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A central result in superconductivity is that flat bands, though dispersionless, can still host a nonzero superfluid
weight due to quantum geometry. We show that the derivation of the mean field superfluid weight in previous
literature is incomplete, which can lead to severe quantitative and even qualitative errors. We derive the complete
equations and demonstrate that the minimal quantum metric, the metric with minimum trace, is related to the
superfluid weight in isolated flat bands. We complement this result with an exact calculation of the Cooper
pair mass in attractive Hubbard models with the uniform pairing condition. When the orbitals are located at
high-symmetry positions, the Cooper pair mass is exactly given by the quantum metric, which is guaranteed
to be minimal. Moreover, we study the effect of closing the band gap between the flat and dispersive bands,
and develop a mean field theory of pairing for different band-touching points via the S-matrix construction.
In mean field theory, we show that a nonisolated flat band can actually be beneficial for superconductivity.
This is a promising result in the search for high-temperature superconductivity as the material does not need to
have flat bands that are isolated from other bands by the thermal energy. Our work resolves a fundamental
caveat in understanding the relation of multiband superconductivity to quantum geometry, and the results
on band touchings widen the class of systems advantageous for the search of high-temperature flat band
superconductivity.
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I. INTRODUCTION

Systems with dispersionless (flat) bands host exotic
phenomena, as even small interactions will dominate the ki-
netic energy. For example, flat bands have been predicted
to increase the critical temperature for superconductivity.
Bardeen-Cooper-Schrieffer (BCS) theory predicts that the
critical temperature is given by Tc ∝ exp(− 1

|U |ρ0(EF ) ), where
|U | is the strength of the effective attractive interaction and
ρ0(EF ) is the density of states at the Fermi surface. In a
flat band, where the density of states diverges, Tc is propor-
tional [1–3] to |U |, implying that the critical temperature can
be much higher in flat bands than in dispersive bands at low
interaction strengths.

However, the BCS critical temperature does not by itself
indicate superconductivity, as it is only the critical temper-
ature for Cooper pair formation. The Meissner effect and
the possibility of dissipationless transport are also required.
These are characterized by a nonzero superfluid weight Ds or,
equivalently, superfluid stiffness [4]. Moreover, a nonzero Ds

is a necessary condition for a nonzero Berezinsky-Kosterlitz-
Thouless (BKT) transition temperature, which is the critical
temperature for superconductivity in two dimensions. The su-
perfluid weight is conventionally given by Ds = ne/m∗, where
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ne is the total particle density and m∗ is the effective mass. In
a flat band, single particles localize and m∗ diverges, which
indicates vanishing superfluid weight. However, in multiband
models, the superfluid weight has an additional geometric
contribution which can be nonzero even in the case of flat
bands [5–8]. In the isolated band limit, this contribution has
been shown [5] to be related to the quantum metric [9–11].
Monte Carlo results are in good agreement with this pre-
diction [12–14]. Flat band superconductivity has attracted
immense interest due to its relevance in magic-angle twisted
bilayer graphene [15–17] and other moiré materials [18–22].
In particular, the potential importance of the geometric contri-
bution to the superfluid weight has been shown in theoretical
studies of twisted bilayer graphene [23–26], and has also been
explored experimentally [27].

There is, however, a fundamental problem in the relation
between the superfluid weight and the quantum metric as
presented in previous literature. Consider a gedanken trans-
formation that changes the orbital locations of a lattice model
without altering the hopping terms. The superfluid weight
is invariant under such transformations. On the other hand,
the quantum metric depends not only on the tight-binding
parameters of the lattice model, but also on the locations
of the orbitals. We show that this discrepancy in mean field
theory is resolved by properly accounting for the dependence
of the order parameters on the magnetic vector potential.
This dependence is crucial in multiband models, where the
order parameters can have orbital-dependent phases. We show
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that accounting for the behavior of the order parameters
is necessary even in systems with time-reversal symmetry
and uniform pairing, contradicting previous literature [5,28].
We derive complete equations for the mean field superfluid
weight, and show that the use of the simpler equations pro-
vided in previous literature can lead to quantitative and,
in extreme cases, qualitative errors where the superfluid
weight is incorrectly nonzero. We show that, in time-reversal-
symmetric systems, the superfluid weight for isolated flat
bands with uniform pairing is proportional to the minimal
quantum metric, which is the quantum metric with the small-
est possible trace.

These conclusions in mean field theory are mirrored by ex-
act calculations of the Cooper pair mass in attractive Hubbard
models possessing a uniform pairing condition. We find two
contributions to the effective mass in perturbation theory: the
quantum metric and a competing nonuniversal term. However,
we show that the space-group symmetries strongly constrain
the latter. If the orbitals are located at high-symmetry po-
sitions such that they are pinned in location by the lattice
symmetries, this nonuniversal term vanishes and the quantum
metric is the unique contribution to the Cooper pair mass. We
propose a simple extension of the uniform pairing condition
that guarantees the nonuniversal term vanishes.

In order to understand the behavior of nonisolated flat
bands, we also study the effect of closing the gap between the
flat band and dispersive bands. Remarkably, we show that a
band touching can actually be beneficial for superconductivity
(see Fig. 1). This is important, as it means that one does not
need to find systems where the flat band is separated from
the other bands by a large energy scale. If isolated bands
were needed, trying to achieve a higher critical temperature
would mean that larger band gaps were required to avoid
thermal excitations to the other bands; this could be a severe
limitation especially when searching for room-temperature
superconductivity. Our results show that such isolation is not
necessarily needed. In contrast, band touchings can enhance
TBKT or Tc.

We also investigate the effect of different types of band
touchings, and show that the quantum geometry of the flat
band alone is not sufficient to describe superconductivity in
the nonisolated band limit: the type of band touching matters
too, and can actually be used as a design degree of freedom
when optimizing the critical temperature. We complement our
numerical results with an analytic treatment of interacting
bipartite crystalline lattices with mean field theory, yielding
relations between the pairing strengths on different sublat-
tices.

Overall, our results are promising for harnessing the po-
tential of flat bands in increasing the critical temperature of
superconductivity, illustrated by Fig. 1. For large interactions,
dispersive band structures are often as good or better than
flat band systems. In contrast, for weak interactions (typically
|U | < t), flat bands provide a clear, even radical, advantage.
This makes it possible to utilize a wider class of systems and
materials for high-temperature superconductivity since inter-
actions do not need to be strong. The potential of flat bands to
offer high critical temperature even for weak interactions may
also help avoid bipolarons and charge density waves compet-
ing with superconductivity at large interactions [29,30].

FIG. 1. BKT temperature computed for the square lattice (gray)
and for the Lieb lattice with a half-filled flat band (blue, green,
and yellow) with different values of the hopping staggering η (see
Fig. 2). Inset: BKT temperature at interactions 0.2 � |U | � 3. The
flat band is isolated from the other bands by a band gap Egap = √

8η.
The highest BKT temperatures are obtained when η = 0, which
corresponds to the situation where the gap between the flat band
and dispersive bands closes, resulting in a linear band touching.
The BKT temperature for the square lattice (gray) is exponentially
suppressed at low interactions, whereas TBKT on the isolated flat band
is proportional to |U |. All energies are given in units of the average
inter-lattice-site hopping energy t .

II. SUPERFLUID WEIGHT IN MULTIBAND MEAN
FIELD MODELS

A. Model Hamiltonian

We study the Hubbard model on a multiband lattice

H =
∑

σ

∑
iα, jβ

(
tσiα, jβ − μδiα, jβ

)
c†
iασ c jβσ

+U
∑
iα

c†
iα↑c

†
iα↓ciα↓ciα↑, (1)

where i, j label the unit cells and α, β the orbitals in a unit
cell. The hopping amplitude from site jβ to iα for spin σ is
tσiα, jβ andU < 0 is the onsite interaction strength. The particle
number is tuned by the chemical potential μ. We use the usual
mean field approximation Uc†

iα↑c
†
iα↓ciα↓ciα↑ ≈ �iαc

†
iα↑c

†
iα↓ +

H.c. − |�iα|2/U , where �iα = U 〈ciα↓ciα↑〉. We will focus on
solutions where the order parameter is uniform on each or-
bital, �iα = �α , i.e., it does not depend on the unit-cell index
i but can depend on the orbital index α.

B. Superfluid weight from the free energy

The superfluid weight can be defined as the change in
free energy F = 	 + μN , where 	 is the grand canonical
potential and N is the particle number, due to a change in the
phase of the order parameters �iα → �iαe2iq·riα [5,31], with
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riα being the position of the site iα:

[Ds]i j = 1

V

d2F

dqidq j

∣∣∣∣
q=0

. (2)

Here,V is the volume of the system. The derivative is taken at
a constant temperature, but the other thermodynamic variables
are allowed to vary with q.

Introducing the phase e2iq·riα into Eq. (1), the Fourier-
transformed mean field Hamiltonian reads as

H (q) =
∑
k

c†kHBdG(k)ck

+
∑
k

TrH↓
k − nNcμ − Nc

∑
α

|�α (q)|2
U

, (3)

HBdG(k) =
(
H↑
q+k − μ1 �

�† −(H↓
q−k)∗ + μ1

)
, (4)

where ck = (cq+k,α=1,↑, . . . , cq+k,α=n,↑, c†
q−k,α=1,↓, . . . ,

c†
q−k,α=n,↓)T and n is the number of bands. The number of

unit cells is denoted by Nc, and � = diag(�1, . . . , �n).
The matrix Hσ

k is the Fourier transformation of the kinetic
Hamiltonian for spin σ , [Hσ

k ]αβ = ∑
i t

σ
iα,0βe

−ik·(Ri+δα−δβ ),
where Ri is the position of the ith unit cell and δα = riα − Ri.
Here we have used the Fourier transformation

ckασ = 1√
Nc

∑
i

e−ik·(Ri+δα )ciασ , (5)

which takes the intra-unit-cell positions of the orbitals into
account. Another convention that is often used is

ckασ = 1√
Nc

∑
i

e−ik·Riciασ , (6)

which corresponds to setting all δα = 0. This latter convention
has the advantage of making the Hamiltonian explicitly peri-
odic in reciprocal space. However, the choice of the orbital
positions plays an essential role, as we will show, in relating
the superfluid weight to quantum geometry.

The order parameters for a given chemical potential and
temperature can be solved by minimizing the grand potential

	 = − 1

β

∑
k

∑
i

ln[1 + exp(−βEk,i )]

+
∑
k

TrH↓
k − nNcμ − Nc

∑
α

|�α|2
U

, (7)

where Ek,i are the eigenvalues of the Bogoliubov–de Gennes
Hamiltonian HBdG(k). The particle number is controlled by
the chemical potential μ, and fulfills the equation N =
−∂	/∂μ.

Equation (2) can be cumbersome to use, as it requires
knowledge of the state at nonzero q. In previous literature [5],
it has been shown that this equation simplifies to [Ds]i j =
(1/V )∂2	/∂qi∂q j |q=0 for systems with time-reversal symme-
try (TRS), and assuming that the order parameter is always
real, even for nonzero q. The partial derivative is taken with
all variables but q kept constant, meaning only knowledge of
the state at q = 0 is required. This simplified equation has

been used, for example, to show that the superfluid weight
of isolated flat bands is proportional to the quantum met-
ric. A salient problem with that result, however, is that the
quantum metric depends on the positions of the orbitals in
a unit cell {δα} through Eq. (5). On the other hand, the su-
perfluid weight is invariant under changes of {δα}: this is
immediately clear from the definition (2), given that the free
energy does not depend on intra-unit-cell positions (when the
hopping amplitudes tiα, jβ have been fixed constant). Using the
terminology introduced in Ref. [32], the superfluid weight is
geometry independent while the quantum metric is geometry
dependent. The source of this discrepancy is the assumption
that all order parameters are real even at nonzero q. For
a single-band model, this assumption can always be made
because of the freedom in the phase of the order parameter.
However, for a multiband model, the order parameters can
have orbital-dependent phases and cannot, in general, be made
simultaneously real by changing only the overall phase.

To understand how the problem arises, let us express
d2F/dqidq j in terms of partial derivatives of the grand canon-
ical potential. For all the equations, we will fix the overall
phase of the order parameters by imposing reality and pos-
itivity on a nonzero order parameter for one of the orbitals;
we choose it to be �1(q). For simplicity, we will focus here
on a system with time-reversal symmetry, which implies that
μ(q) = μ(−q) and �α (q) = �∗

α (−q) [5]. Hence at q = 0, the
derivatives of the order parameters are purely imaginary and
dμ/dqi|q=0 = 0. The general case without TRS is treated in
Appendix A. Using the chain rule, the first derivative of the
grand potential may be written as

d	

dqi
= ∂	

∂qi
+ ∂	

∂μ

dμ

dqi
+
∑

α

∂	

∂�I
α

d�I
α

dqi
+
∑

α

∂	

∂�R
α

d�R
α

dqi
,

(8)

where we have used the notation �I
α = Im(�α ) and �R

α =
Re(�α ). Taking the total derivative of Eq. (8) with reference
to q j and setting q = 0 yields

d2F

dqidq j

∣∣∣∣
q=0

= d2	

dqidq j

∣∣∣∣
q=0

− ∂	

∂μ

d2μ

dqidq j

∣∣∣∣
q=0

(9)

= d

dq j

∂	

∂qi

∣∣∣∣
q=0

(10)

= ∂2	

∂qi∂q j

∣∣∣∣
q=0

+
∑

α

∂2	

∂�I
α∂qi

d�I
α

dq j

∣∣∣∣
q=0

. (11)

We have used that ∂	/∂�α = 0 at all q, which is equivalent
to the gap equation, and that the total particle number N =
−∂	/∂μ is constant. Due to TRS, the derivatives of the order
parameters are purely imaginary at q = 0 and dμ/dqi|q=0 =
0, which is why only the total derivatives of �I

α appear on the
third line. Since ∂	/∂�α = 0 holds at all q, we have

0 = d

dqi

∂	

∂�I
α

∣∣∣∣
q=0

= ∂2	

∂qi∂�I
α

∣∣∣∣
q=0

+
∑

β

∂2	

∂�I
α∂�I

β

d�I
β

dqi

∣∣∣∣
q=0

.

