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Abstract— This paper develops and validates an extended
Kalman filter for estimating the fluid volume retained in a
patient’s or a lab animal’s peritoneal cavity during perfu-
sion. Such estimation is potentially valuable for monitoring
perfusion effectiveness and patient condition during medical
interventions such as peritoneal dialysis. Monitoring intra-
abdominal pressure and volume is particularly important for
preventing undesirable or unsafe conditions such as intra-
abdominal hypertension, abdominal compartment syndrome,
etc. The literature already models the dynamics of peritoneal
cavity pressure during perfusion. However, to the best of the
authors’ knowledge, the use of such models for online perfused
volume estimation is a novel contribution of this paper. Specif-
ically, the paper presents a simple model of cavity pressure
dynamics, parameterizes it from a perfusion experiment on a
large laboratory animal (namely, a Yorkshire swine), and uses it
to design an extended Kalman filter for online retained volume
estimation. The paper validates its approach by comparing the
perfused volume estimate to a benchmark estimate generated
using canister fluid level sensors embedded in the perfusion
setup. The results of this validation are very encouraging, with
97% correlation between the two volume estimates.

I. INTRODUCTION

This paper examines the problem of estimating the volume
of fluid retained inside the peritoneal (i.e., abdominal) cavity
of a patient or a laboratory animal during perfusion. At least
two different perfusion applications have the potential to
benefit from such online estimation. In the first application -
namely, peritoneal dialysis - an aqueous solution is perfused
(i.e., circulated) through a patient’s abdominal cavity in
order to absorb and ultimately remove toxins from the
patient’s bloodstream. In the second application, an oxygen-
rich liquid, such as perfluorodecalin, is perfused through the
abdomen in order to facilitate the diffusion of oxygen into
the patient’s or laboratory animal’s bloodstream. Previous
research suggests that such perfusion has the potential to
enable the abdomen to serve as a “third lung,” in a manner
similar to its use as a ‘“third kidney” during peritoneal
dialysis [1]. This is important given the frequency of annual
hospitalizations due to respiratory failure, especially during
global emergencies such as the COVID-19 pandemic.

Fig. 1 is a high-level schematic of the perfusion setup used
in this paper’s research. The setup uses a peristaltic pump
plus a suction canister to circulate oxygenated perfluorode-
calin into and out of a laboratory animal’s abdominal cavity,
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Fig. 1. Perfusion Setup

respectively. Carbon dioxide is purged from the perfusate,
and oxygen is dissolved in it prior to perfusion. The setup has
been employed for seven experiments on laboratory animals
(specifically, Yorkshire swine) to date, with the ultimate goal
of examining the effectiveness of this potential treatment.

Regardless of the specific application, estimating the vol-
ume of fluid retained in the abdomen can be valuable
for monitoring both the effectiveness and safety of perfu-
sion. This is particularly important given the risk of intra-
abdominal hypertension (IAH), characterized by a consis-
tent increase in intra-abdominal pressure (IAP) beyond 12
mmHg [2]. IAH can be caused by an excessive intra-
abdominal volume (IAV), or “retained” volume in the ab-
domen [3]. If IAP values exceeding 20 mmH g persist for
a significant amount of time, patients can develop abdom-
inal compartment syndrome (ACS). This can cause serious
cardiovascular, respiratory, abdominal, neurological, or other
adverse effects [2], [4]. Moreover, considering the high
incidence of IAH among intensive care patients [5], [6],
accurately measuring and characterizing the dynamics of
IAP and IAV is extremely important during intensive care
perfusion applications.

Different methods exist for measuring and monitoring IAP.
Among these methods, the World Society of the Abdominal
Compartment Syndrome recommends using trans-bladder
pressure measurements in the strict supine position [2]. Al-
though this monitoring approach is well-established, the fact
remains that IAP varies significantly: (i) between different
abdominal regions [7]; (ii) as a function of body positioning
angle [8], [9], [10]; and (iii) as a result of conditions such as
obesity, pregnancy, age, etc. [11], [12], [13], [14]. Moreover,



abdominal cavity compliance can change from one patient
to another for reasons including prior surgeries [15]. Finally,
the effectiveness of perfusion applications such as peritoneal
dialysis depends heavily on choosing the correct fill volumes
adapted to each patient [16]. Altogether, the above factors
highlight the importance of monitoring both IAP and IAV.
The main goal of this paper is to enable such online vol-
ume estimation as an additional capability that complements
online TAP measurement.

