motion for the dimensionless function f(p),

2 d
') +=f(p) + V() =0, (8
() +70) + g7 )
p being the dimensionless radial coordinate, with effective
potential

(P—q)(i* =1)f* = (q=2)f" + (p—2)f4

U= 2(p—q)

©)

and boundary conditions f/(0) =0 and f(p - o) =0.
We will restrict our analysis to solutions of Eq. (8) with
monotonically decreasing non-negative f, as these describe
the Q-ball ground state configurations [3,17-19]. Due to
the rescaling, the differential equation (8) only depends on
P, q, and the parameter

) _ @ =

, (10)

K=
my — o;

which is restricted to 0 < k < 1 from Eq. (5) and ultimately
determines the Q-ball radius R [15]. The macroscopic
Q-ball properties of most interest to us, charge Q and
energy E, are given by [15]

dndiw oo
0 24/ dpp?f2, (11)
(g = @5)*2 Jo
dngy [
E=wQ -+ / dpp?f?, (12)
0

3, /my — o

and thus require knowledge of two dimensionless integrals
that are functions of p, ¢, and x (or the radius).
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FIG. 1. Plot of the effective potential V(f) from Eq. (9) for
k = 0.4 and various integer p and q.

Equation (8) can be interpreted as a one-dimensional
mechanics problem of a particle with position f moving in
the potential V, the radial coordinate p playing the role of
time [1]. In this interpretation, the f’/p term corresponds
to time-dependent friction. The potential V is illustrated in
Fig. 1 for several values of p and ¢. For 0 < x < 1, the
potential has three extrema in the region f > 0: one local
maximum at f = 0, one local minimum at f = f_ > 0, and
a global maximum at f = f, > f_. The particle starts at
rest at a value f € (f_, f,) and then rolls toward f = 0,
which it reaches after an infinite amount of time, i.e., for
p — oo. For small k, f, ~ 1, and V(f,) ~«*/2, not much
larger than V(0) = 0; the particle therefore needs to start
very close to f, and wait until the friction term is
sufficiently suppressed to roll, almost frictionless, to
S =0. This small « limit is called the thin-wall limit,
where f resembles a step function [1] and the Q-ball radius
is large. This leading order approximation was investigated
in Ref. [16] as a function of p and ¢. Following Ref. [15],
we will provide improved approximations for this regime.

III. THIN-WALL LIMIT

Neglecting friction in the small-x regime simplifies the
equation of motion (8) to

dV
df

f"p) +

() =0, (13)

k=0
which is equivalent to the first-order differential equation

=0 (14)

1 /.
Efz +V(f) »

upon using energy conservation in the classical-mechanics
analogy [15]. The profile f(p) is then determined via direct
integration as [2]

/df\/%mko - —/dp. (15)

Following Ref. [15], we denote this solution as the
transition profile, which is strictly speaking only expected
to be valid for small x and around p = R, but practically
provides an excellent approximation for all p and even for
large «, to be specified below. We define the Q-ball radius R
via f(R) =3f(0), with f(0)=~f, ~1 in the thin-wall
regime. This proves a more convenient radius definition
than that of Ref. [15] as it turns Eq. (15) into a definite
integral that can be calculated numerically with ease to
obtain p(f) [2]:

o) =r= [ Gfe| . (16)
B 2v

To estimate the radius R of a Q-ball in the small-x regime
we return to the mechanical analogy discussed above. The
particle starts at f ~ f, ~ 1 with potential energy V(f ) ~
k?/2 and ends at f = 0 with potential energy V(0) = 0.
The difference in energies, k*/2, must equal the energy lost
through friction [18], i.e.,

K2 o2
S=- [ arsrw. (17)

Since f’ is only nonzero around p = R, we can approxi-
mate 1/p ~ 1/R in the integrand; f’ can then be replaced by
the potential using Eq. (14), giving the relation

2

K 2 [0
o 1 KAl

(18)

k=0

For small k, the Q-ball radius is hence of the form

4[()] df\/ _2V(f)|1<:0 ) (19)

n
R~—=
K‘Z

As expected from the mechanics analogy, the Q-ball
radius becomes larger for decreasing k. The prefactor # is
determined by a simple integral over the potential, which
is an O(1) number with small p and ¢ dependence.
Using Eq. (9) we can see that the integrand of the
Eq. (19) becomes larger with increasing p and g. The
smallest allowed integers are p =3 and g =4, which
lead to the lower bound 7, = 2/3. To determine the
upper bound of #, let us take ¢ to infinity first, which
leaves us with

1
limy = 4/ af\/f2 = 7 (20)
g—0 0
V()
“rery +% ) (1)
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2.45
=2-=24007). (22)

with the Gamma function I'(x). From Eq. (22) it follows
that the upper bound is 7,,,x = 2. We conclude that for
integer exponents 3 <7 < 2.

