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Linear viscoelastic response of the vertex model with internal and external dissipation:
Normal modes analysis
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We use the normal mode formalism to study the shear rheology of the vertex model for epithelial tissue
mechanics in the overdamped linear response regime. We consider systems with external (e.g., cell-substrate)
and internal (e.g., cell-cell) dissipation mechanisms, and derive expressions for stresses on cells due to me-
chanical and dissipative forces. The semi-analytical method developed here is, however, general and can be
directly applied to study the linear response of a broad class of soft matter systems with internal and external
dissipation. It involves normal mode decomposition to calculate linear loss and storage moduli of the system.
Specifically, displacements along each normal mode produce stresses due to elastic deformation and internal
dissipation, which are in force balance with loads due to external dissipation. Each normal mode responds with a
characteristic relaxation timescale, and its rheological behavior can be described as a combination of a standard
linear solid element due to elastic stresses and a Jeffreys model element due to the internal dissipative stresses.
The total response of the system is then fully determined by connecting in parallel all the viscoelastic elements
corresponding to individual normal modes. This allows full characterization of the potentially complex linear
rheological response of the system at all driving frequencies and identification of collective excitations. We
show that internal and external dissipation mechanisms lead to qualitatively different rheological behaviors due
to the presence or absence of Jeffreys elements, which is particularly pronounced at high driving frequencies.
Our findings, therefore, underscore the importance of microscopic dissipation mechanisms in understanding the
rheological behavior of soft materials and tissues, in particular.
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I. INTRODUCTION

Soft materials exhibit rich mechanical and rheological
behaviors such as viscoelasticity, time-dependent viscos-
ity, shear thickening and thinning, etc. [1,2]. Understanding
these behaviors is of both fundamental and practical interest
with many soft materials being ubiquitous in everyday life.
Rich macroscopic rheological properties result from typically
complex amorphous microscopic structure, relatively weak
interactions between constitutive elements (i.e., often compa-
rable with the thermal energy), and dissipation. In polymer
melts, for example, the storage modulus has a characteristic
plateau over a range of frequencies due to very different time
scales associated with the diffusion along and perpendicu-
lar to the polymer chain [3]. In dense emulsions, the loss
modulus remains constant under oscillatory shear for driving
frequencies as low as 10−2 − 1 Hz [4], in contradiction to the
linear response theory, which predicts that the loss modulus is
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an odd function of frequency, and, therefore, should vanish
for at low frequencies. This behavior is attributed to slow
“glassy” dynamics [5,6]. In granular media approaching the
unjamming transition, the density of vibrational states remains
constant at low frequencies leading to a diverging length scale
[7], which results in scaling behavior of elasticity and trans-
port properties, and force propagation as the packing fraction
approaches the critical value [8–10].

The mechanical and rheological properties of living matter
share a lot in common with the inanimate amorphous soft
active matter [11]. Collective behavior of cells in confluent
epithelial tissues and cell monolayers, for example, can be
modeled as dense soft active matter and have been known
to show complex collective behaviors [12–16] with dynam-
ical patterns reminiscent of supercooled liquids and active
nematics [17–20]. There are, however, key differences be-
tween living systems and inanimate active matter. Notably,
biological systems can tune their properties in response to
chemical and mechanical changes in the environment. Living
systems also grow, age, regenerate, etc. The understanding of
how such processes affect the physics of living matter is a very
active area of research. Epithelial tissues and cell monolayers
have been widely used as model systems to study complex
mesoscale behavior of biological systems [13,18,21–24]. In
particular, there has been growing interest in studying the
viscoelastic response of these systems [22], which revealed
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complex nonlinear behavior and led to interesting theoretical
models, e.g., the description based on fractional derivatives to
capture anomalous power-law relaxation [25,26].

Understanding the full nonlinear response of soft and bio-
logical matter is faced with major challenges such as multiple
competing length and time scales, and irreversible plastic
microscopic rearrangements that produce nonlocal stresses,
aging, etc. [27–30]. Despite many theoretical and numerical
studies of various aspects of the nonlinear response, a general
framework is still lacking. In the linear regime, however, many
of these challenges can be neglected to make a comprehensive
treatment possible. The linear response treatment is clearly
inadequate if one is interested in the long-time behavior un-
der large deformations. It can, nonetheless, provide valuable
insights into often complex baseline behaviors of the system.

In this paper, we develop a semi-analytic formalism that
can be used for investigating the linear rheological response
of a broad class of soft and biological matter over the full
range of driving frequencies. Our approach is based on the
well-known decomposition in terms of normal modes [31].
We show that each normal mode is equipped with a character-
istic relaxation timescale. Displacements along each normal
mode produce stresses due to elastic deformation and internal
dissipation, which are in force balance with loads due to
external dissipation. Interestingly, the rheological behavior of
a given normal mode can be described as a combination of
a standard linear solid element due to elastic stresses and a
Jeffreys model element due to the internal dissipative stresses.
The rheological behavior of the system is then fully deter-
mined by connecting in parallel all the viscoelastic elements
corresponding to individual normal modes. This behavior is
generic and does not depend on the details of the micro-
scopic model for dynamics. The method discussed in this
paper shares similarities with several recent studies [32–34],
but it complements them by allowing treatment of various
dissipative mechanisms.

We applied the formalism to study the linear response
of the vertex model [35–37], widely used to describe the
mechanical properties of epithelial tissues. Using the vertex
model, Bi, et al. predicted that epithelial tissues can undergo
rigidity transition at constant density by tuning cell properties
[38]. These unexpected results have been observed in vitro
in human bronchial cell monolayers [24], and have sparked
interest in understanding how biological systems can take
advantage of the presence of phase transitions and the accom-
panying tissue rheology [39,40]. Understanding mechanical
and rheological properties of the vertex model and the closely
related self-propelled Voronoi model [41–43] has, therefore,
attracted significant attention [29,44–46]. Most studies to date
[29,47–49] focused on the quasistatic regime including with
large deformations, where plastic relaxation facilitated by cell
rearrangements via T1 events leads to a strong nonlinear
response. Here, we take the opposite limit and explore the
dynamic linear response of the vertex model over a wide
range of driving frequencies and three different microscopic
models of dissipation. In our previous work in Ref. [46], we
numerically investigated the linear viscoelastic response of the
vertex model with external dissipation. We found that even
in the linear regime, the vertex model shows complex vis-
coelastic response, especially in the fluid phase, with multiple

competing time scales. In this paper, we demonstrated that
the complex viscoelastic response of the vertex model can be
accurately captured by normal modes. In addition, we show
that internal and external dissipative mechanisms can result
in a markedly different rheological response, emphasizing
the importance of dissipation for the rheological behavior of
model epithelial tissues.

The paper is organized as follows. In Sec. II, we use the
normal mode analysis to derive the linear response rheological
properties of overdamped soft materials with both external
and internal dissipation. In Sec. III, we apply this method to
the vertex model of epithelial tissues and explicitly discuss
three microscopic mechanisms of dissipation: (1) external
dissipation due to relative motion between a vertex and the
substrate; (2) internal dissipation due to relative motion of
neighboring vertices; and (3) internal dissipation due to the
relative motion of neighboring cell centers. The first model
is suitable for studies of cell monolayers supported by a solid
substrate while the latter two are more appropriate for systems
such as embryos. In Sec. IV, we provide concluding remarks.
Details of the calculation of forces, the Hessian matrix, and
stresses are presented in Appendices A to D.

II. NORMAL MODES ANALYSIS

We model a soft viscoelastic system as a collection of
N interacting agents (e.g., vertices of a network, colloids in
colloidal dispersion, cells in a tissue, etc.) whose interaction is
described by a potential energy E ({R j}), where {R j} denotes
the set of position vectors of all agents in a suitably chosen ref-
erence frame. The position vector of agent j is R j ∈ Rd with d
being the number of spacial dimensions and j ∈ {1, . . . ,N}.
In general, the potential energy can be multibody, and each
agent i experiences the force −∇RiE ({R j}). To simplify the
notation, we introduce the column vector r ≡ (R1, . . . ,RN ),
which contains positions of all agents, i.e., r ∈ RdN . Similarly,
a dN-dimensional vector, −∇rE (r), represents forces acting
on all agents. Since typical systems of interests are in the
overdamped regime, the relaxation dynamics of the system in
the absence of an external driving force is described as

Ĉṙ(t ) = −∇rE
(
r(t )

)
, (1)

where the symmetric matrix Ĉ provides a generalization of
the single friction coefficient to more complex mechanisms of
energy dissipation, which captures both external and internal
dissipation. The overdot symbol is used to denote the time
derivative of relevant quantities throughout this paper.

We are interested in the linear response of the system
around an equilibrium state req, which corresponds to a so-
lution of the set of algebraic equations,

∇rE
∣∣
r=req = 0. (2)

In order to probe the linear response, we consider an external
driving force f (t ) that is sufficiently weak to produce deforma-
tions that are small compared to the typical distance between
agents, i.e., it keeps the system in the basin of attraction of the
local energy minimum. The corresponding displacements are
δr(t ) = r(t ) − req and linearized equations of motion take the
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form

Ĉδṙ(t ) = −Ĥδr(t ) + f (t ), (3)

where Ĥ is the Hessian matrix with elements

ĤIJ = ∂2E

∂xI∂xJ

∣∣∣∣∣
r=req

. (4)

Here, xI and xJ are, respectively, the Ith and Jth entries in the
vector r. Recall that Ĥ is a real dN × dN symmetric matrix.
If req corresponds to a true local energy minimum, then Ĥ is
positive definite. Here, we relax this condition and assume that
Ĥ is positive semidefinite, i.e., we allow for the possibility that
zero-energy modes are present in the system. Furthermore, in
general, matrices Ĥ and Ĉ do not commute.