At least four approaches can be used for estimating TAV,
each having its strengths and limitations. First, one can
estimate IAV by measuring perfusion inflow and outflow,
then integrating the difference between these two flowrates.
This method suffers from the inevitable drift inaccuracies
associated with integration of flowrate measurement bias.
Second, one can equip the patient bed with weight sensors,
then attribute changes in test animal or patient weight to
changes in IAV. This approach can falsely construe other
added weights (e.g., new sensors mounted on the patient bed)
as reflecting changes in IAV. Third, one can use level sensors
to measure the fluid remaining inside the perfusion setup’s
canisters, then attribute changes in these measurements to
perfusion. This is reasonable for short perfusion experiments
with negligible fluid leakage and/or evaporation: a fact that
justifies its use as a benchmark in this paper. Finally, one
can use feedback observers to estimate retained volume
from perfusate flowrate and IAP measurements. Feedback
estimation allows this approach to be potentially robust to
the slow loss of fluid due to evaporation and/or leakage: a
key advantage that motivates its adoption in this work.

The literature already examines the relationship between
IAV and IAP for both humans and other mammals [8], [9].
Some studies approximate this relationship as affine [8],
[9], [17], [18], with more recent studies emphasizing the
nonlinear nature of this relationship for higher IAV/IAP
values (e.g., IAP > 15 mmHyg) [4], [19]. In particular,
as TAV increases, there is first a small drop in incremental
peritoneal cavity stiffness, followed by nearly exponential
stiffening for higher values of IAV/IAP. The above studies
are useful because the dynamic relationship between IAV and
IAP can serve as a plant model for online AV estimation. To
the best of the authors’ knowledge, the novelty of this work
stems from the fact that it builds on the above literature
to both propose and experimentally validates a feedback-
based online perfused volume estimator, for the first time.
The estimator assumes that both IAP and perfusate inflow
rates are measured experimentally, then uses an extended
Kalman filter (EKF) for online AV estimation.

The remainder of this paper is organized as follows.
Section II describes the perfusion setup used in this study’s
animal experiment. Section III presents the state-space model
used for representing cavity pressure dynamics, as well as the
outcomes of fitting this model to animal experiment data.
Section IV presents the approach used for designing the
perfused volume estimator, as well as the performance of
this IAV estimator. Finally, Section V summarizes the paper’s
conclusions.

II. EXPERIMENTAL SETUP

The motivating application for this work is the peritoneal
perfusion of oxygenated perfluorocarbons. Perfluorocarbons
(PFCs) are compounds consisting of carbon chains or rings
covalently bonded to fluorine. The characteristics of the
carbon-fluorine bond allow PFCs to dissolve unusually high
amounts of both oxygen and carbon dioxide [20], [21], [22],
[23]. This has motivated research on the use of the peritoneal
perfusion of oxygenated PFCs to provide a potential pathway
for the diffusion-based transport of oxygen into test animals’
bloodstreams [1]. The resulting “third lung” intervention is
potentially appealing as a treatment for patients experiencing
respiratory failure due to acute respiratory distress syndrome
(ARDS), COVID-19, etc.

Fig. 1 provides a high-level sketch of the setup used in
this paper, with additional details appearing in a companion
article [24]. The setup uses a peristaltic pump to supply
PFC into lab animals’ abdominal cavities. A cis-\trans-
perfluorodecalin mix is supplied to and drained from the test
animals through 36 French (i.e., 12mm diameter) venous
cannulas terminating in foam-covered custom diffusers. PFC
drainage is facilitated via active suction provided by a
manually-controlled vacuum pump. The setup contains three
canisters: a CO2 removal canister, an oxygenation canister,
and a suction canister. A pressure sensor is mounted at the
top of the suction canister and used for measuring negative
suction pressure. Furthermore, to measure the level of PFC
in each canister, additional pressure sensors are mounted at
the bottoms of the three canisters. The setup measures PFC
inflow into the animal using a flowrate sensor. Moreover, the
setup’s data acquisition system monitors the signals from
three catheter-mounted sensors for measuring IAP, bladder
pressure, and inferior vena cava pressure.