Since the potential (9) is symmetric under p < ¢,
subsequent equations should also be symmetric; this leads
us to a better approximation for #:

~ -2, 23
IFG+.%) TG+3) (@)
valid for large p and g. This deviates from the numerical
integral of Eq. (19) by less than 8% for integer p > 3 and
q > 6 and is therefore a useful approximation for most
exponents.

In the thin-wall limit, x < 1, the Q-ball radius is hence
obtained from Eq. (19) and the profile f(p)—or rather
p(f)—from Eq. (16), which can then be used to obtain
Q-ball charge and energy from Eqgs. (11) and (12) using the
integrals

p(l—e) 1—e

) 242 ., A5 + p)f?
/ dppf? = / / e
0 0
00 1
(/dmﬂﬂzz/lvpﬁf Vo, (25)
0 0

where the f2 integral is split to avoid the singularity in the
second term for € — 0. Any € < 1 gives a good approxi-
mation here. This procedure is trivial to perform numeri-
cally for any p and ¢ and is far simpler than solving the
original differential equation, especially since the latter
becomes numerically difficult for minuscule x. For some
cases of p and ¢, all integrals can even be performed
analytically, leading to particularly simple descriptions of
thin-wall Q-balls, as shown below.

To compare our analytic approximations with the exact
solutions, we solve the differential equation (8) numerically
via the shooting method [1], which is straightforward at
least for small p, g and k not too close to 0 or 1. Since the
differential equation including boundary conditions is
identical to the bounce equation of vacuum decay in three
dimensions [20-22], we can borrow codes dedicated to that
problem to find Q-ball profiles. In addition to our own
implementation of the shooting method, we also use
AnyBubble [23] in our analysis.

A. Equidistant exponents: p=2+n, g=2+2n

Analytic approximations of the thin-wall Q-ball equa-
tion are easiest to obtain when the exponents in the

— 17—
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FIG. 2. R(x) dependence for various equidistant exponents,
p =2+ n,q =2+ 2n. Dots correspond to numerical values and
solid lines to the R o 1/« thin-wall prediction of Eq. (29). The
dashed line represents the n = 1 thick-wall prediction of Sec. IV
and the black line the n — oo limit from Sec. V.

potential are equidistant, i.e., p —2 = g — p = n, where
n is positive and typically an even integer. Special cases
include n = 2, discussed in Ref. [15], and n = 1, discussed
in Ref. [13]. In this case, the potential V reaches its global
maximum at

2+ n+ Vi + 4+ An\
= 26
I+ ( 2+2n ) (26)
> (14 3n)k*
The magnitude of the potential at this point is
K‘2 K2 K*
Vi) =5 1+ 5-5r00)]. e8)

The radius integral (19) can be performed analytically to
give the radius at small «:

2n 2n
(24 n)x*’ T2k n

(29)

Restricting ourselves to integer n, the coefficient 5 ranges
from 2/3 (n = 1) to n = 2 (n — o0), increasing monoton-
ically. This happens to coincide with the 5 range for
arbitrary p and ¢, as shown above. In Fig. 2, we compare
the prediction from Eq. (29) with numerical results' for
several n and find excellent agreement even for « as large as
0.8. The only exception is the n = 1 case, which is special
in many ways and will be discussed in more detail below.

'Numerical data are supplied as ancillary files on the
arXiv [24].
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FIG. 3. Comparison between profiles generated numerically
(dashed) and analytically (solid) via Egs. (31) and (29).

The analytical transition function of Eq. (16) takes the
simple form

-fr (et e

(For the radius definition of Ref. [15], f”(R) =0, we
would instead have f(p) = (1 + n exp[n(p — R)])~/".)

Rather than using this transition profile f(p) directly,
we modify it slightly to take into account that the particle
does not start at f =1 but rather f, ~ 1+ x?/n* and
define

[

This ansatz F(p) is equally valid as f(p) but leads to a
slightly better agreement with numerical results for larger
k. In Fig. 3 we can see how well this approximation
describes the exact profiles. The transition profiles
become better for smaller x, as expected, as well as
for larger n. The latter can be understood by noting that
our thin-wall approximations f, ~1 and V(f,)=~«x?/2
become increasingly better for larger n, as can be seen in
Egs. (27) and (28).

With radius and transition profiles at our disposal it is
straightforward to calculate Q-ball charge and energy, as
determined by the two integrals [ F?p*dp and [ F?p*dp.
Expanding in small « or large radius, we find

n—+2

4-2(n+ 2)(10g((% n

- +yO@) +y-1)

n(n

1

2R

+
+ 48(n+2)( lo 3|
——{48(n
6n%(n +2)°R? &\ [2

] +r-1)

+24+(n+2)2(6w<1)m+n 46y —2) +610g<[%r )(1og<[%r—1>+2y—2>

o ) )

where y ~0.577 is the Euler-Mascheroni constant and
w((x) is the first derivative of the Digamma function
0 (x) =T'(x)/T(x).

