

# Stereospecific Transformations of Alkylboronic Esters Enabled by Direct Boron-to-Zinc Transmetalation

Hao Liang and James P. Morken\*



Cite This: *J. Am. Chem. Soc.* 2023, 145, 9976–9981



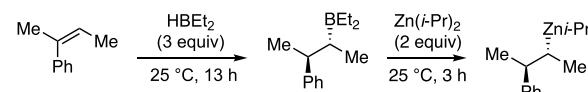
Read Online

ACCESS |

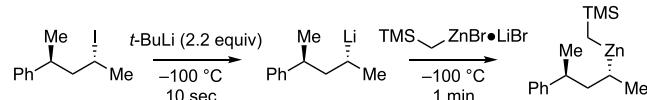
Metrics & More

Article Recommendations

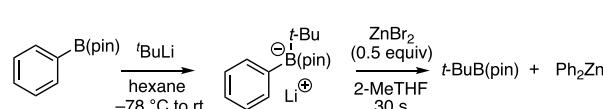
Supporting Information


**ABSTRACT:** Chiral secondary organoboronic esters, when activated with *t*-butyllithium, are shown to undergo efficient stereoretentive transmetalation with either zinc acetate or zinc chloride. This reaction provides chiral secondary alkylzinc reagents that are configurationally stable under practical experimental conditions. The organozinc compounds were found to engage in stereospecific reactions with difluorocarbene, catalytic cross-couplings with palladium-based catalysts, and trifluoromethylation with a copper(III) complex. Mechanistic and computational studies shed light on the inner workings of the transmetalation event.

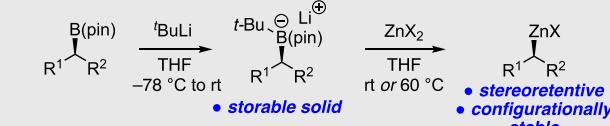
**E**nantiomerically enriched alkylboronic esters are useful building blocks in organic synthesis. They are often chemically and configurationally stable, and they can be prepared through a variety of catalytic and noncatalytic methods.<sup>1</sup> Moreover, alkylboronic esters undergo stereospecific transformations, allowing them to be used in the construction of a wide array of nonracemic chiral compounds.<sup>2</sup> These attractive features notwithstanding, alkylboronic esters are weak nucleophiles and therefore less reactive for transmetalation compared with other organometallic compounds.<sup>3</sup> Relative to alkylboronic esters, organozinc reagents are more nucleophilic, yet they are still configurationally stable.<sup>4</sup> Pioneering studies by Knochel and co-workers<sup>5</sup> have demonstrated that secondary alkylzinc reagents can undergo stereospecific transmetalation to copper and palladium, followed by coupling with electrophiles. Although efficient protocols have been reported for the enantioselective synthesis of  $\alpha$ -amino,<sup>6</sup>  $\alpha$ -boryl,<sup>7</sup> and cyclopropyl-based<sup>8</sup> organozinc reagents, preparation of simple enantiomerically enriched secondary alkylzinc compounds remains challenging.


Knochel reported that secondary organoboranes, generated by hydroboration of alkenes, can undergo stereospecific transmetalation with diisopropylzinc thereby providing a route to  $\alpha$ -chiral organozinc reagents (Scheme 1a).<sup>4a,9</sup> In subsequent studies, it was found that secondary organoboronic esters could be converted to dimethylborane derivatives by treatment with methylmagnesium chloride; reaction with  $(i\text{-Pr})_2\text{Zn}$  then delivers the organozinc compound.<sup>10</sup> Unfortunately, this latter process occurs with significant epimerization of the carbon stereocenter, likely as a consequence of metal halide salts present in the reaction mixture. More recently, Knochel reported that stereospecific lithium–iodine exchange, followed by treatment with  $\text{TMSCl}_2\text{ZnCl}\text{-LiBr}$  generates the corresponding organozinc reagent (Scheme 1b).<sup>11</sup> They also demonstrated that the so produced organozinc reagent can be used for stereospecific Negishi cross-coupling reactions. To expand the scope of transformations available to organoboron compounds, we considered direct transmetalation of alkyl-activated alkylboronic esters with zinc salts. Related trans-

## Scheme 1. Stereospecific Preparation of $\alpha$ -Chiral Organozinc Reagents


a: Knochel (1998)



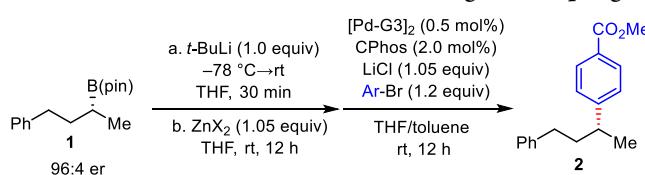

b: Knochel (2020)



c: Ingleson (2017)