Seven IACUC-approved animal experiments have been
performed to date on the “third lung” concept using the above
setup. The work in this paper focuses on the seventh animal
experiment due to the availability of a reliable benchmark
measurement of perfused volume from this experiment’s
dataset. Perfusion was performed on an adult Yorkshire
swine, anesthetized for the full duration of the experiment.
The experiment provided two estimates of perfused volume
versus time, using two separate sets of sensors, namely:
an TAV estimate using the proposed EKF algorithm, plus
a benchmark estimate utilizing the pressure-based canister
level sensors. As shown in the remainder of this paper, the
strong linear correlation between these two estimates serves
as a validation of the proposed EKF concept.

ITII. CAVITY PRESSURE DYNAMICS AND SYSTEM
IDENTIFICATION

This section introduces a simple first-order nonlinear state-
space model of cavity pressure dynamics. This model serves
as the open-loop predictor component of the proposed EKF
algorithm. The two inputs to this model are the volumetric
PFC flowrate (measured by the perfusion flowrate sensor)
and the ambient suction pressure (measured by the pressure
sensor mounted at the top of the suction canister). The output



of the model is IAP, and the state variable is IAV. Thus, the
availability of physical AP measurements enables the use of
feedback-based IAV state estimation in conjunction with this
model. All pressure measurements presented in this paper are
gauge pressures. Hence a pressure reading of zero indicates
atmospheric conditions. The equations below summarize the
proposed state-space model for the cavity dynamics.

d‘;iit) = Qin(t) = Qour(t) = Qin(t) — Co0P(t)

P(t) = BV (t) + BV (8)? + B3V (1)° 0
6P(t) = P(t) — Coo P

V(0) =1,

The variables and parameters in the above equations are
defined below with their dimensions.

P(t) = Peritoneal intra-cavity pressure, IAP (mmH g)
V(¢) = Peritoneal intra-cavity volume, IAV (L)

V, = Initial intra-cavity volume (L)

Qin(t) = PFC inflow (L/min)

Qout(t) = PFC outflow (L/min)

P, (t) = Ambient pressure (mmH g)

dP(t) = Drainage pressure difference (mmH g)

c, = Discharge constant (L/min/mmH g)

Coo = Ambient pressure coefficient

Bi = P-V relationship coefficients (mmHg/L")

This state-space model uses a cubic relationship between
the TAV, V(¢), and the IAP, P(t), characterized by three
unknown constants, 1, B2, and 3. The rate of change of
V(t), dV(t)/dt is the difference between PFC inflow and
outflow, where PFC outflow is a product of a linear discharge
coefficient, C,, and the drainage pressure difference, JP.
The model can be applied to different datasets, including
datasets that begin after the initiation of perfusion. Hence, the
possibility of a non-zero initial volume of PFC is recognized
by setting V(0) = V, for some unknown, potentially non-
zero, V,. Drainage pressure difference, 6P, is defined as
the difference between P(t) and the product Coo Ps, of an
ambient pressure coefficient C', and ambient pressure Pa.
Here, the ambient pressure coefficient represents the fact
that the full extent of the negative ambient pressure, P,
measured at the top of the suction canister, may not be felt
at the animal’s discharge port due to simple factors such as
air leakage in the suction canister.

Using Eq. (1), system identification was performed to
estimate V,, C,, Cw, P1, P2, and B3. Approximately 370
seconds of the seventh experimental perfusion dataset were
used to fit the model. The system identification objective was
minimizing the summed square cavity pressure prediction
error over the selected time horizon, subject to the proposed
cavity dynamics model Eq. (1) as a constraint. Optimization
was done using Matlab’s particle swarm algorithm with a
time step dt = 10 seconds.

Fig. 2 and Fig. 3 show the two inputs to the state-
space model, PFC perfusion flowrate and ambient suction
pressure, respectively. These two signals were filtered using
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Fig. 3. Ambient suction pressure

a moving average filter applied over a 10-second window.
At the beginning of the experiment, a perfusion flowrate
reaching approximately 4 liters per minute is applied inter-
mittently until the 75- second mark. Then, a steady flowrate
of approximately 2.5 liters per minute is applied between
the 75- and 300- second marks. Perfusion was stopped
afterwards, leading to a zero flowrate. A relatively consistent
small suction pressure between approximately —8mmHg
and —2mmH g was applied throughout this experiment. As
a result, cavity pressure decreases gradually over time, as
seen in Fig. 4, due to the rapid termination of perfusion plus
the steady application of mild active suction.