(12)
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Using this identity, we can write Eq. (11) in a more concise
form

d2F

dqidq j

∣∣∣∣
q=0

= ∂2	

∂qi∂q j

∣∣∣∣
q=0

− (di�
I )T∂2

�I	(d j�
I )|q=0,

(13)

di�
I =

(
d�I

2

dqi
, . . . ,

d�I
n

dqi

)T

, (14)

∂2
�I	 =

⎛⎜⎜⎝
∂2	

∂�I
2∂�I

2
. . . ∂2	

∂�I
2∂�I

n
...

. . .
...

∂2	

∂�I
n∂�I

2
. . . ∂2	

∂�I
n∂�I

n

⎞⎟⎟⎠. (15)

The partial derivatives in ∂2
�I	 are taken by varying the

involved order parameter while keeping all other variables
constant.

Clearly, d2F/dqidq j |q=0 = ∂2	/∂qi∂q j |q=0 when
d�I

α/dqi|q=0 = 0. This holds if the order parameters are
real also at nonzero q. It has been argued in previous literature
that the simplified equation [Ds]i j = (1/V )∂2	/∂qi∂q j |q=0
can be used in systems with TRS, as the order parameters
can be made real with a transformation ciα → ciαeiθiα (q) [5].
This transformation has no effect on the free energy, and the
superfluid weight remains unchanged. However, the terms on
the right-hand side of Eq. (13) are not individually conserved
under this transformation; they both change in such a way that
the left-hand side of Eq. (13) remains invariant. Therefore,
when using [Ds]i j = (1/V )∂2	/∂qi∂q j |q=0, it is crucial
to compute the partial derivative after the transformation
ciα → ciαeiθiα (q) is performed. In practice, one cannot assume
that this simplified equation holds without knowledge of the
behavior of the order parameters at nonzero q, even in systems
with TRS. This fact was correctly pointed out in Ref. [28].
However, it was stated therein that the additional terms are
zero when the orbitals are equivalent. This is not generally the
case: the introduction of the vector q in the system typically
breaks the very symmetry which guaranteed equal pairing at

the orbitals, meaning that the order parameters at q �= 0 can
differ even if they are equal at q = 0.

It is straightforward to show that the additional terms in
Eq. (13) are always negative for i = j. The matrix ∂2

�I	

is the Hessian matrix of the grand canonical potential, and
since the order parameters are a minimum of 	, it is positive
semidefinite. It follows immediately that (di�)T ∂2

�I	(di�) �
0, which means that (1/V )∂2	/∂q2

i |q=0 � [Ds]ii. This implies
that ∂2	/∂qi∂q j can predict values that are much larger than
the correct superfluid weight, including the case of indicating
a nonzero superfluid weight when it is in fact vanishing.

The derivatives d�α/dqi can be computationally expen-
sive to evaluate, as they seem to require solving the gap
equation at different nonzero q. Remarkably, however, they
can be determined with only knowledge of the ground state at
q = 0. This method relies on the system of equations given in
Eq. (12), which can be written in matrix form as

(∂2
�I	)di�

I = −bi, (16)

bi =
(

∂2	

∂qi∂�I
2

, . . . ,
∂2	

∂qi∂�I
n

)T

. (17)

The derivatives of the order parameters are thus di�I =
−(∂2

�I	)−1bi, which involves only partial derivatives of 	 and
does not require knowledge of the state at nonzero q.

C. Superfluid weight from linear response: Conventional
and geometric contributions

In previous literature, the superfluid weight has been split
into so-called conventional and geometric parts [5,6]. The
conventional part is the only component present in single-
band models, and is related to the derivatives of the band
structure. It vanishes in the flat band limit. The geometric
part is a purely multiband component which can be nonzero
even on flat bands. Expressions for these components have
been derived from linear response theory [6], but without
accounting for the dependence of the order parameters on the
vector potential. We compute the full mean field superfluid
weight from linear response theory in Appendix D, and obtain

[Ds]i j = 1

V

∑
k,ab

nF (Ea) − nF (Eb)

Eb − Ea
[〈ψa|∂iH̃k|ψb〉〈ψb|∂ j H̃k|ψa〉 − 〈ψa|(∂iH̃kγ

z + δi�)|ψb〉〈ψb|(∂ j H̃kγ
z + δ j�)|ψa〉] − 1

Vc
Ci j,

(18)

where

∂iH̃k =

⎛⎜⎝ ∂H↑
k′

∂k′
i

∣∣∣
k′=k

0

0
∂ (H↓

k′ )∗

∂k′
i

∣∣∣
k′=−k

⎞⎟⎠, δi� =
(

0 d�
dqi

∣∣
q=0

d�†

dqi

∣∣
q=0

0

)
, Ci j = 1

U

∑
α

d�α

dqi

d�∗
α

dq j

∣∣∣∣
q=0

+ H.c. (19)

Here, γ z = σz ⊗ 1n×n, where σi are Pauli matrices and 1n×n

is the n × n identity matrix. The eigenvalues and eigenvec-
tors of HBdG are Ea and |ψa〉, respectively, and nF (E ) is the
Fermi-Dirac distribution at E . The prefactor in (18) should be
understood as −∂nF (E )/∂E when Ea = Eb. This expression
differs from the one given in [6] by the addition of δi� in the

second term on the right-hand side of Eq. (18) and Ci j , which
account for the derivatives of the order parameters.

To separate the conventional and geometric contributions
of the superfluid weight, we write the eigenvectors
of HBdG in terms of the Bloch functions |mσ,k〉:
|ψa〉 = ∑n

m=1(w+,am|+〉 ⊗ |m↑,k〉 + w−,am|−〉 ⊗ |m∗
↓,−k〉),
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where |m↑,k〉 is the eigenvector of H↑
k with eigenvalue ε↑,m,k,

|m∗
↓,−k〉 is the eigenvector of (H↓

−k)∗ with eigenvalue ε↓,m,−k,
and |±〉 are the eigenvectors of σz with eigenvalues ±1. Then,
using the linear response result (18), we define

[Ds,conv]μν = 1

V

∑
k

∑
mn

Cmm
nn [ j↑μ(k)]mm[ j↓ν (−k)]nn, (20)

Cmn
pq = 4

∑
ab

nF (Ea) − nF (Eb)

Eb − Ea
w∗

+,amw+,bnw
∗
−,bpw−,aq, (21)

[ jσμ (k)]mn = 〈mσ,k|∂μH
σ
k |nσ,k〉

= δmn∂μεσ,m,k + (εσ,m,k − εσ,n,k )〈∂μmσ,k|nσ,k〉,
(22)

where ∂μ = ∂/∂kμ
. The geometric contribution is Ds,geom =

Ds − Ds,conv.
The expression for the conventional contribution con-

tains only single-band components of the current operators,
[ jσμ (k)]mm = ∂μεσ,m,k, and is the same as defined in previ-
ous literature [8]. The geometric contribution contains all
other terms, including those arising from the derivatives of
the imaginary components of the order parameters, which
can only be nonzero in multiband models. This split into
conventional and geometric contributions is independent of
the choice of orbital positions, and as we show below, the
geometric part is related to the minimal quantum metric in
isolated flat bands. These definitions are valid in a system
with TRS, where the derivatives of the order parameters can
be made purely imaginary at q = 0 [5]. In a system without
TRS, there are additional terms arising from the derivatives of
the real parts of the order parameters which can be nonzero
even in a single-band system.

The superfluid weights derived from the free energy,
Eq. (13), and by linear response, Eq. (18), are equal, as shown
in Appendix E. We have verified numerically that both meth-
ods yield the same results in all examples studied in this paper.

III. QUANTUM METRIC AND ISOLATED FLAT BANDS

The quantum metric of a set of bands S is the real part of
the quantum geometric tensor

Bi j (k) = 2 Tr P(k)∂iP(k)∂ jP(k), (23)

where P(k) = ∑
m∈S |mk〉〈mk| is the projector into the Bloch

states of the bands at k. The quantum metric has been previ-
ously related to the superfluid weight, most prominently in the
limit of isolated flat bands with TRS and where �α = � for
all orbitals where the flat band has a nonvanishing amplitude
(this is the so-called uniform pairing condition) [5,6,33]. In
such systems, the superfluid weight is given by

[Ds]i j = 4 f (1 − f )

(2π )D−1
|U |nφMi j, (24)

Mi j = 1

2π

∫
B.Z.

dDk Re[Bi j (k)]. (25)

Here, f is the filling fraction of the band, Mi j is the quantum
metric of the isolated flat band, n−1

φ is the number of orbitals
where the flat band states reside, and D is the dimension of
the system. This result is derived from mean field theory using

the equality [Ds]i j = (1/V )∂2	/∂qi∂q j |q=0, or the equivalent
linear response equations [5,6]. However, as we have shown
in Sec. II, this equation is only accurate in special cases, even
in systems with TRS and uniform pairing. We will show here
that, nevertheless, it is actually possible to derive a general
connection between the superfluid weight and the quantum
geometry, but the relevant quantity turns out to be the mini-
mal quantum metric, i.e., the quantum metric with the lowest
possible trace over all possible orbital positions.

As stated in Sec. II B, in the presence of TRS,

∂2	

∂q2
i

∣∣∣∣
q=0

� d2F

dq2
i

∣∣∣∣
q=0

. (26)

Without TRS, this inequality may not be true when
dμ/dqi|q=0 �= 0 (see later in this section, Systems with broken
time-reversal symmetry). When the inequality is saturated, the
quantum metric is directly related to the superfluid weight.
Otherwise, it gives an upper bound. We will first show that
in systems with TRS, there always exists a point where the
inequality is saturated. The property �(q) = �∗(−q) implies
that

d�α

dqi

∣∣∣∣
q=0

= i�α

dθα

dqi

∣∣∣∣
q=0

, (27)

where θα is the phase of the order parameter �α = |�α|eiθα .
As before, we fix θ1 = 0, with �1 a nonzero order parame-
ter. It follows from Eq. (27) that d�α/dqi = 0 can only be
nonzero if dθα/dqi = 0 or if �α = 0, meaning there is no
pairing in the orbital.

Let us now assume that the order parameters for a choice
of intra-unit-cell positions {δα} are |�α (q)|eiθα (q). The order
parameters in the same model for another choice of positions
{δα + xα} are |�α (q)|eiθ̃α (q), with θ̃α (q) = θα (q) − 2q · xα (see
Appendix B). Therefore,

d θ̃α (q)

dqi
= dθα (q)

dqi
− 2xiα. (28)

To set d�α/dqi = 0 and guarantee that [Ds]i j =
(1/V )∂2	/∂qi∂q j |q=0, we can thus shift the orbital positions
by

xiα = 1

2

dθα (q)

dqi

∣∣∣∣
q=0

. (29)

With the overall phase of the order parameters fixed, the order
parameters are uniquely defined, and this shift is unique for all
orbitals where �α �= 0. The resulting positions {δα + xα} are
independent of the particular initial choice of {δα} (see Ap-
pendix C). The quantum metric computed for this appropriate
set of positions is related to the superfluid weight directly. We
find precise analogs of these results in the uniform pairing
Hubbard models considered in Sec. V.

We have shown that positions {δα + xα} where Ds is related
to the quantum metric exist, but using Eq. (29) to determine
{xα} requires solving the gap equation. We will now show
that it is possible to compute the correct quantum metric
without solving the gap equation: it is the one with the smallest
possible trace.

Since ∂2	/∂qi∂q j ∝ Mi j and ∂2	/∂q2
i � d2F/dq2

i , the
result obtained from the quantum metric is always an
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upper bound for the diagonal components of the super-
fluid weight. This upper bound is tight for the positions
{δα + xα}, where it reaches a minimum. For an isolated flat
band, the quantum metric with the smallest possible inte-
gral of its diagonal components is thus proportional to the
superfluid weight. Since all diagonal components are mini-
mized, this is the quantum metric with the smallest possible
trace.

The relationship between the superfluid weight and the
quantum metric has been used to derive lower bounds for
the superfluid weight in flat band systems. Our result shows
that for such a lower bound to be valid, it needs to be a
lower bound for the quantum metric for any choice of the
orbital positions. The validity of some lower bounds found
in literature is discussed in Sec. VII.