In order to solve Eq. (3), we consider the following gener-
alized eigenvalue problem [50],

Ĥξk = λkĈξk, (5)

where λk and ξk are the kth eigenvalue and eigenvector, re-
spectively. Since Ĥ and Ĉ are real symmetric matrices, the
eigenvectors form a complete orthonormal basis B = {ξi|i =
1, . . . , dN}, i.e., 〈ξi, ξ j〉Ĉ = δi j , where δi j is the Kronecker
delta and the inner product is defined as 〈u, v〉Ĉ ≡ uᵀĈv. We
can expand the displacement δr(t ) in the basis B as

δr(t ) =
dN∑
k=1

ak (t )ξk, (6)

where ak (t ) is the time-dependent amplitude of the normal
mode ξk . Equations of motion of the system in Eq. (3) can then
be projected along each normal mode. Since normal modes
are orthogonal to each other and, hence, decoupled, each be-
haves as an independent overdamped harmonic oscillator. The
projection, therefore, leads to a set of decoupled dynamical
equations for the amplitudes ak (t ) of normal modes,

ȧk (t ) = −λkak (t ) + fk (t ), (7)

where fk (t ) = ξ
ᵀ
k f (t ) is the projection of the driving force

along the kth normal mode. We immediately see that λ−1
k is

the characteristic relaxation time of the kth normal mode. For
a given driving force fk(t), Eq. (7) can be solved as

ak (t ) = ak (0)e−λkt +
∫ t

0
dt ′ fk (t ′)e−λk (t−t ′ ). (8)

Thus, once the external driving force f (t ) is specified, the
dynamics of the system is fully determined by Eqs. (6)–(8).
Finally, Eq. (7) has a simple solution in the frequency domain

ãk (ω) = f̃k (ω)

λk + iω
, (9)

where the Fourier transform is defined as g̃(ω) =∫ +∞
−∞ dt g(t )e−iωt .

A. Application of normal modes to 2d systems with periodic
boundaries under shear

As an example of the general formalism presented above,
we now demonstrate how to extract linear shear rheologi-
cal properties of a d = 2–dimensional system with periodic

boundary conditions. Treating systems with open boundaries
would be analogous, but one would have to solve the general-
ized eigenvalue problem in Eq. (5) subject to the appropriate
boundary conditions. In numerical experiments, it is con-
venient to apply external driving via a macroscopic affine
deformation of the entire system and measure the stress re-
sponse in the system [51,52]. One way of achieving this in
a real system could be by placing the system on a sticky
substrate and applying oscillatory shear deformation to the
substrate. Due to interactions with the substrate, the deforma-
tion of the system follows the deformation of the substrate on
short timescales, but the system can relax and produce non-
affine motion on longer timescales. We remark that nonaffine
relaxation plays an important role in many soft systems, e.g.,
it is key for understanding the elastic properties of amorphous
solids [53].

The affine deformation can be described as Ri(t ) =
F̂(t )R0

i where the initial position R0
i ≡ Ri(t = 0) of agent i is

mapped to the current position Ri(t ) by an affine deformation
gradient tensor F̂(t ) [54]. For instance, the shear rheology of
the system can be probed by applying an oscillatory affine
simple shear described by the deformation gradient tensor

F̂ =
(

1 ε(t )
0 1

)
, (10)

where ε(t ) = ε0 sin(ω0t ) is the applied shear strain with am-
plitude ε0 	 1. The nonaffine relaxation can be described by
modifying the force balance in Eq. (1) as

Ĉ(ṙ(t ) − vaff(t )) = −∇rE (r, ε(t)). (11)

Here, vector vaff(t ) contains the velocities of all agents due
to the affine deformation imposed by the substrate, i.e., vaff ≡
(Vaff

1 , . . . ,Vaff
N ), where Vaff

i (t ) = ( d
dt F̂(t ))R0

i is the affine part
of the velocity of each individual agent. For the applied simple
shear deformation in Eq. (10), the affine velocity of agent i is
Vaff

i = (ε̇(t )R0,y
i , 0), where R0,y

i is the y coordinate of the agent
i in the initial position, and the periodic box is centered at the
origin.

It is important to note that for a system with periodic
boundary conditions, the energy, E (r, ε(t)), also depends on
the applied shear strain ε(t ). This dependence enters via the x
component of the separation distance Rx

i j between agents i and
j as Rx

i j = Rx
j − Rx

i + qxi j�x + ε(t )qyi j�y [43]. Here, Rx
i and Rx

j
are the x coordinates of the agents i and j, respectively, �x and
�y are the sizes of the rectangular simulation box in the x and y
directions, respectively. qyi j = 0 if agents i and j are connected
without crossing the top or the bottom boundary and qyi j = +1
(qyi j = −1) if the bond connecting agent i to agent j crosses
the top (bottom) boundary, with analogous expressions for qxi j
in terms of the left and right boundaries [43].

Due to the dependence of the energy on the applied shear
strain ε(t ), the linearized equations of motion in Eq. (11)
around the equilibrium state req become

Ĉδṙ(t ) = −Ĥδr(t ) + f
pb

ε(t ) + Ĉuaffε̇(t ). (12)

Here, we introduced the driving force f
pb = − ∂2E

∂r∂ε
|r=req,ε=0

due to periodic boundaries and rewrote the affine velocity
as vaff = uaffε̇(t ), where uaff = (Uaff

1 , . . . ,Uaff
N ) with Uaff

i =
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FIG. 1. A schematic of the decomposition of the motion and the response stress along normal modes. The top left panel depicts the
deformation of cells crossing the periodic boundary due to the relative motion of image boxes that are displaced according to the applied
shear. The remaining panels show three representative normal modes for the vertex model. The grey mesh is the equilibrium configuration, the
red arrows indicate displacements associated with the normal mode ξk , and the blue mesh is the configuration after displacing vertices in the
direction of the normal mode. Similarly, in the top left panel polygons outlined in blue indicate the distorted cells due to the relative movement
of image boxes under applied shear. Perturbation from the equilibrium state δr(t ) can be written as a linear superposition of displacements along
the normal modes ξk . The stress response of the system [see Eq. (18)] due to shear deformation can be represented as a linear superposition of
stresses ε(t )σ̂e,lin

pb and ε̇(t )σ̂ id
pb due to the elastic deformation and internal dissipation of cells crossing the periodic boundary, respectively, and

stresses ak (t )σ̂e,lin
k and ȧk (t )σ̂ id

k due to the elastic deformation and internal dissipation of the kth normal mode, respectively. The rheological
response of the system due to shear deformation [see Eq. (21)] can thus be represented as a parallel sequence of a spring and a dashpot due
to shear of cells crossing the periodic boundary and standard linear solid (SLS) model elements and Jeffreys model elements, where each
SLS model element and Jeffreys model element describe the shear response of a normal mode. Expressions for spring constants and dashpot
viscosities are given in the text.

(R0,y
i , 0). As discussed above, the displacements can be ex-

panded in the basis of normal modes as in Eq. (6). In this
basis, the equations of motions in Eq. (12) become

ȧk (t ) = −λkak (t ) + αkε(t ) + βk ε̇(t ), (13)

where

αk = ξ
ᵀ
k f

pb
, (14a)

βk = 〈ξk,uaff〉Ĉ = ξ
ᵀ
k Ĉu

aff. (14b)

The solution of Eq. (13) in the frequency domain is

ãk (ω) =
(

αk + iωβk

λk + iω

)
ε̃(ω). (15)

B. Stresses in 2d systems with periodic boundaries

We measure the stress response of the system due to an
external driving force as follows. The stress of the system
has two contributions. One contribution is denoted as σ̂e(t ),
and is generated by the interaction forces −∇rE (r) resulting
from the elastic deformation. The other contribution is due
to the internal dissipation resulting from the relative motion
of agents with respect to each other, and it is denoted as

σ̂ id(t ). Note that the loads fext(t ) due to external dissipation
induce stresses in the system via the force balance relation
∇ · (σ̂e + σ̂ id) + fext = 0. In Appendix D, we show a detailed
derivation of these stress contributions for cells in the vertex
model. Similar steps can be followed to derive the relevant
expressions for stresses σ̂e and σ̂ id for any other system.

In the linear response regime, the displacement perturbed
from the equilibrium state δr(t ) can be written as a linear
superposition of displacements along normal modes. The re-
sponse stress σ̂e(t ) due to the elastic deformation can thus be
represented as a linear superposition of stress tensors σ̂e

k (t ) =
ak (t )σ̂e,lin

k due to the motion along each normal mode k (see
Fig. 1, top right). The linear response tensor σ̂e,lin

k for kth

normal mode can be calculated by measuring the response
stress tensor δσ̂e

k due to perturbation δr = δaξk along mode k
so that σ̂e,lin

k = δσ̂e
k/δa, where the amplitude δa is sufficiently

small to produce deformations that are small compared to the
typical distance between agents. There is an additional stress
contribution due to the deformation of elastic bonds that cross
the periodic boundary. This is because the displacements ξk of
normal modes are periodic and they do not capture the relative
displacement between the agent i and its periodic image when
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the affine shear is applied. To account for that, we also con-
sider stresses σ̂e

pb(t ) = ε(t )σ̂e,lin
pb due to the deformation of the

elastic bonds that cross periodic boundaries when the periodic
images of the system are displaced according to the applied
shear (see Fig. 1, top left). The linear response tensor σ̂e,lin

pb
can be calculated by applying a small shear δε0 	 1 to the
periodic boundary, and measuring the resulting stress δσ̂e

pb so

that σ̂e,lin
pb = δσ̂e

pb/δε0. Therefore, the total elastic stress tensor
is

σ̂e(t ) = ε(t )σ̂e,lin
pb +

∑
k

ak (t )σ̂e,lin
k . (16)

The stresses σ̂ id(t ) generated by the internal dissipation,
i.e., the motion of agents relative to each other, are propor-
tional to the velocities of the agents. The velocity is expanded
in the basis B as δṙ(t ) = ∑

k ȧk (t )ξk . The stress tensor σ̂ id(t )
can thus be written as a linear superposition,