In Fig. 4 we compare these integrals to the numerical
solutions for various n. Clearly our analytical approx-
imations are excellent even outside the thin-wall limit.
For n > 1, they are good up to x=~0.8 and become
better for increasing n. The case n =1 is once again

"B <33>

special and will be discussed in more detail below
in Sec. IV.

The two integrals allow us to determine the charge
QO and energy E of Q-balls. To lowest nontrivial order

we have
n_ (9gg\'? 272/3
2+n<2a)3> \/ My — @50 /3 (34)

E~wy0 +
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FIG. 4. [[F'(p)Pp*dp (top) and [[F(p)]*p*dp (bottom) as
functions of « for various n. Dots correspond to the numerical
values, solid lines show our thin-wall approximations from
Egs. (32) and (33). The dashed line represents the n =1
thick-wall prediction of Sec. IV and the black line the n — o
limit from Sec. V.

in the thin-wall or large-Q limit @ ~ @, assuming w, # 0.
We see that the n-dependence of the Q-ball energy for a
fixed charge Q is very mild, merely an O(1) factor in front
of the surface energy. Of particular interest is the ratio
E/(m4Q), which has to be smaller than unity to ensure
Q-ball stability against decay into Q free particles [25]:

m(/:Q_\/ +Lﬂ¢] (=)
N -Gl JIf'(p)1Ppdp
3\/K2 + (221 - ) S (p)Ppdp”

(35)

The stability criterion E/(m,Q) < 1 depends on k, w/m,
and the ratio of the two integrals. In the small x expansion,
the ratio of integrals takes the following form

For @y =0, we have E=~3[n/(2+n)]3(x/3)"3 x
25 35
¢0/ m¢/ 045,

JIF'(p)Pp*dp  3n
[IF(p)Pp*dp 22+ n)R

1247+ =1]+yp@3 1
W L2ty ()" =1 +w (n)Jr .
R n 3n“R

el -1
o Q) -

+3y(4 +y) — 72 — 6y (g) H . (36)

n

For small k or large R, the ratio of integrals goes to zero as
3k%*/4 and E — wQ < myQ for wy > 0. Stability against
decay into Q free particles is hence guaranteed in the thin-
wall limit, as shown long ago by Coleman [1]. This holds
for all n.

For larger k, on the other hand, it is not clear that £
remains below my Q; indeed, our analytical thin-wall
results imply E > m,;Q for k2 0.8 for all integer n.
Unfortunately, this x region is just at the edge of viability
for our thin-wall results and hence not fully trustworthy, at
least for small n. Instead, we have checked this region
numerically; for n > 2, Q-balls indeed become unstable for
K > Kegitical ~ 0.8, illustrated in Fig. 5. For n > 3, a regular
pattern emerges where K.;ica increases with n. This
eventually converges toward the black n — oo line in
Fig. 5, which is derived in Sec. V and does not rely on
the thin-wall approximation. Ultimately, k.. always lies
between 0.8 and 0.85 for n > 2, showing a rather mild
dependence on n and w/m,. Since Q « [dpp?f? is a
monotonic function of k for x < k;;.a (see Fig. 4), the
stability criterion is equivalent to a minimal charge Q a
stable Q-ball needs to have.

1.0 , —
[ ® n=2
[  n=3 °
0.8 * n=4 . ]
r  n=6
[ * n=10
2 L e n=20 4
wo 06 ° A
* n=40

mg? g4f + n-50

02f

la 2.®

00 [ ee L o L L
0.80 0.81 0.82 0.83 0.84

Kecritical

FIG. 5. Values of k = Kea that leads to E=myQ for
several n. Dotted curves are generated numerically, the solid
black line represents our theoretical estimation of the n — oo case
from Sec. V.
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FIG. 6. E/(m;Q) dependence on x for n =1 for various
a)(z) / mi The dots represent numerical data, the lines our thin-
wall results.

For integer n, we are left with the special case n = 1 (or
p = 3, g = 4), which does not have a kcq, 1-€., leads to
Q-balls with E < m,Q for all k € (0, 1), see Fig. 6. The
stability of these Q-balls around x ~ 1 was proven already
in Refs. [13,14,16,26] (see Sec. IV for details), here we
show numerically that the Q-balls are also stable in the
intermediate x regime between the thin- and thick-wall
limits. Analytical approximations are difficult to obtain in
this intermediate regime.

B. General exponents

Equidistant exponents in the potential lead to simple
analytical expressions for thin-wall Q-ball properties, but
clearly only cover part of the possible parameter space. Let
us briefly discuss general p and ¢ exponents. Notice that
even though our original Lagrangian requires p < ¢, the
rescaled differential equation and effective potential V(f)
are symmetric under p <> ¢ and thus equally valid for
q > p; even the limit ¢ = p is well defined.