A. Systems with broken time-reversal symmetry

Our result (13) is valid for time-reversal-symmetric sys-
tems. It can be straightforwardly generalized to be valid
also for systems where TRS is broken (see Appendix A):
d2F/dqidq j will contain terms related to the derivatives of μ

and the real parts of �α . When dμ/dqi|q=0 �= 0, the inequal-
ity (26) may not hold because the full Hessian matrix does
not need to be positive semidefinite. When dμ/dqi|q=0 = 0,
Eq. (26) holds. However, in contrast to systems with TRS, it
may not be saturated for any choice of orbital positions: the
derivatives of the real parts of the order parameters can be
nonzero, and cannot be made zero by manipulating only the
phases of the order parameters. Results relating the superfluid
weight to the quantum metric can only be used in systems
where d|�α|/dqi|q=0 = 0, provided the diagonal components
(1/V )∂2	/∂q2

i |q=0 are minimized.

IV. EXAMPLE: SUPERFLUID WEIGHT, QUANTUM
METRIC, AND ORBITAL POSITIONS IN THE LIEB

LATTICE

To illustrate the importance of the additional terms in the
superfluid weight derived in Sec. II, we study the superfluid
weight in the Lieb lattice with staggered nearest-neighbor
hopping amplitudes, shown in Fig. 2(a). The staggering is
controlled by a parameter η so that the hopping amplitudes
are 1 + η within a unit cell and 1 − η between unit cells. A
nonzero η introduces a gap Egap = √

8η between the flat band
and dispersive bands [see Fig. 2(b)]. The parameter a controls
the distance between the B site and the A/C sites in a unit cell.
We use the average intersite hopping amplitude as our energy
unit.

The complete equation (13) yields a result that is indepen-
dent of the choice of orbital positions [see Figs. 2(c)–2(e)],
contrary to (1/V )∂2	/∂qi∂q j |q=0. In the extreme case η = 1,
when the lattice is disconnected and can clearly not support
superconductivity, the correct superfluid weight is zero. How-
ever, using ∂2	/∂qi∂q j |q=0 can in fact give a nonzero and
quite large superfluid weight.

At η = 0, the simplified equation [Ds]i j =
(1/V )∂2	/∂qi∂q j |q=0 holds exactly when a = 1

2 , which
corresponds to the Lieb lattice with C4v symmetry when the
convention given by Eq. (5) for the Fourier transformation

FIG. 2. (a) Lieb lattice with staggered hopping amplitudes. The
position of the orbitals in the unit cell is controlled by the parameter
a. We take the volume of the unit cell equal to 1. When η = 0 and
a = 1

2 , the Lieb lattice possesses C4 rotational symmetry, inversion
symmetry, and reflection symmetry that interchanges the A,C or-
bitals, and thus belongs to symmetry group C4v . Changing η �= 0 or
a �= 1

2 destroys the C4 and inversion symmetries, thus reducing the
symmetry group to Cs. Note that while only �A = �C , the flat band
states have no weight in the B orbital, meaning the uniform pairing
condition is fulfilled. (b) Single-particle band structure at η = 0 and
0.2. The flat band is separated from the other bands by a band gap
Egap = √

8η. (c)–(e) Superfluid weight
√

det(Ds ) in the Lieb lattice
computed with (red, “complete”) and without (the other colors) the
corrections for three different choices of intra-unit-cell positions.

is used. This is explained by the equal hopping amplitudes
in all directions: the systems with a = 1

2 − x and a = 1
2 + x

are identical up to an overall rotation, and the additional
terms are thus symmetric around a = 1

2 , where the minimum
of ∂2	/∂q2

i |q=0 occurs. Our proof in Sec. V generalizes
this statement to all space groups. When η is increased and
the C4 symmetry is broken, the orbital positions for which
[Ds]i j = (1/V )∂2	/∂qi∂q j |q=0 shift continuously towards
a = 0. Importantly, there is a wide parameter range where
none of the choices a = 1

2 , 0, or 1 give the correct result
when the derivatives of the order parameters are ignored.
When a = 0 or 1, the position of the A,C orbitals is at
the unit-cell origin (where the B orbitals are), and hence
the Fourier transform (5) becomes identical to the other
convention (6).

Finally, let us consider the role of the minimal quantum
metric in our example case. In an earlier study [7], the quan-
tum metric in the Lieb lattice has been related to the superfluid
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FIG. 3. (a) Superfluid weight (circles) and geometric contribu-
tion (crosses) as a function of |U | at different η in the Lieb lattice.
The dotted lines indicate the predictions from the minimal quantum
metric. Only [Ds]xx is shown as the off-diagonal components of the
superfluid weight tensor are very small for all parameters. At high
interactions, the superfluid weight decays as ∝1/|U |, which is a
well-known behavior related to the formation of bound pairs in the
BEC limit of the BCS-BEC crossover [34,35]. At low interactions,
Ds ∝ |U | when the flat band is isolated. This linear behavior is visible
in an increasingly wide range of interactions when η is increased.
(b) [Ds]xx/|U | at low interactions obtained from a linear fit (crosses)
and prediction for the slope from the minimal quantum metric.

weight. As shown in Fig. 3(a), the main contribution to the
superfluid weight at low interactions is the geometric part,
and the ratio Dgeom/Ds approaches one in the isolated flat
band limit. This is expected as the conventional contribution
should vanish on a perfectly flat band. The prediction from the
minimal quantum metric, shown in Fig. 3(b), is increasingly
accurate with growing η.

V. COOPER PAIR MASS BEYONDMEAN FIELD

It has been shown that the two-body problem in a flat
band gives for the bound pair a finite effective mass that is
governed by quantum geometry [36,37]. For uniform pair-
ing, the inverse effective mass can be approximately related
to the quantum metric. Thus, pairs can move while single
particles cannot, meaning that the qualitative picture given
by mean-field superfluid weight calculations is already ap-
parent at the two-body level. Here we calculate the Cooper
pair mass in a full many-body treatment and without a mean
field approximation. The mass is obtained from the spectrum
of pair excitations of the ground state. It shows depen-
dence on quantum geometry and allows relating the proper
choice of quantum metric discussed above to the system
symmetries.

We consider a family of positive-semidefinite, D-
dimensional, attractive Hubbard models first introduced
by Ref. [33] where the electron kinetic energy term has
Nf perfectly flat zero-energy bands fulfilling a condition
where the single-particle projectors P(k) [see Eq. (23)]

obey ∫
dDk

(2π )D
Pαα (k) = nφNf ≡ ε (30)

for all orbitals α = 1, . . . , n−1
φ where the pairing is nonzero.

The condition (30) leads to the pairing gaps on different or-
bitals being the same, therefore, it is also referred to as the
uniform pairing condition. We neglect the spin label, assum-
ing that the model has time-reversal symmetry which relates
the two projectors: P↑(k) = P∗

↓ (−k) ≡ P(k). Upon projecting
the many-body operators into the Nf flat bands, the kinetic en-
ergy vanishes and the Hamiltonian is given by the interaction
term

HU = −|U |
∑
iα

n̄iα,↑n̄iα,↓ + nφNf

2
|U |N̄, (31)

where n̄i,α,σ is the projected density operator in orbital α

and spin σ , N̄ is the projected total density operator. Refer-
ence [33] demonstrated that HU possesses η-pairing ground
states, that is, states with all particles paired. In forthcoming
work [38], we show that the Cooper pair excitations on top of
these ground states are exactly solvable thanks to the uniform
pairing condition, and we are able to calculate their effective
mass exactly.

The Cooper pair excitations are governed by the following
single-particle Hamiltonian:

hαβ (q) =
∫

dDk

(2π )D
Pαβ (q + k)Pβα (k). (32)

We denote the eigenvalues of h(q) as εμ(q), where μ =
0, . . . , n−1

φ − 1. The many-body energy of the lowest-lying
Cooper pair is |U |(ε − ε0(q)), where ε0(q) is the largest
eigenvalue of h(q).

We now show that εμ(q), and hence the Cooper pair spec-
trum, is invariant under a redefinition of the orbital locations
δα → δα + xα (leaving the hopping elements invariant). This
must be the case physically because the choice of xα is just
a convention for the Fourier transform. Since the redefinition
means Pαβ (k) → e−ik·(xα−xβ )Pαβ (k), we see that hαβ (q) trans-
forms under a redefinition of the orbitals as

hαβ (q) → e−iq·(xα−xβ )
∫

dDk

(2π )D
Pαβ (q + k)Pβα (k)

= [V †
x (q)h(q)Vx(q)]αβ, (33)

where we defined the diagonal unitary matrix [Vx(k)]αβ =
eik·xα δαβ . We see explicitly that, although h(q) is not invariant,
its spectrum is.

The effective Cooper pair mass is given by

[m−1]i j = −|U |d
2ε0(q)

dqidq j

∣∣∣∣
q=0

(34)

which is computed from the spectrum of h(q) and thus is man-
ifestly invariant. Using perturbation theory, ε0(q) can be easily
calculated to second order in q. At zeroth order ε0(0) = ε,
which corresponds to the constant eigenvector uα

0 = √
nφ . The

first-order correction vanishes (showing the Cooper pair is
stable), and we calculate two contributions at second order
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in qi:

ε(q) = ε +
n−1∑
μ=1

|u†
μ(q · ∇h)u0|2
ε − εμ(0)

+ 1

2
qiq j

∫
dDk

(2π )D
∑
αβ

uα
0 ∂i jPαβ (k)Pβα (k)uβ

0 , (35)

noting that εμ(0) < ε are the eigenvalues of h(0), so the first
line is non-negative, and where ∇h is the gradient of h eval-
uated at q = 0. After integration by parts, the integral in the
second line yields

nφ

∑
αβ

∫
dDk

(2π )D
∂i jPαβPβα = −nφ

∫
dDk

(2π )D
Tr ∂iP∂ jP

= − nφ

(2π )D−1
Mi j, (36)

which is proportional to the quantum metric integrated
over the Brillouin zone, i.e., Mi j defined in Eq. (24) (as
Tr P{∂iP, ∂ jP} = Tr ∂iP∂ jP). Hence, Eq. (36) is negative
semidefinite.

It is important to note that ∇h is not invariant under the
choice of xα , transforming as

∇hαβ → ∇hαβ − i(xα − xβ )hαβ (0). (37)

Nevertheless, it is possible to show that, up to a choice of
origin, there is a unique choice of xα where ∇hu0 = 0 and the
quantum metric is the sole contributor to the effective mass.
Note that the O(p2) term in the first line of Eq. (35) competes
with −Mi j in Eq. (36) because it is opposite in sign. Thus,
the choice of xα where only the quantum metric is nonzero
corresponds to the orbital positions of the minimal quantum
metric.

A calculation using the uniform pairing condition results in
an explicit form for the orbital shifts that make the quantum
metric the sole contribution for the effective mass, namely,

[ε − h(0)]xα = −i[∇hu0n
−1/2
φ ]α. (38)

This equation has a unique solution up to the overall choice
of origin because ε − h(0) has a single zero eigenvalue corre-
sponding to the uniform eigenvector u0. With the orbital shifts
xα given by Eq. (38), the effective mass becomes

[m−1]i j = nφ

(2π )D−1
|U |Mi j . (39)

Comparing this equation to Eq. (24), we find exact agreement
with the mean field superfluid weight up to an overall factor
of 4 f (1 − f ), which is the Cooper pair density.

We now improve upon Eq. (39) in two ways. First we find
that xα obey the space-group symmetries g ∈ G of the Hamil-
tonian when the symmetric choice of Fourier convention
[Eq. (5)] is used. In other words, when the symmetry-
preserving positions of the orbitals are used, their deviations
xα also obey the space-group symmetries. In many cases,
this is tantamount to a proof that xα = 0, meaning that the
quantum metric is the minimal quantum metric, and is the
Cooper pair mass. For instance, at η = 0 in the Lieb lattice
with a = 1

2 , the A and C orbitals are related by C4 symmetry
and are invariant under C2. There is no way to deform these

orbitals off the positions a = 1
2 without breaking C2. Thus,

xα = 0, thereby explaining why a = 1
2 is the correct choice to

evaluate the minimal quantum metric in Fig. 2. By a similar
argument, all orbitals at fixed high-symmetry positions neces-
sarily have xα = 0 because they are pinned by symmetries. In
these cases, the minimal quantum metric is guaranteed to be
the one computed using the physical positions in Eq. (5).

Second, we now propose a simple generalization of the
uniform pairing condition that guarantees the quantum metric
is minimal. We define the quantity

εα (q) =
∫

dDk

(2π )D
[P(k + q)P(k)]αα (40)

which at q = 0 yields εα = nφNf , the uniform pairing condi-
tion in Eq. (30). It is then direct to check that

εα (0) = nφNf (uniform pairing condition),

∂iεα (0) = 0 (minimal metric condition), (41)

the latter condition being the many-body analog of Eq. (29),
in that its solution sets the quantum metric to be minimal.