σ̂ id(t ) = ε̇(t )σ̂ id
pb +

∑
k

ȧk (t )σ̂ id
k , (17)

where ε̇(t )σ̂id
pb is the dissipative stress due to the relative

motion of agents when the periodic images of the system
are displaced according to the applied shear, and σ̂ id

k is the
dissipative stress generated by the kth normal mode. Note that
the stresses due to internal dissipation are linear by definition
because the dissipative forces depend linearly on the agent
velocities [see Eq. (1)]. Then the total stress is

σ̂(t ) = σ̂e(t ) + σ̂ id(t ),

σ̂(t ) = ε(t )σ̂e,lin
pb +

∑
k

ak (t )σ̂e,lin
k

+ ε̇(t )σ̂ id
pb +

∑
k

ȧk (t )σ̂ id
k . (18)

C. Storage and loss moduli in 2d systems with periodic
boundaries

For the shear rheology, the dynamic shear modulus is de-
fined as [1]

G∗(ω) =
˜̂σxy(ω)

ε̃(ω)
= Ge

pb +
∑
k

(
αk + iωβk

λk + iω

)
Ge

k

+ iωGid
pb +

∑
k

iω

(
αk + iωβk

λk + iω

)
Gid

k , (19)

where Ge
pb ≡ σ̂

e,lin
pb,xy and Gid

pb ≡ σ̂ id
pb,xy are the moduli due to the

shear of the periodic boundary and

Ge
k ≡ σ̂ lin

k,xy, (20a)

Gid
k ≡ σ̂ id

k,xy. (20b)

Note that Gid
pb, Ge

k , and Gid
k themselves do not have units of

stress. We, however, use the letter “G” to emphasize their con-
tributions to the dynamic moduli, which have units of stress.
In general, the dynamic shear modulus G∗(ω) = G′(ω) +
iG′′(ω) has a real part G′, which is called the storage modulus,
and an imaginary part G′′, which is called the loss modulus

[1]. Using Eq. (19), one can write the storage and loss moduli
as

G′(ω) = Ge
pb +

∑
k

(
αkλk + βkω

2

λ2
k + ω2

)
Ge

k

−
∑
k

(
(−αk + βkλk )ω2

λ2
k + ω2

)
Gid

k , (21a)

G′′(ω) = ωGid
pb +

∑
k

(
(−αk + βkλk )ω

λ2
k + ω2

)
Ge

k

+
∑
k

(
(αkλk + βkω

2)ω

λ2
k + ω2

)
Gid

k . (21b)

Upon a closer inspection of the expressions for the storage
and loss moduli, we recognize that the contributions due to
periodic boundaries can be represented as a Kelvin-Voigt el-
ement and that each normal mode k behaves as a standard
linear solid element connected in parallel with a Jeffreys
element [1]. The Kelvin-Voigt element can be represented
as a spring E e

pb = Ge
pb connected in parallel with a dashpot

ηid
pb = Gid

pb. The standard linear solid element can be rep-
resented as a spring with elastic constant E e

k,a = Ge
kαk/λk

connected in parallel with a Maxwell element that con-
sists of a spring E e

k,b = Ge
k (−αk + βkλk )/λk and a dashpot

ηe
k,b = Ge

k (−αk + βkλk )/λ2
k connected in series (see Fig. 1).

The Jeffreys model element can be represented as a dashpot
ηid
k,a = Gid

k βk connected in parallel with a Maxwell element
that consists of a spring E id

k,b = Gid
k (αk − βkλk ) and a dashpot

ηid
k,b = Gid

k (αk − βkλk )/λk (see Fig. 1). The characteristic time
scale for mode k is, therefore, ηe

k,b/E
e
k,b = ηid

k,b/E
id
k,b = 1/λk .

The full rheological response of the system can thus be rep-
resented as a Kelvin-Voigt element due to periodic boundary
and a sequence of standard linear solid elements and Jeffreys
model elements connected in parallel, each standard linear
solid element and Jeffreys model element corresponding to
the contribution from one normal mode (see Fig. 1). The
dynamic response of the system is, therefore, characterized
by a spectrum of relaxation timescales λ−1

k corresponding to
each normal mode.

Finally, we note that the contribution to the loss modulus
due to internal dissipation scales as G′′(ω) ∼ ω at high fre-
quencies [see Eq. (21b)]. This is in contrast to the case with
external dissipation only, where the loss modulus scales as
G′′(ω) ∼ 1/ω [see Eq. (21b)]. Thus, in general, at high fre-
quencies, the loss modulus increases linearly with frequency
and is dominated by internal dissipation. As we show below,
the onset of the crossover to the linear scaling of the loss
modulus with ω in systems with internal dissipation, however,
depends on the values of parameters and can start to occur
at relatively high values of ω, revealing rich low-frequency
behavior.

III. APPLICATION TO THE VERTEX MODEL WITH
DIFFERENT TYPES OF DISSIPATION

In this section, we apply this formalism to analyze the
linear viscoelastic properties of the vertex model of epithelial
tissues with both external (i.e., cell-substrate) and internal
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(a) (b) (c)

FIG. 2. Schematics of the three types of dissipation mechanisms in the vertex model considered in this paper. Velocity vectors are shown
in blue and friction forces are red. (a) Dissipation due to the relative motion between vertices and a solid substrate. Vertex i experiences a
frictional force proportional to its velocity Vi, with friction coefficient γ . (b) Friction force on the vertex i is due to its motion relative to
neighboring vertices. Si is the set of all vertices connected to vertex i by a cell-cell junction. (c) Dissipation is due to the relative motion of
neighboring cell centers. NC includes all neighboring cells of cell C. Ni includes all cells that share vertex i. f id

C is the friction force that cell C
experiences due to relative motion with respect to its neighboring cells. fed

i and f id
i are the total friction forces applied at vertex i due to external

and internal dissipation, respectively. NC is the number of vertices that belong to cell C.

(i.e., cell-cell) dissipation. The results are compared against
direct numerical simulations of the vertex model. In the vertex
model, a confluent epithelial tissue is represented as a polygo-
nal tiling of the plane. We also assume that the tiling is subject
to periodic boundary conditions. Two cells share a junction,
which is modeled as a straight line, and three or more cells
meet at a vertex, which is the degree of freedom in the model.
The mechanical energy of the system is

E =
∑
C

[
K

2
(AC − A0)2 + 


2
(PC − P0)2

]
, (22)

where K and 
 are the area and perimeter moduli, and AC and
PC are the area and perimeter of cell C, respectively. A0 and
P0 are, respectively, the preferred area and perimeters, here
assumed to be the same for all cells. The dimensionless cell-
shape parameter p0 = P0/

√
A0 controls whether the model

tissue is in the solid or the fluid regime [38]. Model tissues
with low (high) values of the cell-shape parameters p0 <

pc (p0 > pc) behave like solids (fluids). The critical value
of the cell-shape parameter pc that characterizes the solid-

fluid transition is pc =
√

8
√

3 ≈ 3.722 for regular hexagonal
tilings [55], while for disordered tilings the critical value falls
in the range pc ≈ 3.8 − 3.9 [38,45,56] and depends on the
procedure with which they are generated. Here, we consider
both regular hexagonal and disordered tilings. Expressions for
mechanical forces on each vertex −∇rE , the Hessian matrix
Ĥ , and the driving force f

pb
due to periodic boundaries that

are used for the normal modes analysis are given in Appen-
dices A, B, and C, respectively.

The dynamics of the vertex model has been studied al-
most exclusively with the assumption that the only source
of dissipation is the interaction between the vertex and the
substrate [57]. In real epithelial tissues, however, there are
different sources of dissipation, many of which have not been
well understood. We, therefore, studied three simple dissi-
pation mechanisms, as shown in Fig. 2. These are encoded
in the matrix Ĉ and describe the dynamics of vertices [see
Eq. (1)]. Specifically, Fig. 2(a) shows the friction fed

i = −γVi

due to the relative velocity Vi between the vertex i and the
substrate. The superscript “ed” is used to emphasize that this
is a source of external dissipation. In this case, the dissipation

matrix takes a simple diagonal form, Ĉ = γ Î, where γ is the
friction coefficient and Î is the identity matrix. In Fig. 2(b),
we consider the internal dissipation due to relative motions
of neighboring vertices with friction coefficient ζV . In this
case, the dissipation force for the vertex i can be expressed as
f id
i = −ζV

∑
jα∈Si (Vi − V jα ), where the summation is over all

nearest neighbor vertices, referred to as the “star” of vertex
i and denoted as Si. Assuming that each vertex is shared
by three cell-cell junctions, 3ζV appears on the diagonal of
the Ĉ matrix, and each row has three nonzero off-diagonal
elements with the value −ζV . Clearly, if there are vertices with
coordination higher than three, this will be reflected in the
diagonal term and the row of the matrix Ĉ that correspond to
such vertices. Another formulation of the internal dissipation
is to consider the relative motions of neighboring geometric
centers of cells, as shown in Fig. 2(c). The velocity VC of the
geometric center of cell C is defined as the average velocity
of the NC vertices that belong to it, i.e., VC = 1

NC

∑
i∈C Vi.

The friction force that cell C experiences due to the relative
motions with respect to its neighboring cells is then defined as
f id
C = −ζC

∑
Cn∈NC

(VC − VCn ), where ζC is the friction coef-
ficient and the set NC includes all neighboring cells of cell
C. This friction force is assumed to be equally distributed
across all the NC vertices that belong to cell C. Thus, the total
friction force on the vertex i is denoted as f id

i = ∑
C∈Ni

f id
C /NC ,

where the set Ni includes all cells that share vertex i. Once the
friction force at each vertex is known, the dissipation matrix Ĉ
can be written accordingly. Note that in this dissipation model,
more than three vertices contribute to the force on a given
vertex each contributing to an off-diagonal element of the
matrix Ĉ. We also note that the models characterizing internal
dissipation, such as the ones in Figs. 2(b) and 2(c), play an
important role if cells are not supported by the substrate, e.g.,
as is the case in early-stage embryos. Finally, we remark that
in the absence of external dissipation the Ĉ matrix is singular
reflecting the fact that translations and rigid body rotations
do not cause internal dissipation. Therefore, one should either
consider small, but finite external friction, which is done in
this study, or include inertia.