d: This work



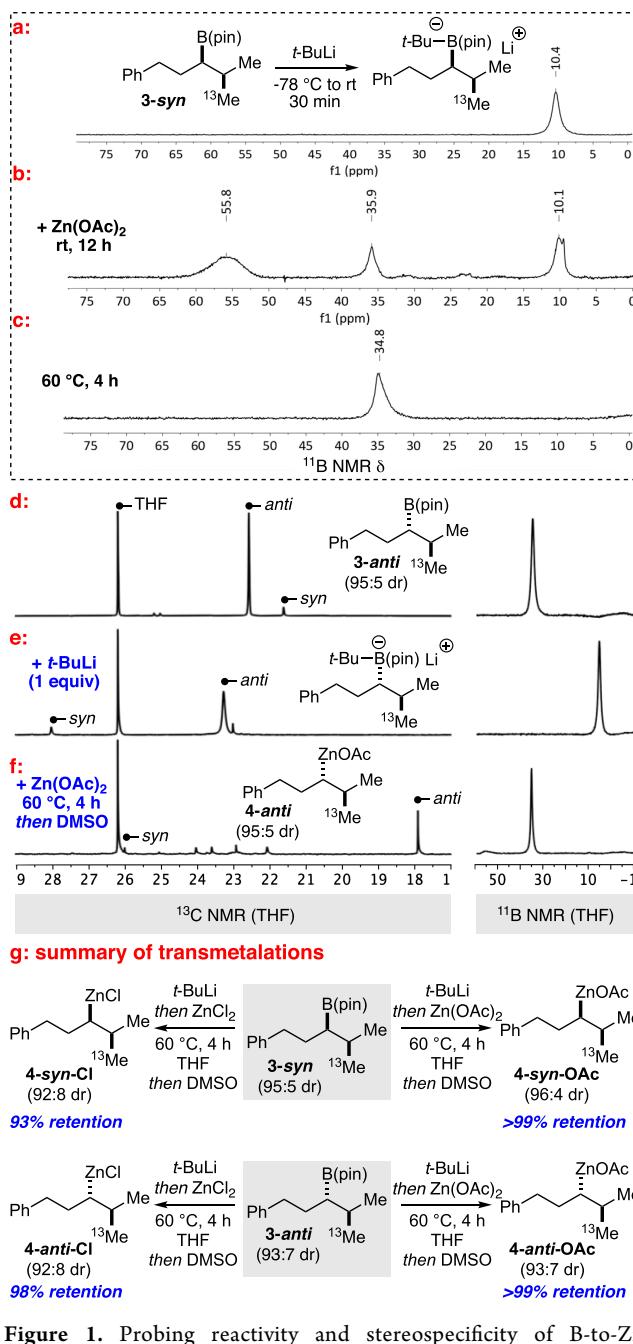

metallations were examined by Ingleson during studies on zinc-catalyzed Suzuki-Miyaura reactions (Scheme 1c).<sup>12</sup> They found that the reaction of a  $\text{PhB}(\text{pin})\text{-t-BuLi}$  adduct with zinc bromide rapidly furnished diphenylzinc. In this Letter, we describe an efficient, rapid, and stereospecific transmetalation that furnishes enantiomerically enriched secondary alkylzinc

Received: February 16, 2023

Published: April 26, 2023

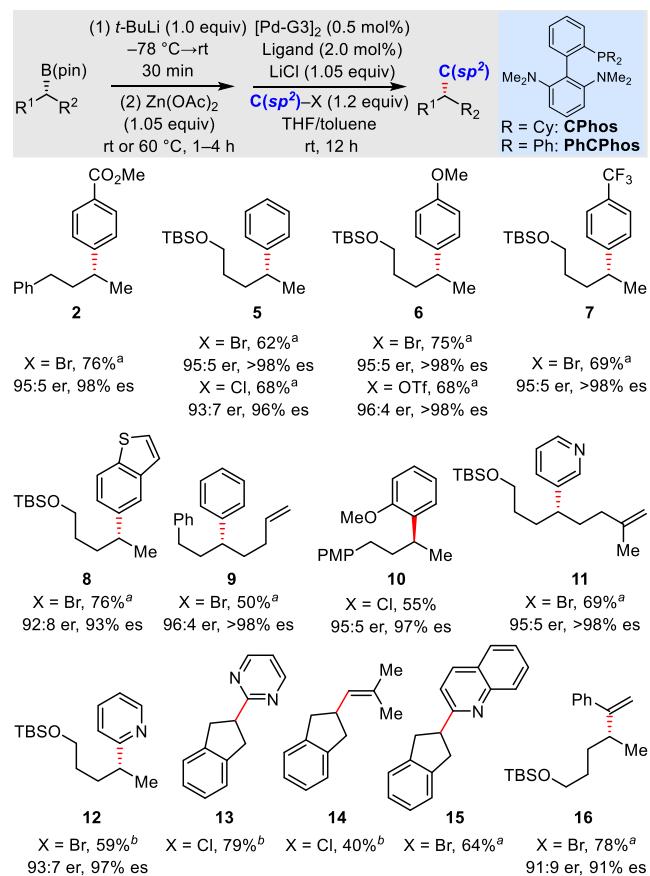


**Table 1. B-to-Zn Transmetalation and Negishi Coupling**


| entry <sup>a</sup> | conditions            | conversion (%) | yield (%) <sup>b</sup> | er (es %) <sup>c</sup> |
|--------------------|-----------------------|----------------|------------------------|------------------------|
| 1                  | w/o ZnX <sub>2</sub>  | <5             | <5                     | —                      |
| 2                  | ZnCl <sub>2</sub>     | 92             | 60                     | 21:79 (63)             |
| 3                  | ZnBr <sub>2</sub>     | 70             | 49                     | 29:71 (46)             |
| 4                  | ZnI <sub>2</sub>      | 91             | 46                     | 48:52 (4)              |
| 5                  | Zn(OTf) <sub>2</sub>  | >98            | 79                     | 93:7 (93)              |
| 6                  | Zn(OAc) <sub>2</sub>  | >98            | 82                     | 95:5 (98)              |
| 7                  | Zn(OPiv) <sub>2</sub> | >98            | 67                     | 82:18 (70)             |
| 8 <sup>d</sup>     | Zn(OPiv) <sub>2</sub> | >98            | 72                     | 95:5 (98)              |