These results directly parallel those given by mean field
theory in the above sections. We have shown that the Cooper
pair effective mass is independent of the Fourier convention
for the orbital positions. Furthermore, there exists a choice of
orbital positions where the effective mass is determined by
the quantum metric alone and at these positions the quantum
metric is minimal. Under the uniform pairing condition, we
provide an explicit formula for these positions in Eq. (38), to
be compared to Eq. (29). The inclusion of crystalline sym-
metries constrains the positions: if the orbital positions are
pinned by the symmetries, then the quantum metric evaluated
for those positions must be minimal. Lastly, we established a
generalization of the uniform pairing condition in Eq. (41) to
determine when the quantum metric is minimal.

VI. NONISOLATED FLAT BANDS

The relationship of the minimal quantum metric and the su-
perfluid weight indicates that the BKT transition temperature
could be increased in systems with a high quantum metric.
However, this is only valid in the isolated flat band limit. The
quantum metric typically diverges when the band gap closes,
but this is not an indication that the superfluid weight diverges.
The superfluid weight is proportional to |U |Mi j only when
the flat band is isolated, which requires that the interaction
strength is small compared to the band gap (otherwise pairing
would involve higher bands). Therefore, when the band gap
shrinks, the largest |U | for which the quantum metric is pro-
portional to Ds decreases accordingly. The very large quantum
metric that can be achieved with a small band gap is thus
only relevant at very low interactions, where [Ds]i j ∝ |U |Mi j

remains small. The divergence of the quantum metric is an
indication that the contributions from the other bands are
important at low |U |, and reduce the superfluid weight com-
pared to the isolated flat band result. In the Lieb lattice, those
contributions have been shown to curtail the divergence and
lead to a finite superfluid weight [7]. An interesting question
when searching for systems with high TBKT is whether the
critical temperature can still be large in the nonisolated band
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FIG. 4. BKT temperature in the Lieb lattice (a) as a function of
the hopping staggering η and the interaction |U |, and (b) as a function
of the chemical potential μ and the interaction. The largest BKT
temperature occurs around interaction U ≈ −3.5 with no hopping
staggering, i.e., when the flat band is not isolated.

limit even though the contributions from dispersive bands are
prominent. In repulsive models, a flat band near the Fermi
surface has been predicted to be beneficial [39–42]. In at-
tractive models, previous mean field studies have indicated
that the superfluid weight has a nonlinear dependence on the
interaction strength for nonisolated flat bands [7,34,43], but
the additional terms we find in this work have not been taken
into account. In this section, we show by continuously tuning
the band gap that the superfluid weight and TBKT can actually
be maximal when there is a band touching. Furthermore, we
study its dependence on different types of band touchings. We
supplement our analysis of band-touching points by employ-
ing an S-matrix construction [44] to analyze bipartite lattices
with band-touching points.

A. Effect of closing the band gap

As shown in Fig. 3, the superfluid weight in the Lieb lattice
increases monotonically when η is decreased, and reaches its
maximum when η = 0 for all interactions. For η = 0, when
there is no band gap, the behavior is no longer exactly lin-
ear, which is consistent with previous literature such as [7],
and [34,43] where it has been found that Ds ∝ |U |ln(C/|U |),
with C a constant.

The superfluid weight at zero temperature is an upper
bound for the BKT temperature. However, it does not give
the full picture: for instance, the zero-temperature superfluid
weight in a dispersive band will typically be nonzero in the
U → 0 limit whereas it vanishes in a flat band. At T = 0, the
superfluid weight will thus typically be smaller in a flat band
than a dispersive band for small interactions, even though the
BKT temperature is usually larger on the flat band (see Fig. 1).
Here, we solve the BKT temperature from the universal rela-
tion [45–47]

TBKT = π

8

√
det[Ds(TBKT)]. (42)

As is shown in Fig. 4(a), TBKT mirrors the behavior of
the superfluid weight and increases monotonically with η

for all considered interactions. Moreover, the highest critical
temperature as a function of μ is found for the half-filled flat
band, showing that in this model, the highest possible critical
temperature is achieved in the flat band when it is not isolated.

Hence, the isolated flat band limit is not necessary to reach a
high TBKT, and a band touching could actually be beneficial
for superconductivity. It is important to remember also that
the flat band combined with a band touching yields a higher
Tc than a usual dispersive band (e.g., square lattice) for small
interactions |U | (see Fig. 1).

B. Comparison of linear and quadratic band touchings

To study the effect of different types of band touchings
on the superfluid weight, we use the method developed in
Ref. [48] to construct flat band models where the dispersive
bands can be modified by a parameter λ without affecting
the Bloch functions of the flat band [see Fig. 5(a) and Ap-
pendix F]. We study two such models, constructed on a Lieb
and kagome geometry. The Lieb model is constructed so that
the band gap can be tuned with the staggering parameter η.
Our energy unit is the average intersite hopping strength of
the λ = 0 lattice model.

In the Lieb model, when η is nonzero, the superfluid weight
at low interactions changes very little with λ [see Fig. 5(b)].
This is expected, as in the isolated band limit the superfluid
weight is determined by quantum geometry, and the flat band
has the same quantum metric for all λ. When the flat band
is not isolated, differences in Ds occur already at vanishingly
small interactions when varying λ [Fig. 5(c)]. Moreover, the
ratio Dgeom/Ds is much smaller for the quadratic than the
linear band touching in both the Lieb [Fig. 5(d)] and kagome
models [Fig. 5(g)]. The maximum of Ds is more pronounced
in the linear model than the quadratic one in the models we
studied, although the quadratic model has a higher Ds at low
|U | in the kagome model [Fig. 5(f)].

The geometry of the flat band therefore does not give the
full picture in the nonisolated band limit: even though the
Bloch functions of the flat band are left unchanged while the
dispersive bands are modified, the superfluid weight differs.
The behavior of the superfluid weight is thus dependent on
the nature of the band touching.

C. Band-touching points from the S-matrix construction

The mean field behavior of the pairing gap in general
lattices, with both isolated and nonisolated flat bands, can be
understood using the S-matrix construction of Ref. [44]. This
provides a description of the effect of band touchings on the
pairing gap that is more general than given by the specific
models considered above, and allows for an analytic solution
in the mean field, yielding general results for quantities such
as the pairing gap. The power of this approach is made evident
as it yields self-consistent gap equations independent of the
wave functions, allowing for an analysis of pairing strength as
a function of the lattice parameters and dispersion.

The S-matrix construction employs a bipartite lattice with
two unequal sublattices L, L̃, with the difference between
the number of orbitals per unit cell NL − NL̃ = Nf being the
number of flat bands. Band-touching points can be enforced
in the model via irrep analysis of the symmetries [44]. The
bipartite Hamiltonian in such models reads as

Hk =
[

0 S†
k

Sk 0

]
, (43)
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FIG. 5. (a) Band structure of the tunable Lieb model for different values of λ, at η = 0, i.e., in the presence of a band touching, and at
η = 0.4. The band touching can be tuned from linear (λ = 0) to quadratic (λ = 1) at η = 0. At η = 0.4, the dispersive bands are modified
without changing the quantum metric of the flat band. (b) Superfluid weight [Ds]xx for η = 0.4 in the Lieb model, when the flat band is
separated from the other bands by a gap. At low |U |, Ds is independent of λ, but at intermediate |U |, the limit λ = 0, corresponding to a
linear touching, has a more pronounced maximum. (c) Superfluid weight [Ds]xx and (d) ratio [Ds,geom]xx/[Ds]xx in the tunable Lieb lattice. The
off-diagonal components of the superfluid weight are zero. The superfluid weight is largest in the linear model. (e) Order parameters �α/U in
the tunable Lieb lattice as a function of λ at interaction strengthsU = −1 (blue),U = −4 (orange), andU = −8 (green). The order parameters
in the A/C orbital (full line) are always equal, and are larger than the order parameter in the B orbital (dashed line). The dotted line shows the
average of all order parameters. (f)

√
det(Ds ) and (g) [Ds,geom]xx/[Ds]xx in the tunable kagome model. In this case, the off-diagonal components

are not always zero. A similar behavior of the ratio [Ds,geom]i j/[Ds]i j is observed for all components. The maximum of
√

det(Ds ) is slightly
more pronounced in the linear model, but the superfluid weight at low |U | is largest in the quadratic model.

where S†
k is an NL̃ × NL rectangular matrix encoding the

hopping between the two sublattices. These S-matrix Hamil-
tonians can be realized in actual physical materials [49]. The
energies come in ±εk,m pairs, where ε are the singular values
of Sk. Because S†

k maps CNL to CNL̃ , there are at least NL − NL̃

vectors in the null space of S†
k ; these form the flat bands. One

can introduce a quadratic Hamiltonian

Hquad = Hk

[
IL̃×L̃ 0

0 −IL×L

]
Hk (44)

which has eigenvalues ±ε2
k,m, 0, and preserves the flat band

wave functions. In the case of the Lieb lattice, this Hamilto-
nian is precisely the same as the Hamiltonian with quadratic
band-touching points studied in Sec. VI B, obtained using
the technique from Ref. [48] (see Appendix F for the tight-
binding parameters of the model).

By adding attractive onsite interactions and assuming that
the pairing is uniform within each sublattice, that is, there
are two gaps �L and �L̃ depending on the sublattice, we
find the following self-consistent gap equations at T = 0
for Hk:

NL�L = |U |NL̃

2
f (�) + |U |(NL − NL̃ )

2
, (45)

NL̃�L̃ = |U |NL̃

2
f (�), (46)

where � = 1

2
(�L + �L̃ ) and

f (�) = 1

NL̃

NL̃∑
m=1

∫
dDk

(2π )D
�√

�2 + ε2
k,m

. (47)

Here the sum is over the NL̃ dispersive bands. The function f
ranges from 0 for a perfectly flat band at zero kinetic energy
to 1 for a gapped band at very large kinetic energy, and is a
monotonically increasing function of �. Equation (46) always
has a solution, and obeys the following properties:

NL�L − NL̃�L̃ = |U |(NL − NL̃ )

2
, (48)

0 < �L̃ < �L <
|U |
2

, (49)

NL − NL̃

4
<

�

|U | <
1

2
. (50)

The first equality generalizes the result found in the Lieb
lattice by Ref. [7], as it now applies to any bipartite lattice
with uniform pairing within each sublattice, and agrees with
our numerical calculations of the pairing gaps. The dispersion
does not need to be gapless for this equality to hold; only the
bipartite nature of the underlying lattice is required. These
relations are proved in Appendix I. Regardless of the form
of the bipartite lattice, even in the absence of a band touching,
we find that the pairing strength on the larger sublattice �L

is always larger than the pairing on the smaller sublattice �L̃,
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due to the fact that the flat bands greatly enhance the pairing
for the sublattice L (see Appendix I), and both �L,�L̃ are
bounded by quantities depending on the number of flat and
dispersive bands.

Although the exact details of f (�) depend on the disper-
sion of the kinetic energy, the fact that it is bounded suggests
that most of the gap strength comes from the flat band con-
tribution which is universal. To maximize the strength of the
pairing �L, we note that the self-consistent equation for �L

depends only on the ratio of the number of bands of the
sublattices r = NL̃

NL
. This is saturated as r → 0: thus, even in

the presence of band-touching points, more flat bands per
total bands enhance the superconducting gap at T = 0. If the
dispersive bands are gapped from the flat bands, with the band
gap � |U |, f (�) → 0. Thus, we approach the limit discussed
in Ref. [5], where one may project the Hamiltonian into the
flat bands and obtain an exactly solvable BCS ground state.

The quadratic band-touching point, i.e., the case of Hquad,
has a different set of self-consistent gap equations (see Ap-
pendix I), due to the fact that the dispersive bands have
different wave functions (though the flat band wave functions
remain the same). The self-consistent equations still always
possess a solution so long as flat bands exist. An analysis
shows that the weighted difference reads as

NL�L − NL̃�L̃ = |U |NL̃

2
[ f (�L ) − f (�L̃ )]

+ |U |(NL − NL̃ )

2
, (51)

which increases relative to Eq. (48) so long as �L > �L̃. We
prove that there always exists a solution of the gap equa-
tions with this property (see Appendix I for more details).

In general, we expect the quadratic band touching will have
a stronger pairing gap than the linear band touching: a higher
density of states of the kinetic energy close to zero energy will
raise �L. This is what we observe in our numerical results
for different band touchings in the Lieb lattice [Fig. 5(e)]. In
contrast, the superfluid weight is larger for the linear model
than the quadratic one. The pairing gap �L is influenced by
the density of states, which indeed is larger for a quadratic
dispersion than a linear one, but the superfluid weight depends
also on quantum geometry, which affects the ability of Cooper
pairs to move. Thus, the two quantities can have qualitatively
different behavior, contrary to what would be expected for
an isolated flat band [5,6] where the superfluid weight is
proportional to the pairing gap.

VII. REVISITING THE LITERATURE

The superfluid weight has been computed from
mean field theory in a variety of multiband sys-
tems [6,7,13,14,28,34,43,50–53] including magic-angle
twisted bilayer graphene [23–25]. The impact of the terms
arising from the derivatives of the order parameters in Eq. (13)
should be examined on a case-by-case basis. For example,
the results for the Lieb lattice presented in [7] are close to
the correct values for very small hopping staggering η while
results for larger η are inaccurate. The results presented for
the Mielke lattice with a flat band in [34] are accurate due to
the spatial symmetries of the model.