In the remainder of this section, we show how those three
different types of dissipation affect the rheological properties

013143-6



LINEAR VISCOELASTIC RESPONSE OF THE VERTEX … PHYSICAL REVIEW RESEARCH 5, 013143 (2023)

of the vertex model for regular hexagonal and disordered
tilings. For all three models, we compared the results of the
normal mode analysis with direct numerical simulations of the
vertex model.

A. Simulation setup

We start by briefly summarizing the setup of our ver-
tex model simulations, with additional details provided in
Ref. [46]. In most simulations of the vertex model [Eq. (22)],
we fixed the values of K and A0, and measured the energy in
units KA2

0, stresses in units KA0, and lengths in unit A1/2
0 . The

preferred cell perimeter P0, was varied to tune the system be-
tween solid or fluid phases. We fixed the perimeter modulus 


by fixing the ratio KA0/
 ≈ 3.464 in most simulations since
it does not affect the location of the solid to fluid transition. In
Fig. 4 (see below) we, however, show an example of how the
ratio KA0/
 affects the dynamic shear modulus by changing
the area modulus K .

We created regular hexagonal as well as disordered tilings
subject to periodic boundary conditions as described in
Ref. [46]. For regular hexagonal tilings, we used a nearly
square domain with a total of 240 cells (15 cells in the hor-
izontal direction). For disordered tiling, we used a square
domain with 200 cells. Such systems are sufficiently large
that the finite size effects are negligible as shown in Ref. [46].
All configurations used to probe the rheology corresponded
to local energy minima obtained by the FIRE minimization
algorithm [58].

For the normal modes analysis, we first calculated the Hes-
sian matrix Ĥ using the expressions derived in Appendix B.
Next, we used the NumPy library [59] in Python to numerical
obtain the complete spectrum of eigenvalues λk , and eigenvec-
tors ξk , for the generalized eigenvalue problem in Eq. (5). This
system of normal modes was then used to calculate the storage
and loss shear moduli as explained in Secs. II B and II C.
These values of shear moduli were compared to the results
of the simulations described below.

The shear rheology was probed by applying an oscillatory
affine simple shear described by the deformation gradient
F̂ = (1 ε(t )

0 1

)
, where ε(t ) = ε0 sin(ω0t ) and we used a small

magnitude of deformation, i.e., ε = 10−7. At each time step,
we first applied the affine shear deformation to the simulation
box and all vertices, which was followed by internal relax-
ation of vertices according to the overdamped dynamics [see
Eq. (1)].

The response stress tensor σ̂C (t ) = σ̂e
C (t ) + σ̂id

C (t ) for each
cell C was computed following the formalism introduced in
Refs. [60–63] but took into account the contribution from
internal dissipative forces (see Appendix D for details). The
stress due to elastic deformation is

σ̂e
C = −�C Î + 1

2AC

∑
e∈C

Te ⊗ le, (23)

where the summation is over all junctions e belonging to
cell C. In the above Eq. (23), �C = − ∂E

∂AC
= −K (AC − A0)

is the hydrostatic pressure inside cell C, Î is the unit tensor,
and Te = ∂E

∂le
= 2
(PC − P0)le/|le| is the tension along the

junction e with le being a vector joining the two vertices on

it [60–62]. The stress due to internal dissipation is

σ̂ id
C = − 1

2ziAC

∑
i∈C

(
R̃i ⊗ f id

i + f id
i ⊗ R̃i

)
, (24)

where the summation is over all vertices i belonging to cellC.
In Eq. (24), f id

i is the internal friction force applied at vertex
i, and R̃i = Ri − RC is the position of vertex i relative to the
cell’s geometric center RC = ∑

i∈C Ri/NC . The average stress
tensor σ̂(t ) = ∑

C wC σ̂C (t ), with wC = AC/
∑

C AC , was used
as a measure for the response of the system. We recorded the
average shear stress signal σ̂xy(t ) once the system reached a
steady state. The dynamics modulus G∗(ω0) = ˜̂σxy(ω0)/ε̃(ω0)
was computed at a given driving frequency ω0 of the applied
strain, where ˜̂σxy(ω) and ε̃(ω) are the Fourier transforms of
σ̂xy(t ) and ε(t ), respectively.

B. Friction between vertices and a substrate

We first performed simulations of the vertex model with
external dissipation only, i.e., the friction force −γVi applied
to each vertex, as shown in Fig. 2(a). Since the external fric-
tion force produce stresses only indirectly (see Appendix D
for details), the values of Gid

pb and Gid
k are 0 in Eq. (21).

We validated the normal mode approach by comparing the
shear moduli with the results of simple shear simulations
of regular hexagonal tilings, which have been analyzed ex-
tensively in our previous paper [46]. Figures 3(a) and 3(b)
show the storage and loss moduli obtained from simula-
tions (dots) for representative values of p0 in (a) the solid
and (b) the fluid phase, which show excellent agreement
with the predictions (lines) of the normal mode analysis.
The corresponding eigenvalues λk and the normalized coeffi-
cients ᾱkḠe

k = αkGe
kγ /(KA0)2 and β̄kḠe

k = βkGk/(KA0) [see
Eqs. (14), (20), and (21)] for the normal mode analysis are
shown in Figs. 3(c) and 3(d), and 3(e) and 3(f), respectively.

We note that the distribution of eigenvalues λk is often
presented in the form of the density of states [33,34,51]. For
the present analysis, however, in addition to the eigenvalues
one also needs to know the values of coefficients ᾱkḠe

k and
β̄kḠe

k that describe projections of external driving force to
the normal modes. For this reason, it is more instructive to
present λk , ᾱkḠe

k , and β̄kḠe
k as functions of k. For refer-

ence, however, we show the density of states in the inset in
Fig. 3(d).

In our previous paper [46], we noted that the rheological
response of regular hexagonal tilings in the solid and fluid
phases can be well described with the standard linear solid
and Burgers model, respectively. This can be explained with
the help of normal modes. The shear response in the solid
phase is dominated by the set of normal modes in the shaded
region in Fig. 3(e), where coefficients ᾱkḠe

k and β̄kḠe
k have

the highest values. All modes in this region correspond to
the identical eigenvalue that we denote as λD [see the shaded
region in Fig. 3(c)]. Hence, the shear response of hexagonal
tilings in the solid phase is characterized by a single time
scale λ−1

D , and, therefore, can be accurately captured by the
standard linear solid model. Note that the response of the
system is dominated by the linear combination of normal
modes that corresponds to the projection of the affine shear
deformation to the set of these degenerate normal modes as
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(a) (c) (e)

(b) (d) (f)

FIG. 3. Shear rheology of hexagonal tilings with dissipation due to friction with the solid substrate. Results for two representative values
of the cell shape parameter p0 = 3.5 in the solid phase (top row) and p0 = 3.73 in the fluid phase (bottom row) are shown. [(a),(b)] Storage
and loss moduli from the simulations (symbols) compared with the predictions based on the normal mode analysis (lines). [(c),(d)] Nonzero
eigenvalues λk vs the mode number k; eigenvalues are sorted in the ascending order. [(e),(f)] Absolute values of normalized coefficients
|ᾱkḠe

k | = |αkGe
kγ /(KA0)2| and |β̄kḠe

k | = |βkGe
k/(KA0)| [see Eqs. (14) and (20)]. Also note that the ordinate covers ∼25 decades. The inset in

(c) shows a schematic of the normal mode ξD that dominates the shear rheology of hexagonal tilings in the solid phase. This dominant normal
mode is a linear combination of degenerate normal modes within the shaded region in panels (c) and (e). Labeled arrows in panel (b) denote
peaks that correspond to the characteristic timescales from the normal modes in the shaded regions in panels (d) and (f). The inset in (d) shows
the density of states ρ(λ).

ξD = ∑
k s.t. λk=λD

(ξᵀk u
aff ) ξk of the same eigenvalue λD. The

normal mode ξD is shown in the inset of Fig. 3(b), where it
is represented by the corresponding displacement field, which
shows that the connected vertices move horizontally by the
same amount but in opposite directions.

In the fluid phase (bottom row of Fig. 3), the spectrum
of normal modes can be grouped in a region of zero modes
(λk = 0) and two distinct regions with approximately constant
values of eigenvalues λk [two shaded regions in Fig. 3(d)].
These two regions of nonzero modes set the two character-
istic timescales [marked by arrows in Fig. 3(b)] of the shear
response of hexagonal tilings in the fluid phase, which can be
described with the Burgers model. Note that the zero modes
do not contribute to the shear response because the value of
normalized coefficient ᾱkḠe

k ≈ 0 [see Fig. 3(f)].
We used the normal mode approach to further demonstrate

how the ratio between the area and perimeter moduli KA0/


affects the shear rheology of the vertex model. We measured
the storage and loss moduli of disordered tilings with different
area modulus K as shown in Figs. 4(a) and 4(b) for two
representative values of p0. The simulation results (symbols)
show excellent agreement with the predictions of the normal
mode analysis (lines). Note that in Fig. 4 we fixed 
 and
measured the stresses in units 
 and time in units γ /
. We
varied the values of K by two orders of magnitude, as indi-

cated by the colorbars for the ratio KA0/
. Figures 4(c) and
4(d) show the corresponding eigenvalues λk in the ascending
order. The eigenvalues λk for k > 600 are strongly affected
by the magnitude of the area modulus K . This indicates that
the area term in the vertex model in Eq. (22) has a stronger
contribution to the normal modes of large eigenvalues, which
strongly affects the loss moduli at high frequency as a function
of K [see Figs. 4(a) and 4(b)]. Figures 4(e) and 4(f) show
the corresponding coefficients ᾱkḠe

k and β̄kḠe
k at a represen-

tative value of KA0/
 = 34.641. In our previous paper [46],
we noted that the standard linear solid and Burgers model
cannot accurately capture the shear rheological properties for
disordered tilings in the vicinity of the solid-fluid transition
with p0 ≈ 3.9. This can be seen in Fig. 4(b) for p0 = 3.87,
where the complex rheological behavior is a consequence
of the broad spectrum of normal mode eigenvalues λk [see
Fig. 4(d)]. This reflects one of the key results of the normal
mode approach that the full response of the vertex model is
the sum of the contributions from all the normal modes, each
of which behaves as a standard linear solid.