Fig. 4 compares the measured and (optimal) estimated
cavity pressure profiles for this time window. One interesting
observation is that the measured IAP follows a staircase
pattern, whereas estimated IAP is much smoother versus
time. The staircase pattern of IAP measurement suggests
either a pulsating outflow from the animal or the intermittent
blockage of the IAP measurement catheter inside the test
animal. Plots of bladder and vena cava pressure versus time,
omitted for brevity, do not exhibit a staircase pattern. This



strongly suggests that the staircase pattern is likely caused
by intermittent measurement catheter blockage. The fact that
the estimated pressure signal tracks the general trend of
measured IAP is, therefore, an encouraging indication of
a reasonable model fit. Fig. 5 and Fig. 6 show that the
residuals associated with this fit are reasonable, both as a
function of time and in terms of their statistical distribution.
Finally, Fig. 7 plots the auto-correlation of these residuals,
for a 10-second time lag. The fact that these residuals are
not white suggests the presence of unmodeled effects, most
likely associated with the intermittent blockage of the IAP
measurement catheter.
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Fig. 4. Estimated cavity pressure and measured cavity pressure

The above system identification results correspond to
the following optimal parameter estimates: C, = 0.2,
Vo, = 15L, C, = 0.1062(L/min)/mmHg, /1 =
6.0153mmHg/L, B = —0.0916mmHg/(L?), and B3 =
OmmHg/(L3). Among these parameters, 31, (32, and C,
are interior optima. These parameters correspond to a linear
cavity discharge law and a weakly quadratic pressure-volume
relationship, as shown in Fig. 8 and Fig. 9, respectively. The
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Fig. 5. Cavity pressure prediction residuals

quadratic term in the pressure-volume relationship suggests
a slight reduction in incremental abdominal cavity stiffness
with increasing IAV. This phenomenon has been observed in
the literature for intermediate IAV values, and is typically
followed by abrupt cavity stiffening at higher IAV values.
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The degree to which the above model can predict IAV is
critical for its successful use in extended Kalman filtering.
With this in mind, the optimal estimated IAV and the change
of the volume of PFC in the perfusion setup were compared
during the above time horizon. To compute the change of the
volume of PFC in the setup, the pressure sensors mounted
at the bottoms of the CO2, O2, and suction canisters were
used to compute the level of PFC inside each canister,
which ultimately enabled the computation of the total volume
of PFC in each canister. Then, the volume of PFC in all
canisters was combined to get the total volume of PFC in
the setup, which was subtracted from the initial PFC volume
to calculate the PFC volume change over time. The estimated
IAV and the PFC volume change in the setup are both shown
in Fig. 10. The two signals are shifted vertically relative to
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each other. This makes sense, considering the fact that one
of the two signals is an estimate of absolute retained fluid
volume whereas the other signal is an estimate of change in
PFC volume inside the setup’s canisters.

The two volume estimates in Fig. 10 are obtained using
two separate estimation methods and, more importantly, two
separate sets of sensors. This suggests that if one of these
estimates - namely, the estimate obtained using the canister
level sensors - is treated as a benchmark, a strong correlation
between the two estimates can provide confidence in the
second estimate. Fig. 11 pursues this validation exercise by
plotting the level sensor-based estimate of PFC in the setup
on the x-axis versus the estimated retained PFC volume
on the y-axis. Both signals are sampled at a rate of 1
sample every 10 seconds in order to ensure consistency
with the simulation model’s 10-second time step. A strong
linear correlation is visible between the two signals, with
the red line in Fig. 11 indicating the best straight line fit
for this correlation. The slope of the straight line fit is
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Fig. 11. Linear Regression

1.17, meaning that when the volume of PFC in the setup’s
canister experiences an estimated change of 1L, perfused
volume experiences an estimated change of 1.17L. This
makes intuitive sense, given the difference between the two
volumes being estimated and the fact that the experiment
under consideration mostly involves fluid drainage from the
lab animal. Specifically, as the animal is drained of PFC,
a portion of the drained fluid fills the outflow catheter
as opposed to the perfusion setup’s canisters, potentially
explaining the above discrepancy. Perhaps most importantly,
the coefficient of determination (or “R-squared” value) asso-
ciated with this straight-line correlation is 0.97, suggesting
that 97% of the variations in the above two volume estimates
can be explained through this linear correlation. This serves
as a strong validation of the degree to which the proposed
pressure dynamics model - while simple - can serve as a
foundation for online perfused volume estimation.