In Ref. [28], the behavior of the order parameters was
accurately taken into account when computing the superfluid
weight, and the obtained mean field results agreed well with
density matrix renormalization group (DMRG) calculations.
In the sawtooth ladder, the mean field superfluid weight at
low interactions was shown to agree very well with both
DMRG and a flat-band projected analytical mean field compu-
tation of Ds, with all three methods predicting πDs ≈ 0.40|U |
for a half-filled flat band, and was noted to disagree with
πDs = 0.6|U | obtained from the quantum metric. The esti-
mate we find using the minimal quantum metric gives a slope
of approximately πDs ≈ 0.45|U |, much closer to the correct
result.

Expressions for the superfluid weight in terms of the quan-
tum metric can be found in [6] for models without flat bands.
For instance, in the isolated band limit,

[Ds,geom]i j = 2

V
�2
∑
k

tanh(βEm,k/2)

Em,k
Re(Bi j ), (52)

where m labels the isolated band, which does not need to be
flat. In this case, the minimal quantum metric is not always
relevant, but one should instead minimize the above integral
for i = j.

The relationship between the superfluid weight and quan-
tum metric has been used to derive various bounds for the
superfluid weight [5,6,13,23,54]. The lower bound given in [5]
for time-reversal-symmetric systems in terms of the spin
Chern number is valid, as it is a lower bound for the quan-
tum metric regardless of the choice of orbital positions. On
the other hand, bounds that depend on orbital positions, like
the one proposed in [6] related to the integral of the ab-
solute value of the Berry curvature, are only valid if they
are a lower bound for all possible quantum metrics. The
correct choice of orbital positions is thus needed to de-
fine an orbital-independent bound. This is also the case for
the lower bound in terms of real-space invariants proposed
in [13] for systems with obstructed Wannier orbitals or frag-
ile topology. If the uniform pairing condition is satisfied,
then space-group symmetries can guarantee that the minimal
quantum metric is obtained for orbitals at the high-symmetry
positions.

The two-body problem in a flat band was shown in
Ref. [36] to give a finite effective mass for a pair, proportional
to the “local” (spatially dependent) version of the quantum
metric, which is independent of orbital positions. However,
approximations were then used to connect the pair mass to
the usual quantum metric. Our many-body Cooper pair cal-
culation in Sec. V now shows that the correct choice is the
minimal quantum metric.

Quantum geometry has been shown to be relevant also for
Bose-Einstein condensation in flat bands [55,56]. The speed
of sound and the excitation fraction were found to depend
on generalized forms of the quantum metric, and the quan-
tum distance between the flat band states, respectively. These
quantities are invariant under the change of orbital positions.
Under certain conditions, however, they were shown to reduce
to the usual quantum metric and Hilbert-Smith quantum dis-
tance, and then (as well as in the superfluid density calculation
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in [56]) one needs to pay attention to the choice of orbital
positions.

Numerically exact methods such as quantum Monte Carlo
do not require the same care as mean field theory with the be-
havior of the order parameters, as the interaction Hamiltonian
of the exact Hubbard model does not depend on the vector
field explicitly. Generally, it is important to make sure that all
variables that may depend on the vector potential are properly
taken into account.

In addition to the superfluid weight, the quantum metric
has been related to the effective mass of two-body bounds
states [36,37,57], conductivity [58], the orbital magnetic sus-
ceptibility [59,60], the velocity of the Goldstone mode [61],
and other phenomena [62–68]. As shown here for the su-
perfluid weight, whenever a connection is drawn between a
physical quantity and the quantum metric, particular attention
should be paid to the dependence of the quantum metric on
the orbital positions.

VIII. CONCLUSIONS

We have derived complete equations for the mean field
superfluid weight in multiband lattice models. These equa-
tions contain both the partial derivative of the grand potential,
which gives a connection to quantum geometry, and terms
that take into account the changes in the order parameter. The
significance of the latter terms has been overlooked in the pre-
vious literature. We have shown that ignoring them can lead
to quantitative as well as qualitative errors, where supercon-
ductivity can be predicted in systems where it is impossible.
The use of the complete equations is thus crucial whenever
studying multiband systems, such as moiré materials, as well
as when searching for materials with particularly high critical
temperatures.

Using our equations, we have shown that the superfluid
weight in isolated flat bands is proportional to the minimal
quantum metric, that is, the one with the smallest possible
trace. A central discrepancy afflicting the current understand-
ing of the connection between superconductivity and quantum
geometry has been the following: the superfluid weight is
manifestly independent on orbital positions, while the quan-
tum metric, which has been shown to govern isolated flat
band superconductivity, depends on them. Our finding that
actually only the minimal quantum metric is relevant resolves
this fundamental concern. Based on our results, bounds for
the superfluid weight in terms of topological invariants in
time-reversal-symmetric systems [5,23] are still valid, but
other bounds which depend on the choice of orbital positions
require more care.

The conclusions based on the mean field superfluid weight
are corroborated by exact results derived for the Cooper
pair mass. We generalized the uniform pairing condition in
Eq. (41) to establish a minimal metric condition. When eval-
uated at the orbital positions satisfying the minimal metric
condition, the Cooper pair mass is entirely determined by
the quantum metric. Moreover, if the orbitals of the model
are fixed by symmetries at high-symmetry points (maximal
Wyckoff positions), then the minimal quantum metric is guar-
anteed to be obtained for these positions.

Importantly, our results show that in systems where TRS
is broken, a relation between quantum geometry and super-
fluidity, and consequently topological bounds, does not exist
in general. We identified sufficient conditions for having the
connection to quantum geometry, namely, that the derivatives
of the order parameter and chemical potential with respect to
q have to vanish at q = 0. Whether these conditions are also
necessary remains a topic of future research, as well as the
possible relations of the conditions to the crystalline symme-
tries, as in the time-reversal-symmetric, uniform pairing case.

Furthermore, we have shown that the quantum geometry
of the flat band is not sufficient to describe the superfluid
weight in the nonisolated band limit: its behavior depends not
only on the flat band properties, but also on the nature of the
band touching. Many flat band material candidates have band
touchings [49]. Restricting to isolated flat bands would require
materials and systems with a gap on the order tens of meV (the
thermal energy). We have shown that this limitation is not nec-
essary: in contrast, a band touching can enhance the critical
temperature. This conclusion holds within the specific models
considered by us, but is likely to be more general since the
quantum metric of a flat band diverges when the gaps to the
other bands are closed. This result is important for realizing
the promise of high-temperature or even room-temperature
superconductivity from flat bands. By results from S-matrix
analysis, we developed universal relations relating the pairing
gaps on bipartite lattices, and argued that the pairing gap is
enhanced for quadratic over linear band touchings, a result op-
posite to what we saw numerically for the superfluid weight.
This is understood as density of states determining the for-
mer while also quantum geometry is important for the latter.
Our results inspire further engineering of band touchings to
optimize the critical temperature of superconductivity, and
determine the dominance of quantum geometry or the density
of states.
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APPENDIX A: GENERAL EQUATIONS FOR THE
SUPERFLUID WEIGHT

In this Appendix, we derive the complete equations for the
superfluid weight without assuming time-reversal symmetry.
The system is invariant under a global change of phase of all
order parameters, so we fix the overall phase by requiring that
�1 is real and positive, with �1 a nonzero order parameter. We
first apply the chain rule twice to the grand canonical potential
to obtain

d2	

dqidq j
= d

dq j

∂	

∂qi
+ d

dq j

(
∂	

∂μ

)
dμ

dqi
+ ∂	

∂μ

d2μ

dqidq j

+
∑

α

d

dq j

(
∂	

∂�R
α

)
d�R

α

dqi
+
∑

α

d

dq j

(
∂	

∂�I
α

)
d�I

α

dqi

+
∑

α

∂	

∂�R
α

d2�R
α

dqidq j
+
∑

α

∂	

∂�I
α

d2�I
α

dqidq j
. (A1)

The particle number is fixed, meaning the second term on
the right-hand side of the first line is zero. The third term is

canceled by the derivative of μN when taking the derivative
of the free energy F = 	 + μN . Assuming that the order
parameters solve the gap equation, ∂	/∂�α = 0 for all q, the
terms on the second and third lines all vanish, and

d2F

dqidq j
= d

dq j

∂	

∂qi
(A2)

= ∂2	

∂qi∂q j
+ ∂2	

∂μ∂qi

dμ

dq j

+
∑

α

(
∂2	

∂�R
α∂qi

d�R
α

dq j
+ ∂2	

∂�I
α∂qi

d�I
α

dq j

)∣∣∣∣
q=0

.

(A3)

This equation can be written in a more compact form by
using that the particle number is kept fixed and ∂	/∂�α = 0,
implying that

d

dqi

∂	

∂�R
α

= d

dqi

∂	

∂�I
α

= d

dqi

∂	

∂μ
= 0. (A4)

This system of equations can be written in matrix form as
(∂2

�,μ	) fi = −bi, where

∂2
�,μ	 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2	

(∂�R
1 )2 . . . ∂2	

∂�R
1 ∂�R

n

∂2	

∂�R
1 ∂�I

2
. . . ∂2	

∂�R
1 ∂�I

n

∂2	

∂�R
1 ∂μ

...
. . .

...
...

. . .
...

...
∂2	

∂�R
n ∂�R

1
. . . ∂2	

(∂�R
n )2

∂2	

∂�R
n ∂�I

2
. . . ∂2	

∂�R
n ∂�I

n

∂2	
∂�R

n ∂μ

∂2	

∂�I
2∂�R

1
. . . ∂2	

∂�I
2∂�R

n

∂2	

(∂�I
2 )2 . . . ∂2	

∂�I
2∂�I

n

∂2	

∂�I
2∂μ

...
. . .

...
...

. . .
...

...
∂2	

∂�I
n∂�R

1
. . . ∂2	

∂�I
n∂�R

n

∂2	

∂�I
n∂�I

2
. . . ∂2	

(∂�I
n )2

∂2	
∂�I

n∂μ

∂2	

∂μ∂�R
1

. . . ∂2	
∂μ∂�R

n

∂2	

∂μ∂�I
2

. . . ∂2	
∂μ∂�I

n

∂2	
∂μ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A5)

fi =
(
d�R

1

dqi
, . . . ,

d�R
n

dqi
,
d�I

2

dqi
, . . . ,

d�I
n

dqi
,
dμ

dqi

)T

, (A6)

bi =
(

∂2	

∂qi∂�R
1

, . . . ,
∂2	

∂qi∂�R
n

,
∂2	

∂qi∂�I
2

, . . . ,
∂2	

∂qi∂�I
n

,
∂2	

∂qi∂μ

)T

. (A7)

The order parameter �I
1 is absent as we have set the global

phase of all order parameters by forcing �1 real and positive.
With these definitions, the total superfluid weight in Eq. (A3)
can be written as

V [Ds]i j = ∂2	

∂qi∂q j

∣∣∣∣
q=0

− fi
T(∂2

�,μ	) f j
∣∣
q=0. (A8)

The derivatives of the order parameters and chemical potential
can be found by solving the state at nonzero q or from the
system of equations (∂2

�,μ	) fi = −bi if the matrix ∂2
�,μ	 is

invertible. If we had not fixed the overall phase of the order
parameters, ∂2

�,μ	 would be singular. However, removing the
line and column involving derivatives with reference to �I

1
from the Hessian matrix as we have done in the definition of
∂2
�,μ	 generally makes ∂2

�,μ	 nonsingular.
When the derivatives of the order parameters are purely

imaginary, for example in systems with TRS, the additional
terms − fi

T(∂2
�,μ	) f j |q=0 appear only in multiband models.

However, if the real part of the order parameters has a nonzero
derivative, [Ds]i j = (1/V )∂	/∂qi∂q j |q=0 can be inaccurate
even in single-band models, as the derivative cannot be made
zero by changing the phase of the order parameter.

Here we have used only the order parameters as mean field
parameters. If one included more parameters, for example
Hartree terms, the q dependence of those parameters should
be appropriately taken into account as well.

We note here that when dμ/dqi|q=0 �= 0, the derivatives of
the chemical potential may contribute to the superfluid weight.
Both the definition [Ds]i j = (1/V )d2	/dqidq j |μ,q=0, where
μ is fixed, and [Ds]i j = (1/V )d2F/dqidq j |N,q=0 used above
have been used in literature, but it is unclear whether they
always yield the same result at the mean field level. This
ambiguity is related to the nonconservation of the particle
number by the BCS Hamiltonian, which makes the introduc-
tion of the chemical potential more subtle at the mean field
level than in the exact Hubbard Hamiltonian. If μ is thought
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of as a Lagrange multiplier that should be solved to keep the
average particle number constant, its dependence on q should
be included.