C. Friction due to the relative motion of neighboring vertices

In this section, we analyze the shear rheology of the vertex
model with the internal friction due to the relative motion
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(a) (c) (e)

(b) (d) (f)

FIG. 4. Shear rheology of disordered tilings with dissipation due to friction with the substrate for different values of the area elastic moduli
K . Results for two representative values of the cell shape parameter, p0 = 3.71 (top row) and p0 = 3.87 (bottom row), are shown. [(a),(b)]
Storage and loss moduli from the simulations (symbols) compared with the predictions of the normal mode analysis (lines). Different colors
represent the results from different values of the ratio KA0/
. [(c),(d)] Nonzero eigenvalues λk in ascending order for different values of
KA0/
. [(e),(f)] Absolute values of normalized coefficients |ᾱkḠe

k | = |αkGe
kγ /(KA0)2| and |β̄kḠe

k | = |βkGe
k/(KA0)| at one representative value

of KA0/
 = 34.641.

of connected vertices characterized by the friction coeffi-
cient ζV [see Fig. 2(b)]. In addition, the system is subject
to vertex-substrate friction with the friction coefficient γ ,
discussed in the previous section. In Fig. 5, we first report
the results for hexagonal tilings at representative values of
the cell shape parameter in the solid phase (top) and the
fluid phase (bottom). Figures 5(a) and 5(b) show an excellent
agreement between the storage and loss moduli obtained from
simulations (symbols) and the normal mode analysis (lines)
for various values of the internal friction coefficient ζV . Fig-
ures 5(e) and 5(f) show the normalized coefficients ᾱkḠe

k and
β̄kḠe

k [see Eqs. (14a), (20a), and (21a)] due to the contribution
of elastic forces, ᾱkḠid

k = αkGid
k /(KA0) and β̄kḠid

k = βkGid
k /γ

[see Eqs. (14b), (20b), and (21b)] due to the contribution of
internal dissipation.

The storage and loss moduli in the solid phase are char-
acterized by a single timescale, and all curves for different
values of ζV can be collapsed by rescaling the frequency as
ω0(γ + 6ζV )/(KA0). This is because the shear response is
dominated by the normal mode ξD introduced in the previous
section, which is shown by the single peak of the normalized
coefficients ᾱkḠe

k and β̄kḠe
k marked by the arrow in Fig. 5(e).

The normal mode ξD is simultaneously the eigenvector of the
Hessian matrix Ĥ and the dissipation matrix Ĉ. In particular,
ĈξD = (γ + 6ζV )ξD, since each vertex in the normal mode ξD
moves in the opposite direction but with the same magnitude
as the three vertices connected to it [see the schematic of ξD

in the inset of Fig. 3(c)]. The eigenvalue γ + 6ζV with respect
to Ĉ thus accounts for the scaling factor of the frequency
in Fig. 5(a). Note that the values of normalized coefficients
ᾱkḠid

k and β̄kḠid
k are negligible since the stresses from internal

dissipation σ̂ id
C [see Eq. (24)] cancel out due to hexagonal

symmetry. Hence, the rheological behavior in this case is
analogous to the one for the hexagonal tiling in the solid
phase with only external dissipation [compare Fig. 3(a) and
Fig. 5(a)].

In the fluid phase, we rescaled the frequency with the same
factor to help visually compare the change in the moduli with
respect to the friction coefficient ζV , as shown in Fig. 5(b).
Unlike in the solid phase, where the stress contributions σ̂ id

C
from internal dissipative forces cancel out due to hexagonal
symmetry, there is no such cancellation in the fluid phase and
the loss modulus in the fluid phase increases as G′′(ω) ∼ ζVω

at high frequencies ω [see Eq. (21b)]. This is because the
hexagonal state is unstable in the fluid regime and cells be-
come slightly distorted in a local energy minimum [46]. Note
that the crossover to the asymptotic regime G′′(ω) ∼ ζVω

shifts to lower frequencies as the ratio ζV /γ increases.
We proceed to perform simulations of the vertex model

with disordered tilings, which mimic the geometry of real
epithelial tissues. The first column in Fig. 6 shows the storage
and loss moduli from simulations (symbols) for representative
values of the cell shape parameter deep in the solid phase (top
row, p0 = 3.06), close to the solid-fluid transition point on
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(a) (c) (e)

(b) (d) (f)

FIG. 5. Shear rheology of hexagonal tilings with internal dissipation due to the relative motion of neighboring vertices in addition to the
vertex-substrate friction. Results for two representative values of the cell shape parameter, p0 = 3.5 in the solid phase (top row) and p0 = 3.78
in the fluid phase (bottom row) are shown. [(a),(b)] Storage and loss moduli from the simulations (symbols) compared with the predictions from
normal modes (lines) for different values of the internal friction coefficient ζV (see colorbar). [(c),(d)] Nonzero eigenvalues λk in ascending
order for different values of ζV . [(e),(f)] Normalized coefficients ᾱkḠe

k = αkGe
kγ /(KA0)2, β̄kḠe

k = βkGe
k/(KA0), ᾱkḠid

k = αkGid
k /(KA0), and

β̄kḠid
k = βkGid

k /γ [see Eqs. (14) and (20)] for a representative value of ζV /γ = 10. In the solid phase, the rheological response is dominated
by the single normal mode ξD marked by the arrow in panel (e), which corresponds to the highest value of coefficients ᾱkḠe

k and β̄kḠe
k . Note

very different values used for the ordinate axes in the top and bottom panels in (e).

the solid side (middle row, p0 = 3.87), and in the fluid phase
(bottom row, p0 = 3.99), which show excellent agreement
with predictions of the normal mode analysis (lines). As usual,
the frequency is again measured in units of KA0/(γ + 6ζV ).
When the system is deep in the solid phase, as shown in
Fig. 6(a), the response is similar to that of a standard linear
solid, with loss modulus having one peak for small values
of ζV /γ in the low-frequency regime, and crossing over to
the asymptotic behavior G′′(ω) ∼ ζVω in the high-frequency
regime, where the internal dissipation dominates. Increasing
the ratio ζV /γ moves this crossover to lower frequencies,
which is analogous to the behavior of hexagonal tilings in the
fluid phase [see Fig. 5(b)].

When the system is close to the solid-fluid transition, but
on the solid side [see Fig. 6(b)], the loss modulus develops two
peaks, whose separation becomes more pronounced as ζV /γ

increases. This is similar to the behavior for hexagonal tilings
shown in Fig. 5(b), which can be accounted for by the jump
between the two regions of eigenvalues λk becoming sharper
with increasing ζV /γ , as shown in Figs. 5(d) and 6(e). The
internal dissipation, however, dominates in the high-frequency
regime, and the loss modulus crosses over to increasing with
frequency, which is again shifted to the left as ζV /γ increases.
Furthermore, the loss modulus crosses over from the linear
scaling (∼ω) at low frequencies to anomalous scaling (∼ωα)

with the fractional exponent α < 1 at intermediate frequencies
[see Fig. 6(b)], which was already noted in our prior work
in Ref. [46]. This is because the eigenvalues λk gradually
increase by two orders of magnitude up to the sharp jump
point in Fig. 6(e).

In the fluid phase, the internal dissipation ζV has a similar
effect on the loss modulus as shown in Fig. 6(c) and one ob-
serves that the loss modulus crosses over to growing linearly
with frequency in the high-frequency regime.

D. Friction due to relative motions of neighboring cells

Finally, we investigated the shear rheology of the vertex
model with the internal friction due to the relative motion of
neighboring cell centers characterized by the friction coeffi-
cient ζC [see Fig. 2(c)]. As in the previous section, vertices
also experience friction with the substrate with the friction
coefficient γ . In Fig. 7, we show the dynamic moduli for
hexagonal tilings at representative values of the cell shape
parameter in the solid (top) and the fluid phase (bottom).
In the solid phase, the dominant normal mode ξD does not
generate friction due to relative motion of neighboring cells,
i.e., ĈξD = γ ξD. Thus, the shear rheology for the hexagonal
tiling in the solid phase is identical to that of the model with
the cell-substrate friction only, cf. Fig. 3.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 6. Shear rheology for disordered tilings with internal dissipation due to the relative motion of neighboring vertices in addition to cell-
substrate friction. Results for three representative values of the cell shape parameter, p0 = 3.06 deep in the solid phase (first row), p0 = 3.87
close to the solid-fluid transition point on the solid side (second row), p0 = 3.99 in the fluid phase (bottom row) are shown. [(a)–(c)] Storage and
loss moduli from the simulations (symbols) compared with the predictions from normal modes (lines) for different values of the internal friction
coefficient ζV (see colorbar). [(d)–(f)] Nonzero eigenvalues λk in ascending order for different values of ζV . [(g)–(i)] Normalized coefficients
ᾱkḠe

k = αkGe
kγ /(KA0)2, β̄kḠe

k = βkGk/(KA0), ᾱkḠid
k = αkGid

k /(KA0), and β̄kḠid
k = βkGid

k /γ for a representative value of ζV /γ = 10.