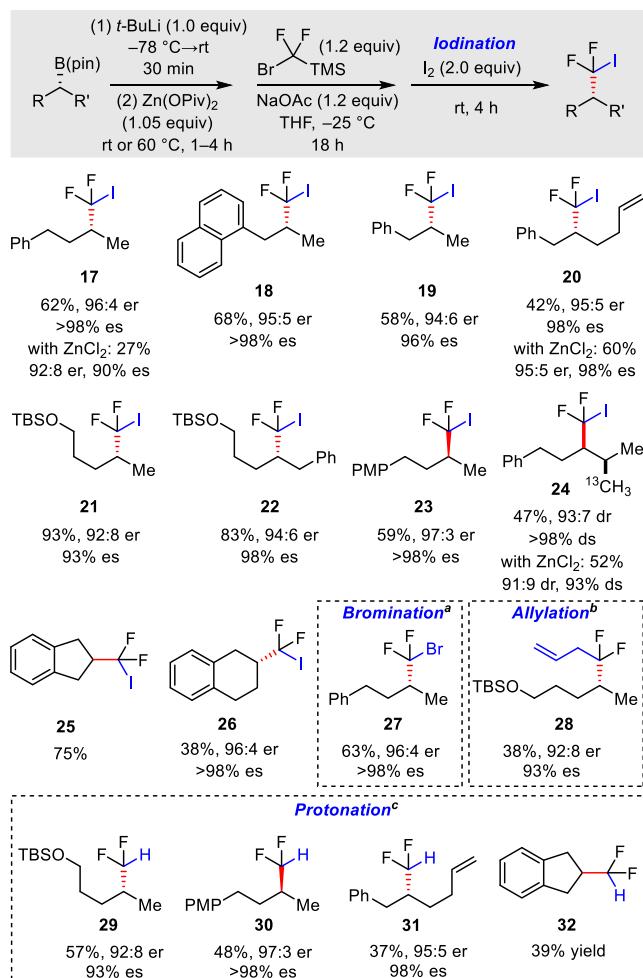
<sup>a</sup>Reactions were carried out with 0.10 mmol of 1. <sup>b</sup>Yields are determined by <sup>1</sup>H NMR using tetrachloroethane as internal standard. <sup>c</sup>Enantiomeric ratio was measured by chiral SFC analysis and have an error of  $\pm 1\%$ . <sup>d</sup>Step b conducted for 1 h.

reagents from readily available pinacol-derived alkylboronic esters (Scheme 1d). We also provide insight into this transformation and demonstrate that the newly generated organozinc reagents can engage in useful stereospecific transformations.

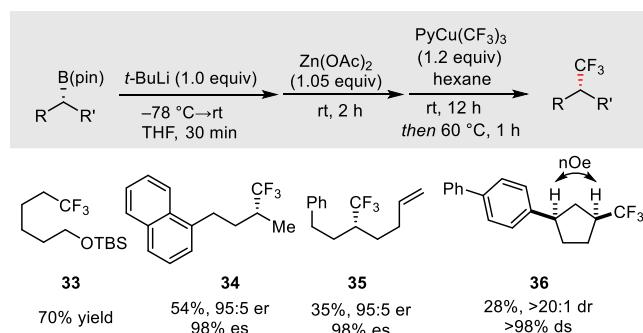

Recently, we developed several Cu-catalyzed stereospecific transformations of organoboronic esters.<sup>13</sup> These reactions are believed to occur by a facile boron-to-copper transmetalation, followed by coupling to electrophiles. The success of this process relied on alkylolithium activation of otherwise unreactive alkyl boronic esters. It was of interest to determine whether similar boronic ester activation might obtain in other transmetalation processes. In spite of encouraging precedent from Falck<sup>14</sup> with *s*-BuLi-activated primary boronic esters, preliminary experiments in Pd-catalyzed Suzuki-Miyaura cross-coupling of secondary boronic ester 1 with *t*-BuLi activation failed to deliver product (Table 1, entry 1). On the other hand, it was found that treating the *tert*-butylolithium-activated boronic ester with zinc salts led to efficient consumption of the boron “ate” complex as determined by <sup>11</sup>B NMR (70–98% conversion, 12 h at rt) and presumably generated the corresponding organozinc reagent. Subsequent addition of a palladium catalyst<sup>15</sup> and an aryl halide electrophile furnished the Negishi cross-coupling product in 46–82% yield. Of note, the enantiospecificity of the reaction was found to be dependent on the identity of the zinc salt and the reaction time: zinc triflate and zinc acetate provided the product with high stereospecificity (Table 1, entries 5 and 6), while the reaction with zinc pivalate only provided high specificity if the transmetalation was conducted for short reaction periods (compare entries 7 and 8).

Racemization in the couplings described above might occur at any stage of the multistep sequence. To directly probe the stereospecificity of the boron-to-zinc exchange step, we examined the transmetalation of isotopically labeled organoboronates 3-*syn* and 3-*anti* by *in situ* NMR spectroscopy (Figure 1).<sup>16</sup> <sup>11</sup>B NMR was used to first learn about conditions needed to effect transmetalation of 3-*syn* (Figure 1a–c). Addition of *t*-butylolithium to 3-*syn* ( $\delta$  35 ppm) in THF furnished the boron “ate” complex ( $\delta$  10.4 ppm), cleanly (Figure 1a). Subsequent addition of zinc acetate (Figure 1b)