APPENDIX B: IMPACT OF ORBITAL POSITIONS ON THE
ORDER PARAMETERS

With our convention of Fourier transformation [Eq. (5)],
the intra-unit-cell orbital positions δα appear in the
Fourier-transformed kinetic Hamiltonians [Hσ

k ]αβ =
−∑i t

σ
iα,0βe

−ik·(Ri+δα−δβ ). Let us denote by H̃σ
k and Hσ

k

the kinetic Hamiltonians with intra-unit-cell positions {δ̃α}
and {δα}, respectively. The two Hamiltonians are related by

[H̃σ
k ]αβ = −e−ik·(δ̃α−δ̃β )

∑
i

tσiα,0βe
−ik·Ri

= e−ik·(δ̃α−δα−δ̃β+δβ )[Hσ
k ]αβ. (B1)

This can be rewritten in matrix form as H̃σ
k = V †

k H
σ
k Vk, where

Vk = diag(eik·(δ̃1−δ1 ), . . . , eik·(δ̃n−δn ) ).
To show how the orbital positions impact the order parame-

ters, let us consider the corresponding Bogoliubov–de Gennes
(BdG) Hamiltonians. By performing a unitary transformation
U H̃BdG(k)U † with U = diag(Vq+k,V

†
q−k), H̃BdG(k) becomes

U H̃BdG(k)U † =
(
H↑
q+k − μ1 Vq+k�Vq−k

V †
q−k�

†V †
q+k −(H↓

q−k

)∗ + μ1

)
. (B2)

Assuming � is diagonal, it commutes with V , and
Vq+k�Vq−k = diag(�1e2iq·(δ̃1−δ1 ), . . . ,�ne2iq·(δ̃n−δn ) ). Thus,
H̃BdG(k) with order parameters (�1, . . . ,�n) has the
same eigenvalues as HBdG(k) with order parameters
(�1e2iq·(δ̃1−δ1 ), . . . ,�ne2iq·(δ̃n−δn ) ). Since the grand canonical
potential depends only on the eigenvalues of the BdG
Hamiltonian and the absolute value of the order parameters,
the thermodynamic potentials are related by

	̃(q, μ,�α ) = 	(q, μ,�αe
2iq·(δ̃α−δα ) ). (B3)

The thermodynamic potential at the order parameters that
solve the gap equation will always be the same for a given q
and μ regardless of the intra-unit-cell positions. However, the
order parameters that minimize the thermodynamic potential
will have complex phases that depend on the intra-unit-cell
positions. These phases can be sublattice dependent, and in
the multiband case, they cannot in general be removed by a
change in the overall phase of the order parameters.

APPENDIX C: POSITIONS FORWHICH THE
SUPERFLUID WEIGHT IS RELATED TO THE QUANTUM

METRIC

The superfluid weight in a system with TRS is given
by the simple equation [Ds]i j = (1/V )∂2	/∂qi∂q j |q=0 when
−(di�I )T ∂2

�I	(d j�
I )|q=0 = 0 for all i, j. When ∂2

�I	 is
invertible, this holds if and only if di�I = 0. This is the case
when the overall phase of the order parameters is fixed.

The derivatives of the order parameters in a system with
TRS are given by

d�α

dqi

∣∣∣∣
q=0

= i
d�I

α

dqi

∣∣∣∣
q=0

= i�α

dθα

dqi

∣∣∣∣
q=0

. (C1)

As shown in Appendix B, if the solutions to the gap equa-
tion in a system with orbital positions {δα} are �α = |�α|eiθα ,
the solutions with another choice of positions {δα

′} are �′
α =

|�α|eiθ ′
α , where θ ′

α = θα − 2q · (δα
′ − δα). The derivatives of

the order parameters are thus related by

d�I
α

dqi

∣∣∣∣
q=0

= �α

dθα

dqi

∣∣∣∣
q=0

= �α

dθ ′
α

dqi

∣∣∣∣
q=0

+ 2�α[δα
′ − δα]i.

(C2)

The positions δα for which di�I = 0 can be solved directly
from this equation once the derivative is known for some
positions {δ0α}. When ∂2

�I	 is invertible, the derivatives of the
order parameters are uniquely defined, and the above equa-
tion gives a unique position [δα]i = [δ0α]i + (dθ0

α/dqi )/2|q=0
for all sublattices where �α �= 0.

The initial choice of orbital positions {δ0
α} is arbitrary, and

we can verify that the solution {δα} where d�I = 0 remains
the same with a different choice. If we pick another initial set
of positions {δ1

α}, the positions for which d�α/dqi|q=0 = 0
are

[δα]i = [δ1α]i + 1

2

dθ1
α

dqi

∣∣∣∣
q=0

= [δ1α]i − [δ1α − δ0α]i + 1

2

dθ0
α

dqi

∣∣∣∣
q=0

= [δ0α]i + 1

2

dθ0
α

dqi

∣∣∣∣
q=0

, (C3)

for any sublattice α where �α �= 0. We used Eq. (C2) in the
second equality. The positions {δα} are thus the same for any
choice of initial orbital positions.

If we had not fixed the overall phase of the parameters at
nonzero q, the vector di�I and the Hessian matrix ∂2

�I	 would
read as

di�
I =

(
d�I

1

dqi
, . . . ,

d�I
n

dqi

)T

, (C4)

∂2
�I	 =

⎛⎜⎜⎝
∂2	

∂�I
1∂�I

1
. . . ∂2	

∂�I
1∂�I

n
...

. . .
...

∂2	

∂�I
n∂�I

1
. . . ∂2	

∂�I
n∂�I

n

⎞⎟⎟⎠. (C5)

These have the same form as in the main text, but with
the addition of the terms related to �1. The full Hes-
sian matrix is not invertible, but has an eigenvector v =
(�1, . . . , �n)T with a zero eigenvalue, which reflects the free-
dom in the phase of the order parameters [28]. In this case,
−(di�I )T ∂2

�I	(d j�
I ) = 0 if and only if di�I = Civ, where

Ci is a real number. Then from Eq. (C1), the positions for
which [Ds]i j = (1/V )∂2	/∂qi∂q j |q=0 are given by

[δα]i = [δ0α]i + 1

2

dθ0
α

dqi

∣∣∣∣
q=0

+Ci (C6)

in sublattices where �α �= 0. Like before, {δ0α} are arbi-
trary orbital positions. If the overall phase of the order
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parameters is not fixed, the positions for which [Ds]i j =
(1/V )∂2	/∂qi∂q j |q=0 are thus uniquely defined up to an over-
all translation by Ci.

APPENDIX D: SUPERFLUID WEIGHT FROM LINEAR
RESPONSE THEORY

When computing the mean field superfluid weight from the
current response as in [6], we get the same result as from Ds =
(1/V )∂2	/∂qi∂q j |q=0. This is expected, as the dependence of
the order parameters on the vector field is ignored. Here we
compute the superfluid weight from linear response theory by
taking this dependence into account, and obtain an expression
that is equivalent with [Ds]i j = (1/V )d2F/dqidq j |q=0 when
dμ/dqi|q=0 = 0.

Let us start from the mean field Hamiltonian

HMF = Hkin + Hint, (D1)

Hint =
∑
iα

�iαc
†
iα↑c

†
iα↓ + �∗

iαciα↓ciα↑ − |�iα|2
U

, (D2)

where �iα = U 〈ciα↓ciα↑〉. The vector field is introduced us-
ing the standard Peierls substitution in the kinetic term,
so that tσiα, jβ is rewritten as tσiα, jβ (A) = tσiα, jβexp(−i

∫ r jβ
riα

A ·

dr). We assume that A varies slowly in space and time.
Then, the hopping terms can be approximated by tσiα, jβ (A) =
tσiα, jβe

−iA(rCM
iα, jβ ,t )·rrel

iα, jβ , where rrel
iα, jβ = riα − r jβ and rCM

iα, jβ =
(riα + r jβ )/2. The total current density induced by A is
jμ(r, t ) = −δH (A)/δAμ(r, t ), where δ/δAμ is the functional
derivative with reference to Aμ.

We first expand the kinetic term up to second order in A
around A = 0 to obtain the functional derivative up to first
order:

δHkin(A)

δAμ(r, t )
=

∑
iα, jβ
rCM
iα, jβ=r

Tμν (iα, jβ )Aν (r, t ) + jpμ(iα, jβ ). (D3)

Repeated indices are summed over. The operators
Tμν (iα, jβ )Aν = −∑σ t

σ
iα, jβ[rrel

iα, jβ ]μ[rrel
iα, jβ]νc

†
iασ c jβσAν

and jpμ(iα, jβ ) = −i
∑

σ t
σ
iα, jβ [rrel

iα, jβ]μc
†
iασ c jβσ are the

diamagnetic and paramagnetic current operators, respectively.
The functional derivative of the mean field interaction

Hamiltonian is

δHint

δAμ

=
∑
iα

δ�iα

δAμ

c†
iα↑c

†
iα↓ + H.c. −

(
δ�iα

δAμ

�∗
iα

U
+ H.c.

)
.

(D4)

Using the linear response approximation �iα (A) ≈ �iα (A =
0) + δ�iα/δAν |A=0Aν , Eq. (D4) becomes

δHint

δAμ

=
∑
iα

δ�iα

δAμ

c†
iα↑c

†
iα↓

∣∣∣∣
A=0

+ H.c. − 1

U

∑
iα

(
�∗

iα

δ�iα

δAμ

∣∣∣∣
A=0

+ H.c

)
− 1

U

∑
iα

(
δ�iα

δAμ

δ�∗
iα

δAν

∣∣∣∣
A=0

+ H.c.

)
Aν . (D5)

By combining Eqs. (D3) and (D5), we obtain the total current density operator

〈 jμ(r, t )〉 = −
∑
iα, jβ:
rCM
iα, jβ=r

[〈
T̃μν (iα, jβ )

〉
Aν (rCM

iα, jβ, t ) + 〈
j̃pμ(iα, jβ )

〉]
, (D6)

T̃μν (iα, jβ ) = Tμν (iα, jβ ) − 1

U

(
δ�iα

δAμ(riα, t )

δ�∗
iα

δAν (riα, t )

∣∣∣∣
A=0

+ H.c.

)
δiα, jβ, (D7)

j̃pμ(iα, jβ ) = jpμ(iα, jβ ) +
(

δ�iα

δAμ(riα, t )

∣∣∣∣
A=0

c†
iα↑c

†
iα↓ − 1

U

δ�iα

δAμ(riα, t )
�∗

iα

∣∣∣∣
A=0

+ H.c.

)
δiα, jβ . (D8)

As A varies slowly in both space and time, we can assume the induced current has the same spatial and temporal dependence
as A, so that

〈 jμ(q, ω)〉 = −Kμν (q, ω)Aν (q, ω), (D9)

where Kμν is the current-current response function. The Fourier-transformed total current density reads as 〈 jμ(q, t )〉 =
(1/V )

∑
r〈 jμ(r, t )〉e−iq·r. Assuming the order parameter is uniform in each sublattice (i.e., may depend on the orbital α, but

for a given orbital is the same at each unit cell i), we obtain

〈 jμ(q, t )〉 = −〈T̃μν

〉
Aν (q, t ) − 〈

j̃pμ(q)
〉
, (D10)

T̃μν = 1

V

∑
k,σ

∑
αβ

[∂μ∂νHσ (k′)|k′=k]αβc
†
kασ

ckβσ
− 1

U

1

Vc

∑
α

(
δ�α

δAμ

δ�∗
α

δAν

+ H.c.

)
, (D11)

j̃pμ(q) = 1

V

∑
k,σ

∑
αβ

[∂μHσ (k′)|k′=k+q/2]αβc
†
kασ

ck+qβσ
+ 1

V

∑
kα

δ�α

δAμ

c†
k−qα↑c

†
−kα↓ + δ�∗

α

δAμ

c−kα↓ck+qα↑

− 1

V

∑
riα

1

U

(
δ�∗

α

δAμ

�α (0) + H.c.

)
e−iq·riα , (D12)

where δ�α/δAμ = δ�iα/δAμ(riα, t )|A=0 and Vc is the volume of a unit cell, Vc = V/Nc.
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In linear response theory, the paramagnetic part can be computed using the Kubo formula〈
j̃pμ(q, ω)

〉 = −iV
∑

ν

∫ ∞

0
dt eiωt

〈
[ j̃pμ(q, t ), j̃pν (−q, 0)]

〉
Aν (q, ω). (D13)

We will compute the current-current response function Kμν in imaginary time using the Matsubara formalism. To compute the
contribution from the paramagnetic current, we define

�μν (q, τ ) = V 2
〈
T [ j̃pμ(q, τ ) j̃pν (−q, 0)]

〉
, (D14)

where T is the imaginary-time ordering operator.
In the computation of �μν , it will be useful to define the following block matrices:

H̃ (k) =
(
H↑(k) 0
0 −H∗

↓ (−k)

)
, (D15)

Gαβ (k) = −
(

〈T [ckα↑(τ )c†
kβ↑]〉 〈T [ckα↑(τ )c−kβ↓]〉

〈T [c†
−kα↓(τ )c†

kβ↑]〉 〈T [c†
−kα↓(τ )c−kβ↓]〉

)
, (D16)

δν� =
(

0 δ�
δAν

δ�∗
δAν

0

)
, (D17)

δ�

δAν

= diag

(
δ�1

δAν

, . . . ,
δ�n

δAν

)
. (D18)

We use the following indexing convention: Ai j designates the block (i, j), and Aαβ
i j designates the component (α, β ) in said

block. For example, G(τ, k)αβ

01 = −〈T [ckα↑c−kβ↓]〉. For readability, we will use the notation ∂μA|k = ∂A(k′)/∂k′
μ|k′=k.