Equation (16) cannot be solved analytically for arbitrary
p and g, but we can try to find an effective equidistance
parameter n(p, g) which generates the profile most similar
to the one generated by p and ¢. To find this n, we note that
both radius and profile shape are determined by integrals of
the function \/—2V(f)|._o, see Egs. (19) and (16). This
function \/ =2V (f)|._ is fairly simple: it vanishes at f = 0
and f =1 and has a (p,g)-dependent maximum at an
f€(1/2,1). For any p and g we can try to describe this
function approximately using the equidistant expression

V=2V (f)]eeo = f(1 = f"). A numerical fit would lead to
the optimal n, but to obtain an analytic approximation we
simply match the potentials at the radius, i.e., at f = 2/3:

2 2
VIf== =V{if== 37
<f 3) p=2+n,q=2+2n (f 3) pP.q ( )

—— 77—

—p=3,9g=8,n=15 A

1.0
[ — p=4,9q=8,n=23
081 —— p=8,q=10,n=5.1

[ —— p=20,q=30,n=17.2]
0.6 1

f(o)

———

0.4

———

0.2

0_0:1““1“"1““1““1““1:
48 49 50 51 52 53

o)

FIG. 7. Profile behavior in the vicinity of the surface for
R = 50. Solid lines correspond to the theoretical prediction of
Eq. (31) with effective n(p, ¢) from Eq. (38), while dots come
from numerical computation.

which provides the effective n(p, q)

3 [Bp-2) | §P-2) | 4
log (1 _5\/3 er g +§>

log(3)

n(p.q) = . (38)

manifestly symmetric under p <> ¢. This ansatz for n(p, q)
can now be used with Eq. (31) to predict the profile f(p) for
arbitrary p and ¢. We stress that the so-obtained f(p) will
always be approximate, unlike the equidistant cases that
correspond to actual asymptotic solutions to the differential
equation. Nevertheless, the profile obtained using this
effective n(p,q) is a good approximation of the actual
potential V(f, p,q), especially for p ~ ¢. Profiles gener-
ated using this n(p, ¢) prediction and Eq. (31) can be seen
in Fig. 7. The one-parameter set of profiles of Eq. (31) is

T R T ',T
6 7
5F |
»
4+t Thick—Wall%/
3t #
<
N
m 27— P> oo
—p=3,9=8,n=155
— p=3,9=12,n=1.76
—— p=4,q=9,n=247
— p=4,9=13,n=2.79
1F— p=20,9=22,n=153
| T — | — P R — 1

0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 8. R(x) dependence for various p and ¢ using n(p, q)
prediction. Dots correspond to the numerical values, solid lines
show R = 2n/(2 + n)/x* with n(p, q) from Eq. (38). The dashed
line represents the thick-wall prediction for p = 3 derived in
Sec. IV and the black line the n — oo limit from Sec. V.
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FIG. 9. [[F'(p)]*p*dp (top) and [[F(p)]*p*dp (bottom)
dependence on « for various p and g using n(p, g) prediction.
Dots correspond to the numerical values, when solid lines denote
the predictions from Egs. (33) and (32). The dashed lines
represent the thick-wall predictions for p = 3 derived in Sec. IV
and the black lines the n — oo limit from Sec. V.

apparently (and surprisingly) sufficient to capture all
possible profile shapes for general exponents p and g!
This n(p, ¢) prediction naturally allows us to apply every
analytical formula that we have already derived for the
equidistant case in Sec. III A to the general case of arbitrary
(p, q)- For example, with the help of Egs. (29) and (38) we
can predict radii of Q-balls for arbitrary p and ¢. In Fig. 8
we can see that we predict radii with high accuracy all the
way up to k ~ 0.8, at least for p > 3. The region beyond
k =~ (.86 is unstable anyway in all cases except p = 3, to be
discussed in detail in Sec. IV. It is worth noting that R(«x)
calculated in this way and using the previous prediction
[Eq. (19)] agree to better than 7% for all integer p and ¢, the
largest deviation being 6.3% for the p =5, g — oo case.
With radius and profile for arbitrary p and ¢ at our
disposal, we can also calculate the two integrals relevant for
Q-ball energy and charge. The integrals are simply
Egs. (32) and (33), with the radius replaced by Eq. (29)
and n by the effective n(p,q) from Eq. (38). The
comparison to numerical results is shown in Fig. 9 and
is very good for small x and p > 3. We can see that
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FIG. 10.  Kgigcar (Where E = myQ) for several p and g.

J1F(p)?p*dp (bottom) works extremely well for x < 0.86.
[1F'(p))?p*dp (top) properly fits numerical results only for
k < 0.75. The p = 3 case is special as Q-balls remain stable
for all ¥ and also shows the largest deviation with our
prediction. This case is discussed in more details in Sec. IV.