**Figure 1.** Probing reactivity and stereospecificity of B-to-Zn transmetalation by *in situ* <sup>11</sup>B and <sup>13</sup>C NMR. (a) <sup>11</sup>B NMR spectrum acquired after treatment of 3-*syn* with *t*-BuLi. (b) <sup>11</sup>B NMR spectrum when 3-*syn*-*t*-BuLi was treated with Zn(OAc)<sub>2</sub> at rt. (c) <sup>11</sup>B NMR spectrum upon heating 3-*syn*-*t*-BuLi/Zn(OAc)<sub>2</sub> mixture to 60 °C for 4 h. (d) <sup>13</sup>C NMR analysis of 3-*anti*. (e) <sup>13</sup>C NMR spectrum of 3-*anti*-*t*-BuLi. (f) <sup>13</sup>C Spectrum obtained upon reaction of *t*-BuLi-3-*anti* with Zn(OAc)<sub>2</sub> at 60 °C for 4 h, followed by dilution with DMSO. (g) Summary of the efficiency and stereospecificity of transmetalations, as determined by <sup>13</sup>C NMR with labeled substrates.

resulted in consumption of the ate complex, as determined by reduction in the 10.4 ppm resonance, and formation of both *t*-BuB(pin) ( $\delta$  35.9 ppm) and a compound consistent with a three-coordinate borinic ester ( $\delta$  55.8 ppm).<sup>17</sup> Heating the reaction mixture to 60 °C for 4 h (Figure 1c) led to complete conversion of both the ate complex and the putative borinic ester to *t*-BuB(pin) and, presumably, the corresponding organozinc transmetalation product.




**Figure 2.** Stereospecific Negishi coupling of enantiomerically enriched organozinc reagents. Reactions were carried out with 0.20 mmol of an alkylboronic ester. Yields are those of purified materials. Enantiomeric ratio was measured by chiral SFC analysis and have an error of  $\pm 1\%$ . <sup>a</sup>CPhos was used as a ligand. <sup>b</sup>PhCPhos was used as ligand.

To determine the stereospecificity of the transmetalation, the reaction sequence above was analyzed by *in situ* <sup>13</sup>C NMR spectroscopy (Figure 1d–f). As shown in Figure 1d, the stereoisomer ratio of the reaction intermediates is readily measured by integrating the <sup>13</sup>C NMR resonance for the labeled carbon, and this ratio reflects the stereospecificity of each transformation as well as the configurational stability of each intermediate. Analysis of the reaction sequence showed epimerization-free conversion of the organoboronic ester (Figure 1d) to the derived ate complex (Figure 1e), however, subsequent addition of zinc acetate provided a mixture exhibiting several resonances (not shown), presumably because the alkylzinc reagents are not homogeneous and likely oligomeric.<sup>18</sup> Addition of DMSO (50% volume) to this solution resulted in a homogeneous mixture and cleaner spectra (Figure 1f). While a few minor resonances can be observed at the end of the sequence, the resonance corresponding to 4-*syn* could be assigned by its independent preparation from 3-*syn* and the data show a high level of stereospecificity for the overall process. As summarized in Figure 1g (see the Supporting Information for complete spectral data), reactions employing either zinc acetate or zinc chloride were observed to be stereospecific which suggests that racemization observed in Table 1 (i.e., entry 2) likely arises during the zinc-to-palladium transmetalation.<sup>19</sup> Additionally, the observations in Figure 1 suggest that the alkylzinc species



**Figure 3.** Reaction of difluoromethyl carbene with enantiomerically enriched organozinc reagents. Reactions were carried out with 0.20 mmol of alkylboronic ester. Yields are of purified materials. Enantiomeric ratio was measured by chiral SFC or HPLC analysis and has an error of  $\pm 1\%$ . <sup>a</sup>Obtained with NBS. <sup>b</sup>Obtained with 10%  $\text{CuI}$ , 20% 1,10-phenanthroline, allyl bromide. <sup>c</sup>Obtained with acetic acid/lithium bromide.



**Figure 4.** Stereospecific trifluoromethylation of an enantiomerically enriched organozinc. <sup>a</sup>Reactions were carried out with 0.20 mmol of alkylboronic ester. <sup>b</sup>Yields are of purified materials. <sup>c</sup>Enantiomeric ratio was measured by chiral SFC analysis and has an error of  $\pm 1\%$ .

themselves are configurationally stable, even at 60 °C for several hours.

With robust conditions for the boron-to-zinc transmetalation identified, the synthetic utility of this process was investigated. Stereospecific coupling of unactivated alkylbor-

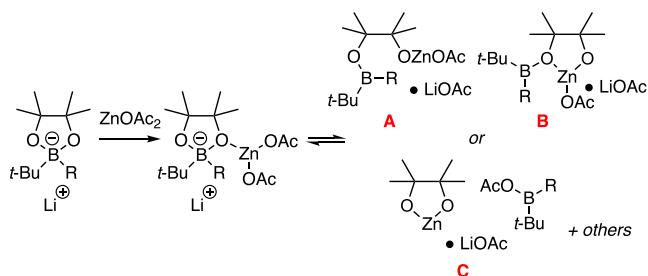



Figure 5. Plausible species involved in transmetalation of R-B(pin)-t-BuLi and Zn(OAc)<sub>2</sub>.