If we do not take the dependence of order parameters into account, the only terms in �μν (q, τ ) are∑
kk′σσ ′αβγ δ

[∂μHσ |k+q/2]αβ[∂νHσ ′ |k′−q/2]γ δ
〈
T [c†

kασ
(τ )ck+qβσ

(τ )c†
k′γ σ ′ck′−qδσ ′]

〉
. (D19)

These can be expressed as �(0)
μν = −∑k Tr[G(−τ, k)∂μH̃ |k+q/2γ

zG(τ, k + q)∂νH̃ |k+q/2γ
z].

For the new terms related to the derivatives of the order parameters, let us start from those where the prefactor involves one
derivative of �α or �∗

α . We will show detailed steps for∑
kk′σαβγ

δ�α

δAμ

[∂νHσ |k′−q/2]βγ
〈
T [c†

k−qα↑(τ )c†
−kα↓(τ )c†

k′βσ
c
k′−qγ σ

]
〉
. (D20)

Taking only one-loop graphs and ignoring disconnected ones, the four-point correlator becomes〈
T [c†

k−qα↑(τ )c†
−kα↓(τ )c†

k′βσ
c
k′−qγ σ

]
〉

= −〈T [c†
k−qα↑(τ )c†

k′βσ
]
〉〈
T [c†

−kα↓(τ )c
k′−qγ σ

]
〉+ 〈

T [c†
k−qα↑(τ )c

k′−qγ σ
]
〉〈
T [c†

−kα↓(τ )c†
k′βσ

]
〉

= −〈T [c†
k−qα↑(τ )c†

−k+qβ↓]
〉〈
T [c†

−kα↓(τ )c−kγ↓]
〉
δσ,↓δk′,−k+q + 〈

T [c†
k−qα↑(τ )ck−qγ↑]

〉〈
T [c†

−kα↓(τ )c†
kβ↑]

〉
δσ,↑δk′,k. (D21)

Plugging this into Eq. (D20), we get from the first term

−
∑
kαβγ

[−Gβα

10 (−τ, k − q)][δμ�]αα
01 G

αγ

11 (τ, k)(−[∂νH̃ |k−q/2γ
z])γ β

11

= −
∑
kαβγ

Gβα

10 (−τ, k)[δμ�]αα
01 G

αγ

11 (τ, k + q)[∂νH̃ |k+q/2γ
z]γ β

00 , (D22)

where the transformation k → k + q was used. Note that

∂μH̃ |k =

⎛⎜⎜⎝
∂H↑(k′ )

∂k′
μ

∣∣∣∣
k′=k

0

0
∂H∗

↓ (k′ )
∂k′

μ

∣∣∣∣
k′=−k

⎞⎟⎟⎠. (D23)

Similarly, the second part yields∑
kαβγ

−Gγα

00 (−τ, k − q)[δμ�]αα
01 G

αβ

10 (τ, k)[∂νH̃ |k−q/2]βγ

00 = −
∑
kαβγ

Gγα

00 (−τ, k)[δμ�]αα
01 G

αβ

10 (τ, k + q)[∂νH̃ |k+q/2]βγ

00 . (D24)

014518-16



REVISITING FLAT BAND SUPERCONDUCTIVITY: … PHYSICAL REVIEW B 106, 014518 (2022)

Repeating this procedure for all terms involving one derivative of � or �∗, the total contribution is found to be

�(1)
μν = −

∑
k

Tr[G(−τ, k)δμ�G(τ, k + q)∂νH̃ |k+q/2γ
z] −

∑
k

Tr[G(−τ, k)∂μH̃ |k+q/2γ
zG(τ, k + q)δν�]. (D25)

The next contributions to the paramagnetic current come from terms which have a product of derivatives of � or �∗ as a
prefactor, for example, ∑

kk′αβ

δ�α

δAμ

δ�β

δAν

〈
T [c†

k−qα↑(τ )c†
−kα↓(τ )c†

k′+qβ↑c
†
−k′β↓]

〉
. (D26)

Like before, the correlator can be expressed as

〈T [c†
k−qα↑(τ )c†

−kα↓(τ )c†
k′+qβ↑c

†
−k′β↓]〉 = −〈T [c†

k−qα↑(τ )c†
k′+qβ↑]〉〈T [c†

−kα↓(τ )c†
−k′β↓]〉

+ 〈T [c†
k+qα↓(τ )c†

k′+qβ↑]〉〈T [c†
k−qα↑(τ )c†

−k′β↓]〉
= 〈T [c†

−kα↓(τ )c†
kβ↑]〉〈T [c†

k−qα↑(τ )c†
q−kβ↓]〉δk′,k−q, (D27)

and the contribution to the paramagnetic term is∑
kαβ

[−Gβα

10 (−τ, k − q)][δμ�]αα
01 G

αβ

10 (τ, k)[δν�]ββ

01 = −
∑
kαβ

Gβα

10 (−τ, k)[δμ�]αα
01 G

αβ

10 (τ, k + q)[δν�]ββ

01 . (D28)

Repeating this for the other terms, the contribution to the paramagnetic current is found to be

�(2)
μν = −

∑
k

Tr[G(−τ, k)δμ�G(τ, k + q)δν�]. (D29)

The last scalar term in the generalized paramagnetic current operator [Eq. (D12)] does not contribute, as it commutes with all
operators.

By combining Eqs. (D25) and (D29), we obtain

�μν (q, τ ) = −
∑
k

Tr
[
G(−τ, k)(∂μH̃ |k+q/2γ

z + δμ�)G(τ, k + q)(∂νH̃ |k+q/2γ
z + δν�)

]
. (D30)

Fourier transforming �μν to Matsubara space yields

�μν (q, iωn) = −
∫ β

0
dτ eiωnτ�μν (q, τ ) (D31)

= 1

β

∑
k

∑
	n

Tr[G(i	n, k)(∂μH̃ |k+q/2γ
z + δμ�)G(i	n + iωn, k + q)(∂νH̃ |k+q/2γ

z + δν�)], (D32)

where 	n = π (2n + 1)/β is a fermionic Matsubara frequency and ωn = 2πn/β is a bosonic one. Computing the diamagnetic
contribution to the current is straightforward. The total current-current response function is given by

Kμν (q, iωn) = − 1

V

1

β

∑
k

∑
	m

Tr[G(i	m, k)∂μH̃ |kG(i	m, k)∂νH̃ |k]

+ 1

V

1

β

∑
k

∑
	n

Tr[G(i	m, k)(∂μH̃ |k+q/2γ
z + δμ�)G(i	m + iωn, k + q)(∂νH̃ |k+q/2γ

z + δν�)] − 1

Vc
Cδ(ωn),

(D33)

C = 1

U

∑
α

δ�α

δAμ

δ�∗
α

δAν

+ H.c. (D34)

In mean field theory, the BdG Hamiltonian can be diagonalized as HBdG = ∑
a Ea|ψa〉〈ψa|, and the Green’s function is

G(i	n, k) =
∑
a

|ψa〉〈ψa|
i	n − Ea(k)

. (D35)

The superfluid weight then becomes

Ds,μν = lim
q→0

lim
ω→0

Kμν (q, ω)|A=0 (D36)

= 1

V

∑
k,a,b

nF (Eb) − nF (Ea)

Ea − Eb
[〈ψa|∂μH̃k|ψb〉〈ψb|∂νH̃k|ψa〉 − 〈ψa|(∂μH̃kγ

z + δμ�)|ψb〉〈ψb|(∂νH̃kγ
z + δν�)|ψa〉] − 1

Vc
C,

(D37)
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where nF (E ) = 1/(eβE + 1) is the Fermi-Dirac distribution
and the prefactor should be understood as −∂EnF (E ) if Ea =
Eb. The functional derivatives of the order parameters can be
computed with knowledge of only the ground state at A = 0,
for example, by using the Hessian method presented in the
main text [see Eq. (16)].

These equations are valid in general as long as
δμ/δAμ|A=0 = 0. If the derivative of the chemical po-
tential is not zero, the above will be equivalent to
Ds = (1/V )d2	/dqidq j |μ,q=0, where μ is kept constant
when taking the derivative. This may not be equal to
(1/V )d2F/dqidq j |N,q=0, where the particle number is kept
constant.

APPENDIX E: EQUIVALENCE OF Ds OBTAINED FROM
THE THERMODYNAMIC POTENTIAL AND LINEAR

RESPONSE THEORY

In this Appendix, we will show that the defini-
tion [Ds]μν = (1/V )d2F/dqμdqν |q=0 is equivalent to the
result obtained from linear response theory [Ds]μν =
limq→0 limω→0 Kμν (q, ω)|A=0, where Kμν is the current-
current response function 〈 jμ(q, ω)〉 = −Kμν (q, ω)Aν (q, ω).

When we define [Ds]μν = (1/V )d2F/dqμdqν |q=0, the vec-
tor q is introduced in the phase of the order parameters
�iα → �iαe2iq·riα . This phase can be moved to the kinetic
Hamiltonian with a unitary transformation ciασ → ciασ e−iq·riα .
The vector q is thus equivalent to a constant vector potential
A introduced via a Peierls substitution.

The grand canonical potential is defined as 	(A) =
−β−1 ln Z (A), Z (A) = Tr[e−βH (A)]. The term μN is included

in the Hamiltonian [see Eq. (1)]. The functional derivative of
	 is

1

V

δ2	

δAμδAν

= 1

VZ

δ

δAμ

Tr

[
δH

δAν

e−βH (A)

]
= δ

δAμ

∑
λ

KνλAλ = Kνμ. (E1)

Thus

[Ds]μν = 1

V

d2F

dAμdAν

∣∣∣∣
A=0,N

= 1

V

d2	

dAμdAν

∣∣∣∣
A=0,μ

= lim
q→0

lim
ω→0

Kμν (q, ω), (E2)

assuming that the chemical potential has a vanishing deriva-
tive at A = 0. When taking the total derivative of F , the total
particle number is kept constant, whereas for 	, the chemical
potential is kept constant.

APPENDIX F: FLAT BAND MODELS WITH A TUNED
BAND TOUCHING

In Sec. VI B, we presented results for flat band models
with a tuned band touching. We used the method developed in
Ref. [48] to construct models where the flat band energy and
eigenstates remain unchanged while the band touchings with
the dispersive bands are tuned from linear to quadratic. For the
kagome geometry, the model with a linear band touching is
shown in Fig. 6. The Fourier-transformed kinetic Hamiltonian
is

Hk,lin,kago = −2i

⎛⎝ 0 sin(k1/2) sin(k2/2)
− sin(k1/2) 0 − sin(k3/2)
− sin(k2/2) sin(k3/2) 0

⎞⎠, (F1)

where k1 = kx, k2 = kx/2 + √
3ky/2, and k3 = kx/2 − √

3ky/2. The length of a unit-cell lattice vector is taken equal to 1. This
model has a flat band at E = 0. The corresponding quadratic model is constructed so that the flat band is at the same energy and
has the same Bloch functions. The obtained kinetic Hamiltonian is

Hk,quad,kago = C

⎛⎝sin2(k1/2) + sin2(k2/2) − sin(k2/2) sin(k3/2) sin(k1/2) sin(k3/2)
− sin(k2/2) sin(k3/2) sin2(k3/2) − 2 sin2(k1/2) −2 sin(k1/2) sin(k2/2)
sin(k1/2) sin(k3/2) −2 sin(k1/2) sin(k2/2) sin2(k3/2) − 2 sin2(k2/2)

⎞⎠. (F2)

The constant C is chosen so that the total width of the band structure is the same as in the linear model. The obtained band
structure is shown in Fig. 6(c). The total Hamiltonian with a continuously tuned band touching is Hk,kago = [(1 − λ)Hk,lin,kago +
λHk,quad,kago]/C2(λ), where C2 is chosen so that the total width of the band structure is independent of λ. Since both the linear
and quadratic models have a flat band at E = 0 with the same eigenfunctions, the flat band eigenstates are identical for all λ.

For the Lieb geometry, we choose the same Lieb lattice as our linear model. In order to be able to open a band gap, we
introduce the staggered hopping amplitudes used in the main text. The kinetic Hamiltonian is

Hk,lin,Lieb = −2

⎛⎝ 0 cos(kx/2) + iη sin(kx/2) cos(ky/2) + iη sin(ky/2)
cos(kx/2) − iη sin(kx/2) 0 0
cos(ky/2) − iη sin(ky/2) 0 0

⎞⎠. (F3)

The kinetic Hamiltonian for the corresponding quadratic model is

Hk,quad,Lieb = − 1√
2

⎛⎝−2(1 + η2) − (1 − η2)[cos(kx ) + cos(ky)] 0 0
0 1 + η2 + (1 − η2) cos(kx ) �(kx, ky, η)
0 �∗(kx, ky, η) 1 + η2 + (1 − η2) cos(ky)

⎞⎠,

(F4)
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FIG. 6. (a) Schematic representation of the kagome model with a
linear band touching. The corresponding band structure is shown in
(b). (c) Band structure of the corresponding model with a quadratic
band touching.

where �(kx, ky, η) = 2(cos kx/2 − iη sin kx/2)(cos ky/2 +
iη sin ky/2). One sublattice is disconnected from the others
in this model. In this case, fixing the phase of one order
parameter is not sufficient to make the Hessian matrix
invertible, and we need to fix the overall phase in both the
disconnected sublattice and the remaining two-band model.
The total interpolating Hamiltonian is obtained the same way
as for the kagome lattice. In this case, at η = 0, the band
touching is tuned continuously from a linear to a quadratic
one. For nonzero η, a gap is opened. In this case, tuning λ

modifies the dispersive bands without affecting the geometry
of the flat band.