Just like in the case of equidistant exponents, our thin-
wall results predict £ > m,Q for k 2 0.8. For large p and
g, this region is still covered by our thin-wall approxima-
tion and hence qualitatively correct. For small p and g, we
have to rely on numerical data to investigate Q-ball stability
in this region. As shown already in Refs. [14,16,26], only
the cases with p = 3 are stable near x = 1, and are actually
stable for all «, as argued below in Sec. IV. All integer cases
with p > 3, on the other hand, become unstable beyond
SOME Kgiical ~ 0.8. We provide many examples for K gicq in
Fig. 10. Our numerical calculations show that the case of
p =4 and ¢ = 5 has the largest k.o compared to other
integer exponents. As we increase both p and g we see that
Keitical decreases. And as we keep increasing p and ¢, at
some point Kqiica Starts increasing again. We find that out
of all integer exponents p =6 and g = 7 case has the
smallest K ;ica- Also, in this case and in all the following
cases with larger p, increasing g increases Kca as well. If
we take a look at larger exponents we can notice that curves
follow more consistent shape and look similar to our
p — oo prediction. We derived this prediction using
Egs. (50) and (35).

IV. THICK-WALL LIMIT AND THE p =3 CASE

As shown above, solutions to the differential equation (8)
can be well approximated in the small x regime using
transition functions. For integer p > 3, these approxima-
tions are sufficiently accurate over the entire x region that
leads to stable Q-balls. Only the cases with p = 3 motivate
us to consider larger k, as they still allow for stable
Q-balls [13,14,16,26]. Near k ~ 1 we can find the profiles
using the thick-wall approximation [13,27], based on the
fact that £(0) becomes smaller and smaller as k — 1, which
is clear from the shape of the potential V. For small f, one
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can then neglect the f? term in the potential, seeing as it is
the most suppressed term in the small-f limit. In the
classical-mechanics analogy, the particle is not starting
near the maximum as in the thin-wall limit, so the f¢ term
that generates this maximum can be neglected. Notice that
we still have a g-dependence in our potential despite
neglecting the f9 term due to our definitions of, e.g.,
. q of course drops out of physical quantities in the thick-
wall limit. Setting p =3 and omitting f¢ allows for a
useful rescaling of the differential equation [14]: we write

2(q -3)
3(g-2)

(1-x*)g(V1-xp) (39)

with a function g(x) that is determined by the parameterless
differential equation

J'() +2g ()~ g(x) + g2 =0, (40)

easily solved numerically [footnote 1 and well-

approximated by the function
g(x) = (4.20 — 0.10x — 0.85x% + 0.30x3)e 031 (41)

The Q-ball radius in the thick-wall limit then diverges as

0.91 0.91

R~——== Ropu & —F————=
,/mﬁ,—a)z

42
o (42)
and the integrals take the simple form

/ [ ()Podp = (1 - x2) / F)de  (43)

_ 4(q — 3)2 3
_m(l - K?) /dxngz. (44)

~10.42

These thick-wall predictions are shown in Figs. 2, 4, 8, and
9 and match numerical data very well for x close to 1,
especially for g > 3. For the stability ratio we then find

2

E my, — &g 2 2)2
i _W(I—K)-FO[O—K)]’ (45)

rendering these p = 3 thick Q-balls stable for x — 1, albeit
much weaker bound than thin-wall Q-balls. The charge QO
is manifestly g-independent and actually approaches zero
in the thick-wall limit @ — m,, despite the diverging
radius:

with the f from Eq. (6). p = 3 Q-balls thus become more
and more dilute while carrying less and less charge and
energy as k — 1, eventually approaching the vacuum
solution ¢ = 0. However, our classical-field description
of these ¢ bound states eventually breaks down at small
Q and needs to be replaced by a quantum-mechanical
picture [13,28,29].

So far we have only shown that p =3 Q-balls are
stable for small « (thin wall) and near x = 1 (thick wall).
For g >4 our analytical descriptions are accurate
enough to prove stability, i.e., E < m,;Q, over the entire
k range. For ¢ =4 we have checked numerically that
E < myQ holds for all «, as illustrated in Fig. 6. p =3
QO-balls with any integer g > 3 thus have E < myQ for
any « € (0, 1).

We have restricted our discussion so far to integer p and
g, for which indeed p = 3 < ¢ is the only case with stable
Q-balls near x ~ 1. For noninteger exponents, Refs. [14,16]
have shown that Q-balls with 2 < p < 10/3 are stable near
Kk ~ 1. Our results suggest that those Q-balls are actually
stable over the entire range 0 <« < 1.

V. LIMIT OF LARGE EXPONENTS

The case of large exponents, 2 < p < ¢, allows for a
qualitatively different approximation than the thin-wall
limit above. As can be seen from Fig. 1, large p and ¢
lead to a very narrow maximum of V(f), positioned at
f ~1, no matter the value of x. The particle then falls
down the almost vertical cliff, all the while remaining
at f~1, until it reaches the potential minimum. The
motion from the minimum to f =0 is subsequently
described by the easy-to-solve differential equation

(o) + §f'<p> —fp)1 =) =0, (47)

where we neglected any f7 or f? terms since they are
highly suppressed in the f <1 region. The large-
exponent profile is then simply