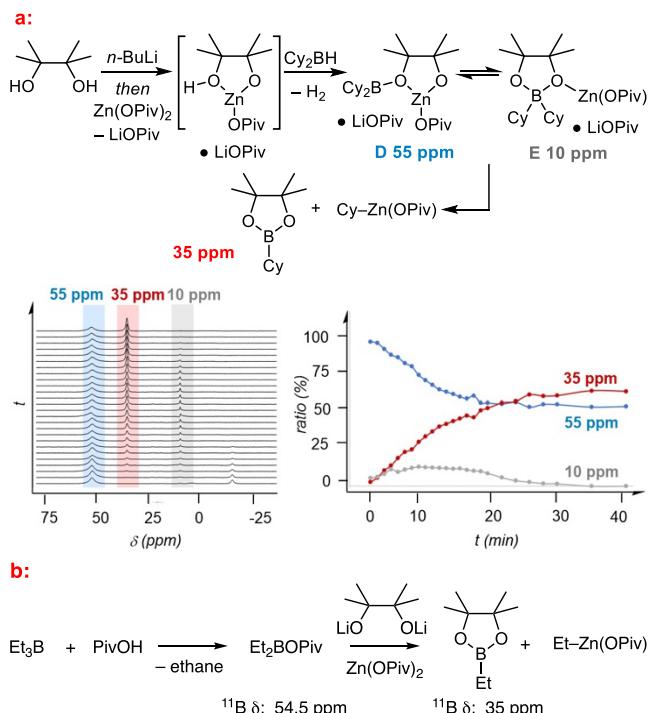



Figure 6. Identification of plausible intermediates in boron-to-zinc transmetalation. (a) Synthesis of putative borinic ester A from a zinc half-pinacolate and Cy<sub>2</sub>BH, and analysis of the formation of Cy-B(pin) and Cy-ZnOAc by <sup>11</sup>B NMR (*t* = 0 at addition of Cy<sub>2</sub>BH). (b) Synthesis and transmetalation of an acyloxyborane.

onic esters to C(sp<sup>2</sup>) electrophiles is an important process.<sup>20</sup> Available reactions include transition-metal-free alkenylation and arylation,<sup>21</sup> employing alkenyl or aryllithium reagents. In addition, direct stereospecific Suzuki-Miyaura cross-coupling between nonactivated aliphatic secondary organoboron reagents and aryl halides have been reported by Biscoe and Sigman<sup>22</sup> (trifluoroborates) and Burke and co-workers<sup>23</sup> (boronic acids). Despite these advances, the current scope of these processes has been primarily explored with sterically unhindered alkylboron species (usually  $\alpha$ -methyl substituted) and nonheterocyclic arene or alkene coupling partners. To complement these existing methods, enantiomerically enriched organozinc reagents prepared from boron-to-zinc transmetalation were examined as coupling partners for stereospecific Negishi cross-coupling reactions (Figure 2). Using Buchwald's Pd-G3 complex in conjunction with CPhos,<sup>18</sup> efficient coupling reactions were observed (Figure 2, 50–76% yield, 93–98% es). Challenging heterocyclic electrophiles can be employed in this reaction when PhCPhos is used as the ligand. As observed in the production of **14** and **16**, alkenyl

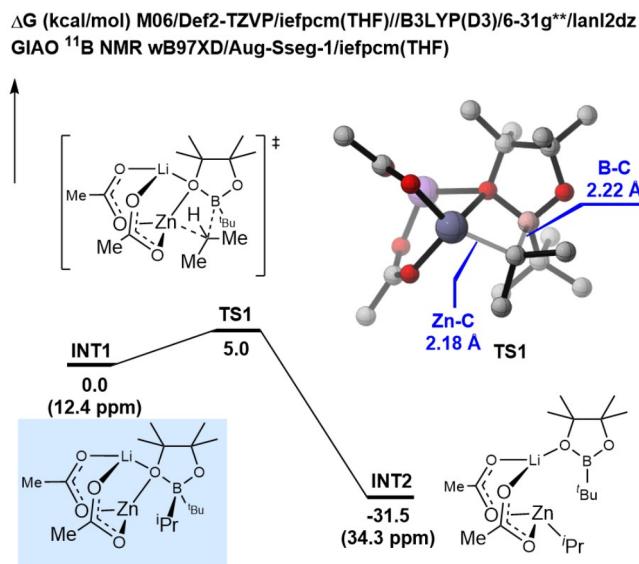



Figure 7. DFT calculated energy surface of boron-to-zinc transmetalation and GIAO-based <sup>11</sup>B chemical shifts.

halides can also be used as electrophiles. The absolute configuration of compound **10** was assigned to be (*S*) by comparing its optical rotation values with the reported data,<sup>24</sup> which suggests that this overall reaction is a stereoretentive process.

Racemic organozinc reagents are known to react with difluorocarbene and deliver a wide range of useful fluorinated compounds.<sup>25</sup> With access to enantiomerically enriched organozinc compounds as prepared above, it was of interest to determine if difluorocarbene insertion might occur in a stereospecific fashion. As shown in Figure 3, with a modification of conditions developed by Dilman and co-workers, the organozinc acetate and chloride intermediates were found to react with *in situ* generated difluorocarbene, to deliver a difluoromethylzinc intermediate; iodinolysis then produced difluoroiodomethyl derivatives with only slight erosion of enantiomeric purity. Study of the reaction conditions showed that the use of zinc pivalate in the transmetalation resulted in increased yield of the overall process (see the Supporting Information), likely by enhancing the stability of the difluoromethyl zinc intermediate. With these conditions, various secondary organoboronic esters were examined in this reaction and found to deliver the product in good yield and good enantiospecificity. Other than trapping the difluoromethyl zinc reagent with iodine to provide the difluoroiodomethyl derivative, NBS or HOAc can also be used as trapping reagent, delivering bromodifluoromethylation (27) and difluoromethylation<sup>26</sup> products (29–32), respectively. Furthermore, the difluoromethyl zinc intermediate can undergo a copper-catalyzed allylation to give difluoroalkylation product 28. Of note, zinc chloride can also be used for this reaction (17, 20, and 24).