APPENDIX G: S-MATRIX CONSTRUCTION

The S-matrix bipartite Hamiltonians [44] offer a route to
understanding the mean field gap in flat band systems, even
those with band-touching points. Denote the two sublattices
L, L̃ with NL > NL̃, where NL,NL̃ are the number of orbitals
per unit cell of each sublattice [44]. The kinetic energy Hamil-
tonian reads as

Hk =
[

0 S†
k

Sk 0

]
. (G1)

Here S†
k is an (NL̃ × NL)-dimensional matrix, and so has an

(NL − NL̃)-dimensional null space that forms the flat bands.
This Hamiltonian obeys a chiral symmetry

S =
[
IL̃×L̃ 0

0 −IL×L

]
, {S,Hk} = 0, (G2)

and the dispersive and flat wave functions read as

�
disp
k,m,± = 1√

2

[
φk,m

±ψk,m

]
, �flat

k,n =
[

0
ψk,n

]
. (G3)

Here φk,m and ψk,m are normalized column vectors whose
components correspond the orbitals in the L̃ and L sublattices,
respectively. The vector φk,m has length NL̃, and ψk,m has
length NL. The dispersive states have energy ±εk,m, where
εk,m are the singular values of Sk. Due to chiral symmetry,
the φ and ψ sublattice vectors obey their own orthonormality

relations and one may define the sublattice projectors as

PL̃
m (k) = φk,mφ

†
k,m, PL

m (k) = ψk,mψ
†
k,m, (G4)

where PL̃
m (k) is an (L̃ × L̃)-dimensional matrix, running over

the orbitals α in the smaller sublattice L̃, and PL
m (k) is an

(L × L)-dimensional matrix, running over the orbitals α in the
larger sublattice L. We allow the index m to run over both
the NL̃ positive-energy dispersive bands and the NL − NL̃ flat
bands. Because there is no weight of the wave function in the
smaller sublattice L̃ in the flat bands, PL̃

m (k) = 0 for m in the
flat bands. The sublattice projectors satisfy

Tr
[
PL̃
m (k)

] =
{

0 if m ∈ flat bands,
1 if m ∈ dispersive bands, (G5)

Tr
[
PL
m (k)

] = 1. (G6)

These projectors are Hermitian and square to themselves, as
expected.

Linear and quadratic band touchings

The S-matrix Hamiltonian lends itself naturally to con-
struct models with linear band touchings at high-symmetry
momenta [44], and the quadratic band touchings can be de-
rived in a simple manner. Consider the new Hamiltonian

Hquad =
[−S†

kSk 0

0 SkS
†
k

]
, (G7)

where SkS
†
k is the line graph derived from L, L̃ [44]. If Hk has

a linear band-touching point, then Hquad has quadratic band
touchings. While the flat band wave functions of Hquad are
the same as Hk, the dispersive wave functions change. This
quadratic construction is precisely the construction employed
in the Lieb lattice quadratic band-touching point discussed in
Appendix F. While the quadratic band-touching point breaks
chiral symmetry, the wave functions are still expressed in
terms of the sublattice vectors φ,ψ , allowing for a precise
treatment of the self-consistent mean field gap equations.

APPENDIX H: S-MATRIX MEAN FIELD THEORY

Adding the Hubbard interaction to the S matrix and per-
forming a mean field analysis yields the BdG Hamiltonian

HMF =
∑

k,σ,αβ

[Hk]αβc
†
k,α,σ

ck,β,σ +
∑
k,α

�αc
†
k,α,↑c

†
−k,α,↓ + H.c.,

(H1)

where

�Rα = U 〈cR,α,↓cR,α,↑〉 = �α, (H2)

with the Hubbard interaction parameter U < 0, translation
invariance in �Rα = �α , and U(1)z-spin conservation and
time-reversal symmetry. Further, we assume uniform pairing
within each sublattice: �α = �L or �L̃ depending on the
sublattice α belongs to. Such a condition may be enforced by
symmetries that relate each orbital within each sublattice [38].
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1. Linear band touching (with chiral symmetry)

Using the nonredundant BdG basis the Hamiltonian is ex-
pressed as

HBdG
k =

⎡⎢⎢⎢⎣
0 S†

k �L̃IL̃×L̃ 0
Sk 0 0 �LIL×L

�L̃IL̃×L̃ 0 0 −S†
k

0 �LIL×L −Sk 0

⎤⎥⎥⎥⎦. (H3)

The BdG Hamiltonian possesses a chiral symmetry aris-
ing from the product of TRS and particle hole. There is
another chiral symmetry inherited from the bipartite lat-
tice. The product of these two symmetries yields a unitary
symmetry.

This Hamiltonian can be solved exactly and the positive
energy eigenvalues read as

E1,2
k,m = 1

2

[± (�L̃ − �L ) +
√

(�L̃ + �L )2 + 4ε2
k,m

]
. (H4)

In the situation where m is a flat band,

Ek,m = �L. (H5)

If the kinetic Hamiltonian possesses a band-touching point
arising from symmetry, the degeneracy between the flat bands
and dispersive bands will be made manifest in the BdG
spectrum. Assume that at high-symmetry momentum K, the
flat bands and band-touching points transform under rep-
resentation X ⊕ Y , where X is the representation induced
by orbitals in the L sublattice, and Y the representation in-
duced by orbitals in the L̃ sublattice. The dimensions obey
dim(X ) − dim(Y ) = NL − NL̃, dim(Y ) > 0. When pairing is
added, those bands transforming under irrep X gain energy
±�L, and there are dim(Y ) bands in addition to the flat
bands that are degenerate. These new band-touching points
are quadratic.

2. Quadratic band touching (no chiral symmetry)

The quadratic band-touching Hamiltonian (G7) no longer
possesses chiral symmetry, but it does factor into sublattices
L̃,L. This is true even when pairing is added:

HBdG
quad =

⎡⎢⎢⎢⎣
−S†

kSk 0 �L̃IL̃×L̃ 0

0 SkS
†
k 0 �LIL×L

�L̃IL̃×L̃ 0 S†
kSk 0

0 �LIL×L 0 −SkS
†
k

⎤⎥⎥⎥⎦. (H6)

Thus, each sublattice may be treated separately. The positive-
energy eigenvalues are

Ek,m,L̃ =
√

ε4
k,m + �2

L̃
, Ek,m,L =

√
ε4
k,m + �2

L, (H7)

Although chiral symmetry no longer holds, this quadratic
Hamiltonian still possesses the band-touching point at
energy ±�L.

APPENDIX I: GAP EQUATION

1. Chiral-symmetric Hamiltonian

For the chiral-symmetric Hamiltonian Hk, the gap equa-
tion at zero temperature [5] reads as

�α = |U |
N

∑
k,m

�L + �L̃

2
√

(�L + �L̃ )2 + 4ε2
k,m

× [
P(L)
m (k) ⊕ P(L̃)

m (k)
]
αα

. (I1)

Employing the trace relations (G6) removes the projectors and
all wave-function dependence, yielding gap equations

NL�L = |U |NL̃

2
f (�) + |U |(NL − NL̃ )

2
, (I2)

NL̃�L̃ = |U |NL̃

2
f (�), (I3)

where we have defined

f (�) = 1

NNL̃

∑
k,m∈disp

�√
�2 + ε2

k,m

, (I4)

� = 1

2
(�L + �L̃ ). (I5)

This leads to the universal relation

NL�L − NL̃�L̃ = |U |(NL − NL̃ )

2
, (I6)

where we recognize the right-hand side of this weighted dif-
ference equation as the strength of pairing arising from the
flat bands. This equation is universal as it only requires the
bipartite nature of the underlying model, and does not depend
on the dispersion or wave functions, nor the presence or ab-
sence of band-touching points. We have verified the weighted
difference relation numerically, and the relation has been seen
to hold in the Lieb lattice [7].

Further bounds on �L,�L̃ can be proven by noting that
f (�) is monotonically increasing in � and ranges from 0 to
1. The gap equation for the average pairing gap � reads as

�

U
= 1

4
(1 + r) f (�) + 1

4
(1 − r), r = NL̃

NL
(I7)

which only depends on the average form of the dispersive
bands f (�) and the ratio of the sublattice orbital numbers r.
This equation always has a solution, as the right-hand side is
positive and bounded. As 0 < f (�) < 1, the average pairing
obeys

1

4
(1 − r) <

�

|U | <
1

2
. (I8)

The pairing on the L sublattice is always larger than the
pairing on the L̃ sublattice �L > �L̃:

�L

|U | − �L̃

|U | = 1

2
(1 − r)[1 − f (�)] > 0. (I9)

The larger pairing �L is maximized when r → 0, or if the
ratio of flat bands to dispersive bands is made as large as
possible. Because there is a solution � > 0, it follows from
the self-consistent equations that �L,�L̃ > 0, i.e., there is
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pairing on both sublattices:

�L̃ > 0, �L = |U |
2

(1 − r) + r�L̃. (I10)

2. Quadratic band touching

The gap equations for the quadratic Hamiltonian decouple
into L̃,L sectors. Defining

f quad(�) = 1

NNL̃

∑
m∈disp

∑
k

�√
�2 + ε4

k,m

, (I11)

the self-consistent equations read as

�L̃ = |U |
2

f quad(�L̃ ), (I12)

�L = |U |
2

r f quad(�L ) + |U |
2

(1 − r). (I13)

As in the linear case, this system always has at least one
solution: �L̃ = 0 satisfies the first equation and the second
always has a solution as f quad(�L ) is bounded.

The universal relation for the chiral Hamiltonians no longer
holds (as the quadratic band-touching model does not obey the
chiral symmetry): instead, the weighted difference reads as

NL�L − NL̃�L̃ = |U |NL̃

2
[ f quad(�L ) − f quad(�L̃ )]

+ |U |(NL − NL̃ )

2
. (I14)

If �L > �L̃, then regardless of the form of f quad, the weighted
pairing difference NL�L − NL̃�L̃ increases from the linear
model to the quadratic model. In the linear model it is clear
that �L > �L̃, and if �L̃ = 0 in the quadratic model, the
inequality is also obvious.

Unfortunately, one cannot make the general claim that
�L > �L̃. Although we expect �L > �L̃ as the flat bands
contribute to the superconductivity in �L but not �L̃, we can
only prove the slightly weaker statement: if there is a self-
consistent solution �L̃, there is also a self-consistent solution
�L where �L > �L̃. To prove this, define the functions

u(�) = |U |
2

f quad(�), (I15)

v(�) = |U |
2

r f quad(�) + |U |
2

(1 − r), (I16)

and as such 0 < u(�) < v(�) <
|U |
2 . Assume the fixed point

u(�L̃ ) = �L̃. Because u(�) < v(�), we have

�L̃ − v(�L̃ ) < �L̃ − u(�L̃ ) = 0 . (I17)

But note that the function � − v(�) also attains positive
value by setting � = |U |/2 + ε, ε > 0, and using v(�) <

|U |/2. By the intermediate value theorem, there exists �L ∈
(�L̃, |U |/2) such that �L − v(�L ) = 0. Hence, we have
demonstrated a solution exists to Eq. (I13) where �L > �L̃.
This establishes that there exists a self-consistent solution of
Eq. (I13) where �L > �L̃ and thus NL�L − NL̃�L̃ increases
in the quadratic band-touching case relative to the linear band-
touching case, though this is due to the nature of the dispersive
band wave functions and not the dispersion.

We emphasize that the universal relations between �L,�L̃
we have derived arise due to the geometry of the bipartite
wave functions, and not due to the dispersion. This is a
striking result of the bipartite S-matrix construction: various
inequalities regarding the strength of the pairing gap can be
made without recourse to the details of the model. The details,
however, do affect the physics: tuning the band-touching point
to be quadratic should enhance the gap �L, as the quadratic
band structure has greater density of states at low energy,
increasing f (�).

3. Connection to Lieb’s theorem and the uniform pairing models

One can connect our mean field results to the models stud-
ied by Refs. [33,69–71]. In his seminal paper, Lieb proved
that the ground state of a bipartite lattice with onsite attractive
interactions, assuming appropriate symmetries, is unique. If
the flat bands are gapped from the dispersive bands, one can
project away the dispersive bands and further argue that the
ground state takes the form of the BCS wave function [7]
(this is not necessarily true if there are band-touching points).
Because the dispersive bands have been projected away, there
is no weight of the flat bands in the smaller sublattice, so �L̃ =
0. Our mean field results yield a particularly simple result in
this projected limit: if the dispersive bands are sufficiently
gapped from the flat bands, f (�) → 0, and the pairings in
the sublattices read as

�L̃ = 0, �L = |U |(NL − NL̃ )

2NL
. (I18)

The strength of the pairing �L is universal and does not
depend on the form of the wave functions.
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