17 p < R’
flarge—p 3\ R 3% = (48)
,exp(VI=«*(R=p)), p=R,

demanding continuity at the point p =R (which is
related to the radius by R~R + 1/3 in the stable «
regime). This ansatz is valid for all x in the 2 < p < ¢
limit. To find the remaining R(x) relation, we can use
Eq. (17); notice that the left-hand side of Eq. (17),
V(f.), is k?/2 for p,q — oo, just like in the small-x
limit. This gives

. 14+V1=#2
R=-—tV T (49)
K
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valid again for all « in the 2 <« p < ¢ limit. The large-p
radius is shown in Figs. 2 and 8. The integrals then take
the simple forms

) 2 )
/[f’(p)]2p2dp (VIR + 1)(2K4+ Vi-e i)
5 5 8 —k* —dkr +8V1 —«?
[y =B IIEEE (50)

illustrated in Figs. 4 and 9. Solutions to our differential
equation in the large exponent limit show a simple and
universal behavior. This does not imply that Q-ball energy
and charge become independent of p and ¢ in this limit, as
the ¢y and w, in Eq. (7) depend on the exponents.

The integrals can also be used in Eq. (35) to find the
stability constraint in the limit of large exponents, shown in
Figs. 5 and 10. This confirms that the critical «, satisfying
E = my 0, lies in the narrow finite range (0.8,0.86) for all
integer p > 3.

VI. UV COMPLETION

So far we have worked with the potential U(|¢|) from
Eq. (6), which contains nonrenormalizable terms for even
exponents and charge-breaking terms for odd exponents. In
this section, we will show how these operators can be
obtained in UV-complete models.

We restrict ourselves to the simplest UV completion,
consisting of a U(1)-charged complex scalar ¢ and a real
neutral scalar y, which have the Lagrangian

1
L=040'¢" + 500w — Uy (51)

with U(1)-symmetric scalar potential

1
Ulgy] = my|dP* +5myw? + blp[* + clpPw
+ dp[Py? + ey + ayt. (52)
Here, m,, and m,, are the particle masses and a, b, ¢, d, and

e are real constants.” The Euler—Lagrange equations for the
fields are

ou
op*
Once again we are looking for spherically symmetric

localized solutions to these equations, with time depend-
ence ¢(x,t) x e for ¢ and a time-independent .

oU
3,0'p + 0. 9wrg =0 (5

*The Wick—Cutkosky [30-32] and Friedberg—Lee—Sirlin [3]
models are notable special cases of this Lagrangian that are not
covered by our analysis below because they do not have a thin-
wall limit in the sense of Coleman—despite allowing for Q-ball-
like solutions.

The leading-order thin-wall limit for such a system was
recently analyzed in Ref. [6], where it was shown that the
multi-field generalizations of Eq. (4) are

(0U(|¢|,w)_2U(|¢|,w))’ _o
99| |1 |¢\=%W=Wo ’
oU (g, W)’ .
—_— =0, (54)
o |¢\Z%V/ZW0
which give the Q-ball energy
E~w,Q, with wy= %\\/2;’2’0) (55)
0

to leading order in large Q. The Q-ball properties beyond
this thin-wall approximation have to be obtained numeri-
cally by solving the coupled nonlinear differential equa-
tions. Below, we show that for some special cases of the
potential Ulp,w] the two-field system can be mapped
onto a one-field system of the form discussed in the
previous sections, severely simplifying if not even solving
the problem.

Just like in the one-field case explored in the main part of
this article, it proves convenient to rescale the fields ¢ and
w by their thin-wall values ¢, and y as determined by
Eq. (54):

ﬁf(lxl),

where f(|x|) and A (|x|) are dimensionless functions that are
<O(1) for all x. We furthermore perform the same

coordinate transformation as before, x — x, /mg, - w3,

with @y from Eq. (55). @ is replaced by k as in
Eq. (10). All of this ensures that the equation of motion
for f(p) resembles that of our one-field scenario as closely
as possible, except, of course, for the presence of h(p).
Since the rescaling is difficult for the general potential
Ulp,w| we will only show the resulting differential
equations for f and & for some special examples below.
The Q-ball charge Q is determined entirely by the
charged field ¢ and is again given by our Eq. (11) upon
using the definitions we set forth. The Q-ball energy, on the
other hand, contains a contribution from the neutral field y:

_ KU wol)? | o’ dif
—/d3x[ > + > + >

w(x. 1) =woh(lx[),  (56)

+ Ulp.w]

—w0+ / PR+, (57)

47
34/ mé -}
where in the second line we used the virial theorem, e.g.,
Refs. [3,33].
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A. Massive y

Assuming m,, > m, we can neglect the kinetic term in
the Euler—Lagrangian equation associated with the field .
Thus we end up with oU|[¢, w]/oy = 0. We can solve the
latter order-by-order in large m,, with the following ansatz

X X X
W=ttt (58)
w My My,

with coefficients x; that depend on |¢|* and the coefficients
in the two-field potential. The y field is hence suppressed
compared to the ¢ field in this expansion, which suppresses
y’s contribution to the Q-ball energy. After solving y’s
equation of motion and plugging the resulting y back into
the potential we get the potential for ¢:

Zd 3
0] =g+ (o= 5o )+ (=55 ) 1

w w
cta+ 6c3de 2c2d? 4c2d
(S5 o e
ny, u/
+0<1> (59)
my )

As expected for an effective field theory at tree level, we
find higher-dimensional operators in |¢|> suppressed by
powers of ml%, Below we show some examples that can be
approximately described by our one-field potential from
Eq. (6). An alternative derivation of the same cases that
highlights the proper expansion parameter is deferred to
Appendix for the curious reader.