Stereospecific trifluoromethylation of organoboronic esters is an important objective.<sup>27</sup> However, our attempts to access these compounds by trapping the above-described difluoromethyl zinc intermediate with electrophilic fluorine reagents (e.g., Selectfluor) were unsuccessful, and only bromination product was observed (presumably, the electrophilic fluorination reagent oxidizes residual bromide to a competent electrophile). To address this problem, we considered direct

trifluoromethylation of the organozinc reagent. Liu has established trifluoromethylation of primary alkylzinc and cyclohexylzinc reagents by transmetalation/reductive elimination with bench stable  $\text{PyCu(III)}(\text{CF}_3)_3$ .<sup>28</sup> In our hands, this process proceeded smoothly and delivered enantiomerically enriched  $\text{CF}_3$ -containing products (Figure 4). The use of nonpolar hexane as a solvent for the trifluoromethylation reaction provided the best results despite the poor solubility of starting materials in this system (see the Supporting Information). Both primary and secondary organoboronic esters can be used as starting materials for the transformation, however, sterically demanding or  $\beta$ -aryl substituted alkylboronic esters are not suitable for this reaction. In both cases, significant amount of alkene side product were generated, likely due to the  $\beta$ -hydrogen elimination from the corresponding alkyl copper(III) intermediate. NOESY NMR experiments with compound 36 indicated that the trifluoromethyl and aromatic groups remained *cis* after the transformation, suggesting this process is also a stereoretention transformation.

To gain insight into the mechanism for the boron-to-zinc transmetalation, we conducted several experiments. Based on comparison to known compounds,<sup>17</sup> the transient  $^{11}\text{B}$  NMR resonance observed at 55 ppm (Figure 1b) during transmetalation with  $\text{Zn(OAc)}_2$  might be an intervening borinic ester, acyloxyborane,<sup>17b</sup> or a related compound. One plausible route to such compounds would arise from dissociation of a pinacolato oxygen atom from boron upon addition of the zinc salt. Such a process finds precedent in studies from Aggarwal,<sup>29</sup> and might provide either ring-opened borinic esters or derived ensembles (i.e., A–C, Figure 5).

To probe the intermediacy of species such as A–C, we examined related structures. In one experiment, pinacol was deprotonated with one equivalent of *n*-BuLi<sup>30</sup> and then treated with  $\text{Zn(OPiv)}_2$  (Figure 6a). The presumed ligand-exchange complex was then treated with dicyclohexylborane, whereupon gas evolution was observed, and a compound immediately formed that exhibited an  $^{11}\text{B}$  NMR resonance at 55 ppm (proposed to be D). Over time, the 55 ppm resonance diminished and a signal at 35 ppm appeared, suggesting that the initial species is competent for transmetalation. Interestingly, a signal at 10 ppm corresponding to a four-coordinate boron complex (E or related) appeared transiently during the reaction. In an alternate experiment (Figure 6b),  $\text{Et}_2\text{B-(OPiv)}^{17b}$  was prepared; its resonance at 55 ppm was quickly consumed (62% conversion at 30 min) and replaced with a resonance at 35 ppm upon treatment with lithium pinacolate and zinc pivalate. While this experiment suggests that an acyloxyborane may be a participant in transmetalations, we note that the  $^{11}\text{B}$  NMR resonance of this species is much sharper than that observed in Figure 1. Moreover, a transient 55 ppm resonance, with a similar line shape as in Figure 1, appears during transmetalations with  $\text{ZnCl}_2$  (see the Supporting Information). Collectively, these experiments suggest that three-coordinate borinic esters are plausible intermediates during the course of transmetalation, but they do not rigorously establish whether these species engage in transmetalation themselves or whether they are off-cycle progenitors of reactive four-coordinate boronates.

To learn whether transmetalation is more likely from four- or three-coordinate organoboron compounds, DFT calculations were conducted for both zinc carboxylate and zinc chloride processes. While transmetalation from three-coordinate boron species was higher in energy, transmetalation of

four-coordinate boronates appeared readily accessible (Figure 7, see the Supporting Information for complete details) thereby suggesting this may be the operative pathway.

In summary, we have reported a stereospecific boron-to-zinc transmetalation and show that the organozinc compounds can undergo useful stereospecific transformations. Preliminary mechanistic investigations suggest that stereospecific transfer of the alkyl group to zinc occurs from four-coordinate boronate complexes. We expect that this process may be useful for the preparation of enantiomerically enriched organozinc reagents and also extend the application scope of alkylboronic esters.

## ASSOCIATED CONTENT

### Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.3c01677>.

Procedures, characterization, and spectral data (PDF)

## AUTHOR INFORMATION

### Corresponding Author

James P. Morken – Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States;  [orcid.org/0000-0002-9123-9791](https://orcid.org/0000-0002-9123-9791); Email: [morken@bc.edu](mailto:morken@bc.edu)

### Author

Hao Liang – Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States;  [orcid.org/0000-0002-0284-1888](https://orcid.org/0000-0002-0284-1888)

Complete contact information is available at: <https://pubs.acs.org/10.1021/jacs.3c01677>

### Funding

This work was supported by a grant from the NIH (NIGMS R35GM127140 to J.P.M.)

### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

This research was supported by instrumentation grants from NSF (MRI award CHE2117246) and NIH (HEI-S10 award 1S10OD026910). The authors thank Dr. Bo Li and Dr. Thusitha Jayasundara of Boston College for assistance with X-ray structure analysis and NMR spectroscopy, respectively.