IV. DESIGN AND VALIDATION OF EKF-BASED
PERFUSED VOLUME ESTIMATOR

The perfused (or retained) volume estimate in Fig. 10 re-
flects the open-loop simulation of an optimally parameterized
cavity pressure dynamics model. In other words, it reflects an
open-loop estimate of AV for an optimized initial condition.
For online applications, one alternative to finding the optimal
initial condition of the volume estimate is to use a feedback
estimator. In this work, considering the nonlinearity of the
pressure-volume relationship in Eq. 1, we use an extended
Kalman filter (EKF) for perfused volume estimation. The
governing equations for this EKF are:

di;i ) _ Qi ) C,0P(t) + K(t)[P(t) — P(t)]
3P(t) = P(t) = CooPa ¥
P(t) = BV(t )+62V( )2+ BV (t)?

In the above equation, V(t) and P(t) are the EKF-
based estimates of IAV and IAP, respectively. The term
K(t) is a time-varying Kalman gain, computed by applying
the Algebraic Ricatti Equation to a local linearization of
the governing cavity pressure dynamics model around the
current perfused volume estimate, V(t) In solving this
Ricatti equation, we tune the filtering algorithm by setting
the process noise variance to W = 2.5 x 1073 L%s~2 and the
sensor noise variance to V = 0.25mmHg?. As in the open-
loop cavity pressure dynamics model, the terms @, (¢) and
P, (t) represent the sensor measurements of the perfusate’s
inflow rate and ambient pressure, respectively. Moreover, the
term P(t) represents the experimentally measured IAP.

The basic idea behind the proposed EKF algorithm can
be summarized as follows. The algorithm assumes that the
flowrate of PFC into the abdominal cavity and the ambient
suction pressure are measured. Using the cavity pressure
dynamics model, and assuming this model to be accurate,
the EKF algorithm predicts the rate of change of perfused
volume versus time. It then corrects this prediction by
feeding back the error between measured and predicted IAP,
with the Kalman gain serving as a time-varying correction
multiplier. The end result is a classical nonlinear estimator
that employs feedback to both correct its estimates and
pursues some degree of potential robustness to modeling
errors.

Fig. 12 compares the measured IAP from the experimental
data versus the predicted pressure using the EKF. The EKF’s
perfused volume estimate is initially set to 1L to generate this
figure. As shown in the plot, the predicted pressure converges
with the pressure measurement data after approximately 50
seconds. During the rest of the time horizon, the EKF
tracks the measured pressure signal quite accurately. Fig. 13
compares the predicted volume from the EKF to: (i) the
perfused volume estimate obtained by applying the linear
regression formula from the previous section to the canister
volume estimate; and (ii) the open-loop perfused volume
estimate obtained from system identification. As depicted
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in the figure, the EKF volume signal converges with the
remaining curves in approximately 50 seconds. Then, during
the rest of the time horizon, all three graphs decrease from 10
L to 2.5 L, closely following each other. This demonstrates
the success of the proposed EKF algorithm in estimating IAP
and (more importantly) IAV based on the modeled cavity
pressure dynamics.

V. CONCLUSIONS

This paper models the dynamics of peritoneal intra-cavity
pressure in a laboratory pig and uses this state-space model
to design a perfused volume estimator using EKF. A good
fit was obtained between the experimental data, open-loop
simulation, and the EKF model. This shows that the EKF
algorithm, employing the cavity pressure dynamics model,
can indeed accurately estimate IAP and IAV. The novelty of
the work stems from its development and validation of the
EKF as an online algorithm for perfused volume estimation.
Future work will examine the problem of applying this
approach across multiple experimental settings and animals,
perhaps in an adaptive manner that accounts for animal-



to-animal variability in underlying pressure dynamics. Such
an extended application of this work is valuable both for
validation and maximizing the richness of the datasets used
in model parameterization and EKF algorithm development.
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