In the fluid phase, the two small humps in the loss modulus
that are present in the case with only the vertex-substrate dis-
sipation (i.e., for ζC = 0) are smoothed out as ζC/γ increases
[see Fig. 7(b)]. This is because the jump between two regions
of eigenvalues λk are smoothed out with increasing ζC/γ , as
shown in Fig. 7(d). Note that this is different from the the
case with dissipation due to the relative motion of neighboring
vertices, where the jump in the spectrum of eigenvalues λk

becomes more pronounced as the value of ζV /γ increases [see
Fig. 5(d)]

In Fig. 8, we report the results for disordered tilings. The
first column in Fig. 8 shows the storage and loss moduli
from simulations (symbols) for representative values of the
cell shape parameter deep in the solid phase (top row, p0 =
3.06), close to the solid-fluid transition point on the solid side

(middle row, p0 = 3.87), and in the fluid phase (bottom row,
p0 = 3.99), which all show excellent match with predictions
from the normal modes (lines). For a system deep in the solid
phase, the loss modulus develops a secondary shoulder at low
frequencies as ζC increases [see Fig. 8(a)], which corresponds
to the jump of the eigenvalues λk developing at k ≈ 400 in
Fig. 8(d).

When the system is close to the solid-fluid transition on the
solid side, the range of intermediate frequencies over which
the loss modulus has a significant value becomes wider with
a small bump developing at low frequency as ζC/γ increases
[see Fig. 8(b)]. This is reflected by a wider range of eigen-
values λk with increasing ζC/γ in Fig. 8(e). This behavior is
different from the response of the system with friction due
to the relative motion of neighboring vertices, for which the
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. Shear rheology of hexagonal tilings with internal dissipation due to relative motion of neighboring cell centers and external cell-
substrate friction. Results for two representative values of the cell shape parameter, p0 = 3.5 in the solid phase (top row) and p0 = 3.78 in
the fluid phase (bottom row) are shown. [(a),(b)] Storage and loss moduli from the simulations (symbols) compared with the predictions of
the normal mode analysis (lines) for different values of ζC/γ (see colorbar). [(c),(d)] Nonzero eigenvalues λk in ascending order for different
values of ζC/γ . [(e),(f)] Normalized coefficients ᾱkḠe

k = αkGe
kγ /(KA0)2, β̄kḠe

k = βkGk/(KA0), ᾱkḠid
k = αkGid

k /(KA0), and β̄kḠid
k = βkGid

k /γ

for a representative value of ζC/γ = 10. In the solid phase, the rheological response is dominated by the single normal mode ξD marked by the
arrow in panel (e). This mode corresponds to the highest value of coefficients ᾱkḠe

k and β̄kḠe
k . Note very different numerical values on ordinate

axes in top and bottom panels in (e).

dynamic range of characteristic time scales does not signifi-
cantly change with ζV [see Fig. 6(e)].

In the fluid phase, similarly to the hexagonal tilings, the
two small bumps in the loss modulus at intermediate frequen-
cies, when there is only external dissipation (i.e., for ζC = 0),
are smoothed out as ζC/γ increases [see Fig. 8(c)], which
is reflected by the jump of eigenvalues λk at k ≈ 600 being
smoothed out with increasing ζC as shown in Fig. 8(f).

IV. DISCUSSION AND CONCLUSIONS

In this paper, we used the normal modes formalism to
develop a general method for calculating dynamic rheological
moduli of soft materials in the linear response regime in the
presence of internal and external dissipation. A key finding
is that the dynamic rheological moduli can be represented
as a linear superposition of standard linear solid and Jeffreys
elements connected in parallel, with each mode contributing
a characteristic relaxation timescale related to its eigenvalue.
The external and internal dissipation, i.e., friction with the
substrate and friction between constitutive elements of the
system, respectively, have markedly different effects on the
rheology. The external dissipation together with elastic relax-
ation combine to result in the standard linear solid model,
i.e., a viscoelastic solid. On the other hand, internal dissipa-
tion is described by the Jeffreys element, and it represents a

viscoelastic liquid. As the result, the behavior of the loss mod-
ulus is qualitatively different at high frequencies depending
on whether the internal dissipation is present or not. While
the calculated dynamical moduli depend on the precise de-
tails of microscopic dynamics and dissipation mechanism, the
method presented here based on normal modes is agnostic to
such details. It can be applied to systems with any number of
spatial dimensions as long as it is possible to define an energy
function with well-defined local minima that is differentiable
twice. Although here we considered the overdamped case,
extension to systems with inertia is straightforward.

For systems with less than ∼104 degrees of freedom, this
method is superior in terms of computational cost compared
to direct simulations since one needs to solve the generalized
eigenvalue problem only once, which can then be used to
determine the linear response properties over the full range
of frequencies. For larger systems sizes, however, solving
the full eigensystem becomes computationally costly since
the computational complexity scales as O((dN )3), where dN
is the total number of degrees of freedom. If one is inter-
ested only in the low-(high-)frequency response, this can be
somewhat alleviated by computing only a small subset of
normal modes with the lowest (highest) eigenvalues, which
can be done at a lower computational cost O(N2). In the
case where the full-frequency scan is required, however, for
large systems, the direct simulations become computationally
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

FIG. 8. Shear rheology for disordered tilings with internal dissipation due to the relative motion of neighboring cell centers and external
cell-substrate friction. Results are shown for three representative values of the cell shape parameter, p0 = 3.06 deep in the solid phase (top
row), p0 = 3.87 close to the solid-fluid transition point on the solid side (middle row), and p0 = 3.99 in the fluid phase (bottom row). [(a)–(c)]
Storage and loss moduli from the simulations (symbols) compared with the predictions of the normal mode analysis (lines) for different values
of ζC/γ (see colorbar). [(d)–(f)] Nonzero eigenvalues λk in ascending order for different values of ζC/γ . [(g)–(i)] Normalized coefficients
ᾱkḠe

k = αkGe
kγ /(KA0)2, β̄kḠe

k = βkGK/(KA0), ᾱkḠid
k = αkGid

k /(KA0), and β̄kḠid
k = βkGid

k /γ at one representative value of ζC/γ = 10.

advantageous. The associated complexity of a single direct
simulation with short-range interaction scales as O(dN ×
nt ), but typically with a substantial prefactor. Here nt =
ttot/�t = 2πnperiods/(ω�t ) corresponds to the total number of
timesteps, which is especially high for low driving frequencies
ω. This, combined with the need to repeat the full simulation
for each driving frequency, makes direct simulations far less
appealing.

We applied this formalism to study the linear response to
shear deformations of the two-dimensional vertex model for
epithelial tissue mechanics with three different microscopic
mechanisms of dissipation. We derived expressions for me-
chanical stresses on cells due to elastic and dissipative forces
and showed that for all three dissipation models, the method
gives an excellent agreement with direct numerical simula-

tions. Although our analysis of the vertex model is limited
to the linear response regime and is unable to capture the
response to large deformations, especially if those involve
local plastic rearrangements, it nonetheless provides valuable
insights into its complex rheology. In particular, it allows one
to fully understand the behavior of the storage and loss moduli
of the vertex model in the linear response regime in terms of
the behaviors of each normal mode. Applying this approach
to compute and understand other response functions, e.g., the
bulk modulus is also straightforward, as is the treatment of
different forms of external driving. For example, modeling a
typical experimental setup where the system is clamped at
two of its ends that are then moved relative to each other
would just involve introducing the appropriate functional form
for the driving force in Eq. (3). Additionally, the generalized
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eigenvalue problem in Eq. (5) would have to be solved subject
to appropriate boundary conditions.

The ability to study the effects of both internal and ex-
ternal dissipation at the same footing makes this approach
appealing to studying the effects of complex dissipative pro-
cesses. In addition, the method can be directly extended
to models that include the effects of activity [64–68]. Un-
derstanding the roles of activity and internal dissipation is
crucial for a proper understanding of the rheology of living
tissues.
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APPENDIX A: ELASTIC FORCE ON A VERTEX

In this Appendix, we outline the derivation of the expres-
sion for the elastic force fe

i on a vertex i. The elastic force on
vertex i is

fe
i = −∇RiE , (A1)

where

E =
∑
C

[
K

2
(AC − A0)2 + 


2
(PC − P0)2

]
(A2)

is the energy function of the vertex model. In these ap-
pendices, we use Latin subscript indices to denote different
vertices and cells, and Greek superscript indices to denote x
and y components of a vector.

The area of the cell C can be expressed as

AC = 1

2

∑
i∈C

(Ri × Ri+1) · ez,

AC = 1

2

∑
i∈C

εαβR
α
i R

β

i+1. (A3)

In the above equations, the summation is over all vertices i
that belong to cell C. Vertices i are assumed to be labeled
from 0 to NC − 1 in a counterclockwise sense and the in-
dex i + 1 is calculated modulo NC , i.e., for i = NC − 1 the
value of i + 1 is 0. In Eq. (A3), the Ri is the position vector
of vertex i, ez is the unit-length vector perpendicular to the
plane of the tissue (assumed to be the xy plane), εαβ is the
two-dimensional Levi-Civita symbol, and summation over re-
peated Greek indices is implied. Similarly, the perimeter of

the cell C is

PC =
∑
i∈C

|Ri+1 − Ri|

=
∑
i∈C

[(
Rα
i+1 − Rα

i )(Rα
i+1 − Rα

i

)]1/2
, (A4)

with the same rules as in the case of the area term in Eq. (A3).
The elastic force on vertex i is then

fe
i = −

∑
C∈Ni

[K (AC − A0)(∇RiAC )

+
(PC − P0)(∇RiPC )],

fe
i ≡

∑
C∈Ni

fe
C→i, (A5)

where Ni includes the set of all cells that share vertex i and
we defined fe

C→i as the elastic force contribution on the vertex
i due to cell C.