## REFERENCES

- (1) (a) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Asymmetric Synthesis of Secondary and Tertiary Boronic Esters. *Angew. Chem., Int. Ed.* **2017**, *56*, 11700–11733. (b) Hu, J.; Ferger, M.; Shi, Z.; Marder, T. B. Recent advances in asymmetric borylation by transition metal catalysis. *Chem. Soc. Rev.* **2021**, *50*, 13129–13188.
- (2) Sandford, C.; Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. *Chem. Commun.* **2017**, *53*, 5481–5494.
- (3) Wang, C.-Y.; Derosa, J.; Bischof, M. R. Configurationally stable, enantioenriched organometallic nucleophiles in stereospecific Pd-catalyzed cross-coupling reactions: an alternative approach to asymmetric synthesis. *Chem. Sci.* **2015**, *6*, 5105–5113.
- (4) (a) Boudier, A.; Darcel, C.; Flachsmann, F.; Micouin, L.; Oestreich, M.; Knochel, P. Stereoselective Preparation and Reactions of Configurationally Defined Dialkylzinc Compounds. *Chem.—Eur. J.* **2000**, *6*, 2748–2761. (b) Duddu, R.; Eckhardt, M.; Furlong, M.; Knoess, H. P.; Berger, S.; Knochel, P. Preparation and reactivity of

chiral  $\beta$ -amido-alkylzinc iodides and related configurationally stable zinc organometallics. *Tetrahedron* **1994**, *50*, 2415–2432. (c) Guijarro, A.; Rieke, R. D. Study of the Configuration Stability of the Carbon–Zinc Bond, Direct Measurement of Enantiomeric Ratios, and Tentative Assignment of the Absolute Configuration in Secondary Organozinc Halides. *Angew. Chem., Int. Ed.* **2000**, *39*, 1475–1479. (d) Klein, S.; Marek, I.; Normant, J. F. Carbolithiation of Cinnamylidalkylamines – Stereochemistry of the Li to Zn Transmetalation and Configurational Stability of Benzylid Organozinc Halides. *J. Org. Chem.* **1994**, *59*, 2925–2936.

(5) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. New Applications of Polyfunctional Organometallic Compounds in Organic Synthesis. *Angew. Chem., Int. Ed.* **2000**, *39*, 4414–4435.

(6) (a) Beng, T. K.; Gawley, R. E. Application of Catalytic Dynamic Resolution of N-Boc-2-lithiopiperidine to the Asymmetric Synthesis of 2-Aryl and 2-Vinyl Piperidines. *Org. Lett.* **2011**, *13*, 394–397. (b) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C.-y. Enantioselective, Palladium-Catalyzed  $\alpha$ -Arylation of N-Boc-pyrrolidine. *J. Am. Chem. Soc.* **2006**, *128*, 3538–3539.

(7) Zhang, C.; Hu, W.; Lovering, G. J.; Jin, J.; Chen, J.; Morken, J. P. Enantiomerically Enriched  $\alpha$ -Borylzinc Reagents by Nickel-Catalyzed Carbozincation of Vinylboronic Esters. *J. Am. Chem. Soc.* **2021**, *143*, 14189–14195.

(8) (a) Krämer, K.; Leong, P.; Lautens, M. Enantioselective Palladium-Catalyzed Carbozincation of Cyclopropenes. *Org. Lett.* **2011**, *13*, 819–821. (b) Müller, D. S.; Marek, I. Asymmetric Copper-Catalyzed Carbozincation of Cyclopropenes en Route to the Formation of Diastereo- and Enantiomerically Enriched Polysubstituted Cyclopropanes. *J. Am. Chem. Soc.* **2015**, *137*, 15414–15417.

(9) Boudier, A.; Flachsmann, F.; Knochel, P. Stereoselective Preparation and Reaction of Chiral Secondary Cycloalkyl- and Alkyl-Zinc Reagents. *Synlett* **1998**, *1998*, 1438–1440.

(10) Hupe, E.; Marek, I.; Knochel, P. Diastereoselective Reduction of Alkenylboronic Esters as a New Method for Controlling the Stereochemistry of up to Three Adjacent Centers in Cyclic and Acyclic Molecules. *Org. Lett.* **2002**, *4*, 2861–2863.

(11) Skotnicki, J.; Kremsmair, A.; Keefer, D.; Gong, Y.; de Vivie-Riedle, R.; Knochel, P. Stereoselective Csp<sub>3</sub>–Csp<sub>2</sub> Cross-Couplings of Chiral Secondary Alkylzinc Reagents with Alkenyl and Aryl Halides. *Angew. Chem., Int. Ed.* **2020**, *59*, 320–324.

(12) Procter, R. J.; Dunsford, J. J.; Rushworth, P. J.; Hulcoop, D. G.; Layfield, R. A.; Ingleson, M. J. A Zinc Catalyzed C(sp<sub>3</sub>)–C(sp<sub>2</sub>) Suzuki–Miyaura Cross-Coupling Reaction Mediated by Aryl-Zincates. *Chem.—Eur. J.* **2017**, *23*, 15889–15893.

(13) (a) Xu, N.; Kong, Z.; Wang, J. Z.; Lovering, G. J.; Morken, J. P. Copper-Catalyzed Coupling of Alkyl Vicinal Bis(boronic Esters) to an Array of Electrophiles. *J. Am. Chem. Soc.* **2022**, *144*, 17815–17823. (b) Xu, N.; Liang, H.; Morken, J. P. Copper-Catalyzed Stereospecific Transformations of Alkylboronic Esters. *J. Am. Chem. Soc.* **2022**, *144*, 11546–11552.

(14) Zou, G.; Falck, J. R. Suzuki–Miyaura cross-coupling of lithium *n*-alkylborates. *Tetrahedron Lett.* **2001**, *42*, 5817–5819.