1. Large my, a=e=0

Setting a = e =0 and only keeping the terms up to
O(1/my,), we find

U =l + (b= ) 01+ S0 (60

This corresponds to the p= 4, g = 6 case of Eq. (6) with
coefficients f = —b + ZL 7 and & =
to be positive, we have to assume that b is of order
O(1/my,). Both f and & are hence suppressed in this
expansion with & being of order % Equation (7) shows
that m¢ — wj = f*/(4¢) is of order O(my,) so w, can
naturally take any value between 0 and m.

s ‘1 . Since f is required

2. Large m,,, e=d=0
Setting d = e = 0 and keeping terms up to O(1/m}) we

find the potential

C2 C4a
e e e

W

. (61)

which corresponds to Eq. (6) with p =4 & g =28 and
p=-b +5 ¢ 2l and & =
O(1/ml) in the heavy-y expansion. In this case, we find
that m} — wf o« f3/2//€ is of order O(m,) and hence
large. Generically we then expect Q-balls with wy < my.

- S. Once again both b and S are
u/

3. Large m,,, d=0, b=c?/(2my)
Setting d = 0 and b = ¢?/2m;, yields

H~m2|¢|2—fn—e|¢|6 Cgp. @
74

up to O(1/mf) terms. This gives p =06, g=28 with
% and & =¢¢. Here, m} — o} o /&
m;,) and hence small, so w should be of

parameters f =

is of order O(1/
order my.

B. Massless y

The heavy-y framework from above unsurprisingly
generates even exponents p and ¢g. Considering instead a
massless y can give odd or even rational exponents as we
will show below. For these scenarios we work with the
equations of motion from Eq. (53) rather than the potential.
We go through two simple cases below.

1.m,=d=e=0

Performing the above-mentioned rescaling for the case
m,, = d = e = 0 yields the following simple equations of
motion for f(p) and h(p)

; 2\/i[f(p)2 —h(p)] =0,

+f(p) (k> —1+2h(p)) - f(p)* =0, (63)

h//(p) + 2h/(p)

2f'(p)
P

f"(p) +

which depend only on two parameters: x and a/b. If we
choose a > b we can neglect the derivatives in the &
equation and solve the equation of motion algebraically to
h(p) = f(p)*?. Plugging this into the second equation we
recover for f(p) exactly the single-field equation (8) with
p=238/3 and g = 4.

The relation h(p) = f(p)*? holds for all «, allowing us
to solve the two-field system by simply solving the single-
field equation (8). Of course, for small or large x we can
even approximate f(p) and hence A (p) using our analytical
results from above. As illustrated in Fig. 11, the two
profiles (and radii) are indeed very well described by our
transition profile from Eq. (30) using n(8/3,4) ~ 0.8 from
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FIG. 11. Profiles for f(p) and h(p) solving Eq. (63) numeri-

cally for x = 0.05 and 2+/a/b = 1000. The dashed black lines
show our thin-wall predictions, i.e., f(p) from Eq. (30) with
n(8/3,4) ~0.8 and h(p) = f(p)*/3.

Eq. (38), at least for small x and large a/b. This also allows
us to obtain analytic approximations for Q-ball energy and
charge. Notice that y,/¢y  (b/a)'/* here, so y’s con-
tribution to the Q-ball energy (57) is suppressed in the limit
of interest.” Since these Q-balls are then approximately
single-field Q-balls with p = 8/3 < 10/3, they have stable
thin- and thick-wall limits [14,16] and are hence stable
for all «, allowing for arbitrarily large or small charge Q.
This case therefore provides one of the simplest renorma-
lizable realizations of a Q-ball that can grow naturally via
accumulation of particles without requiring a minimal
threshold charge. Of course, for small Q our classical
analysis needs to be replaced by a quantum one.

2. my,=d=a=0
Next, let us consider m, = d = a = 0. This gives the
system of equations

21 (p)

W)+ 2 2 )~ o) =0,

—Zf/p(p) + f(p)(=2f(p)* + x> +3h(p) — 1) = 0.

(64)

f"(p) +

Now, by choosing ¢ > ¢ we see from the first equation that
the two profiles will approximately coincide: h(p) = f(p).
After plugging this into the second equation we recover
Kusenko’s single-field case with p =3 and ¢ =4 for

f(p) [13]. The field ratio w,/¢y x +/|c/e| is again sup-
pressed in the limit of interest. Just like in the previous case,

*Although it is not difficult to keep the contribution; in
the thin-wall limit, the relevant integral for h(p) = f(p)* is
[ dpp*(h')? =~ nkR?/(2n + 4k).

we hence find a simple renormalizable realization of a
stable Q-ball with arbitrary charge.