It is straightforward to show that for the vertex i that be-
longs to cell C the derivatives are

∇RiAC = 1
2δC,i(Ri+1 − Ri−1) × ez,

∂AC

∂Rα
i

= 1
2δC,iεαβ

(
Rβ

i+1 − Rβ

i−1

)
,

∂AC

∂Rα
i

= 1
2δC,iεαβ

(
lβi,i+1 − lβi,i−1

)
, (A6)

and

∇RiPC = δC,i

(
Ri − Ri−1

|Ri − Ri−1| − Ri+1 − Ri

|Ri+1 − Ri|
)

,

∂PC
∂Rα

i

= δC,i

(
Rα
i − Rα

i−1

|Ri − Ri−1| − Rα
i+1 − Rα

i

|Ri+1 − Ri|
)

,

∂PC
∂Rα

i

= −δC,i
(
l̂αi,i−1 + l̂αi,i+1

)
, (A7)

where we introduced the vector li, j = R j − Ri along the junc-
tion connecting vertices i and j, normalized unit vector l̂ =
l/|l|, and

δC,i =
{

1 if vertex i belongs to cell C
0 otherwise . (A8)

The elastic force contribution fe
C→i on the vertex i due to cell

C can thus be expressed as

fe
C→i = − 1

2δC,i K (AC − A0)(li,i+1 − li,i−1) × ez

+δC,i 
(PC − P0)(l̂i,i−1 + l̂i,i+1). (A9)

Note that the derivatives ∇RiAC and ∇RiPC only depend on
the lengths and orientations of cell-cell junctions that contain
vertex i [see Eqs. (A6) and (A7)]. Thus the elastic force fe

i can
also be expressed as a summation over the cell-cell junctions
as

fe
i = +

∑
j∈Si

1

2
K

(
AC1( j) − AC2( j)

)
li, j × ez

+
∑
j∈Si



(
�PC1( j) + �PC2( j)

)
l̂i, j, (A10)
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FIG. 9. An efficient way of calculating the elastic force on ver-
tex i, fe

i , is to loop over all cell-cell junctions that originate at i
in the counterclockwise direction. For each junction, the two cells
that share it contribute to the total force. These contributions are
the two terms in the sum in Eq. (A10). For consistency, we adopt
a convention that when looking along the junction away from the
vertex i, the cell to the right (blue) is labeled as C1, and the cell to
the left (red) is labeled as C2. Note that since vertices within each
cell are ordered counterclockwise, the endpoint of the junction, i.e.,
the vertex j appears in cell 1 (2) as i − 1 (i + 1) in the cell’s internal
labeling.

where �PC = (PC − P0). The set Si contains all vertices j
connected by cell-cell junctions to the vertex i. Here, we
adopt a convention that when looking along the junction
away from the vertex i, the cells to the right and left are
labeled as C1( j) and C2( j), respectively (see Fig. 9). In the
numerical implementation, we calculated the elastic force
fe
i using Eq. (A10) because we can efficiently loop over all

cell-cell junctions that belong to the vertex i.

APPENDIX B: HESSIAN MATRIX OF THE VERTEX
MODEL

In this Appendix, we outline the derivation of the expres-
sions for the Hessian matrix of the vertex model. To allow
for the most general case, we express the energy of the vertex
model as

E =
∑
C

KC

2

(
AC − AC

0

)2 +
∑
C


C

2
P2
C −

∑
〈i, j〉

�i j |li, j |, (B1)

where �i j is the line tension and |li, j | ≡ |R j − Ri| is the
length of the junction connecting vertices i and j. The sum-
mation 〈i, j〉 is over all pairs of vertices i and j connected by
junctions. In the case when parameters KC , 
C , AC

0 , PC
0 , and

�i j are not cell specific, one immediately reads off P0 = �



and, after adding the constant term 1
2
P2

0 , readily recovers
Eq. (22). Since in general scenarios the line tension can vary
across junctions, we will use Eq. (B1) as the expression for
the energy of the vertex model for further derivation.

For a system with N vertices, the Hessian of the vertex
model is a real symmetric matrix of size 2N × 2N . Its ele-
ments are

ĤIJ = ∂2E

∂xI∂xJ

∣∣∣
r=req

, (B2)

where I, J ∈ {1, . . . , 2N}, and I = 2(i − 1) + α, with i ∈
{1, . . . ,N} and α ∈ {1, 2}. In other words, for I = 2i − 1,
xI ≡ Rx

i and for I = 2i, xI ≡ Ry
i . Identical relations hold for

index J . Elements of the Hessian matrix are calculated for a
configuration in mechanical equilibrium, i.e., for r = req. One
finds

∂2E

∂Rα
k ∂R

β
m

=
∑
C

KC

[
∂AC

∂Rα
k

∂AC

∂Rβ
m

+ (
AC − AC

0

) ∂2AC

∂Rα
k ∂R

β
m

]

+
∑
C


C

[
∂PC
∂Rα

k

∂PC

∂Rβ
m

+
∑
C


CPC
∂2PC

∂Rα
k ∂R

β
m

]

−
∑
〈i, j〉

�i j
∂2|li, j |

∂Rα
k ∂R

β
m

. (B3)

The expression for ∂AC/∂Rα
k and ∂PC/∂Rα

k are given in
Eqs. (A6) and (A7), respectively. It is straightforward to show
that

∂2AC

∂Rα
k ∂R

β
m

= 1

2
δC,kδC,mεαβ

(
δm−1,k − δm+1,k

)
, (B4)

where

δi, j =
{

1 if i = j
0 if i �= j

(B5)

is the Kronecker delta. Similarly,

∂2PC

∂Rα
k ∂R

β
m

= −δC,kδC,m(δm,k − δm−1,k )

[(
Rα
m − Rα

m−1

)(
Rβ
m − Rβ

m−1

)
|Rm − Rm−1|3 − δαβ

|Rm − Rm−1|

]

+ δC,kδC,m(δm+1,k − δm,k )

[(
Rα
m+1 − Rα

m

)(
Rβ

m+1 − Rβ
m

)
|Rm+1 − Rm|3 − δαβ

|Rm+1 − Rm|

]
,

∂2PC

∂Rα
k ∂R

β
m

= −δC,kδC,m(δm,k − δm−1,k )

[
lαm−1,ml

β

m−1,m

|lm−1,m|3 − δαβ

|lm−1,m|

]
+ δC,kδC,m(δm+1,k − δm,k )

[
lαm,m+1l

β

m,m+1

|lm,m+1|3 − δαβ

|lm,m+1|

]
. (B6)
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Finally,

∂2|li, j |
∂Rα

k ∂R
β
m

= −(δi,k − δ j,k )(δi,m − δ j,m )

[(
Rα

j − Rα
i

)(
Rβ

j − Rβ
i

)
∣∣R j − Ri

∣∣3 − δαβ∣∣R j − Ri

∣∣
]
,

∂2|li, j |
∂Rα

k ∂R
β
m

= −(δi,k − δ j,k )(δi,m − δ j,m )

[
lαi, j l

β
i, j∣∣li, j∣∣3 − δαβ∣∣li, j∣∣

]
. (B7)

APPENDIX C: EXTERNAL DRIVING FORCE DUE TO
SHEAR OF THE PERIODIC SIMULATION BOX IN THE

VERTEX MODEL

In this Appendix, we outline the derivation of the expres-
sion for the external driving force f̄pb due to the shear of the
rectangular periodic simulation box with edge lengths �x and
�y. We use the energy function for the vertex model given in
Eq. (B1) and seek to find the expression for

f̄ pb
I = − ∂2E

∂xI∂ε

∣∣∣
r=req,ε=0

, (C1)

where ε measures the shear of the simulation box, and as in
Eq. (B2), I ∈ {1, . . . , 2N} labels vertex coordinates. Similar
to the derivation of the Hessian matrix given in Appendix B,

one finds

∂2E

∂Rα
k ∂ε

=
∑
C

KC

[
∂AC

∂Rα
k

∂AC

∂ε
+ (

AC − AC
0

) ∂2AC

∂Rα
k ∂ε

]

+
∑
C


C

[
∂PC
∂Rα

k

∂PC
∂ε

+ PC
∂2PC

∂Rα
k ∂ε

]

−
∑
〈i, j〉

�i j
∂2|li, j |
∂Rα

k ∂ε
, (C2)

with the same meaning of the summation indices. Note that
the shear degree of freedom ε appears only for cell junctions
that cross the periodic boundary. The energy of the vertex
model depends on ε through the x component of the distance
vectors,

lxm,n = Rx
n − Rx

m + qxm,n�x + εqym,n�y, (C3)

where [43]

qxm,n =

⎧⎪⎨
⎪⎩

0
if the junction connecting vertices m and n does not cross the
right or left boundaries

+1 (–1)
if the junction connecting vertices m and n crosses the right
(left) boundary

, (C4a)

qym,n =

⎧⎪⎨
⎪⎩

0
if the junction connecting vertices m and n does not cross the
top or bottom boundaries

+1 (–1)
if the junction connecting vertices m and crosses the top
(bottom) boundary

. (C4b)

Using the chain rule, the derivative with respect to ε is

∂

∂ε
=

∑
〈m,n〉

∂lxm,n

∂ε

∂

∂lxm,n

=
∑
〈m,n〉

qym,n�y
∂

∂lxm,n

. (C5)

Using Eqs. (A6) and (A7) and the chain rule in Eq. (C5), one
can show that

∂2AC

∂Rα
k ∂ε

=
∑

〈m,n〉∈C

1

2
δC,kq

y
m,n�yεαx(δm,kδn,k+1 + δm,k−1δn,k ),

(C6)
and

∂2PC
∂Rα

k ∂ε
= −

∑
〈m,n〉∈C

δC,kq
y
m,n�y

[
δm,k−1δn,k

(
lαk−1,kl

x
k−1,k

|lk−1,k|3
− δα,x

|lk−1,k|
)

−δm,kδn,k+1

(
lαk,k+1l

x
k,k+1

|lk,k+1|3
− δα,x

|lk,k+1|
)]

, (C7)

where the summation is restricted over all junctions 〈m, n〉 that
belong to cell C. Similarly, one can find that

∂2|li, j |
∂Rα

k ∂ε
= −qyi, j�y(δ j,k − δi,k )

(
lαi, j l

x
i, j

l3
i, j

− δα,x

li j

)
. (C8)

APPENDIX D: STRESS TENSOR FOR EACH CELL IN THE
VERTEX MODEL

In this Appendix, we provide a detailed derivation of the
expression for the stress tensor σ̂C for cell C in the vertex
model. Note that the derivation follows the steps introduced
in Ref. [62], and we further emphasize the difference between
internal and external forces to demonstrate that the internal
dissipation forces directly produce stresses, while the external
dissipation forces produce stresses indirectly via the force
balance with internal forces.