(15) (a) Han, C.; Buchwald, S. L. Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides. *J. Am. Chem. Soc.* **2009**, *131*, 7532–7533. (b) Yang, Y.; Niedermann, K.; Han, C.; Buchwald, S. L. Highly Selective Palladium-Catalyzed Cross-Coupling of Secondary Alkylzinc Reagents with Heteroaryl Halides. *Org. Lett.* **2014**, *16*, 4638–4641.

(16) For related isotopically labeled stereochemical probes, see: Evans, M. A.; Morken, J. P. Isotopically Chiral Probes for in Situ High-Throughput Asymmetric Reaction Analysis. *J. Am. Chem. Soc.* **2002**, *124*, 9020–9021.

(17) (a) Wrackmeyer, B. Nuclear Magnetic Resonance Spectroscopy of Boron Compounds Containing Two-, Three- and Four-Coordinate Boron. *Annu. Rep. NMR Spectrosc.* **1988**, *20*, 61–203. (b) Yalpani, M.; Boese, R.; Seevogel, K.; Koster, R. Monomeric and Dimeric Acyloxydialkylboranes. *J. Chem. Soc., Dalton Trans.* **1993**, 47–50.

(18) Grala, A.; Wolska-Pietkiewicz, M.; Wojewódzka, A.; Dabergut, M.; Justyniak, I.; Lewiński, J. Structural Diversity of Ethylzinc Carboxylates. *Organometallics* **2015**, *34*, 4959–4964.

(19) Thaler, T.; Haag, B.; Gavryushin, A.; Schober, K.; Hartmann, E.; Gschwind, R. M.; Zipse, H.; Mayer, P.; Knochel, P. Highly diastereoselective Csp<sub>3</sub>–Csp<sub>2</sub> Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds. *Nat. Chem.* **2010**, *2*, 125–130.

(20) Ma, X.; Murray, B.; Biscoe, M. R. Stereoselectivity in Pd-catalysed cross-coupling reactions of enantioenriched nucleophiles. *Nat. Rev. Chem.* **2020**, *4*, 584–599.

(21) (a) Armstrong, R. J.; Aggarwal, V. K. 50 Years of Zweifel Olefination: A Transition-Metal-Free Coupling. *Synthesis* **2017**, *49*, 3323–3336. (b) Wang, H.; Jing, C.; Noble, A.; Aggarwal, V. K. Stereospecific 1,2-Migrations of Boronate Complexes Induced by Electrophiles. *Angew. Chem., Int. Ed.* **2020**, *59*, 16859–16872.

(22) (a) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R. Stereospecific Pd-Catalyzed Cross-Coupling Reactions of Secondary Alkylboron Nucleophiles and Aryl Chlorides. *J. Am. Chem. Soc.* **2014**, *136*, 14027–14030. (b) Zhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. R. Enantiodivergent Pd-catalyzed C–C bond formation enabled through ligand parameterization. *Science* **2018**, *362*, 670–674.

(23) Lehmann, J. W.; Crouch, I. T.; Blair, D. J.; Trobe, M.; Wang, P.; Li, J.; Burke, M. D. Axial shielding of Pd(II) complexes enables perfect stereoretention in Suzuki–Miyaura cross-coupling of Csp<sub>3</sub> boronic acids. *Nat. Commun.* **2019**, *10*, 1263.

(24) Bigler, R.; Aggarwal, V. K. ortho-Directing Chromium Arene Complexes as Efficient Mediators for Enantiospecific C(sp<sub>2</sub>)–C(sp<sub>3</sub>) Cross-Coupling Reactions. *Angew. Chem., Int. Ed.* **2018**, *57*, 1082–1086.

(25) (a) Dilman, A. D.; Levin, V. V. Difluorocarbene as a Building Block for Consecutive Bond-Forming Reactions. *Acc. Chem. Res.* **2018**, *51*, 1272–1280. (b) Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. Reactions of Difluorocarbene with Organozinc Reagents. *Org. Lett.* **2013**, *15*, 917–919.

(26) Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Divergent, Stereospecific Mono- and Difluoromethylation of Boronic Esters. *Angew. Chem., Int. Ed.* **2020**, *59*, 8502–8506.

(27) Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organo-fluorine Compounds to Pharmaceuticals. *ACS Omega* **2020**, *5*, 10633–10640.

(28) Paeth, M.; Tyndall, S. B.; Chen, L.-Y.; Hong, J.-C.; Carson, W. P.; Liu, X.; Sun, X.; Liu, J.; Yang, K.; Hale, E. M.; Tierney, D. L.; Liu, B.; Cao, Z.; Cheng, M.-J.; Goddard, W. A.; Liu, W. Csp<sub>3</sub>–Csp<sub>3</sub> Bond-Forming Reductive Elimination from Well-Defined Copper(III) Complexes. *J. Am. Chem. Soc.* **2019**, *141*, 3153–3159.

(29) Chen, J. L. Y.; Scott, H. K.; Hesse, M. J.; Willis, C. L.; Aggarwal, V. K. Highly Diastereo- and Enantioselective Allylboration of Aldehydes using  $\alpha$ -Substituted Allyl/Crotyl Pinacol Boronic Esters via in Situ Generated Borinic Esters. *J. Am. Chem. Soc.* **2013**, *135*, 5316–5319.

(30) (a) Nather, C.; John, A.; Ruppert, K.; Bock, H. Bis(N,N-dimethylformamide)(pyrocatecholato-O,O')lithium. *Acta Crystallogr. Sect. C* **1996**, *S2*, 1166–1168. (b) Mamak, M.; Zavalij, P. Y.; Whittingham, M. S. Layered Structure of Lithium Ethylene Glycolate, Li(OCH<sub>2</sub>CH<sub>2</sub>OH). *Acta Crystallogr. Sect. C* **1998**, *54*, 937–939.