VII. DISCUSSION AND CONCLUSION

Q-balls are simple examples of bound states consisting
of scalars ¢p. Assuming an attractive self-interaction in the
scalar potential, these objects can contain a large number of
particles, allowing for a classical description. Q-balls have
been conceived many decades ago, but their description
outside of the simplest of limits has proven challenging,
owing to the nonlinear nature of their underlying field
equation. In this article, we performed an exhaustive study
of Q-balls generated by three-term potentials of the form

U(|p]) = my|¢l* = Blol” + Elpl“.

For 2 < p < ¢ and positive § and &, these are the simplest
potentials that can give large Q-balls a la Coleman. We
have provided analytical approximations that describe
stable Q-balls for all exponents p and ¢, in part by
generalizing the procedure of Ref. [15].

We find a surprisingly universal Q-ball behavior that
depends only weakly on the integers p and ¢: (i) The
instability threshold where E = m Q falls in the narrow
range k € (0.80,0.86) for all p > 3. (ii) The volume
energy does not depend on p and ¢, and even the surface
energy shows only a mild dependence. (iii) Radii of stable
Q-balls with p > 3 scale with 1/x? up to an O(1) prefactor
that depends on p and ¢. Furthermore, all stable Q-balls
have radii R > 1, or, in terms of the actual dimensionful

Q-ball radius,
Ropan > 1/ /m§5 - w}. (65)

In particular, Rq.pa; > 1/my, in perfect agreement with the
bound state conjecture of Ref. [34] for the radius of any
stable bound state.

The discussion of single-field Q-balls is unavoidable
an effective one, as there are no values for p and ¢ that
lead to a renormalizable charge-conserving potential that
is bounded from below. To highlight that our analysis is
nevertheless useful, we studied a simple renormalizable
two-field model that can be effectively described by our
one-field scenario with several p and ¢, including—quite
surprisingly—odd and fractional exponents. Repeating this
analysis for models with more fields would undoubtedly
allow us to generate potentials with an even wider range of
exponents.

Finally, our results for the ground-state profiles of global
Q-balls can be generalized to excited states [19] as well as
gauged and Proca Q-balls via the mapping relations of
Refs. [35,36].

016006-12



Q-BALLS IN POLYNOMIAL POTENTIALS

PHYS. REV. D 107, 016006 (2023)

ACKNOWLEDGMENTS

We thank Chris Verhaaren and Arvind Rajaraman for
comments on the manuscript. This work was supported
in part by the National Science Foundation under Grant
No. PHY-2210428.

APPENDIX: ALTERNATIVE DERIVATION
OF THE HEAVY y CASES

If the expansion in large m,, in Sec. VI A did not seem
convincing, we will provide an alternative derivation here
that follows the procedure of Sec. VI B by first rescaling the
two fields.

We start with the case a = ¢ = 0. It proves convenient to
replace ¢ = \/zmu,\/b + f, with f defined just as below
Eq. (60). All the rescaling can be performed exactly, but
since the limit of interest will be small # we only show the
equations in that limit here. Eq. (54) can be solved to give

m

~ My ~ M
¢0_\/§\/BE\/B’ WO—Z\/Q—Edﬁ (Al)

In particular, y is suppressed compared to ¢ by +/f/d, so
y’s contribution to the Q-ball energy will be small. To
leading order in small f, the equation of motion for A(p)
takes the form

!/

20'(p) | Sﬁizd
and thus fixes h(p) = f(p)? as long as > < bd. The
equation of motion for f with h(p) = f(p)? then matches
the single-field Eq. (8) with p =4 and p = 6, plus terms
that are suppressed by f/b. This matches the conclusion of
Sec. VI A 1 but highlights that the expansion parameter is
not really large m,, but rather small g. Of course, we
have identified  as being of order ml,‘,2 above, so this is
consistent.

The discussion of the case d = ¢ = 0 is analogous. We
again replace ¢ by f and go to the small 4 limit, which gives
wo/bo x (B/a)'/*, so y is again suppressed compared
to ¢. For small f, the equation of motion for y gives
h(p) = f(p)*. The differential equation for f(p) matches
our single-field equation with p =4, ¢ = 8 up to terms
suppressed by f3/b.

Finally, the case with b = ¢?/(2m}), d = 0 is slightly
more laborious but analogous. We expand in small e, which
is equivalent to small g. The field ratio wy/¢y x
\/ec/a/m,, is suppressed again, and again we find h(p) =
f(p)? for small e. The differential equation for f(p)
matches the p =6, ¢ =8 case plus terms suppressed

by ez/(amg,).

n (p) + [h(p) = f(p)’] =0  (A2)
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