In the continuum limit, the mechanical equilibrium
can be expressed as ∇ · σ̂ + fext = 0, where σ̂(R) is the
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FIG. 10. The total force on a vertex is a sum of the mechanical forces from surrounding cells (blue, orange, and green) and internal (black)
and external (red) dissipative forces. In order to compute the stress on each cell, it is convenient to make a virtual split of the vertex between
all cells sharing it, as shown in the right panel. The force balance is then used for each subvertex to compute the reaction forces (grey) that
develop due to the interactions between subvertices.

symmetric stress tensor, fext(R) is the external force applied
to the system, and R is a position vector. Note that the vertex
model with overdamped dynamics is considered to be in a
quasimechanical equilibrium. For a system that is in mechan-
ical equilibrium, we also have σ̂ = ∇ · (R ⊗ σ̂ ) + R ⊗ fext,
where ⊗ represents the tensor product. By integrating this
relation over an arbitrary area element we obtain∫

A
dA σ̂ =

∫
A
dA (∇ · (R ⊗ σ̂ ) + R ⊗ fext ),∫

A
dA σ̂ =

∫
∂A

dsR ⊗ (σ̂ · n̂) +
∫
A
dAR ⊗ fext,

∫
A
dA σ̂ =

∫
∂A

dsR ⊗ t +
∫
A
dAR ⊗ fext, (D1)

where we used the Stokes theorem to convert the integral
over area A into the integral over the boundary ∂A with the
outwards pointing unit normal vector n̂ and the length element
ds. In Eq. (D1) we also introduced boundary traction forces
t = σ̂ · n̂. Note that if the area element in Eq. (D1) is re-
stricted to a subset of the system, then the traction forces t are
resulting from the internal forces between this area element
and the rest of the system. Finally, we note that for a system
that is mechanical equilibrium the position vectors R can be
measured relative to an arbitrary origin RO. To demonstrate
this, we introduce R = R̃ + RO and rewrite Eq. (D1) as∫

A
dA σ̂ =

∫
∂A

ds R̃ ⊗ t +
∫
A
dA R̃ ⊗ fext

+RO ⊗
(∫

∂A
ds t +

∫
A
dA fext

)
,

∫
A
dA σ̂ =

∫
∂A

ds R̃ ⊗ t +
∫
A
dA R̃ ⊗ fext, (D2)

where we took into account the force balance between bound-
ary tractions and external forces, i.e.,

∫
∂A ds t + ∫

A dA fext =
0.

The general formalism discussed above can be applied to a
cell C with area AC in the vertex model to derive the stress
tensor σ̂C . Before continuing, we introduce the geometric

center of the cell C with NC vertices as RC = 1
NC

∑
i∈C Ri,

where the summation is over all vertices i that belong to the
cell C. We also define the position of vertices i relative to the
cell center C as R̃i = Ri − RC . The stress tensor σ̂C for cellC
can then be expressed as

σ̂C = 1

AC

∫
A
dA σ̂,

σ̂C = 1

AC

∫
∂A

ds R̃ ⊗ t + 1

AC

∫
A
dA R̃ ⊗ fext. (D3)

In the vertex model, the degrees of freedom are vertices. Thus
the integrals in Eq. (D3) can be rewritten as

σ̂C = 1

AC

∑
i∈C

R̃i ⊗ Ti→C + 1

AC

∑
i∈C

R̃i ⊗ Fext
i→C . (D4)

Here, Ti→C and Fext
i→C are traction forces and external forces

on the cell C due to the vertex i, respectively.
Next we discuss how to relate the traction forces Ti→C and

external forces Fext
i→C to the elastic (fe

i ) and dissipative (f id
i , fed

i )
forces acting on the vertex i. First, we note that each vertex i
is in a force balance, i.e.,

0 = fe
i + f id

i + fed
i ,

0 =
∑
C∈Ni

fe
C→i + f id

i + fed
i , (D5)

where fe
C→i is the elastic force contribution on the vertex i

due to cell C and the set Ni contains zi cells that share vertex
i. Then, we draw a free body diagram, where we split each
vertex i to zi subvertices (see Fig. 10). Each subvertex belongs
to one of the zi cells that share the vertex i. The subvertex that
belongs to the cell C experiences the elastic force fe

C→i. For
simplicity, we assume that internal and external dissipative
forces are distributed equally among the zi subvertices. Thus,
each subvertex experiences the internal dissipative force f id

i /zi
and the external dissipative force fed

i /zi. Internal forces be-
tween subvertices may also develop. The traction force Ti→C

thus represents the resultant force between the subvertex that
belongs to the cellC and all other subvertices. Each subvertex
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is in force balance and thus we can extract the traction force
as

Ti→C = −fe
C→i −

1

zi
f id
i − 1

zi
fed
i . (D6)

It is easy to check that the sum of all internal forces between
subvertices, i.e.,

∑
C∈Ni

Ti→C = 0, vanishes due to Newton’s
third law. Finally, we note that the external force Fext

i→C arises
due to the external dissipation between the subvertex that
belongs to the cell C and the substrate, i.e.,

Fext
i→C = 1

zi
fed
i . (D7)

Using the expressions for the traction force Ti→C in
Eq. (D6) and the external force Fext

i→C in Eq. (D7), we can
express the stress tensor σ̂C for the cell C in Eq. (D4) as

σ̂C = 1

AC

∑
i∈C

R̃i ⊗
(
Ti→C + Fext

i→C

)
,

σ̂C = 1

AC

∑
i∈C

R̃i ⊗
(

−fe
C→i −

1

zi
f id
i − 1

zi
fed
i + 1

zi
fed
i

)
,

σ̂C = − 1

AC

∑
i∈C

R̃i ⊗ fe
C→i −

1

AC

∑
i∈C

R̃i ⊗ 1

zi
f id
i ,

σ̂C ≡ σ̂e
C + σ̂ id

C . (D8)

In the above equation, the first time corresponds to the stress
tensor σ̂e

C for cell C due to elastic forces, and the second term
corresponds to the stress tensor σ̂ id

C for cell C due to internal
dissipative forces.

For the vertex model, the elastic force fe
C→i on the vertex

i due to cell C is given in Eq. (A9) the stress tensor due to
elastic forces can be expressed as

σ̂e
C = − 1

AC

∑
i∈C

R̃i ⊗ fe
C→i,

σ̂e
C = +K (AC − A0)

2AC

∑
i∈C

R̃i ⊗ [(li,i+1 − li,i−1) × ez]

−
(PC − P0)

AC

∑
i∈C

R̃i ⊗ (l̂i,i−1 + l̂i,i+1),

σ̂e
C ≡ σ̂e,area

C + σ̂
e,per
C . (D9)

In the above equation, the first term describes the contribution
to the elastic stress tensor σ̂e,area

C due to the mismatch of the
cell area AC from the target area A0. Via direct calculation of

the tensor components, one can show that this stress tensor
can be expressed as

σ̂e,area
C = −�C Î, (D10)

where �C = − ∂E
∂AC

= −K (AC − A0) is the hydrostatic pres-

sure inside the cell C and Î is the unit tensor.
The second term in Eq. (D9) describes contribution to the

elastic stress tensor σ̂
e,per
C due to the mismatch of the cell

perimeter PC from the target perimeter P0. This term can be
further simplified by taking into account that the summation
over vertices i is cyclic to write

σ̂
e,per
C = −
(PC − P0)

AC

∑
i∈C

R̃i ⊗ (l̂i,i−1 + l̂i,i+1),

σ̂
e,per
C = −
(PC − P0)

AC

∑
i∈C

(R̃i+1 ⊗ l̂i+1,i + R̃i ⊗ l̂i,i+1),

σ̂
e,per
C = −
(PC − P0)

AC

∑
i∈C

(−R̃i+1 + R̃i ) ⊗ l̂i,i+1,

σ̂
e,per
C = +
(PC − P0)

AC

∑
i∈C

li,i+1 ⊗ l̂i,i+1,

σ̂
e,per
C = +
(PC − P0)

AC

∑
i∈C

l̂i,i+1 ⊗ li,i+1. (D11)

The final expression above can be rewritten as

σ̂
e,per
C = 1

2AC

∑
e∈C

Te ⊗ le, (D12)

where we introduced the tension Te = ∂E
∂le

= 2
(PC − P0)l̂e
along the junction e, and the summation is over all junctions e
that belong to cell C. The total stress tensor σ̂e

C for cell C due
to elastic forces can thus be expressed concisely as

σ̂e
C = −�C Î + 1

2AC

∑
e∈C

Te ⊗ le. (D13)

Finally, we note that the in the absence of torque on a cell
due to internal dissipative forces f id

i , the stress tensor σ̂ id
C is

symmetric [62]. This allows us to symmetrize the stress tensor
as

σ̂ id
C = − 1

2ziAc

∑
i∈C

(
R̃i ⊗ f id

i + f id
i ⊗ R̃i

)
. (D14)
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